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Abstract

The interplay between quantum and thermal fluctuations in the presence of quenched random
disorder is a long-standing open theoretical problem which has been made more urgent by advances
in modern experimental techniques. The fragility of charge density wave order to impurities makes
this problem of particular interest in understanding a host of real materials, including the cuprate
high-temperature superconductors. To address this question, we consider the quantum version of
an exactly solvable classical model of two-dimensional randomly pinned incommensurate charge
density waves first introduced by us in a recent work, and use the large-IN technique to obtain
the phase diagram and order parameter correlations. Our theory considers quantum and thermal
fluctuations and disorder on equal footing by accounting for all effects non-perturbatively, which
reveals a novel crossover between under-damped and over-damped dynamics of the fluctuations of

the charge density wave order parameter.
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I. INTRODUCTION

Quasi-two-dimensional charge density wave (CDW) order has been observed in a wide
class of materials, such as the lanthanum cuprates [1-3], dichalcogenides [4, 5], and a va-
riety of quasi-2D systems. In the special case of the cuprates, the strongly layered crystal
structure hosts unidirectional charge density wave (CDW) order which is observed in prox-
imity to the d-wave superconducting phase [6-10], and has been proposed to be intimately
linked, or “intertwined”, with the superconducting order [11, 12]. Recently, developments
in experimental techniques such as x-ray scattering [13-15], scanning electron microscopy
[10, 16], and momentum-resolved electron energy loss spectroscopy (M-EELS) [17, 18], have
allowed for precise measurements of dynamic charge correlations in CDW materials. These
experimental advances highlight the need for theoretical work to elucidate the properties
of charge-ordered states, as the interplay of quantum and thermal fluctuations with the
random disorder present in materials remains poorly-understood. In a previous work, we
introduced a model of a classical unidirectional incommensurate CDW coupled to quenched
random disorder which is exactly solvable in a formal limit [19]. In this paper, we extend
that model to capture the quantum dynamics of the charge density wave.

The order parameter of a unidirectional CDW, whether it is commensurate with the
underlying lattice or not, is the Fourier component of the local charge density p(x,t) at the

ordering wave vector Q:
p(x,1) = po(x,t) + pq(x,1) €Y< 4 p_q(x,t) e *¥* + higher harmonics, (1.1)

where the uniform density py(x, t) is a slowly-varying real field and the CDW order parameter
pQ(x,t) = p’q(x,1) is a slowly-varying complex field. A CDW is an ordered phase of an
electronic system in which (pq(x,t)) # 0. This state breaks translation invariance and the
point group symmetry of the lattice. Charged impurities in materials produce an effectively
random electrostatic potential Viy,(x) which couples linearly to the local charge density
p(x,t). Consequently, disorder couples linearly to the CDW order parameter and effectively
acts as a quenched local random field. For this reason, CDW states are particularly fragile to
disorder. In an incommensurate charge density wave (ICDW) the lattice places no constraint
on the phase of the CDW order parameter, and hence, pq(x,t) has a global U(1) symmetry
of uniform continuous displacements of the charge density profile, which is spontaneously

broken in the ordered phase; the associated Goldstone mode is the well-known sliding mode



of the ICDW [14, 20]. In the rest of this work, we will denote the complex ICDW order
parameter as pq(x,t) = o(x,t) and the ordering wave vector label Q will be suppressed for

notational clarity.

In this work, we consider the interplay of quantum and thermal fluctuations in an ICDW
in the presence of quenched random disorder by extending the non-perturbative method
we developed in a recent publication to capture the quantum dynamics of the CDW order
parameter [19]. Our approach uses the large- N technique (see, for example, Refs. [21-24]),
which has been applied by other authors to the study of randomly-pinned ICDWs [25]. The
motivation for our approach is to provide the first example of a large-/N theory of disordered
ICDWs with a consistent and solvable clean limit. Although it is well-understood that a
theory with a U(1) order parameter can undergo a Berezinskii-Kosterlitz-Thouless (BKT)
phase transition in two spatial dimensions at finite temperature [26, 27], this fact had not
previously been captured in large-N treatments of this problem. To address this challenge,
we considered a two-component generalization of the CPY model with a global U(1) sym-
metry between the components. It is this global symmetry manifold on which we encoded
the CDW order parameter. Using the fact that the CPY model is exactly solvable in the
large-N limit [28-30], we devised an interaction between the two components that induces
ordering and showed that our model was also exactly solvable in the large- N limit. We then
demonstrated that in the absence of disorder the model displays a BKT transition in two di-
mensions. Next, we included quenched random disorder and again solved the model exactly
in the N — oo limit as a function of the disorder strength and the coupling between the
two CPY components, finding a complex phase diagram, including a novel weak-to-strong
disorder crossover. We also calculated the disorder-averaged order parameter correlation
function and determined its parametric dependence on disorder exactly. Throughout that
work we paid special attention to ensuring that our results were consistent with the Imry-
Ma theorem, which guarantees the absence of spontaneous continuous symmetry breaking
in less than four spatial dimensions [31].

In this paper we extend this large-N theory to the quantum case in three spacetime
dimensions. We begin by solving our theory in the absence of disorder. At zero temperature,
we show that our two-component CPY model is also exactly solvable in the large-N limit.
Unlike in the two-dimensional classical theory discussed in Ref. [19], the quantum CDW

transition is first order, at least in the large-INV limit. We then add thermal fluctuations
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due to finite temperature, and are able to obtain an exact expression in the large-/N limit
for the free energy as a function of temperature. Although the complex structure of the
corresponding saddle-point equations precludesclosed-form analytic solutions, we are still
able to derive the exact coefficients of the Ginzburg-Landau expansion of the free energy
in terms of the amplitude of the CDW order parameter. This allows us to derive the full
phase diagram of the quantum theory as a function of temperature and coupling between
the two CP" components, including a tricritical point separating the low temperature first

order transition from the high temperature continuous CDW transition found in Ref. [19].

Having mapped out the phase diagram for the clean system, we then include quenched
random disorder. Unlike in a classical equilibrium setting, coupling static disorder to dy-
namical fields produces nonlocal-in-time interactions. To derive the large-NN limit of the
model we use the well-understood bilocal field approach [32-34], which allows us to cal-
culate the exact self-energy function of the CPY components. The novel weak-to-strong
disorder crossover found in the classical model now manifests in the quantum theory as a
crossover from under-damped to over-damped dynamics. In the large-N limit the model
with disorder is only analytically solvable in certain limits, but with a combination of exact
results and numerical solutions we are able to obtain the full phase diagram as a function of
disorder and coupling between the CP" components at zero temperature. We then calculate
the CDW correlation function on both sides of the crossover: On the strong disorder side
we show that fluctuations of the CDW are also over-damped at low frequencies and that
the source of this damping is exclusively scattering from the static disorder. On the weak
disorder side, we find the same apparent violation of the Imry-Ma theorem as in the classical
model and explain how it is resolved at order 1/N in the large-N expansion. Finally, we turn
our attention to the disordered problem at finite temperature. Due to the added complexity
we restrict our attention to the case of strong disorder, where analytic results can still be
obtained. Here we are able to derive the low temperature dependence of the weak-to-strong
disorder crossover and the boundary where the amplitude of the CDW order parameter de-
velops. Finally, we calculate the order parameter correlation function in the strong disorder
regime and demonstrate how thermal fluctuations allow for dynamic scattering between the

CPY fields to enhance the damping of the order parameter.

This paper is structured as follows: In Sec. II we introduce the model we will be studying

in this paper and summarize relevant parts of our previous work in Ref. [19]. In Sec. 11 B we
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present the large- N solution of the model at zero temperature, and in Sec. IIC we extend
this to finite temperature. In Sec. II D we examine the order parameter correlations in the
absence of disorder. In Sec. IIT we discuss how to solve the model with quenched disorder.
In Sec. IIT A we present the large-N solution of the disordered model at zero temperature
and calculate the order parameter correlations. In Sec. IIIB we do the same at finite
temperature. Section IV presents our conclusions. Reviews of certain relevant material are
presented in two appendices. Appendix A presents the solution of the quantum nonlinear

sigma model with quenched disorder and Appendix B covers the CPY model.

II. QUANTUM DYNAMICS OF THE CLEAN SYSTEM
A. The Model

In Ref. [19], we described a classical model whose large-N limit allowed us to study the
properties of lower-dimensional order parameters. For completeness, we will summarize here
the relevant properties of the model introduced in that work. In this work we will discuss
the extension of this model to the quantum case.

We consider a theory of two N-component complex fields, z and w, which is a two-

component generalization of the well-known CPY model

5= é/ddxdT (|D“[a]z|2 + | D¥[a]w|? — §|z* - w|2> | 2P wlP =1, (21)
where both g and K are positive constants, and a* is a fluctuating U(1) gauge field which is
minimally coupled to the complex fields through the covariant derivative D*[a] = 0" + ia*.
Throughout this work, unless otherwise stated, we work in D = (d + 1)-dimensional Eu-
clidean spacetime (i.e., imaginary time) x = (x, 7), and units where the speed of propagation
of the complex fields z and w and the gauge field a* is equal to one. The symmetry group

of the action is U(N) x U(N), which has a U(1) x U(1) subgroup generated by the following

transformations:
(i) diagonal (local) z(z) — Dz (x), w(z) — @ (), (2.2a)
a'(z) — a(z) — 9"¢(x),
(ii) relative (global) z2(z) — ez (x), w(z) — e Yw(x), (2.2b)



where ¢(x) is a local U(1) gauge transformation and 6 is a global U(1) transformation. The
global U(1) symmetry of incommensurate charge density wave order can then be identified
with the relative U(1) symmetry of the model. Observe that the quartic interaction term in
the action is invariant under this relative symmetry which can be spontaneously broken.

The quantum statistical partition function for the theory is
_ o d /\1 2 )\2 2
Z = [ D\DXoDa*'DzDwexp | —S — [ d'xdr |—(|z| " = 1)+ =(Jw|" = 1)| ), (2.3)
g g

where S is the action defined in Eq. (2.1), and A\; and Ay are independent Lagrange multi-
pliers for the unit vector constraints |z|2 = |'w|2 = 1. The U(1) CDW order parameter can

then be made manifest through a Hubbard-Stratonovich transformation

K
exp (/ doxdr ?\z* . w\2> = /Daexp <—/ddXd7' [%0*0 -0z -w—0"z- w*}) ,

(2.4)

where o(x) plays the role of the order parameter,! and transforms according to o(z) —
e?®(x) under the relative U(1) symmetry and is neutral under the local gauge symmetry.
In the rest of this section, we will describe the properties of this model at zero and finite

temperature in the absence of quenched disorder.

B. Large-N Solution at Zero Temperature

At zero temperature, the SU(N) x SU(N) C U(N) x U(N) global symmetry can be
spontaneously broken. To see this, we integrate out only the first (N — 1) components of

the z and w fields to obtain

Z= / DM\ DX\ Da*DoDzyDuwy e~ N 1%t (2.5a)
—D?[a] + A - ¢ M+
Seg = trin “[a] ! 7 + /ddXdT {U o _Mt 2]
—o* —D2la] + Ay Ko 90
(2.5b)
1 —D?[a] + A —0 z
[ dixdr (Z}‘v w7v> alal + A v
9o —c* —D2lal + Ay ] \wn

L Strictly speaking, identifying the order parameter requires a Legendre transform. However, it only differs

from o(z) at higher order in 1/N than we consider in this work [35].



where g = go/(N — 1) and K = Ky/(N — 1). In the N — oo limit, mean field theory
becomes exact. Using the uniform ansatz A(z) = Xg(z) = m?, o(x) = pe?; a,(z) = 0,
zn(z) = ¥e®’? and wy(z) = e /2 where 6 is an arbitrary phase of the relative U(1)

symmetry, the partition function becomes
Z = NVerr (2.6a)

A qd ) )
d*q dw p 2m 5
Ug = — ] 2 2 212 2 2(m?2 9
off / G n([m +q° + m?| p ) +—0 __go +2(m* — p)|y|, (2.6b)

where V is the D = (d+1)-dimensional volume of spacetime and A is an ultraviolet regulator.
In D = 3, the effective potential Eq. (2.6b) is ultraviolet divergent and requires coupling
constant renormalization

11 A diq d 1
e (g [ S ) (27)

Jdo  9r (27T)dgw2+q2+ﬂ2

where p is the renormalization scale. The regulator A can then be removed, yielding the

renormalized (physical) potential

1 2 3/2 2 3/2 2 p* 2m? 2 2
Up =~ [(m* + p)** + (m* — p)** = 3um®] + — — —— +2(m* = p)[Y[".  (28)
67 Ko Jr

The mean-field parameters are then determined by solutions to the following saddle-point

equations:
\/m2+p+\/mQ—p=2u—87T(gi—lw!2), (2.92)
R
V== p = sn (-~ uF) (2.9)
Ky
Wm? — p) =0, (2.9¢)

This system of equations divides the phase diagram into two sectors: (i) gr < g. = 47/p,

or gr > g. and Ky > 8wu(1l — g./gr), where the solutions are

2 11 Ko 8mu(l — g./gr)
— (== 1 1— 2.10
o = (0= )+ 3o -+¢ = | (2.100)
11 Kj 87u(1 — gc/gr)
m°=p 0 (gR gc) tez |1t \/ K ; (2.10b)

and (ii) gr > g. and Ky < 8mpu(1l — g./gr), where the solutions are

2
=0, m? = 12 (1—5—;) : p=0, (2.11)
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Therefore, at fixed gr > g., there is a zero temperature phase transition at K.o = 8mwu(1 —
ge/gr). The SU(N) order parameter |1|” is continuous at this transition. However, surpris-
ingly, the U(1) condensate p has a first order discontinuity of magnitude

2
Ap =22 (1 - &> . (2.12)
9gRr

This is in stark contrast to the classical case in two dimensions, where the mean-field U(1)
transition was found to be continuous in Ref. [19]. The phase diagram is shown in Fig. 1.

To understand why the transition becomes first order in a higher dimension, we can
calculate the scaling dimension of the operator driving the spontaneous breaking of the
U(1) symmetry V(z) =: |2*(z) - w(z)|* : (where the colons denote normal ordering), at the
fixed point gr = ¢g. and Ky = 0. At N = oo, the correlator of the local potential V (z) has
a free-field power-law behavior,

V@V W) (2.13)
which implies its scaling dimension is Ay = 2(D — 2). Thus, the interaction is relevant for
D < 4. Since gg is also a relevant coupling in D = 3 (while it is marginal in D = 2), the
presence of two relevant operators leads to a runaway renormalization group flow away from

the fixed point, which is indicative of a first order transition [36-38].

Ko

T>0

8R
0 8c

FIG. 1. Mean-field (N — oo) phase diagram as a function of gr and Ky, and where p is the
large-N expectation value of the CDW order parameter field o(x). The zero temperature phase
boundary is shown in solid blue, while the finite temperature boundary (which is superseded by a

BKT transition at order 1/N) is shown in dashed yellow.



We note that, unlike the D = 2 classical theory described in Ref. [19], the ordered
phases predicted within mean field theory have genuine long-range order in D = (2 + 1)
at zero temperature; since we are above the lower critical dimension, fluctuations do not
play as important a role in the large-N limit. However, it is conceivable that including the
fluctuations of the order parameter o(z) with 1/N corrections could modify the nature of

the phase transition.

C. Large-N Solution at Finite Temperature

We now turn on a finite temperature. As usual, the imaginary time direction is com-
pact and 0 < 7 < f where § = 1/T is the inverse temperature. We know from the
Mermin-Wagner theorem that there cannot be an SU(N) symmetry broken phase at finite
temperature [39], so we can safely set ¢(z) = 0 from hereon. Unlike the SU(N) order, the

#() is a composite of the fundamental z and w fields.

U(1) order parameter o(z) = p(z)e
As such, it can retain vestigial order with p > 0 even in the absence of long-range order
without contradicting the Mermin-Wagner theorem (see the discussion in Ref. [19]). As

such, the partition function becomes

Z = ¢ NBVUst (2.14a)
1 A ddq Pt 2m?
Ue = — / ——1In w721+ 2+m22_ 2 +___7 2.14b

where V' is the volume of d-dimensional space, w, = 2wn/f$ are the bosonic Matsubara
frequencies and Ueg has the interpretation of a free energy. One approach to curing the
ultraviolet divergence of this potential is with a renormalized coupling that runs with tem-
perature [40]. However, the following calculations will be more transparent if we subtact all
divergences at zero temperature. Following the usual approach (e.g., the Poisson summation

formula), we first write the potential /free energy as [41],

Ut = B/ ‘a ln e_ﬁ\/m] [1 _G—BMD

ddq dw 2 2 212 2 /32 2m?
/(2 )d2 ln([w +q° +m? —p)

(2.15)
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and after renormalizing the coupling constant at zero temperature as in Eq. (2.7), we obtain
1 /o
Ur = [\/m Lig(e™” m2+p) + mLi2<6_ﬂ m2_”)]

e
1 . B/ m2 . B/ m2_
—W—BS [ng(e A TP) 4 Lig(e™? p)] (2.16)
1 2 2m?
— [(m2 + 0)¥2 4 (m2 — p)3/% — 3,um2] 4 o o

where Li,(z) is the polylogarithm function of order s [42]. As a consistency check, we observe
that the leading high temperature (8 < ') behavior of the effective potential is
m? lool m? — |oy| loo)>  2m?  2¢(3)
~ — [2 —In (B4m* — |oo|? - -
4m3 (2= (5 =l ] + dr3 Pt |0 Ky gr w33’

where ((z) is the Riemann zeta function. Up to an overall constant and redefinition of

Ur (2.17)

the coupling constants gr — Bgr and Ky, — BKj, this is precisely 37! times the classical
effective potential we derived in Ref. [19], with renormalization scale ficassical = 81 The
saddle-point equations corresponding to Eq. (2.16) are

V= p+/m T p+ % [m (1 - e—ﬂ\/"ﬂ_ﬂ +In (1 - e—ﬁ\/mz_—f’ﬂ —ou— T (2.18)

dr

VmE—p—/mitp+ % [ln (1 - e*ﬁx/ﬁ_ﬂ’) I (1 - e*ﬁ\/mQ_*f’)] - %. (2.18b)

0

These equations do not have a closed-form solution for general m? and p. However, in the
regime where p = 0 (i.e., small enough Kj), we recover the well-known scaling form for the

temperature-dependence of the mass parameter mo(5) = m(p =0, 3) [41],

Bmo(B) =W (Bull — g./9r)),  W(x) = 2sinh" (¢*/2/2). (2.19)

Since the mean-field U(1) transition is continuous in D = (2 + 0) and first order in
D = (2+1) at zero temperature, we expect that there exists a tricritical point in the phase
diagram (T4, Ky,i) which separates the high and low temperature limits, at least for gg > g..
In the vicinity of such a point p must be small, and hence, the effective potential can be

expanded as a power series of the Ginzburg-Landau type,

Ur(p, B) = Ug(0, B) + w1 (B)p* + ua(B)p" + us(8)", (2.20)

where symmetry and analyticity demand even powers of p in the expansion, and we retain
terms up to O(p°) as is usual for weakly first order phase transitions. To solve for the

expansion coefficients, we expand the mass m(p, ) as a series

[m(p, B)]* = [mo(B)]* + mu(B)p* + ma(B)p" +ma(8)p", (2.21)
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and solve the saddle point equation Eq. (2.18a) term by term. Upon substitution back into
the potential, this yields

1 coth(Bmy/2)

ui (B) = x p— (2.22a)
h’ 2) sech 2
uz () = pese (6T§§67)T:§ (Bmo/2) (3sinh(Bmg) — Bmg [cosh(Bmg) — 2]), (2.22b)
uz(f) = —62 csch’ <§$%/122)OS§;%3 (Brmo/2) (B2m(2) [47 cosh (Smg) — 16 cosh (25my)
(2.22¢)

+ cosh (38my) + 4] + 360 sinh? (3my)
— 58mg [—51sinh (Bmg) 4 6 sinh (28my) + sinh (38my)]) ,

where my = mgy(f3) is given by Eq. (2.19). Ginzburg-Landau theory of weakly first order
transitions predicts that a tricritical point occurs when uy(8) = us(8) = 0 and uz(8) >
0. Solving numerically for us(fui) = 0 yields Buimo(Sui) ~ 3.436; we also confirm that
u3(Bei) [mo(Bui)]? & 4 x 107> > 0. Using Eq. (2.19), this translates to
T ~ 0.2967 x 11 (1 - &) , Ko ~ 0.9376 x K. (2.23)
9rR
In the vicinity of the tricritical point the critical coupling K. for the formation of a CDW

amplitude p > 0 follows from Ginzburg-Landau theory,

coth(Bmg/2) n [ua (B)]?

’ T ST < Tri7
‘ th 2 '
ot (mef2) _—
0

where S.mo(B.) =~ 5.372 is the point at which the wuz(f) coeflicient changes sign at low
temperature. Below this temperature the transition is necessarily beyond the weakly first
order Ginzburg-Landau paradigm and the expansion is not strictly valid; the T"— 0 limit
of this expression is, however, consistent with the exact T' = 0 solution discussed above. We
note that while ug(/3) also becomes negative as  — 0, we know from the exact solution
of the classical theory that the O(p®) term in the potential is positive [19] (while it is not
as  — oo) and that the transition is continuous. Finally, we note that the first order
transition at low temperatures destroys the conventional quantum critical “fan” picture of
temperature-coupling phase diagrams [43]. We will see below that the order parameter
gap remains finite at K. when the transition is first order, indicating the suppression of

fluctuations.
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— B8R > 8¢
8r < 8¢
(0'94KC,01 Ttri)
!
i KO
0 Ko

FIG. 2. Mean-field (N — oo) phase diagram as a function of Ky and 7. The boundaries K. are
given by Eq. (2.24); p > 0 for Ky > K. and p = 0 for Ky < K.. The boundary for gr > g. is
shown in solid blue, with the tricritical point [see Eq. (2.23)] marked as a yellow dot and the first
order transitions shown as a dotted line. The boundary for gr < g, is shown in dashed yellow.
Both transitions are superseded by a BKT transition at order 1/N. The zero temperature critical

point is given by Ko = 8mu(l — g./gr) for gr > ge.

Importantly, the above analysis of the Ginzburg-Landau expansion only holds for gz > g.,
as can be seen from Eq. (2.23). When gr < g., Sm(B) < 2In((v/5 + 1)/2) = 0.96, which
always corresponds to the high temperature continuous phase transition regime. In this
case, Eq. (2.22a) predicts a critical coupling K.(T') = 47T exp(s(1 — g./gr)/T"). The phase
diagram as function of gg and K at fixed temperature in the continuous transition regime
is shown in Fig. 1. Evidently, the zero temperarture critical point at gg = ¢g. and Ky = 0
is rounded by thermal fluctuations, and the critical coupling for gr < g. is lifted to K. > 0,
though it remains exponentially suppressed. The phase diagram as a function of Ky and
T at fixed gg is shown in Fig. 2, with the drastically different behavior on either side of
g. evident from the low temperature limits and the existence of the tricritical point when
gr > g.. Since our primary interest is in modeling CDW order, from hereon we will largely
restrict our attention to the case gr > g. where the decoupled CPY components z and w

are in the SU(N) symmetric phase at zero temperature.

We emphasize that the phase diagrams derived in this section are mean-field results which
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are exact only in the N — oo limit, and that, as discussed in Ref. [19], the finite temperature
phase diagram will be modified to order 1/N. The classical (2+0)-dimensional theory, which
corresponds to the high temperature limit of the model considered here, has a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition driven by the proliferation of vortices in the
phase 6(z) of the order parameter o(x) = p(z)e?® [26, 27]. At order 1/N the mean-field
transition is actually a crossover at which the CDW amplitude develops. In contrast, it is
known that for continuous transitions in the three-dimensional XY universality class, long-
range order and the U(1) amplitude form simultaneously; there is no intermediate regime
analogous to the 2D vortex plasma, even though vortex loop excitations are understood to
play an important role [44, 45]. In a quantum system with such a 3D XY transition at zero
temperature, the long wavelength physics at any finite temperature is always dominated
by the 2D BKT renormalization group flow. However, as we have already pointed out, the
model we consider in this work does not have a continuous transition at zero temperature,
so the quantum to classical crossover will necessarily be more complicated, and the nature

of the transition will depend on the actual location of the tricritical point 7.

D. Order Parameter Correlations

We now consider dynamics of the order parameter o(x), first focusing on the featureless
symmetric regime at small Ky where there is no CDW amplitude (p = 0). In this case it
is natural to write the complex order parameter in terms of its real and imaginary parts
o(z) = ofi(x) + io!(x), in which case the leading quadratic contribution to the effective

(Euclidean) action is

Sur =51 pops [ S b b o o), (229
where the kernel is the same for the real and imaginary parts because we are in the symmetric
phase,

oo = g2 53 [ GO0 )G b, (22
where

G(p,wn) = m (2.27)
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is the Euclidean propagator of the z and w fields in the large-/N limit. The real frequency
response is then given by the analytic continuation back to real frequency w,, — —iw, after
which we can expand for small p and w to find the order parameter correlation function

2 1

(0(p, —iw)o*(—p, iw)) = (p. —io) ~ P P p— (2.28)

where the mass gap m,, stiffness v, and velocity v, are

1 coth(fm/2) 1 1
2 - - OVPTME 2.2
Mo Ko 8mm — KQ 8’/T7’I”L7 ( 93)
inh h? 2 1
= [fm + sinh(8m)] csch® (fm/2) N 7 (2.200)
1927rm3 967m?
_ 2/3?°m? coth (Sm/2)
=1 1 2.2
Yo + Bm + sinh(fm) e (2:29)

where the arrows indicate the zero temperature limits in the regime gz > g.. Note that the
analysis in the previous subsection guarantees that m? > 0 everywhere in the symmetric
phase. In fact, in the weakly first order transition regime, Eq. (2.24) predicts a finite gap
m?2 = [uy(8)]*/us(B) at the transition.

ust as in the large-N solution of the nonlinear sigma model, the order parameter does
not display any damping to leading order in N, even at finite temperature [41]; that is, the
propagation of excitations of the order parameter is ballistic at this order. As we will see
below, this stands in stark contrast with the behavior in the presence of quenched disorder.

Next, we consider the large K, regime where there is a CDW amplitude (p > 0). Here
it is more appropriate to write the order parameter in its amplitude-phase representation
o(r) = p(x)e?®. Far enough away from the transition, the fluctuations of the amplitude
mode p will be gapped and weak, so we can freeze it out and consider only the fluctuations
of the phase field f(x), the Goldstone mode of the spontaneously broken U(1) translation
symmetry of the incommensurate CDW state. Expanding the effective action Eq. (2.5b) to
quadratic order in the Goldstone mode #(x) yields

Sog = % ; / (;17‘)’29<—p, — ) Io(p, wn)O(P, wn), (2.30)

where the kernel is

2 d’p’ , ,
HG(pawn) = __Z/ pd [pQGzz(pawn’)Gzz(p+p7wn+wn’)
BozJ (@m) (2.31)

- ,02sz(13/7 wn’)sz(p + p/’ Wy, T wn/) - szw<pl7 wn’)] )
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and the z and w propagator is

w2+ 2+m2 .
G tp,wn) =" P P (2.32)

—p  wy+pitm

After analytic continuation w, — —iw and expanding for small p and w, the phase field

propagator has the manifestly gapless form

1 1
O(p, —iw)0(—p,iw)) = — ~ , 2.33
. ). i) = [ = (23

where the phase stiffness 7y and susceptibility yy have unwieldy exact expressions, but

simplify in the limit of small p,

o csch?(Bmg/2)[Bmg + sinh(Bmg)]

~ 6o P (2.34a)
N B%m? coth(Bmy/2)
Xo = Ve (1 ~ By 1 sinh(Fmy) ) ; (2.34b)

where my = mo(/3) is the mass in the absence of a condensate p. Note that, as we pointed
out in Ref. [19], thermal fluctuations of the phase mode destroy long range CDW order.
The zero temperature limit is more subtle, as we know that m? = p in the ordered phase.
Therefore, the correct result must be obtained by taking g — oo in the exact expressions,
followed by setting m? = p, yielding the phase stiffness and susceptibility

VP (2.35)

Yo = Xo = 12\/§7r'

As expected, the velocity of the phase mode vy = \/7g/xs = 1 since the system is Lorentz

invariant at zero temperature.

III. QUANTUM DYNAMICS WITH QUENCHED DISORDER

We now turn to the main focus of this work: the role of quenched random disorder. As
in Ref. [19], we consider disorder with random fields 3%(x), w%(x), and h*(x), transforming
under the adjoint representation of U(N). These random fields are coupled to the two CPY
components z(x,7) and w(x,7) in the following manner,

‘Cdis = 3a(X)Z>ok¢ (X7 T)Vgﬁzﬁ()g T) + th(X)le(X’ T)Viﬂ’ll)ﬁ(X, T) (3 1)

+ ha(x)zz (X’ T)’Ygﬁwﬁ(xv T) + ha* (X)wz (Xa T)’ygﬂzﬂ (Xv 7-)7
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and have configurations drawn from the locally Gaussian distributions

() =w(x) =0,  °(x)3'(y) = w(x)wt(y) = 7o (x — y),

- - (3.2)
bo(x) =0,  bo(x)h(y) =0,  h=*(x)b(y) = 0306 (x —y),

where 3%(x) and w%(x) are N%-component real vectors, h*(x) is an N?-component complex
vector, 745 are the generators of U(V) satisfying Yap Vi = N0ayOpu, and overlines denote
averaging over disorder configurations. For a fixed realization of the disorder fields, each
term in Eq. (3.1) breaks the SU(N) x SU(N) global symmetry and is gauge invariant
under the local diagonal U(1) symmetry. However, only h*(x) breaks the global relative
U(1) symmetry of the order parameter. All symmetries are unbroken on average within the
ensemble of Eq. (3.2). We know from Ref. [19] that there is a disorder-driven crossover which
manifests in replica trick calculations as spontaneous symmetry breaking of the “replicated”
U(1)™ symmetries (not to be confused with the replica permutation symmetry). In the
absence of cross-correlations between 3%(x) and w“(x) (which are allowed by symmetry),
the symmetry is spontaneously broken down to the replica-diagonal (i.e., physical) U(1)
subgroup. However, if m # 0, the replica-diagonal global U(1) subgroup can also
be spontaneously broken. This is reminiscent of so-called fluctuating order which is induced
by random disorder [8]. However, it is understood that the apparent long-range order
which appears in that context is an artifact of mean-field theory and the underlying physics
is inherently glassy. Such glassy and replica permutation symmetry-breaking physics is
beyond the scope of this work, so for our present purposes we only consider the case in
which 3%(x)w’(y) = 0.

To eliminate dependence on any specific realization of the disorder, we use the replica

trick to perform disorder averages. The average of the replicated partition function is

Zn = / D3DrwDh exp (- / d?x

= /D)\LjD)\Q’jDa;‘Dzj'D’wj HG_Sj

j=1

32 +w? b
2 + 2
2n1 Ub

)Z[a,m,b]”

X exp @/ d'xdndrn, 3 [} (12](n) - () + wi(n) - w(m))  (33)

ij=1

+ 20527 (1) - 2j(72)) (wi(m1) - W (1))] ) ;
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where S; are the replicas of the original action Eq. (2.1), and z;(7) = z;(x,7) and w,(7) =
w;(x, 7). The replica-replica interactions induced by the disorder average have important
differences compared to those in the classical counterpart to this model studied in Ref. [19]:
The inclusion of quantum dynamics leads to interactions with a so-called bilocal structure;
the static quenched disorder couples fields at different times. In particular, the replica-
diagonal terms are no longer trivial, as the unit vector constraint only applies at equal
times. We will see that these terms play an important role in governing the order parameter
dynamics. Just as the quartic replica-replica interactions place the classical analogue of
this model in contrast with the classical (2 + 0)-dimensional O(/N) nonlinear sigma model
(NLSM), the quartic bilocal interactions are drastically different to those in the quantum (2+
1)-dimensional NLSM (see Appendix A). In the NLSM, it is evident that the disorder only
couples to the zero frequency component of the O(N) order parameter. In Eq. (3.3), we see
that imaginary time averages are over bilinears 2, ;(x, 7)zj ;(x, 7), allowing for contributions
from finite frequency modes.

To proceed with the large-N technique, we decouple the quartic replica-replica inter-
actions with a Hubbard-Stratonovich transformation. At first, it might be tempting to
decouple the interactions in the channel of time-averaged bilinears to mimic the quan-
tum NLSM. However, these bilinears are not SU(N) singlets, and therefore, are not con-
ducive to applying the large-N limit. It is well-understood (see, for example, Refs. [32—
34]) that the solution is to introduce bilocal fields (;;(x,m,7) ~ zi(x,71) - 21(x, ) and

J
Kij(X, 71, T2) ~ w;(X, 71) - w}(X, T), so that the interactions in Eq. (3.3) become

exp (g/ddXdﬁdT? >l (121(r) - z(m2) P + Jw) (1) - wi(m2) )

,j=1

+ 205(2; (1) - 2j(72)) (wi(11) - W (72))] >

1 < _
= /DCijD’fij exp <_ﬁ Z /ddXdTide [nf(ngng + Ifijliji) + 2773/{1]@1})
i,j=1

" (3.4)
i,7=1

where, for example, z; = z;(x,7;), and so on. To respect the unit vector constaints on the
zi(x,7) and w;(x, 7), the bilocal fields must satisfy (;(x,7,7) = ki (x,7,7) = 0 (this is not

a trace condition; no summation over repeated indices). Therefore, after integrating out the
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U(N) vector fields, we obtain

Set/N = Trln |§(m — 7»)diag, -

—o* —Di[a] +>\2 0 ﬁ%/%‘i‘"f]z

~D2[a] + )\, —0 R+ 0
¢

~2 R R
Ftr / d4xdrdr {%(CQ 2+ ngg,%] ,

tr/ddXdT diagr(‘o—yz) . diagr<)\l +)\2)
Ko 90

(3.5)

where we have rescaled ((, k) — go((, k), and defined g = go/N, K = Ky/N, and 1,2 =
1.2/ go to obtain a well-defined large- N limit. Tr(-) includes the functional operator trace as
well as the trace over replica indices, diag,.(-) denotes a matrix which is diagonal in replica
indices, and f and & are the matrices with elements (;; and r;;, respectively. As in Ref. [19],
we restrict our attention to the case where 77; > 7y to avoid any spontaneous breaking of
the replica permutation symmetry. The disorder Hubbard-Stratonovich fields transform as

tensors under the replicated U(1)" symmetries:

(1) diagonal G(%, 71, 7o) — /OO (7 ), (3.6a)
/i]k(X Tl,Tz) — eHei(xm)— ¢k(X’T2))"‘3jk(X, 7177_2)’
(

(ii) relative Cip(x, 1, T72) — €i(€j_9k)Cjk(X77—177—2>a (3.6b)

—i(60;—0%)

/ijk(X 7'1,7'2) — € ij(X,Tl,T2>.

In terms of the replicas, a physical symmetry which is unbroken by any fixed configuration
of the disorder has an unbroken corresponding replicated symmetry (e.g., the local diagonal
U(1) symmetry has an unbroken U(1)" replicated symmetry group), whereas a symmetry
which is only unbroken on average in the ensemble of disorder configurations will have a
replicated symmetry group which is explicitly broken down to the replica-diagonal subgroup
(e.g., the global relative U(1) symmetry of the CDW order parameter). If the Hubbard-
Stratonovich fields (j, and &, condense, then the replicated U(1)" symmetries will also be
spontaneously broken.?

To obtain the effective potential, we make the replica permutation-symmetric and uniform

ansatz for the local fields Ay j(z) = Xy () = m?, o;(x) = pe”, af(x) = 0, while the most

2 Since the local diagonal U(1)"™ symmetry is gauged, it cannot technically be spontaneously broken. How-

ever, fluctuations of the collective modes at order 1/N will restore the symmetry via the Higgs mechanism.
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general ansatz for the bilocal fields is

1
Cij(X, T1,T2) = /iij(X, T1,T2) = W[HO(TI — 7'2) — 5@'51(7’1 — 7'2)], (37)
1 2

where ko(7) and x4 (7) are functions only of time, and the choice of sign is arbitrary and made

for future notational simplicity. Just like the variational parameters m? and p, the functions

ko1(T) are to be determined from the saddle-point equations. Making these substitutions

and taking the replica limit n — 0 yields the disorder-averaged effective potential

Ut = / d%q dw {m ([w2 + @ +m? 4 (W) - p2) T 4 o +~m2 +fl w)
(2m)d 21 (w2 + g2+ m? + R (w)]” — p?

+/dr ([/‘vl(T)]Q - 251(7)“0(7)> n (02 2_mz> 4 95,1(0) — £0(0)

ngot KO 9o 771;20t

Y

(3.8)

where Fg1(w) are the Fourier transformed functions, nZ, = 7} + 773, and « is the Lagrange
multiplier enforcing the constraint (;(x,7,7) = ki(x,7,7) = 0. Note that we must have
Ro1(w) > 0 in order for the action to be positive definite. In the following subsections, we
will present the solution of this model at zero and then at finite temperature, and explore the
order parameter correlations in each case. The solution of the simpler conventional quantum
CPY model with quenched disorder is instructive, so we also encourage the reader to refer

to Appendix B.

A. Zero Temperature
1. Large-N Solution

The N — oo solution of the theory is obtained by solving the saddle point equations for
the effective potential Eq. (3.8),

/ dlq dw { €2 4 Fdo(w)(ﬁi,q—i‘/)z)] _ 1 (3.92)
@2m)d2m |ebq—p*  (ehq—P?)? 90’ '

/ dq dw [ P 2pl~€o(w)€i,q} _ P (3.9h)
@m)d2r [elq—p*  (ehq—p)?] Ko '

/ diq [ €2 a Fo(w)(eh q + p2)] _ Fa(w) —Ro(w) + o (3.9¢)
2m)? lehq — P (ebq — P Tiot ’ '
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diq €2 R1(w) + «
/ d -4 f 2 - 1 2 ; (3.9d)
(27T) 5w,q P Mot
ko(0) — k1(0) =0, (3.9¢)

where 537(1 = w?+q2+m?+ ki (w) and the last equation is the equal time constraint imposed
by «. This system of five equations determines the five parameters and functions m?, p,
Ro(w), F1(w) and a.

First, we must determine the functions %o ;(w) in terms of the other parameters of the
theory from Egs. (3.9¢) and (3.9d). We begin by eliminating the Lagrange multiplier a to

obtain the expressions

ol )/ dlq  [w? 4 q% + M2 + & (w)] + p2 - Ro(w), (3.10a)
(2m)d ([uﬂ +q2+ M2+ Fol(w)]z — p2) Mot
/ diq { WMt Rw) @M _ Faiw) (3.10b)
2m)d [[w2 + @2+ M2+ R (W) —p?  (q2 + M2)? — p2 Moot '

where M? = m?+£,(0) and &; = &1 (w)—#(0). The subtraction at zero frequency is necessary
to make the saddle-point equations finite (see, for example, Ref. [34]), and hence, the
physical mass is actually M this approach is more natural than performing renormalization
of the unphysical parameters m?, #;(0) and «. Next, since 7 is independent of frequency,

Eq. (3.10a) implies that if Ko(w) is non-zero, it must have the form
Ro(w) = Ko(2m)d(w), (3.11)

where K is a constant, in which case Eq. (3.10a) becomes

I{().Z\42 Ko

_— = — 12
47T(M4 - 102) T/t20t (3 )

This equation has two solutions:

Ut i\’
ko =0, or ko # 0 and M? = % ¢ ( tOt) + p2. (3.13)
8m 8m

Depending on whether o = 0 or ko # 0, Eq. (3.9a) will determine the value of M? in the

former case and kg in the latter. Next, performing the integral in Eq. (3.10b) yields the
implicit equation for & (w),

1 | [w? + M? + &y (w)]? — p? k1 (w)
— In — .
87 M* — P2 771:201:

(3.14)
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For general values of p, this equation does not have any explicit solution in terms of known
special functions. However, when p = 0, the mean-field theory is identical to the conventional
CP" model, and we can learn a great deal from the exact solution which exists in that case;
see Appendix B for details. To proceed with the general case, the saddle-point equation can
be solved asymptotically in the limit w — 0, and we find very different behavior depending

on whether xq is zero or non-zero:

4 (M* — p?

-1
R1(w) ~ { Ve ) _ 1] w? + O(wh), ko =0, (3.15a)

_ ot

1/2
1
Ri(w) ~ Jar <1 + \/1 + (87Tp/7]t20t)2>

Note that in all cases M? > p and M? > n2 /4w. Therefore, we see that the “strong

w| + O(w?), Ko # 0. (3.15b)

disorder” regime where the disorder field kg condenses also leads to over-damped dynamics
of the U(N) fields; we will see in subsequent sections that the order parameter dynamics
will also be over-damped in this regime. On the other hand, in the limit |w| — oo, we have

2 (U4
R1<u}) ~ 7;:: In (M4——p2> s (316)

in both regimes. Since &i(w) is manifestly not a square-integrable function, one might
think that the relation between k(w) and k(1) is pathological, and that the constraint
k(T = 0) = Ko(T = 0) = Ko cannot be satisfied. However, because of the subtraction at
zero frequency, we emphasize that &;(w) is not the Fourier transform of x;(7); this is the
source of the cumbersome renormalization which we avoided by performing the subtraction.

Given the form of &(w), we see that the saddle-point equations Eqgs. (3.9a) and (3.9b)

can be made finite with the same coupling constant renormalization as in the absence of

disorder, )
_1 d’q dw 1
o g\ T o , 3.17
Jo YR ( gR/ (2m)4 21 w2+q2+u2) ( )
where p is the renormalization scale, yielding the expressions
! o w! 1 H Ko
sv) or =— - 3.18
& 2 1l ([wQ + M2+ Rl(a})P _ )02> Jr Ar 77301;’ ( a)
1 dw _ p 0 P
e L == 3.18b
47 2 a (w2 + M2 + /ﬁ(w)> Ko 12,M? ( )

where Rq(w) is understood in this case to be a known function which depends on the param-

eters M?, p and 1. Together with the condition in Eq. (3.13), these saddle-point equations

22



determine M2, p and kg, and hence, the structure of the phase diagram. Unfortunately, the
complicated frequency-dependence of &;(w) makes obtaining exact analytic solutions of the
saddle-point equations impossible in most cases.

However, a number of exact results (up to numerical evaluation of dimensionless con-
stants) can be obtained when the disorder is strong. First, it follows from Eqgs. (3.13) and

(3.18a), that in the regime where p =0

07 Tltot S 770,07
/‘io(??tot) = (319)

nt20t (g}_%l - ggl) + Clngot’ Ntot = Tec,05

where g, = 4m/u is the critical coupling of the clean CPY model, ¢; ~ 0.03941, and

07 9Rr S Ge,
77(:,0 = (320)

' (9" —9r'), 9r > Ger

is the critical disorder strength in the absence of a CDW condensate; see Appendix B for
details of the calculation. This result implies that when the clean system is in its symmetry
broken phase, that is, when the spectrum contains gapless excitations, any infinitesimal
amount of quenched disorder will be felt strongly. On the other hand, just as in the 2D
classical theory, when the clean system is in its gapped phase, there is a crossover between
weakly- and strongly-disordered behaviors. Since we are interested in the U(1) CDW order
which is a vestige of the “ancilla” CP parent fields z and w we will only consider the case
where gg > g. for the rest of this paper.

Next, we consider the regime with p > 0 and ko > 0. The CDW condensate p as a
function of Ky and 7 can be determined by solving the coupled system in Eqgs. (3.18)
numerically, and we find two different behaviors, as shown in Fig. 3: For 7 not too large,
we observe a first order transition, with a jump in p at the critical point. On the other
hand, for large enough 7;,; we observe a continuous transition, with the order parameter p
approaching zero as K approaches a critical value K.(n). Analogously to the effect of
temperature in the clean system discussed in the previous section, the two limiting cases
together imply the existence of a tricritical point (74, Kii) in the zero temperature phase
diagram. This softening of a first order transition into a continuous one is a well-known
property of quenched disorder [46-49]. While some systems have been observed to display

tricritical points [50, 51], we acknowledge that the first order transition discussed in this
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FIG. 3. CDW order parameter amplitude p as a function of coupling Ky in the strong disorder
regime ko > 0 and with gr/g. = 2. Points are data determined from numerical solution of Eqs.
(3.18) and lines are guides for the eye. For no very close to 7. (left panel) the transition is first
order with jump Ap and the actual critical point at Ky ~ 0.943 x K. (ntot) preempts the continuous
transition. For large mo (right panel) the transition is continuous and the critical Ky coincides

with the prediction K.(nt) in Eq. (3.21).

section may be an artifact of the N — oo limit and could be softened by fluctuations at
order 1/N. With those caveats in mind, in the limit where the transition is continuous, we
can actually derive an exact expression for the phase boundary. In this case, Eq. (3.18b)

predicts a critical coupling K. (7t ),

1 _KO(UtOt)+ 1 /dw 1 4w (1 1 )+47rc1—|—c2
KC(ntot) nt?otMQ 47T 27T w2 + M2 + Rl ((.U) 771;20t gr gc,O Tltot

. (3.21)

where ¢y 2 0.1066, and ro(nor) is given by Eq. (3.19).

Finally, we consider the behavior of the system as a function of disorder in the regime
p > 0. Solving Eqgs. (3.18) numerically for p and kg yields the plots shown in Fig. 4.
The behavior of the CDW amplitude p at weak disorder is consistent with our previous
observations of a first order transition at weak disorder, whereas as it approaches the zero
amplitude critical disorder 7, o(Kjp), defined by inverting Eq. (3.21), the transition is clearly
continuous. The most interesting behavior, however, is that of the disorder amplitude k.
On a logarithmic scale, it is clear that ko never vanishes for any finite disorder, though it

approaches zero as ny,, — 0. This is in stark contrast with the behavior when p = 0, where

24



p Ko/ 11>

10

1071f

10—2 -

1073.
10741
- Tlot — Thot
0 neo(Ko) 0 ne.0(Ko)

FIG. 4. CDW order parameter amplitude p (left) and disorder amplitude kg (right; note the log
scale on the vertical axis) as a function of disorder strength 7ot for gr/g. = 2 and Ko = K. =
8mu(1—gc/gr) the critical coupling of the clean system. Points are data determined from numerical
solution of Eqs. (3.18) and lines are guides for the eye. Ap is the first order jump at K. in the

clean system given by Eq. (2.12). 1.0(Kp) is defined by inverting the relation in Eq. (3.21).

we have shown there exists a critical disorder 7. at which ¢ vanishes. Note that we find
this behavior across a range of values of gz and K. This implies that, unlike in the classical
model, there is no weak disorder regime when p > 0 (c.f. Fig. 2 of Ref. [19]). While this
may seem surprising, we can still draw intuition from the classical model. In that case, the
critical disorder 7. was suppressed continuously with increasing Ky, as it took less pinning
from the disorder to disrupt the pairing of the CPY fields forming the CDW condensate. In
the present case, it is clear that the first order transition immediately overcomes the capacity
of the system to remain “clean”, forcing a simultaneous transition into the strong disorder
regime. This behavior has parallels with the clean system discussed earlier in this work,
where the U(1) CDW transition immediately precipitates the SU(N) transition; there is no
intermediate vestigial phase. The results of this section are summarized in the mean-field

phase diagram in Fig. 5.
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FIG. 5. Mean-field (N — oo) phase diagram of the (2 4 1)-D quantum theory at zero temperature
for gr/g. = 2. The three regimes discussed in the text are labeled by the two order parameters
p (CDW amplitude) and k¢ (disorder amplitude). &;(w) is the self-energy. The black squares are
first order CDW transitions found numerically from solutions of Egs. (3.18) and the dashed curve
joining them is a guide for the eye. The yellow circle is the tricritical point and the solid blue curve
to the right of the tricritical point is the exact phase boundary given by Eq. (3.21). The vertical

dashed black line is the weak-to-strong disorder crossover given by Eq. (3.20).

2. Order Parameter Correlations with Strong Disorder

We now consider the leading order fluctuations of the order parameter about the N = oo
mean-field state. Just as in Ref. [19], we emphasize that mean-field properties of the weak
disorder regime are largely artifacts of the large- N limit which are cured by including 1/N
corrections. Therefore, in this section we will focus on the more physically relevant regime
with ko > 0 and comment on the ko = 0 case afterwards. When we also have p = 0, we
use the Cartesian representation o(z) = of'(x) + io!(x) and expand the effective action Eq.

(3.5) to quadratic order to obtain a low energy effective theory
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where the kernels are

2 d?p’ du’ .. y
) (p,w;n) — I (p,w;n) = 2 / P Y Giip w)Gi(p+p . w+w), (3.23)

T K, ) @n)2or
d2p’ dw' .. g
TP (p,w;n) = 2 / RS GU (P, WG (p+ P w W), (3.23b)
(2m)2 21
and the N = oo propagator is
G Hp,w) = [w?+ p? + M? + &y ()] — ko(27)(w) X, (3.24)

where I is the n x n identity matrix and X is the n x n matrix with a one in every entry.

It follows that the disorder-averaged order parameter correlation function is

(o(p, )" (=, ~)) = lim - tr{os(p,)o; (~p. )

1 2 -0
=2 +—= (0,;0) ) (3.25)
HU (p,w,()) [HU (p7w70)]2

First, it is simple to obtain

(2m)8(w) = 3;%’:0 (27)8(w), (3.26)

2
Ko

I2(0, w; 0) = Y
T

from which we identify that the second term in Eq. (3.25) is the ubiquitous static double-
Lorentzian contribution [31, 52, 53]. This behavior is identical to that found in the quantum
NLSM with quenched disorder; see Appendix A. Next, we can divide the integral defining
Hgl)(p,w; n) into two terms: (a) quasiparticle scattering which is purely due to the replica
identity term in the propagator and (b) impurity scattering which has a contribution from

the static all-to-all replica term,

d?p’ du’ 1
I (p,w; 0) = 2/ -
o )’ 2 2 /2 2 i /
(27m)2 21 W2 +p2 + M +m(w)1 (3.27a)
X
(WH+w)?+(p+p)+ M+ Ri(w+w)
d2p/ 1 1
10 (. 0: 0) — 4 / , 3.27b
s (p,w;0) ko (2m)2 (p2 + M2)2w? + (p + )% + M2 + Ry (w) ( )

Keeping contributions up to O(w?) in the self-energy function %;(w), we find that

1 20127 —9 2 (/48T —9
H‘(j.l’a) (p’ w; 0) ~ o \/_( T; )p2 . \/_ ( 7T3 )WQ’ (328&)
V 6T 7ot 9\/E Mot 27ﬁ Mot
8 3272 32V 273 16072
I (p, w; 0) ~ ZHO - 7T6/<L0p2 - 57T Ho\w\ + 7; M2 (3.28b)
Mot 3Mkot 3ot Mot
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Therefore, at least at zero temperature, the dynamic quasiparticle scattering is analytic
in frequency despite the damping of z and w excitations, while the impurity scattering
displays damping. Finally, we can put this all together by analytically continuing to real
frequency (using the definition of the absolute value |z| = v/22). Then, the disorder-averaged

propagator takes the form

1 15 (2m)d (w)
_ Z 3.29
<O'(p ZW) ( p, ZC{))> mg + /ya(pQ _ U;2w2> _ iFU|w| (m?f T 70p2>2’ ( )
and the parameters are found to be
9 1 1 ATk (V12 —9)  16m%kg
My =2 = S =—  — 1 > Yo = /o 3 6
Ky 2 67Tntot Mot 9 27T77tot 37]‘00’5 (3 30)
L, (V48T —9) 807k . 16V 2m3 ko , 16723 .
YoUs = - > o~ T o5 N = :
27 27T77?0t 977‘?01; 3n§ot 377?01:

Given ro(neot) in Eq. (3.19), we can identify a frequency scale wqamp above which the order
parameter correlations are under-damped; for 7 close t0 7.0 Waamp ~ (97" — 9% (Mot —
Neo)/ nZ., while for n. > Ne,0, Wdamp ~ Thot- 10 general, however, the low-frequency behavior
is always over-damped. Note that the mass gap m, derived here comes from a low-frequency
expansion of &;(w), whereas the exact expression is simply m2 = K;' — K, '(n), where
K. (not) is given by Eq. (3.21). Finally, we observe that since I', o kg, the damping vanishes
as the disorder approaches the critical value 7.
When there is a finite CDW condensate p > 0, we can write down an effective action for
the phase 6(x) of the CDW order parameter o(z) = p(x)e?@),
Z / °p dw —p,—w) [Hél)(p,w;n)f - Hff)(p,w; n)X 0i(p,w). (3.31)

27T 2 27T 7

Even in the classical theory, the nature of the regime with p > 0 is extremely complex [54, 55],
so a full treatment of this problem is beyond the scope of this present work and will be left
to a future publication. However, we wish to highlight the following interesting observation:
Since the effective action Eq. (3.5) has an average U(1) symmetry corresponding to the
replica-diagonal subgroup of the replicated U(1)™ symmetry group, a consistent low energy
effective theory must satisfy the associated Ward identity. This implies that the kernel in
Eq. (3.31) must have an eigenvalue which vanishes at |p| = w = 0. Together with a non-
analytic self-energy which we have shown produces damping, the existence of a gapless mode

is suggestive of diffusive quasiparticle transport.
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3. Correlations in the Weak Disorder Regime

In the weak disorder regime with ko = 0, the N = oo propagator is diagonal in the replica

index and does not contain a static peak

N ~

G '(p,w) = W+ p° + M* + &y (w)]]. (3.32)

Therefore, the leading contribution to the low energy effective theory is

d’p dw "
Seft = Z Z/ 2 271' z( )(_p’ _W)Ha(paw)0'£ )(p,w), (333)

a=R,I 1

where the kernel is

2 &p' do . )
Ha— - - _ 2 / / 1 / / i . 4
p) = 5= =2 [ GGG (o bl ) (3.34)

This implies that the disorder-averaged order parameter correlation function is simply

2 1

(o(p, —iw)o*(—p,iw)) = To(p. —i) o R e (3.35)

where the parameters are

2

2 77tot mot Mot
\1- - J1— , 21— . (3.36
Ma Ko 87TM AT M2 967TM3 Ar M2 e (3:30)

and M here is a function of 7 determined from the solution of the saddle-point equation Eq.

| Z

(3.18a); see Fig. 7 in Appendix B. Note that we only kept the low frequency contribution
of the self-energy &i(w), so these expressions are not valid when n is too close to 7.
Unlike in the classical model discussed in Ref. [19], the disorder strength 7 does enter into
observables in the weak disorder regime through the self-energy ri(w). However, the lack
of a double-Lorentzian term in Eq. (3.35) implies a weak infrared singularity in momentum
corresponding to a lower critical dimension d = 2 which appears to violate the Imry-Ma
theorem [31]. As explained in Ref. [19], this apparent violation is an artifact of the N — oo
limit which is cured by including vertex corrections at order 1/N: In general, the replica

off-diagonal kernel for the order parameter Hf, Z)]( ) has the form

2 d’q
I, () = /k%wnh@< ke )5, (—p. b, =) Gy, (KGR, (0)(2m) 0 (p + g — )
(3.37)
where a, b, ¢, d = 1,2 denote either z or w, and i, ky, ko, {1, {5 are replica indices, with implied

summation over repeated indices. Importantly, G?}’ (p) is the exact propagator for the SU(N)
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FIG. 6. One-loop self energy and three-point vertex contributions from fluctuations of (;; and ;.

z and w fields and '

#71(P1, P2, p3) is the exact three-point vertex between o; and the 2; and

w; fields. In the large-N technique, these exact functions have self-consistent perturbative

(2)

expansions in 1/N, so that even though I1,;;(p) = 0 as N — oo in the weak disorder regime,
higher-order corrections such as those represented by the Feynman diagrams in Fig. 6 will
generate replica off-diagonal interactions, leading to a double-Lorentzian peak.

However, the nature of the 1/N expansion also implies that in the quantum system
the weakly- and strongly-disordered regimes remain fundamentally distinct, unlike in the
classical case. Since the vertex corrections involve integrals of products of propagators,
the absence of a static delta function term in the N = oo propagator at weak disorder
implies that the double-Lorentzian contribution at order 1/N will not be static. While
vertex corrections in the strong disorder regime may produce dynamic contributions to the
double-Lorentzian term, it is the existence of the static delta function in this case which
distinguishes the two regimes. Secondly, due to the absence of non-analytic |w| behavior in

the weak disorder self-energy as N — oo, if damping is to emerge at order 1/N it must be

due to more complex interactions such as multi-particle branch cuts.

B. Finite Temperature
1. Large-N Solution

We now consider the disordered system at finite temperature. The saddle-point equations

in Egs. (3.9) are unchanged apart from the usual replacement
< dw 1
= s 3.38
[5—3 2 333

where w,, = 2mn/[3 are the Matsubara frequencies. Notably, because the equations for the

bilocal fields do not involve any frequency integrals, the solutions for ky(w) and &;(w) found

30



above are unchanged by temperature. Before discussing the impact of thermal fluctuations
on the order parameter correlations, we can derive how the mean-field phase boundaries we
calculated above are shifted as a function of temperature.

At fixed gr and ny, for Ky < K, that is, when the CDW amplitude p = 0, the saddle-
point Eq. (3.9a) implies

/dd l/d—w 1 _TZ 1 _ KT — Ko
(2m)d 21 w? + p? + M§ + fy(w) ~— wyy + p? + M7 + R (wn) Moot
(3.39)
where, in general, the thermal gap My depends on temperature, and My and kg are the
zero temperature gap and disorder amplitude. However, in the strong disorder regime M? =
n? . /47 independently of temperature. Therefore, after applying the Poisson summation

formula,

dd 'Lk,Bz
— —2 A4
KT Ro = ntot Z / / 27T Z2 + p + M2 + K/l( ) (3 O)

This expression allows us to identify the low temperature behavior with the small z, that

is, large k(3 behavior of the Fourier transform, and we find

[ T
R — Rgp =X — EntOtTZ’ (341)

which implies a critical temperature

18\ /4 11
Tc = <_) \/ntot (_ - _> + C177t20t7 (342)
™ 9gr gde

above which the system is no longer in the strongly-disordered regime. This is physically in-

tuitive, as strong thermal fluctuations will overcome the “pinning” tendency of the quenched
disorder. This result is also interesting because it highlights the important effect of the lin-
ear in frequency self-energy %;(w); ignoring the damping would yield a drastically different
temperature dependence kp — kg ~ —n2,Te o/*"T; damping enhances the effect of the
thermal fluctuations. We can also investigate the high temperature limit of Eq. (3.39),
which yields )
K 1 1

ﬁ ~ onT + = IH(%}) (3.43)

which, up to re-definitions of coupling constants to absorb factors of T, is exactly the func-

tional dependence of kg in the classical (2 4+ 0)D theory [19].
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Similarly, the phase boundary for the formation of the CDW amplitude at fixed gz and

Mot takes the form

1 _ 1 . KT — Ko T 1 1 Z 1 _ / dw 1
K(T)  K0)  dmnly, 4 | B4~ w2 + M2 + ki (w) 2m w2 + M2 + Ry (w)
2v/273 1 T 32v20 T
B 3 12\/ 27 ntot 45 nt50t ‘

(3.44)

Therefore, at the lowest temperatures, the competition between thermal fluctuations and
disorder actually decrease K., though this trend reverses at T'/n =~ 0.12, above which the
critical coupling increases with temperature. As we have seen several times, for example, in
Figs. 2 and 5, reentrant order appears to be a feature of this theory.

Finally, we note that the high temperature limit of the phase diagram must be consistent
with the (2+0)D classical theory studied in Ref. [19]. In particular, the weak disorder regime
with a finite CDW amplitude (p > 0 and kg = 0) which we showed in the previous section
was absent at T' = 0 must emerge as the temperature is increased. This is entirely consistent
with the existence of the critical temperature Eq. (3.42); unfortunately an analogous analytic
expression for the critical temperature in the regime where p > 0 does not exist due to the

complicated temperature dependence of p.

2. Order Parameter Correlations

We now return to the dynamics of the order parameter and include the effects of thermal
fluctuations. Compared to the zero temperature case, only the calculation of the dynamic
quasiparticle scattering term 115 is affected by the change to Matsubara summation, since
none of the other contributions involved an integral over frequency. First, we use the Poisson
summation formula to write

o T.0) =2 dz d%p’ 1
(P o Z 21 (27)2 22 + p? + M2 + iy (2)

(3.45)
X 1 e—ikﬁz
(wWp+ 22+ (p+p)2+ M2+ Ei(w, + 2)

)

where the £ = 0 term in the sum is precisely the 7' = 0 contribution we have already
evaluated in a previous section. To extract the low frequency response, we only need the

leading behavior of the self-energy £;(z) o< |z|. As is usual, the external (in the Feynman
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diagram loop sense) imaginary frequency wy, is taken to be arbitrary and not discrete, so that
R1(wn + 2) & |w, + 2| is a sensible approximation. After analytic continuation, to leading
order in real frequency and 1/, we find the thermal contribution

4V2m%? 16\/§7r5/2p2 B 2\/27rl,
352775’01; gngotBQ ngotﬁ

We neglect the O(w?) contribution since the low frequency behavior is always over-damped.

1) (p, —iw; T, 0) — ) (p, —iw; 0, 0) ~ ] (3.46)

Adding this to the earlier results, we have the disorder-averaged order parameter correlator

1 | W)

<U(p> ZLLJ)O' ( | oF Zw)> mg + f}/op2 _ ifa|w| (mg n ’Yap2)27 ( )
where the parameters are
2 i B 1 B 4k B 2/ 273/272 ro— 16V 23Kk n 27T
7 Ko 2y 67 Nt ?ﬁot 377?01; 377t50t 77?01;
(3.48)
(V121 —9) 1672k N 8v/ 212 T2 ,  167%K2
Yo = ) Ny = )
9v/ 27”7tgot 37fltﬁot 97]5)01; 3nt60t

where rkr is given by Eq. (3.41). With the additional dynamic quasiparticle scattering
contribution at finite temperature, the damping factor I', no longer vanishes smoothly in
the limit that n approaches the critical value 7.0(7") (invert Eq. (3.42) for m as a
function of T'). This reflects the discontinuity in the self-energy &;(w) at the critical disorder
which is evident in the low frequency expansion in Eq. (3.15). Therefore, for 7' > 0 there
exists a finite frequency scale wyamp ~ 1" below which the order parameter correlations are
over-damped. This is a significant difference compared to the quantum NLSM at finite
temperature discussed in Appendix A, for which the N = oo order parameter correlation
function is completely undamped; we note that damping can still manifest in the NLSM at

higher order in 1/N.

IV. DISCUSSION

In this paper, we have extended the model we introduced in Ref. [19] to explore the inter-
play of quantum and thermal fluctuations with quenched random disorder in two-dimensional
incommensurate charge density waves. We derived the structure of the phase diagram non-
perturbatively as a function of temperature and disorder strength in the large-N limit, as
well as the dynamics of the CDW order parameter fluctuations. Importantly, by represent-

ing the CDW as a composite order parameter of the parent SU(N) fields of our model, we
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ensured that the clean limit of the theory remains consistent; previous large-N studies did
not capture the fact that at finite temperature in the absence of disorder a U (1) order param-
eter should have a BKT transition [25]. Additionally, our approach is purposefully general,
and can be used to describe any system with a U(1) order parameter coupled to random
field disorder. We note that throughout this work, we have only considered the regime in
which replica permutation symmetry is unbroken. We showed in Ref. [19], that our model
does allow a range of parameters for which the replica-symmetric ground state is unstable.
However, the glassy physics associated with replica symmetry breaking (e.g., Griffiths sin-
gularities due to rare configurations of disorder [56]) cannot naturally be incorporated into

the 1/N expansion, and, as such, lies outside the scope of the present work.

Our first main result is the large- N phase diagram of the quantum theory as a function
of temperature and coupling between the SU(IN) fields in the absence of disorder. At
zero temperature we found that the CDW order always coexists with the parent SU(N)
order and that the CDW amplitude has a first order discontinuity at the phase transition.
This behavior stood in contrast with the continuous transition we described in the two-
dimensional classical model in Ref. [19]. However, after turning on a finite temperature, we
showed that in the large-N limit, thermal fluctuations soften the first order jump so that
beyond a tricritical point the CDW amplitude forms continuously. To make contact with
the classical limit, we noted that the actual phase transition in this regime will lie in the 2D
BKT universality class (with parameters renormalized by quantum fluctuations). We also
computed the correlation function of the CDW order parameter and drew parallels with the
large- NV solution of the quantum nonlinear sigma model [41], specifically the lack of damping

to leading order in 1/N.

We then considered the primary focus of this work: quantum dynamics of the CDW in
the presence of quenched random field disorder. We showed how averaging over disorder
configurations using the replica trick produces interactions which are nonlocal in time. Solv-
ing the disordered theory in the large- N limit, we found that the local part of the interaction
acted as in the classical theory by inducing a crossover from weakly- to strongly-disordered
behavior. Our second main result is that the new nonlocal part of the interaction causes
the disorder crossover to also manifest as a change in the dynamics of the order parameter,
with under-damped dynamics when the disorder is weak and over-damped dynamics when

the disorder is strong. We also showed that, in the large-N limit, at zero temperature the
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damping is only due to scattering from the static disorder. The drastic change in behavior
of the dynamics should be observable in measurements of the dynamic structure factor or
susceptibility of the CDW order parameter as a strongly disorder dependent broadening of
the line-shape. While we anticipate that sub-leading 1/N corrections to our model may also
allow for damping when the disorder is weak, those would be higher-order effects which we
do not expect to significantly affect the evolution of experimental line-shapes through the
crossover. We also argued on the basis of symmetry that the Goldstone mode which exists
in the regime of the clean theory with a well-formed amplitude of the CDW order parameter
might become diffusive in the presence of disorder. However, it is well-known that at finite
temperature this regime exhibits a complicated competition between disorder and vortices

[54, 55], so questions of diffusive transport are left for a future work.

Finally, we used our model to understand the interplay of quantum and thermal fluctu-
ations in the presence of disorder. After mapping out the complete large-/N phase diagram
as a function of the disorder strength and the coupling between the SU(N) fields, we calcu-
lated the temperature dependence of phase boundaries in the low temperature limit. This
complements our results in Ref. [19], which correspond to the high-temperature limit where
quantum effects are completely suppressed. We also showed that scattering processes which
are undamped (in the large-N limit) both at finite temperature in the absence of disorder and
at zero temperature with disorder acquire a dissipative contribution at finite temperature
in the presence of disorder. In this way, our theory demonstrates that thermal fluctuations

enhance the disorder-induced damping of the CDW order parameter.

In this work, we have considered charge density waves without any coupling to underlying
electronic degrees of freedom. This is an appropriate approximation when electron-electron
interactions are strong enough to form an insulating CDW state and when all energy scales
are much less than the electronic gap. A complete quantum theory of charge density waves
necessarily requires coupling the CDW to a Fermi surface, as was done in the absence of
disorder by one of us in Ref. [57]. This is a highly non-trivial problem, given the need to
account for the effect of disorder on gapless charge carriers, ideally non-perturbatively. In
particular, the fermions will generally lead to Landau damping of the CDW order parameter,
and the interplay of this additional source of damping with the effects described in this
work will lead to richer structure in the correlations of CDW fluctuations. Solving this open

problem would help address many questions raised by recent experiments.
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Finally, to the best of our knowledge, this paper is also the first work to apply the large- N
technique to examine the physics of composite order parameters coupled to random disor-
der. We believe our results have implications for understanding the behavior of disordered
composite and vestigial orders such as those found in models of pair density wave super-
conductors [11] and, more broadly, to other phases of matter described by composite order

parameters such as electronic nematic order [58, 59].
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Appendix A: Review of Quantum Nonlinear Sigma Model with Quenched Disorder

In this appendix, we review the large- N solution of the quantum nonlinear sigma model
(NLSM) with quenched random disorder at finite temperature. The action for the quantum

NLSM is

1

S[h’] - /ddXdT |:2_(8ltn(xv T))2 - h(X) ) ’I’L(X, T) ’ /n’Q(Xu T) = ]-7 (A]')
g

where h(x) is a static external source. If h(x) = h(x) is a random field distributed according

to

h(x) =0, he(x)h(y) = 7%0as0' (x — y), (A.2)

then disorder averages can be calculated using the replica trick,

Zn = /Db exp (—/ddx2—;> Z[p]"

n n 1
= /]];[D’I’I,JD)\J €exXp (- Z /ddXdT% [(8Mnj)2 + /\j(’l’l;2 — 1):| 6ij

b= . (A.3)
+ % Z /ddXdTldTg TLZ'(7'1> . TL]‘(TQ)) s

ij=1
where \; are the Lagrange multipliers for the unit vector constraints n? = 1. Note that

the disorder only couples the imaginary time averages of the order parameter with different
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replica indices. After integrating out the m; fields, we obtain the effective action
1 .
Ser/N = 5 Trln (5(71 — 1) [~0*I + diag, (\)] — gOnOX Z / ddxdr (A.4)

where diag,()) is the matrix with the \; along its diagonal entries, I is the n x n identity
matrix, X is the n x n matrix with a one in every entry, g = go/N, and gn? = gon2. In the
limit N — oo, the values of the \; are determined by the saddle point equations. Assuming

a replica-symmetric solution \; = m?, we find in the replica limit n — 0

diq 9077(2) 1
6 Z/ )4w2 4+ q% + m? +/ (2m)d (g2 +m2)2 %’ (A-5)

This implies that the disorder-averaged imaginary frequency propagator for the order pa-

rameter is

——— 1 gome
G(p,wn) w2 + p2 + m? + (p? +m2)26 0 (A.6)

The two key features of this expression are: (i) The disorder contributes an Imry-Ma type
double-Lorentzian term [31], which is purely static. (ii) The dynamics of the order parameter
are completely unaffected by disorder as N — oo, and, notably, are underdamped, since
(G(p, —iw)] ™ oc w”.

Appendix B: Quantum CPY Model with Quenched Disorder

In the main body of this work, we considered a two-component generalization of the CPY
model. In this appendix, we present the solution of the simpler model in a quenched random
field.

As explained in Ref. [19], the minimal way to couple a CPY model to quenched disorder
is in the form of a random field 3*(x) in the adjoint (vector) representation of SU(N).

Therefore, the partition function for a particular realization of disorder is

= a"Dz ex —1 dxdr “lalz|? z|? —
_/mDD p( g/dd[|D[]\+)\(\| 1] o

+ [ atxar szt

where * are the generators of SU(N), 3*(x) is a real (N? — 1)-component static random

field distributed according to

3%(x) =0, 3 (%) (y) = n°6°6D (x — y), (B.2)

37



n? is the variance of the disorder and overlines denote averages over configurations of the
disorder with respect to this distribution. Using the replica trick to perform the disorder

average, we obtain

2
Zn = /D5 exp (—/ddX23—?72) Z[3"
" 1
= /D)\jDa?Dzj exp (—Z/ddXdT {|D“[a]zj|2 + A, (\zj|2 — —>]
- g
7j=1

+ N_TIQ i /ddXdTldTQ‘zik(Tl) . Z'(Tg)‘2
2 7 J )

1,j=1

(B.3)

where we have used the identity 745755 = Ndasdpy — dapdss, and the fact that [z(x, ? =1.
Unlike in the classical theory studied in Ref. [19], the quenched disorder generates bilocal
in time interactions. However, the large-N technique is still well-adapted to solving this
problem (see, for example, Ref. [32-34]). The Hubbard-Stratonovich decoupling must be
in the SU(N) color singlet channel to apply the large-N technique, so we obtain, after
integrating out the z; fields,

Set/N = Trln (6(my — m)diag, [—D2[a] + A] — &) — Z/ddxdTﬁ
e ” (B.4)

+ Z /ddxdﬁdmliij(ﬁ?TQ)Izji(T27Tl>,

ij=1 2

where g = go/N, n = 10/g0, diag,(-) denotes a matrix which is diagonal in replica indices,
R is the matrix with elements &;;, and Tr includes a trace over functional configurations and
replica indices. The disorder Hubbard-Stratonovich field satisfies [k;;(71, 72)]* = k;i(T2, 1),
kii(T,7) = 0, and transforms as a tensor under the local U (1) symmetry z;(z) — % (@) z,(x),
as(r) — af(x) — 0 i(z), Kj(x, 71, 72) — el@i@)=ern(@2)) g (x, 7, 75). To find the N = oo
effective potential, we make the replica-symmetric ansatz a’; =0, \; = m?, kij(n, ) =

ko(T1 — 7o) — 0581 (71 — 72). This yields the partition function

Zn = e NV, (B.5a)
Uly = /é%.)ldg—: In det ([w2 + @+ m? 4 Ry (w)] — %O(w)X>
- n% + n/dT F1(7) 2_77;0(T)] +n(n—1) /dT—[H[;S?%)] + n%[mo(O) — k1(0)],
(B.5b)
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where &, (w) is the Fourier transform of x,(7), « is the Lagrange multiplier which imposes
the constraint k;(7,7) =0, I is the identity matrix in replica space and X is the matrix of

all ones. In the limit n — 0, we obtain the disorder-averaged effective potential
diq dw Fo(w)
Ue — o1 1 2 2 2 ~ .

f /(27r)d27r {n(‘“" TR W) - e e )
m? / [k1(T)]? = 261 (T)Ro(T) «
——+ [ dr + —|k0(0) — k1(0)],
. o 5lro(0) = s 0)]
with the corresponding saddle point equations

diq d 1 R 1
/ 42 S— Rolw) -, (B.7a)
2m)d2r W+ @+m?2+Ri(w)  [W2H+a?+m?+Ri(w)]?

diq 1 Fol(w) o — oy (w) + Folw)
[ | |

(B.6)

— + = )
2m) |w? + @+ m? + R (w)  [w?+q?+m?+ R (w)]? ne
(B.7Db)
diq 1 a — Ry (w)
— B.
/ (2m) w? + @2 + m2 + 71 (w) 778 ) (B.7c)
k0(0) — K1 (0) = 0. (B.7d)

The Lagrange multiplier can be eliminated from the second and third equations to obtain

the equivalent expressions

/ d?q Ro(w) _ Ro(w) (B.8a)
( , )

2m)e [w? + q? + M2 + Ry (w) — 71(0)]? ne

/ (ddq { 1 Lo mW=&0) gy

2m) | w? + 2 + M2 + Ry (w) — 71 (0) 2 + M? 2

where M? = m?+#£;(0) is the physical gap. It is simple to see from the saddle point equations
that £;(0) must actually be infinite, but eliminating the Lagrange multiplier regularizes the

equations. Since 1) is independent of frequency, we see that &g(w) must have the form

Ro(w) = Ko(2m)d(w), (B.9)
which implies
Ko Ko
A B.1
ArM? ¥’ (B.10)

and hence, ry = 0 or kg # 0 and M? = n2/4w. Note that we must have M? > n2/4r as
1o — 0 since the clean theory can also be gapped. The second equation can be inverted

exactly to obtain

2 4 M2
(W) — #1(0) = —w? — M2 — Z—;W_l (— 7:72 e—4ﬂ<w2+M2>/U3) : (B.11)
0
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where W, (z) is the k' branch of the product logarithm function; i.e., the inverse function
of 2 = We" [60]. The k = —1 branch is selected to satisfy the initial condition at w = 0.
As |w| = oo, F1(w) — £1(0) =~ (n2/47) In(w?/M?), while the behavior as |w| — 0 depends on
whether 72 < 4w M? or n2 = 4n M?,

(o)~ a0) = (5

f1(w) — &1(0) ~ \/_| w| — gw 24+ O(|wl), ng = 4w M*. (B.12b)

Given these observations, the first saddle point equation can be made finite with the usual

-1
- 1) w? + O(wh), ne < 4nM?, (B.12a)

coupling constant renormalization

1 1 A ddg d 1
—:—(1+9R/ B ) (B.13)
Jdo  9r (2m)4 21 w? + g2 + p?
so that
dw ne ArM? a2 2 ko 1 p
S (el P (LT gy M) ) = B0 B.14
4 | 27 n( dre? e ‘ e + 4 (B-14)

When ko = 0, this is an implicit equation for M?  while for ry # 0 we have M? = n2/4r
and the saddle point equation yields ko(19). In both cases, the integral must be evaluated
numerically, which is challenging to do precisely while in its current form. Instead, the

change of variables
47t M*
we W = 7;7—26_4”(WQ+M2)/”3, (B.15)
0

allows us to re-write the integral as

Mo > W+« 1—1/(w+ «) ko 1 n
— 0 dw In =— - — 4+ —, B.16
27r(47r)3/2/0 ( —In(l1+w/a) ) Vw—In(l+w/a) n5 gr 47 (B.16)

where o = 47w M?/n?. While this expression is not necessarily any more instructive, it is
vastly simpler to evaluate numerically. The mass M as a function of ng for gr > g. = 47/
is shown in Fig. 7. In the regime where M? = 2 /47w, we evaluate the integral to find

Ko 1

1
A~ — — — +0.03941 x 1. (B.17)
o 9gr e

Since we must have kg > 0 for the action to be positive definite, this defines the critical

disorder strength

07 9r < Ge,
(B.18a)

Ne
2.019 x pu (1 = g./gr), 9Rr > Ges
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FIG. 7. The physical gap M as a function of disorder strength 7y for gr > g. = 47 /u. For ng < .,
the mass is strictly greater than its lower bound 79/v/27 (shown as a dashed line), and tends
towards its clean value as g — 0. At weak disorder, the mass can be seen empirically to have the

power-law behavior M (1) ~ mo(1 — 13 /n2)/* where mg = p(1 — go/gr)-

This implies that for gg < g., the system is always strongly disordered; any infinitesimal
amount of disorder is enough to produce a condensate of the disorder amplitude kq. This
is physically intuitive, since the gapless SU(N) Goldstone modes in the broken symmetry
phase of the clean CP" model are much more strongly affected by disorder than the gapped

modes in the symmetric phase.
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