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Abstract

Many modern applications use computer vision to detect and count objects in
massive image collections. However, when the detection task is very difficult or in
the presence of domain shifts, the counts may be inaccurate even with significant
investments in training data and model development. We propose DISCOUNT—
a detector-based importance sampling framework for counting in large image
collections that integrates an imperfect detector with human-in-the-loop screening
to produce unbiased estimates of counts. We propose techniques for solving
counting problems over multiple spatial or temporal regions using a small number
of screened samples and estimate confidence intervals. This enables end-users
to stop screening when estimates are sufficiently accurate, which is often the
goal in a scientific study. On the technical side we develop variance reduction
techniques based on control variates and prove the (conditional) unbiasedness of
the estimators. DISCOUNT leads to a 9-12x reduction in the labeling costs over
naive screening for tasks we consider, such as counting birds in radar imagery or
estimating damaged buildings in satellite imagery, and also surpasses alternative
covariate-based screening approaches in efficiency.

1 Introduction

Many modern applications use computer vision to detect and count objects in massive image col-
lections. For example, we are interested in applications that involve counting bird roosts in radar
images and damaged buildings in satellite images. The image collections are too massive for humans
to solve these tasks in the available time. Therefore, a common approach is to train a computer vision
detection model and run it exhaustively on the images.

The task is interesting because the goal is not to generalize, but to achieve the scientific counting
goal with sufficient accuracy for a fixed image collection. The best use of human effort is unclear: it
could be used for model development, labeling training data, or even directly solving the counting
task! A particular challenge occurs when the detection task is very difficult, so the accuracy of counts
made on the entire collection is questionable even with huge investments in training data and model
development. Some works resort to human screening of the detector outputs [1-3], which saves time
compared to manual counting but is still very labor intensive.

These considerations motivate statistical approaches to counting. Instead of screening the detector
outputs for all images, a human can “spot-check” some images to estimate accuracy, and, more
importantly, use statistical techniques to obtain unbiased estimates of counts across unscreened
images. In a related context, Meng et al. [4] proposed IS-count, which uses importance sampling
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Figure 1: k-DISCOUNT uses detector-based importance sampling to screen counts and solve multiple
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We contribute counting methods for large image collections that build on IS-count in several ways.
First, we work in a different model where images are freely available and it is possible to train a
detector to run on all images, but the detector is not reliable enough for the final counting task, or
its reliability is unknown. We contribute human-in-the-loop methods for count estimation using
the detector to construct a proposal distribution, as seen in Fig. 1. Second, we consider solving
multiple counting problems—for example, over disjoint or overlapping spatial or temporal regions—
simultaneously, which is very common in practice. We contribute a novel sampling approach to obtain
simultaneous estimates, prove their (conditional) unbiasedness, and show that the approach allocates
samples to regions in a way that approximates the optimal allocation for minimizing variance. Third,
we design confidence intervals, which are important practically to know how much human effort is
needed. Fourth, we use variance reduction techniques based on control variates.

Our method produces unbiased estimates and confidence intervals with reduced error compared to
covariate-based methods. In addition, the labeling effort is further reduced with DISCOUNT as we
only have to verify detector predictions instead of producing annotations from scratch. On our tasks,
DISCOUNT leads to a 9-12x reduction in the labeling costs over naive screening and 6-8 x reduction
over IS-Count. Finally, we show that solving multiple counting problems jointly can be done more
efficiently than solving them separately, demonstrating a more efficient use of samples.

2 Related Work

Computer vision techniques have been deployed for counting in numerous applications where ex-
haustive human-labeling is expensive due to the sheer volume of imagery involved. This includes
areas such as detecting animals in camera trap imagery [1, 5], countmg buildings, cars, and other
structures in satellite images [2, 6-8], species monltorlng in citizen science platforms [5, 9], moni-
toring traffic in videos [10, 11], as well as various medicine, science and engineering applications.
For many applications the cost associated with training an accurate model is considerably less than
that of meticulously labeling the entire dataset. Even with a less accurate model, human-in-the-loop
recognition strategies have been proposed to reduce annotation costs by integrating human validation
with noisy predictions [12, 13].

Our approach is related to work in active learning [14] and semi-supervised learning [15], where the
goal is to reduce human labeling effort to learn models that generalize on i.i.d. held out data. While
these approaches reduce the cost of labels on training data, they often rely on large labeled test sets
to estimate the performance of the model, which can be impractical. Active testing [16, 17] aims
to reduce the cost of model evaluation by providing a statistical estimate of the performance using
a small number of labeled examples. Unlike traditional learning where the goal is performance on
held out data, the goal of active testing is to estimate performance on a fixed dataset. Similarly, our
goal is to estimate the counts on a fixed dataset, but different from active testing we are interested
in estimates of the true counts and not the model’s performance. In particular, we want unbiased



estimates of counts even when the detector is unreliable. Importantly, since generalization is not the
goal, overfitting to the dataset statistics may lead to more accurate estimates.

Statistical estimation has been widely used to conduct surveys (e.g., estimating population demo-
graphics, polling, etc.) [18]. In IS-Count [4], the authors propose an importance sampling approach
to estimate counts in large image collections using humans-in-the-loop. They showed that one can
count the number of buildings at the continental scale by sampling a small number of regions based
on covariates such as population density and annotating those regions, thereby reducing the cost of
obtaining high-resolution satellite imagery and human labels. However, for many applications the
dataset is readily available, and running the detector is cost effective, but human screening is expen-
sive. To address this, we propose using the detector to guide the screening process and demonstrate
that this significantly reduces error rates in count estimation given a fixed amount of human effort.
Furthermore, for some applications, screening the outputs of a detector can be significantly faster
than to annotate from scratch, leading to additional savings.

An interesting question is what is the best way to utilize human screening effort to count on a dataset.
For example, labels might be used to improve the detector, measure performance on the deployed
dataset, or, as is the case in our work, to derive a statistical estimate of the counts. Our work is
motivated by problems where improving the detector might require significant effort, but counts from
the detector are correlated with true counts and can be used as a proposal distribution for sampling.

3 DISCOUNT: Detector-based IS-Count

Consider a counting problem in a discrete domain {2 (usually spatiotemporal) with elements s €
that represent a single unit such as an image, grid cell, or day of year. For each s there is a ground
truth “count” f(s) > 0, which can be any non-negative measurement, such as the number or total
size of all objects in an image. A human can label the underlying images for any s to obtain f(s).

Define F'(S) = .4 f(s) to be the cumulative count for a region S. We wish to estimate the total
counts F(S1),..., F(Sy) for k different subsets St,...,Sr C Q, or regions, while using human
effort as efficiently as possible. The regions represent different geographic divisions or time ranges
and may overlap — for example, in the roost detection problem we want to estimate cumulative
counts of birds for each day of the year, while disaster-relief planners want to estimate building
damage across different geographical units such as towns, counties, and states. Assume without loss

of generality that Ule S; = (, otherwise the domain can be restricted so this is true.

We will next present our methods; derivations and proofs of all results are found in the appendix.

3.1 Single-Region Estimators

Consider first the problem of estimating the total count F'(S) for a single region S. Meng et al.
[4] studied this problem in the context of satellite imagery, with the goal of minimizing the cost of
purchasing satellite images to obtain an accurate estimate.

Simple Monte Carlo [4] This is a baseline based on simple Monte Carlo sampling. Write F'(.S) =
Y scs [(8) = |S] - Egounitcs)[f ()] Then the following estimator, which draws n random samples
uniformly in S to estimate the total, is unbiased:

Fyne(S) =19 - % > f(si), s~ Unif(S).
=1

IS-Count [4] Meng et al. then proposed an estimator based on importance sampling [19]. Instead
of sampling uniformly, the method samples from a proposal distribution ¢ that is cheap to compute
for all s € S. For example, to count buildings in US satellite imagery, the proposal distribution could
use maps of artificial light intensity, which are freely available. The importance sampling estimator
is:

. 1 e .
FIS<S)—n;q(Si)v i~



DISCOUNT IS-count assumes images are costly to obtain, which motivates using external covari-
ates for the proposal distribution. However, in many scientific tasks, the images are readily available,
and the key cost is that of human supervision. In this case it is possible to train a detection model and
run it on all images to produce an approximate count g(s) for each s. Define G(S) = > .5 9(s)
to be the approximate detector-based count for region S. We propose the detector-based 1S-count
("DISCOUNT") estimator, which uses the proposal distribution proportional to g on region S, i.e.,
with density gs(s) = g(s)I[s € S]/G(S). The importance-sampling estimator then specializes to:

R 1 n
FDIS(S):G(S)ZZ S; ~ gs.
i=1

f(s:)
9(si)’
To interpret DISCOUNT, let w; = f(s;)/g(s;) be the ratio of the true count to the detector-based
count for the ¢th sample s; or (importance) weight. DISCOUNT reweights the detector-based total
count G(5) by the average weight @ = = 3" | w;, which can be viewed as a correction factor based
on the tendency to over- or under-count, on average, across all of S.

DISCOUNT is unbiased as long as g(s) > 0 forall s € S such that f(s) > 0. Henceforth, we assume
detector counts are pre-processed if needed so that g(s) > 0 for all relevant units, for example, by
adding a small amount to each count.

3.2 k-DISCOUNT

We now return to the multiple region counting problem. A naive approach would be to run DISCOUNT
separately for each region. However, this is suboptimal. First, it allocates samples equally to each
region, regardless of their size or predicted count. Intuitively, we want to allocate more effort to
regions with higher predicted counts. Second, if regions overlap it is wasteful to repeatedly draw
samples from each one to solve the estimation problems separately.

k-DISCOUNT We propose estimators based on n samples drawn from all of {2 with probability
proportional to g. Then, we can estimate F'(S) for any region using only the samples from S.
Specifically, the k-DISCOUNT estimator is

. G(S)-w(S
kas(S)—{ (5) - @(S)

(S)>0 -
) Si ~ 94Q,
(S) =0 ?

where n(S) = |{i : s; € S}| is the number of samples in region S and w(S) = ﬁ Diisies Wi ls
the average importance weight for region S.

n
0 n

Claim 1. The k-DISCOUNT estimator F) wpis(S) is conditionally unbiased given at least one sample
in region S. That is, E[Fypis(S) | n(S) > 0] = F(9).

The unconditional bias can also be analyzed (see Appendix). Overall, bias has negligible practical
impact. It occurs only when the sample size n(.S) is zero, which is an event that is both observable
and has probability (1 — p(.5))™ that decays exponentially in n, where p(S) = G(S)/G(Q).

In terms of variance, k-DISCOUNT behaves similarly to DISCOUNT run on each region .S with
G(8)%-0%(S)
np(S)
where o2(S) is the importance-weight variance. In the case of disjoint regions, running DISCOUNT
on each region is the same as stratified importance sampling across the regions, and the allocation of

np(S) samples to region S is optimal in the following sense:

sample size equal to E[n(S)] = np(S). To first order, both approaches have variance

Claim 2. Suppose Sy, ..., Sy, partition Q2 and the importance weight variance o*(S;) = o2 is
constant across regions. Assume DISCOUNT is run on each region S; with n; samples. Given

a total budget of n samples, the sample sizes that minimize Zle Var(FDIS(Si)) are given by
n; = np(S;) = nG(S;)/G(Q).

The analysis uses reasoning similar to the Neyman allocation for stratified sampling [18], and shows
that k-DISCOUNT approximates the optimal allocation of samples to (disjoint) regions under the
stated assumptions. One key difference is that k&-DISCOUNT draws samples from all of 2 and then
assigns them to regions, which is called “post-stratification” in the sampling literature [18]. An exact



variance analysis in the Appendix reveals that, if the expected sample size np(S) for a region is
very small, k-DISCOUNT may have up to 30% “excess” variance compared to stratification due
to the random sample size, but the excess variance disappears quickly and both approaches have
the same asymptotic variance. A second key difference to stratification is that regions can overlap;
k-DISCOUNT’s approach of sampling from all of {2 and then assigning samples to regions extends
cleanly to this setting.

3.3 Control Variates

Control variates are functions /(s) whose integrals H(S) = > ¢
combined with importance sampling using the following estimator:

G(S)-wp(S)+ H(S) n(S)>0
0 n(S)=0"

h(s) are known and can be

Frpise(S) = { 5~ g,
where @y, (S) = ﬁ Y is,es Whi and wp ;= (f(si) — h(si))/g(s:). Itis clear that Frpisen(S)

has the same expectation as K kDIS(S)> but 3 kDIscv (S) might have a lower variance under certain
conditions (if f and h are sufficiently correlated [19]). For bird counting, estimated counts from
previous years could be used as control variates as migration is periodic to improve count estimates
(see experiments in § 4 for details).

3.4 Confidence intervals

Confidence intervals for k-DISCOUNT can be constructed in a way similar to standard importance
sampling. For a region S, first estimate the importance weight variance o (S) as:

e 1 fs)  Fos(9)\
9= g 2 (e - )

i:8; €S g(SZ)

An approximate 1 — « confidence interval is then given by Fipis(S) % 24/2 - G(S) - 5(S)/+/n(S),
where z, is the 1 — « quantile of the standard normal distribution, e.g., z9.025 = 1.96 for a 95%
confidence interval. The theoretical justification is subtle due to scaling by the random sample size
n(S). It is based on the following asymptotic result, proved in the Appendix.

Claim 3. The k-DISCOUNT estimator with scaling factor G(S)&(S)/+/n(S) is asymptotically

normal, that is, the distribution of %ﬁ% converges to N'(0,1) as n — oo.

In preliminary experiments we observed that for small expected sample sizes the importance weight
variance o2(S) can be underestimated leading to intervals that are too small — as an alternative, we

. . . . ~ 2 . . ~ 2 . .
propose a practical heuristic for smaller sample sizes where 6°(2) is used instead of 5°(5); that is,
all samples are used to estimate variability of importance weights for each region S.

4 Experimental Setup

In this section we describe the counting tasks and detection models (§ 4.1-4.2) and the evaluation
metrics (§ 4.3) we will use to evaluate different counting methods. We focus on two applications:
counting roosting birds in weather radar images and counting damaged buildings in satellite images
of a region struck by a natural disaster.

4.1 Counting Roosting Birds from Weather Radar

Many species of birds and bats congregate in large numbers at nighttime or daytime roosting locations.
Their departures from these “roosts” are often visible in weather radar, from which it’s possible
to estimate their numbers [20-22]. The US “NEXRAD” weather radar network [23] has collected
data for 30 years from 143+ stations and provides an unprecedented opportunity to study long-term
and wide-scale biological phenomenon such as roosts [24, 25]. However, the sheer volume of radar
scans (>250M) prevents manual analysis and motivates computer vision approaches [26-28, 3].



Unfortunately, the best computer vision models [3, 28] for detecting roosts have average precision
only around 50% and are not accurate enough for fully automated scientific analysis, despite using
state-of-the-art methods such as Faster R-CNNs [29] and training on thousands of human annotations
— the complexity of the task suggests substanti~! '~h~tine and mandal dnoalonmont affavin connld b
needed to improve accuracy, and may be imprac

Previous work [30, 31] used a roost detector
combined with manual screening of the de-
tections to analyze more than 600,000 radar

. . . Ground truth
scans spanning a dozen stations in the Great -~ k-DISCount (n=5) a0
Lakes region of the US to reveal patterns of — k-DisCount (n =30)
bird migration over two decades. The vetting
of nearly 64,000 detections was orders of mag-
nitude faster than manual labeling, yet still re-
quired a substantial 184 hours of manual effort.
Scaling to the entire US network would require
at least an order of magnitude more effort, thus
motivating a statistical approach.
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20 years (see Fig. 7 in Appendix B). Thus the do- Season days
mains are disjoint and treated separately. Counts

are colle.cted for each day s by running the de- Figure 2: Count estimates with confidence inter-
tector using all radar scans for that day to detect 1< for two station years (i.e., KGRB 2020 and

and track roost signatures and then mapping de- g gjE 2010) using different numbers of samples.
tections to bird counts using the measured radar

“reflectivity” within the tracks. For the approx-

imate count g(s) we use the automatically detected tracks, while for the true count f(s) we use
the manually screened and corrected tracks. For a single domain, i.e., each station-year, we divide
a complete roosting season into temporal regions in three different scenarios: (1) estimating bird
counts up to each day in the roosting season (i.e., regions are nested prefixes of days in the entire
season), (2) the end of each quarter of (i.e., regions are nested prefixes of quarters in the entire season),
and (3) estimating each quarter’s count (each region is one quarter). We measure error using the
fully-screened data and average errors across all domains and regions. Fig. 2 shows the counts and
confidence intervals estimated using k-DISCOUNT for the first scenario on four station-years.

15

—
o

v

4.2 Counting Damaged Buildings from Satellite Images

Building damage assessment from satellite images [32, 33] is often used to plan humanitarian response
after a natural disaster strikes. However, the performance of computer vision models degrades when
applied to new regions and disaster types. Our approach can be used to quickly vet the data produced
by the detector to correctly estimate counts in these scenarios.

We use the building damage detection model by [34], the winner of the xView2 challenge [35].
The model is based on U-Net [36] to detect buildings in the pre-disaster image, followed by a
“siamese network" that incorporates at pre- and post-disaster images to estimate damage. The model
is trained on the xBD dataset [37] that contains building and damage annotations spanning multiple
geographical regions and disaster types (e.g., earthquake, hurricane, tsunami, etc.). While the dataset
contains four levels of damage (i.e., 0: no-damage, 1: minor-damage, 2: major-damage, and 3:
destroyed), in this work we combine all damage levels (i.e., classes 1-3) into a single “damage” class.

We consider the Palu Tsunami from 2018; the data consists of 113 high-resolution satellite images
labeled with 31,394 buildings and their damage levels. We run the model on each tile s to estimate
the number of damaged buildings g(s), while the ground-truth number of damaged buildings is used
as f(s). Our goal is to estimate the cumulative damaged building count in sub-regions expanding
from the area with the most damaged buildings as shown in Fig. 9 in the Appendix C. To define the
sub-regions, we sort all m images by their distance from the epicenter (defined as the image tile with



Damaged building counting (Palu Tsunami) Roosting birds counting (Great Lakes)

80 MC 801 70 701
& 701 707 601 601
2 50] Discount |5 " "
0. , 201 401 f 40
301 304 301 301
= 20 201 201 201

SR VRS TS OV P o O SR [ 5F R~ JUR T P SO nH+———————————100————
5 15 25 35 45 55 65 5 15 25 35 45 55 65 5 10 1520 25 30 35 40 45 5 10 15 20 25 30 35
Number of samples Labeling effort (%) Number of samples Labeling effort (%)

Figure 3: Detector-based sampling. Estimation error of damaged building counts in the Palu
Tsunami region from the xBD dataset (left) and counting roosting birds from the Great Lakes radar
stations in the US from NEXRAD data (right). We get lower error with DISCOUNT compared
to IS-Count and simple Monte Carlo sampling (MC). The labeling effort is further reduced with
DISCOUNT since the user is not required to label an image from scratch but only to verify outputs
from the detector (See § 5 for details). The estimation errors are averaged over 1000 runs.

the most damaged buildings) and then divide into chunks or “annuli” Ay, ..., A7 of size m /7. The
task is to estimate the cumulative counts S; = (J!_, A; of the first j chunks for j from 1 to 7.

4.3 Evaluation

We measure the fractional error between the true and the estimated counts averaged over all regions
in a domain S7,...,S5; C Qas:

1~ [F(S) — F(S)]

Error(Q2) ’ ; FQ) .

For the bird counting task, for any given definition of regions within one station-year 2 (i.e.,
cumulative days or quarters defined in § 4.1) we report the error averaged across all station-years
corresponding to 12 stations and =~ 20 years. For the damaged building counting problem there
is only a single domain corresponding to the Palu Tsunami region. In addition, we calculate the
average confidence interval width normalized by F'(€2). We run 1000 trials and plot average metrics
+1.96 x std. error over the trials. We also evaluate confidence interval coverage, which is the fraction
of confidence intervals that contain the true count over all domains, regions, and trials.

5 Results

In this section, we present the results comparing detector-based to covariate-based sampling. Also,
we show reductions in labeling effort and demonstrate the advantages of estimating multiple counts
jointly. Finally, we show confidence intervals and control variates results.

Detector-based sampling reduces error We first compare DISCOUNT (detector-based sampling)
to IS-Count and simple Monte Carlo sampling for estimating F'(2), that is, the total counts of birds
in a complete roosting season for a given station year, or damaged buildings in the entire disaster
region. Fig. 3 shows the error rate as a function of number of labeled samples (i.e., the number of
distinct s; sampled, since each s is labeled at most once). In the buildings application, a sample refers
to an image tile of size 1024 x 1024 pixels, while for the birds a sample refers to a single day.

Using the detector directly without any screening results in high error rates — roughly 136% and
149% for estimating the total count for the damaged buildings and bird counting tasks respectively.
Meng et al. [4] show the advantages of using importance sampling with screening to produce count
estimates with base covariates as opposed to simple Monte Carlo sampling (MC vs. IS-Count). For
the bird counting task, we construct a non-detector covariate gis by fitting a spline to f(s) with 10%
of the days from an arbitrarily selected station-year pair (station KBUF in 2001). For the damaged
building counting task, the covariate gjg is the true count of all buildings (independent of the damage)
obtained using the labels provided with the xBD dataset.



Damaged building cumulative counting Roosting birds cumulative counting Roosting birds counting

(Palu Tsunami) (Great Lakes) (Great Lakes)
__60 DISCount 601 : 601
B k-DISCount ) &
240 z = N 401 = 401
- =
5 = => = + *
£ 201 = 204 = 201 —
= -

o

0 0
RI R2 R3 R4 R5 R6 R7 Q1 Q1-02 Q1-Q3 Q1-Q4 Q1 Q2 03 04
Regions (cumulative) Season quarter (cumulative) Season quarter (disjoint)

Figure 4: Solving multiple counting problems jointly. Estimation error of counting damaged
buildings in the Palu Tsunami region from the xBD dataset (left) and counting roosting birds from the
Great Lakes radar stations in the US from NEXRAD data (right). We compare solving the counting
problems jointly (k-DISCOUNT) against solving the counting problems separately (DISCOUNT).
We use 10 samples for both these tests. The estimation errors are averaged over 1000 runs.

Covariate-based sampling (IS-Count) leads to significant savings over simple Monte Carlo sampling
(MC), but DISCOUNT provides further improvements. In particular, to obtain an error rate of 20%
DISCOUNT requires ~ 1.6x fewer samples than IS-Count and ~ 3x fewer samples than MC for
both counting problems.

Screening leads to a further reduction in labeling effort DISCOUNT alleviates the need for users
to annotate an image from scratch, such as identifying an object and drawing a bounding box around
it. Instead, users only need to verify the detector’s output, which tends to be a quicker process. In a
study by Su et al. [38] on the ImageNet dataset [39], the median time to draw a bounding-box was
found to be 25.5 seconds, whereas verification took only 9.0 seconds (this matches the screening time
of ~10s per bounding-box in [31, 30]). The right side of Fig. 3 presents earlier plots with the x-axis
scaled based on labeling effort, computed as 100 - ¢ - n/|Q2|, where n denotes the number of screened
samples and ¢ € [0, 1] represents the fraction of time relative to labeling from scratch. For instance,
the labeling effort is 100% when all elements must be labeled from scratch (¢ = 1 and n = |2|). For
DISCOUNT, we estimate cpis = 9.0/(25.5 + 9.0) = 0.26, since annotating from scratch requires
both drawing and verification, while screening requires only verification. To achieve the same 20%
error rate, DISCOUNT requires 6 x less effort than IS-Count and 9x less effort than MC for the bird
counting task, and 8 less effort than IS-Count and 12 x less effort than MC for building counting.

Multiple counts can be estimated efficiently (x.-DISCOUNT) To solve multiple counting prob-
lems, we compared k-DISCOUNT to using DISCOUNT separately on each region. For bird counting,
the task was to estimate four quarterly counts (cumulative or individual) as described in § 4.1. For
k-DISCOUNT, we sampled n = 40 days from the complete season to estimate the counts simultane-
ously. For DISCOUNT, we solved each of the four problems separately using n/4 = 10 samples per
region for the same total number of samples. For building damage counting, the task was to estimate
seven cumulative counts as described in § 4.2. For k-DISCOUNT, we used n = 70 images sampled
from the entire domain, while for DISCOUNT we used n/7 = 10 sampled images per region.

Fig. 4 shows that solving multiple counting problems jointly (k-DISCOUNT) is better than solving
them separately (DISCOUNT). For the cumulative tasks, k-DISCOUNT makes much more effective
use of samples from overlapping regions. For single-quarter bird counts, k-DISCOUNT has slightly
higher error in Q1 and Q4 and lower errors in Q2 and Q3. This can be understood in terms of
sample allocation: k-DISCOUNT allocates in proportion to predicted counts, which provides more
samples and better accuracy in Q2-Q3, when many more roosts appear, and approximates the optimal
allocation of Claim 2. DISCOUNT allocates samples equally, so has slightly lower error for the
smaller Q1 and Q4 counts. In contrast, for building counting, £-DISCOUNT has lower error even for
the smallest region R1, since this has the most damaged buildings and thus gets more samples than
DISCOUNT. Fig. 5 (left) shows k-DISCOUNT outperforms simple Monte Carlo (adapted to multiple
regions similarly to .-DISCOUNT) for estimating cumulative daily bird counts as in Fig. 2.

Confidence intervals We measure the width and coverage of the estimated confidence intervals
(CIs) per number of samples for cumulative daily bird counting; see examples in Fig. 2. We compare
the CIs of k-DISCOUNT, k-DISCOUNT-cv (control variates), k-DISCOUNT-cv-o () (using all sam-
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Figure 5: Control variates and confidence intervals on bird counting. We compare simple Monte
Carlo (MC), calibration with isotonic regression, and variations of k-DISCOUNT that include control
variates (-cv) and improved variance estimates (—o(2)). (left) Error rates using k-DISCOUNT
are significantly smaller than MC and calibration. (middle) Confidence intervals’ width. (right)
Confidence intervals’ coverage. The error and the confidence intervals’ width are slightly reduced
when control variates are used while maintaining the coverage. Furthermore, k-DISCOUNT-cv-0(£2)
improves the coverage. The results are averaged over all station-years and over 1,000 runs.

ples to estimate variance), and simple Monte Carlo sampling in Fig. 5. When using control variates,
the error rate and the CI width are slightly reduced while keeping the same coverage. CI coverage
is lower than the nominal coverage (95%) for all methods, but increasing with sample size and sub-
stantially improved by k-DISCOUNT-cv-o(§2), which achieves up to ~ 80% coverage. Importance
weight distributions can be heavily right-skewed and the variance easily underestimated [40].

DISCOUNT improves over a calibration baseline We implement a calibration baseline where
the counts are estimated as FcarL(S) = > ,cq@(g(s)), where we learn an isotonic regression

model ¢ between the predicted and true counts trained for each station using 15 uniformly selected
samples from one year from that station. Results are shown as the straight line in Fig. 5 (left).
DISCOUNT outperforms calibration with less than 10 samples per station suggesting the difficulties
in generalization across years using a simple calibration approach.

Control variates (k-DISCOUNT-cv) We perform experiments adding control variates to k-

DISCOUNT in the roosting birds counting problem. We use the calibrated detector counts qg(g(s))
defined above as the control variate for each station year. Fig. 5 shows that control variates reduce the
confidence interval width (middle: k-DISCOUNT vs. k-DISCOUNT-cv) without hurting coverage
(right). In addition, the error of the estimate is reduced slightly, as shown in Fig. 5 (left). Note that
this is achieved with a marginal increase in the labeling effort.

6 Discussion and Conclusion

We contribute methods for counting in large image collections with a detection model. When the
task is complex and the detector is imperfect, allocating human effort to estimate the scientific
result directly might be more efficient than improving the detector. For instance, performance
gains from adding more training data may be marginal for a mature model. Our proposed solution
produces accurate and unbiased estimates with a significant reduction in labeling costs from naive and
covariate-based screening approaches. We demonstrate this in two real-world open problems where
data screening is still necessary despite large investments in model development. Our approach is
limited by the availability of a good detector, and confidence interval coverage is slightly low; possible
improvements are to use bootstrapping or corrections based on importance-sampling diagnostics [40].
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A Derivations
A.1 IS-Count

Take p(s) = 1/|S| and f(s) = |S|f(s), we want B, [ f(s)] = 3 ,c s 157151/ (s) = F(S). Importance
sampling with proposal g gives

F(S) = Ep[f(s)]

A.2 DISCount

Take ¢ = gg in IS-Count, then

A.3 k-DISCount

Proof of Claim 1. For any m > 0 we have

E [Fles(S) |n(S) = m] l sz [s; € 8]

ZE w; - 1[s; € S| n(S) = m]

n(S) :m]

EZPr[siES\n(S):m]-E[wi\siES,n(S’):m]
%ZPr[siES\n(S):m]-E[wi\siES]
:G(S)-%Z%~E[wi|sies]

zg(s).%z%.@

= F(9)

In the third line, we used the fact that E [2(X) - I[X € A]] =Pr[z € A] - E[h(X) | X € A] for any
random variable X and event A (see Lemma 1 below). In the fourth line we used the fact that s; is
conditionally independent of n(S) given s; € S, since n(S) = I[s; € S|+ ., I[s; € S] and the
latter sum is independent of s;. In the fifth line we used the fact that Pr[s; € S | n(S) =m] =2

because n(S) = Z?Zl I[s; € S] and the terms in the sum are exchangeable. In the sixth line we
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computed the conditional expectation as follows using the fact that the conditional density of s; given
s; € Sisequal to g(s;)/G(S):

E fus]ss € 5 & | 7

f(s F(S)
165] ZG G Zf G(S)

S'
‘g ¢ sES

The unconditional bias of k-DISCOUNT can also be analyzed:

Claim 4. Let p(S) = Pr[s; € S| = G(5)/G(Q). The bias of the k-DISCOUNT estimator is
Bl Frors(8)] = F(S) = = (1= p(5))".

In particular, bias decays exponentially with n and quickly becomes negligible, with magnitude at
most € for n > log(1/r)/log(1/€) and r = 1 — p(S). Further, the bias is easily computable from the

detector counts and therefore known prior to sampling, and the event that leads to a biased estimate
(n(S) = 0) is observed after sampling. All these factors make bias a very minor concern.!

Proof of Claim 4. Using Claim 1, we compute the unconditional expectation as
E [Frois(S)] = Prin(S) = 0] - E [ Frois(S) | n(S) = 0] + Prln($) > 0] - ElFyors(S) | n(S) > 0]
= Pr[n(S) > 0] - F(S5)

(-8 7o

In the final line, 1 — G(S)/G(f?) is probability that s; ¢ S for a single 4, and (1 — G(S)/G(Q))™ =

Pr[n(S) = 0] is the probability that s; ¢ S for all 4. Rearranging gives the result. O
Lemma 1. E [h(X) - I[X € A]| = Pr[z € A] - E[h(X) | X € A] for any random variable X and
event A.

Proof. Observe
E [h(X) - I[X € A]] ZPr (z) [z € A]

= ZPr =z, X € Alh(z)
=Pr[X € A1} Pr[X =z | X € AJh()

=Pr[X € A] -?E[h(X) | X € A].

A.4 Optimal allocation of samples for DISCOUNT to disjoint regions

Proof of Claim 2. The proof is similar to that of Theorem 5.6 in [18]. We prove the claim for £ = 2;
the proof generalizes to larger k in an obvious way. The variance of DISCOUNT on S is
G(8i)®-02(Si) _ »G(S)?

=0 .

g n;

Var(Fpis(S;)) =

We want to minimize ) _, Var(Fpis(S;)), which with k& = 2 is proportional to
G | G’

ni n2

V =

'The k-DISCOUNT estimator can be debiased by dividing by © = 1 — (1 — p(S))™ < 1. However, this
leads to higher overall error: if n(.S) = 0, the estimator is unchanged, and conditioned on the event n(S) > 0
the estimator becomes biased and has higher variance by a factor of 1/u? > 1.
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By the Cauchy-Shwarz inequality, for any 71, ny > 0,
G(S1)?  G(S2)?
Vi = ( (51)°  G(S2)

ni n2

)<n ) > (G(S1) + G(S2))°.

If we substitute n; = G(S;)/Z for any Z on the left of the inequality and simplify, we see the
inequality becomes tight, so the minimum is achieved. We further require ), n; = n, so choose Z so
G(Si)

ng=mn- G = np(S;).

A.5 Ek-DISCOUNT variance

Recall that p(S) = Pr[s; € S] = G(S)/G() is the probability of a sample landing in S under the
sampling distribution gq. Define

7*(8) = Var(f(5:)/g(5:) | 51 € 5) = ZGS ( >—ZE§§)

ses 9 S)

to be the variance of the importance weight for s; ~ gs.
Claim 5. Letr =1 — p(S). The variance of the k-DISCOUNT estimator is given by

Var(Fpis(S)) = G(S)? - 02(S) - (1 —1") -E {

1 2, PR _
w(S) n(S) > O] + F(S) (1 ).
where (1 — )" E [1/n(S) | n(S) > 0] = Z?Zl(l/j) - Binomial (j; n, p(S)).

The second term in the variance arise from the possibility that no samples land in .S; it decays
exponentially in n and is negligible compared to the first term. The first term can be compared to
the variance G(S5)? - o%(S) - % of importance sampling with exactly m samples allocated to .S and
the proposal distribution gg, i.e., DISCOUNT. Because the sample size n(S) is random, the correct
scaling factor for k-DISCOUNT is (1—r™) E[1/n(S) | n(S) > 0], which it turns out is asymptotically
equivalent to 1/(np(S)), i.e., DISCOUNT with a sample size of m = np(S) = E[n(S)] — see
Claim 6 below. We find that for a small expected sample size (around 4) there can be up to 30%
“excess variance” due to the randomness in the number of samples (see Figure 6), but that this
disappears quickly with larger expected sample size.

Claim 6. Let FkDIS,n and FDIS,m be the k-DISCOUNT and DISCOUNT estimators with sample sizes
n and m, respectively. The asymptotic variance of k-DISCOUNT is given by

li_>m nVar(ﬁkD’sm(S)) = G(S9)*-a%(9)/p(S).
This is asymptotically equivalent to DISCOUNT with sample size m = E[n(S)] = np(S). That is

- Var(Fypisn(S))
1= Var(Fpss, rnp(sy] ()

=1

Proof of Claim 5. By the law of total variance,

Var(Fypis(S)) = E [ Var(EFypis (S) | 7(S))] + Var (E[Fipis(S) | n(S)]). 1)

We will treat each term in Eq. 1 separately. For the first term, from the definition of £-DISCOUNT
we see

Var (Fiors(S) | <S>>—{O M8 =0
kDIS - G(S)2 . E;((g)) n(s) >0 .
Therefore
[Var(Fions(S) | ($))] = G(S)* - Prla($) > 0] | 74 | a($) > 0]
— G(S)2-0%(S) - (1— 1) -E ﬁ n(S)>O}




1.4

Variance ratio

0.9
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Figure 6: Ratio of variance of k-DISCOUNT with expected sample size np(.S) to DISCOUNT with
np(S) samples; uses formula from Claim 5 (first term only).

In the last line, we used the fact that n(S) ~ Binomial(n, p(S)), so Pr[n(S) > 0] = 1 — r™ where
r =1 — p(S). The summation for (1 — r™)E[1/n(S) | n(S) > 0] follows from the same fact.

For the second term in Eq. (1), from the definition of £-DISCOUNT and conditional unbiasedness
(Claim 1), we have

BIE g 5y — 0 ifn(S)=0
Fions(5) | m(5)] = {F(S) if n(S) >0
= F(S) - Bernoulli(1 — r™).
The variance is therefore
Var (E[Fypis(S) | n(S)]) = F(S)?-r™ - (1 — ™).

Putting the two terms together yields the result. O

Proof of Claim 6. By Claim 5 we have

nlirlgonVar(Fles n(9)) = nhHII;On CG(9)?-a%(S)-(1—r")-E {n(lS) n(S) > 0] +
lim n-F(S)?-r"-(1—7r"). (2)

n— oo

The second limit on the right side is zero, because nr™ — 0 as n — oo (recall that r < 1) and the
other factors are bounded. We will show the first limit on the right side is equal to G(S)?-0%(S) /p(S),
which will prove the first part of the result. The asymptotic expansion of [41] (Corollary 3) states that

(1—=r")E[1/n(S) | n(S) > 0] = npts) +0 ((np(ls))2> '

Using this expansion in the limit gives:

nl;rrgon “G(9)?-a%(S)- (1 —r")-E [n(lS) n(S) > 0}
= lim G(S)? - 0%(S)/p(S) - (1+O(1/n)
=G(8)* - *(9)/p(S)
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The variance of DISCOUNT with sample size m is Var(Fps . (S)) = G(S)2 - 02(S)/m. Setting
m = [np(S)] and using the second to last line above we have

I Var(Fyprs, (S)) ~ lim n Var(Fyprs . (S))
n=%9 Var(Fpis, [np(s)] () ~ m=e n Var(Fis, rp(s)1(S))
L G(S)0%(8)/p(S) - (14 O(1/n))
n—oo  n-G(S5)?-0?(S5)/[np(5)]
=1
O
A.6 Control Variates
Recall that with control variates the weight is redefined as
wi = (f(s:) = h(s:))/g(s:).
The expectation of the weight given s; € S'is
o s) —h(s) F(S)—H(S)
Elw; | s; € S] = ZG gs) = GiS)
seS
Therefore
_ F(S)—H(S
E[@ey (S) | n(S) > 0] = ( ZJ(S) ()
Therefore
. F(S)—H(S
BlFiorses(8) | n(8) > 0] = G(S) - “ )+ H(S) = F(S)

A.7 Confidence Intervals

Proof of Claim 3. Let w1, ws, ... be an iid sequence of importance weights for samples in 5, i.e.,
w; = (sz)/g( ;) for s; ~ gg. Each weight w; has mean F(S)/G(S) and variance o(S). Let
Wn = = >, w;. By the central limit theorem,

Vi@, — F(S)/G(8)) 25 N(0,0%(S))

Recall that Fyprs,n (S) = G(S) - @, (S) where @, () is the average of the importance weights for
samples that land in .S when drawn from all of €2 (for clarity in the proof we add subscripts for sample
size to all relevant quantities). It is easy to see that w,,(S) is equal in distribution to @, g) where
n(S) ~ Binomial(n, p(S)) and n(S) is independent of the sequence of importance weights — this
follows from first choosing the number of samples that land in S and then choosing their locations
conditioned on being in S. From Theorem 3.5.1 of [42] (with N,, = n(S) and ¢,, = np(S)) it then
follows that

() (@n(S) — F(S)/G(S)) 25 N'(0,0%(S))

Rearranging yields
E kDIS( )~ F(S) b,
N(0,0%(8))
S)/v/1(S)
After dividing by &,,(S), the result follows from Slutsky’s lemma if 62 (.S) £ 52 (S), which follows
from a similar application of Theorem 3.5.1 of [42]. O
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Figure 7: Counting roosting birds in radar images. (a) The US weather radar network has collected
data for 30 years from 143+ stations and provides an unprecedented opportunity to study long-term
and wide-scale biological phenomenon such as roosts. (b) Counts are collected for each day s by
running the detector using all radar scans for that day to detect and track roost signatures and then
mapping to bird counts using the radar “reflectivity” within the tracks. The figure shows two scans for
the KDTX station (Detroit, MI) on the same day, along roost detections which appear as expanding
rings. By tracking these detections across a day one can estimate the number of birds in each roost.

Complete region struck by a
natural disaster Single
(Palu-Tsunami, 31,394 buildings) image tile

Damaged buildings

per tile Counts for all sub-regions

¥
Damaged building counts

Sub-regions
(b) ©

Figure 8: Counting damaged buildings in satellite images. Building damage assessment from
satellite images [32, 33] is often used to plan humanitarian response after a natural disaster strikes.
(a) We consider the Palu Tsunami from 2018; the data consists of 113 high-resolution satellite images
labeled with 31,394 buildings and their damage levels. (b) Counts are collected per tile using before-
and after-disaster satellite images. Colors indicate different levels of damage (e.g., red: "destroyed").
(c) Damaged building counts per sub-region.
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Figure 9: (left) Distance from the area with the most damaged buildings. (right) Regions defined for
damaged building counting (See § 4.2).
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