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Abstract

Algorithms that utilize bandit feedback to optimize top-k recommendations are
vital for online marketplaces, search engines, and content platforms. However, the
combinatorial nature of this problem poses a significant challenge, as the possible
number of ordered top-k recommendations from n items grows exponentially with
k. As a result, previous work often relies on restrictive assumptions about the
reward or bandit feedback models, such as assuming that the feedback discloses
rewards for all recommended items rather than offering a single scalar feedback
for the entire set of top-k recommendations. We introduce a novel contextual
bandit algorithm for top-k recommendations, leveraging a Gaussian process with a
Kendall kernel to model the reward function. Our algorithm requires only scalar
feedback from the top-k recommendations and does not impose restrictive assump-
tions on the reward structure. Theoretical analysis confirms that the proposed
algorithm achieves sub-linear regret in relation to the number of rounds and arms.
Also, empirical results using a bandit simulator show that the proposed algorithm
surpasses other baselines across several scenarios.

1 Introduction

The top-k recommendation problem involves providing a ranked list of k items, such as news
articles or products, from a pool of n items [35, 13]. Online algorithms must adapt to dynamic user
preferences, making bandit algorithms suitable due to their use of limited feedback [1]. Developing
bandit algorithms is challenging due to limited feedback and the need for computational efficiency in
real-time recommendation environments. Recent research on user interfaces for recommendations
shows that the overall layout of the recommendation page is crucial for user appeal as designs
transition from simple dropdown lists to complex layouts [17, 13, 18]. As a result, bandit algorithms
must comprehensively select and display all top-k items jointly rather than merely selecting the most
relevant k items and displaying them in decreasing order of user relevance [32].

The joint consideration of top-k items makes the number of arms (possible actions for the bandit
algorithm) combinatorially large, i.e., ©(n*). Previous research on bandit algorithms often impose
strict assumptions about feedback models [31, 21], e.g., semi-bandit feedback gives a scalar value for
each of the top k items. Although semi-bandit feedback decomposes feedback from the combinatorial
number of arms to feedback for every recommended item, it is often unavailable [33]. Another
prevalent feedback assumption is cascade browsing [16], which posits that users examine items in a
pre-determined order and stop searching upon finding a desirable item, which provides item-specific
scalar feedback but does not fully capture possible non-linear interactions [27]. Figure 1 illustrates
the limitations of the cascade model in accurately representing user interactions within contemporary
top-k recommendation interfaces. These limitations motivate us to focus on a strictly more general
setting of the full-bandit feedback, where a single value for the entire top-k set is assumed [24].

Beyond feedback assumptions, the reward of bandit algorithms must be decomposable into scalars
over individual items to avoid a combinatorial explosion of arms, which is not always possible. For
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Table 1: Compute and memory analysis for GP-TopK. Rows
indicate different costs: overall compute and overall memory for
T rounds, time for matrix-vector multiplication (mvm) with the
kernel matrix K x, at time ¢, and time to update K x,. Columns
indicate approaches: kernel approach uses full kernel matrices,
while our novel feature approach performs the same operations
via feature expansions and scales better with respect to I". The
symbols ¢, k, and T represent the embedding size for contexts,
the number of items, and the number of rounds, respectively.

Figure 1: A snapshot from Etsy show-

cases Father’s Day shopping recommenda- Tasks | kernel approach | feature approach
tions. There is no obvious linear'search or- compute O(T3) O(C CE2. TZ)
der, which challenges.the assumptions of Fhe memory O(Tz) O(c- k2. T)
cascade model. Additionally, item proxim- 2 2

ity and arrangement are likely to influence mvm(Kx,) o(t g Ofe-k ) t)
clicks, suggesting a complex interaction pat- ~ compute Kx, | O((c+k%)-1) O(c- k%)

tern and advocating for full-bandit feedback
without assumptions about user interaction
with the recommended items.

instance, modern e-commerce platforms consider objectives such as diversity and fairness [1], which
cannot be measured by focusing solely on individual items [15]. This necessitates algorithms for
full-bandit feedback settings without assumptions about the objective or rewards [24].

This work develops a bandit algorithm that uses Gaussian processes (GPs) to model rewards under
full-bandit (i.e., one scalar value) feedback. GPs are selected for their flexibility in modeling feedback
for discrete, continuous, and mixed domains, such as continuous contexts and discrete rankings
[34]. Additionally, unlike parametric models that require optimization for accumulated feedback, GP
model updates are computationally inexpensive, involving only data updates [24]. While inference
for GPs may generally face computational limits, we will develop efficient inference methods tailored
to our proposed algorithm. Another challenge in developing GP-based bandit algorithms for top-k
recommendations is creating expressive positive-definite kernels that capture the similarity between
top-k recommendations [9].

GPs have been previously explored for bandit algorithms [28, 19]. Krause et al. [14] used GPs for
contextual bandits in continuous domains; we focus on the discrete domain of top-k recommendations.
Vanchinathan et al. [29] used GPs with a position-based feedback model, and Wang et al. [32] used
GPs with semi-bandit feedback for recommending top-k items. In contrast, our work does not focus
on a specific reward model or feedback assumption, and develops an efficient GP-based bandit
algorithm for top-k recommendations.

1.1 Contributions

Our primary contribution is the GP-TopK algorithm, a contextual bandit algorithm for recommending
top-k items. This algorithm operates in a full-bandit feedback setting without relying on assumptions
on reward, offering broader applicability than prior works. We leverage GPs with variants of the
Kendall kernel [12] to model the reward function and optimize the upper confidence bound (UCB) [28]
acquisition function to select the next arm. Further, we give a novel weighted convolutional Kendall
kernel for top-k recommendations that address pathologies in existing variants of the Kendall kernel
applied to top-k recommendations.

Our second key contribution is to improve the scalability of the GP-TopK algorithm for longer
time horizons. The initial computational demand for top-k ranking with GP-TopK is O(T*) for T'
rounds. We first reduce this to O(T") using iterative algorithms from numerical linear algebra [26].
Then, we derive sparse feature representations for the novel weighted convolutional Kendall kernel,
which, allows us to further improve the overall compute requirements from O(7*) to O(7?) and
memory requirements from O(72) to O(T). Table 1 summarizes these time and memory requirement
improvements, including their dependence on other parameters.

We also provide a theoretical analysis showing that GP-TopK’s regret is sub-linear in 7" and benefits
from the feature representations of the Kendall kernels we introduce. We show the regret’s upper
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bound is almost quadratic in n, which improves significantly over the naive bound of ©(n*) for top-k
recommendations without using specialized kernels [28]. Finally, we empirically validate GP-TopK’s
regret through simulations on real-world datasets and show improved regret compared to baselines.

1.2 Organization

The remainder of this paper is as follows: Section 2 presents Kendall kernels for full and top-k
rankings, including the novel weighted convolutional Kendall kernel. Section 3 presents faster
matrix-vector multiplication (MVM) algorithms for Kendall kernels, making the proposed bandit
algorithm faster, as detailed later in Section 4, along with the regret analysis. Lastly, Sections 5 and 6
present empirical results and discussion, respectively.

2 Kendall Kernels for Full and Top-k Rankings

This section overviews Kendall kernels and their extensions for top-k recommendations. First, we
establish some notation. Let [n] = {1,2,...,n}, and let 7 represent a top-k ranking, which is an
ordered tuple of k distinct elements from [n]. We use o to denote a full ranking (X = n) and let
IT* represent the set of all possible top-k rankings. Note that |TI*| = ©(n*). The vector p’ € R"
corresponds to a full ranking o with entry pJ giving the rank of item 7. For top-k rankings, p™ € R"
is constructed by arbitrarily assigning distinct ranks to items not in the top k. Indicator functions
pf.,; and p7. . indicate whether item ¢ is ranked before or after item j, respectively in o. Also, pi_;
and p7, ; are indicator functions defined for top-k rankings.

2.1 Kendall Kernels for Full Rankings

Jiao et al. [9] showed that the Kendall tau rank correlation [12] is a positive definite (p.d.) kernel for
full rankings, which we refer to as the standard Kendall (SK) kernel. The weighted Kendall (WK)
kernel generalizes the SK kernel by differentially weighting item pairs [10]. Specifically, the SK and
WK kernels for full rankings o1, o5 are defined as:

k*(01,00) = 6] an 01,02) (1)
7.<]

k“}k(alaUQ Zw pz 7pj (p327p?2)) ' T]i:j(OMO’?)? (2)
1<J

where 7; ; is 1 if the pair (4, j) is concordant (ordered the same in both rankings) and —1 oth-
erwise; concretely, 1; (01, 02) = pil; - P2, + Pii; - i, — P, P2 — pis; - piZ;; and
ww((pft, P, (P7*, P;°)) is the value of a positive definite weighting kernel w (-, -) : [n)? x [n]? —
R that operates on pairs of ranks. The w; ; allows flexibility and can assign varying importance
to ranks, similar to the discounted cumulative gain (DCG) metric [7]. Note that both SK and WK
kernels are p.d. and right-invariant with respect to II" [10]. In other words, they compute similarity
based only on the relative ranks of pairs, not on the labels of items, as evident from Equations 1 and 2.

2.2 Kendall Kernels for Top-k Rankings

Weighted Kendall (WK) and Convolutional Kendall (CK) kernels. To adapt the WK kernel
from full rankings to top-k rankings, Jiao et al. [10] set the weighting function w(i, j, 01, 02) to
zero if either item is not in the top-k of either ranking. This scheme yields a p.d. kernel but does
not consider items outside the intersection of top-k rankings. The convolutional operation offers an
alternative for adapting the standard Kendall kernel to top-k rankings. Let B, denote the set of full
rankings consistent with the top-k ranking 7 (i.e., for every item ¢ in 7, Vo € B, p] = py). The
CK kernel is defined as:

1
ck sk
kK (1, m2) = Bl 15211, . > k¥o1,09), 3)

Br,, 02€Bn,

where k°F is the standard Kendall kernel. The CK kernel is a p.d. kernel as it is a convolution
of another p.d. kernel [5]. Unlike the WK kernel for top-k rankings, the CK kernel accounts for
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items not in both top-k rankings. However, computing the CK kernel using Eq. (3) is expensive as it
requires exponentially many evaluations of the kernel k¥ in the double summation. Therefore, Jiao
et al. [9] developed an efficient algorithm to bypass this double summation and compute the kernel in
O(klog k) time.

Proposed Weighted Convolutional Kendall (WCK) Kernel. To combine the strengths of the WK
and CK kernels for top-k rankings, we propose the weighted convolutional Kendall kernel for top-k
rankings 7; and 7y € I1":

1
k‘ka(ﬂ'l,ﬂ'g) = Z k‘wk(al,ag), (4)

B, 1Bl | cp e,

where k¥ represents the weighted Kendall kernel for full rankings oy, o € II". The proposed WCK
kernel combines the flexibility of weighting different ranks (among the top-k items) differently, like
the WK kernel, with the ability to account for items outside the intersection of both top-k rankings,
like the CK kernel. Also, since it’s a convolution of a p.d. kernel it is also a p.d.. However, its
computation is again challenging as the RHS of Equation 4 evaluates k™’* exponentially many times.
To simplify, we focus on a specific form of rank weights for ¥, which we call product-symmetric
rank weights:

wps (i1, J1), (P2, J2)) = ws(i1, j1) - ws(iz, j2), (%)
where, ws (7, 7) : [n] X [n] — R is a symmetric function, i.e., ws(¢, j) = ws(7, 7). Notably, the WCK
kernel can be computed efficiently for the case of w,, weights (Claim 1 below).

The WCK kernel, even with the relatively
simple w,,; weights, has notable properties
as shown in Table 2. In this table we use

Table 2: Comparison of Kendall kernel similarities for top-
k rankings. The table shows kernel values k(7o, -) for the
.. top-k ranking o = [1, 2, 3] with other rankings (71, 72,
Wg (Za J) = log(i-‘rl) log(3+1) inspired by the ﬁgrf 74) for 7% :O7 an[d k :] 3. Rankings are O%de(reii leﬁt
DCG metric used in recommendation sys- to right by increasing similarity to mo. WCK kernel values,
tems [7]. Note that the WK kernel ranks two  based on DCG rank weights, increase from left to right. All
rankings with no overlap (7o and 771 ) as more  kernels are unit normalized.
similar than two rankings with the same items

but reverses ordering (my and m2), a clear Top-k - o

pathology. On the other hand, the CK kernel  goinals 4,5, 6] ‘ 3,2, 1] ‘ 2, 1 3] ‘

fails to differentiate between reversed pairs at

different ranks (k°* (g, m3) = k% (m, 74)), WK 0.00 —1.00 0.33 0. 33
another clear limitation. The WCK kernel ~ CK —0.60 | 0.60 0.87 0.87
with product-symmetric ranking weights can =~ WCK —0.38 0.09 0.46 0.87

address these shortcomings and provide a
more nuanced similarity comparison for top-k rankings.

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k?) time.

Appendix A provides the proof, which exploits the structure of product-symmetric rank weights w,
to establish the existence of a feature representation for the WCK kernel, as given in Claim 3 below.
We then show that the inner product of these features, and thus the WCK kernel, can be computed
in O(k?) time (Algorithm 2 in the appendix). Similarly to the result of Jiao et al. [9], we can avoid
exponentially many evaluations of k¥ on the RHS of Equation (4) by computing the WCK kernel
directly by another means.

3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrices

In GPs, inference can be accelerated by using iterative algorithms that take advantage of fast matrix-
vector-multiplications (MVMs) with the kernel matrix [3]. This section focuses on fast algorithms
for kernel MVMs that exploit the structure of Kendall kernel matrices. Specifically, let mvm(Kx, )
denote the running time to multiply the ¢ x ¢ kernel matrix Kx, = (k(z;, 7))z, 2;ex, by a vector.
Naively, mvm(Kx,) = O(t?). However, if k(x;,x;) = ¢*(x;)T¢*(x;) for vectors ¢%(x;) and
#®(x) with only z non-zero entries, then mvm(Kx, ) reduces to O(z - t), which is much faster than
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O(t?) when z < t. When ¢% = ¢°, we call ¢ the linear feature vector for the kernel k. Before
focusing on top-k ranking kernels, we provide a linear feature vector for the WK kernel on full
rankings as defined in Equation 2.

e )
Claim 2. Let ¢** (o) : TI" — R() be a vector indexed by unique item pairs (1, j), defined as:

1

k(Y .

5j (0) = - -ws(p7, PF) - (Pf<j - pf>j) )
v (2)

where ws is the symmetric weighting function in product-symmetric weights. Then, ¢"* is a

linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.
& J

Using Claim 2, the linear feature vector for the WK kernel can be extended to the WK top-k ranking
kernel utilizing the structure of the product-symmetric weights. Furthermore, the feature vector
#“* () contains only O(k?) non-zero entries due to the WK kernel’s focus on item pairs within the
top-k, resulting in mvm(Kx,) = O(k? - t) for the WK kernel matrix.

Next, we focus on fast MVMs with [ n
the WCK kernel. which includes Claim 3. Let ¢w6k(ﬂ) N 1 LA R(z) be a vector in-

the CK kernel as a particular case. dexed by unique item pairs (i, j) given as: W,jfk(ﬂ) =
We observe that any convolutional - wi(m) - (pI; — PR;), where wi'F(m) is
kernel inherits linear features from (3) .
its constituent kernel. Specifically, | determined as follows:
> pen, % (o) forms a feature vec- R -
tor for the V&CK kernel, which follows ws(p;, pJ) lfP’ f [k] & Pj f [£]
from Equation 4 and Claim 2. w ek (1) = ws(p],-) elseif pf € [k] & p; ¢ (K],

. . Oel ws(P7,-) elseif pI ¢ [k] & p7 € [k],
However, computing this feature vec- g ; I

0 otherwise,

tor explicitly requires the exponential
summation over all ¢ € B,.. Claim 3
shows that the summation can be com-
puted analytically and provides ex-

where w, denotes symmetric weights and wg({,-) =
L Z?:k-u ws(¢, 7). Then, the vector ¢*°* is a lin-

plicit linear feature vectors for the ear feature vector for the WCK kernel k*°*. By uni-
WCK and CK kernels. It also shows Sformly setting ws(-,-) = 1 in the definitions above,
that ¢“°* has only O(k? + 2nk) non- ;“]Ck () specializes to a linear feature vector for the
zeros among its O(n?) entries. Con- |_ CK kernel. )

sequently, mvm(Kx, ) for the WCK

kernel requires O((k* + 2nk) - t) operations, which improves from O(t?) to linear in t. However,
this introduces a dependence on n and is beneficial only for n < ¢. We next leverage redundancy in
™" to eliminate this dependence, leading to the following main theorem about the mvm(Kx;, ).

Theorem 1. For the WCK kernel with product-symmetric weights wys, the computational
complexity of multiplying the kernel matrix K x, with any admissible vector is O(k*t), i.e.,
mvm(Kx,) = O(k?t), where X, is any arbitrary set of t top-k rankings.

Appendix A provides the proof in two steps. First, we leverage the values of ¢*°* from Claim 3 and
categorize ¢V (m1)T ¢ (75) based on item pairs, as summarized in Table 4. Next, we show that
only five combinations yield non-zero values, i.e., ¢V (11)T ¢¥* (73) = Z?Zl si(m,m2). Each
term s; (71, mo) is a dot product of vectors ¢% ()T ¢b (), which contains at most O(k?) non-zero
entries. Thus, for WCK and CK kernels, mvm(K x,) = O(k?t) as these vectors for all five terms
have only O(k?) non-zero entries. Consequently, Theorem 1 demonstrates that using these vector
representations for top-k rankings yields faster MVMs, i.e., mvm(Kx,) = O(k?t) < O(t?).

4 Proposed GP-TopK Bandit Algorithm

This section outlines the top-k recommendation problem and introduces a generic contextual bandit
algorithm for top-k recommendations. We then explain how the components of this algorithm
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are instantiated using our GP approach. An analysis of the proposed algorithm’s computational
complexity and regret follows this.

Let T be the number of rounds. Contexts C are in a finite c-dimensional space, C C R€. In the tth

round, we receive a context c; € C and select a top-k ranking 7r; € IT*. We then obtain a noisy reward
Y = f (ct, ) + €4, where f is the true reward function and ¢; is round-independent noise. The regret
is 7y == max s <y f(ct, 7r') - f(ct, ¢ ), with cumulative regret Ry == Zthl r.. The accumulated
data at the t** round is D; = (c;, m;, yi)’;:l. Algorithm 1 presents the bandit algorithm’s generic
schematic, aiming to minimize cumulative regret while ensuring computational efficiency.

( 7

Algorithm 1 Contextual Bandit Algorithm for Top-k Recommendations

Input: Total rounds 7', initial reward model M, and acquisition function AF.
1: fort=1,--- ,7T do
2:  Observe a context c; from the context space C.
3 Select a top-k ranking 7, that maximizes AJF (M;_1(cs, 7)) for the context c;.
4 Obtain the scalar reward y;.
5:  Update the reward model M using the accumulated feedback D;.
6:

end for
. J

The above algorithm requires two components: a) a reward model M that can estimate the reward
value given any context and top-k ranking utilizing the accumulated feedback D, and b) an acquisition
function AF for selecting 7, given the current reward model M, and observed context c;.

Reward model M and acquisition function AF. Our proposed GP-TopK bandit algorithm uses
GP regression to model rewards for contexts and top-k rankings. GP regression is briefly covered
in Section B.1 for completeness. In essence, the reward model M maintains a distribution over
functions f, i.e., f ~ N(0, k(-,)), where k is a product kernel function over both contexts and top-k
rankings (C & IT¥). Specifically, the kernel function k is defined as follows:

k((c1,m1), (€2, m2)) = k°(c1,€2) - K" (71, m2), (6)
where k¢(cy,c2) = cf ¢y is the dot-product kernel and k" is a kernel for top-k rankings. We use
variants of the Kendall kernel for k" from Section 2. Updating the reward model M, at the ¢t
round involves adding new data points to our GP regression, which is computationally inexpensive
compared to the fine-tuning steps required by parametric models to incorporate the latest feedback.
We utilize the UCB function for the acquisition function as it effectively balances exploration and
exploitation by selecting actions that maximize the upper confidence bound on the estimated reward

[28]. The UCB acquisition function is AF(M;(cs, 7)) = pgp((ce,m)) + gz - asp((ce,m)),
where o fp((ct, 7)) = \/kgp((ce, m), (¢, 7)), and 3 controls the trade-off between exploration
and exploitation. p¢p and kg p are the GP posterior mean and covariance functions, as detailed

in Section B.1. At the t" round, the algorithm selects the top-k ranking 7 € II* that maximizes
AF(M;(ct, 7)), which is performed using local search [19], as detailed in Appendix B.

Computational complexity. The GP-TopK bandit algorithm requires no compute for model updates.
i.e., updating M in the Line 5 of the Algorithm 1 requires only updating D,. The GP-TopK relies
on local search for optimizing .AF, so the compute requirements arise only from AF evaluations in
the local search. As shown in Section B.1, computing the GP variance term for evaluating AF, i.e,

oo ((cy, m)) involves solving [K x, + o2I] ~'v for a vector v, where X; = [(c1,m1), -, (ce, )]
Naively, this requires O(¢®) time per round, leading to O(T**) over T rounds. Iterative algorithms can

expedite the process using our results on fast MVMs with kernel matrices, as discussed previously in
Section 3 [25]. Theorem 2 formalizes the computational demands of the GP-TopK algorithm.
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Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T' rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k?clT?). This applies
to WK, CK, and WCK top-k ranking kernels, where £ is the number of local search evaluations.

The proof of Theorem 2 is provided in Appendix B. It demonstrates efficiency gains from integrating
feature representation with iterative algorithms, reducing the computational time from O(T?) to
O(T?). This is a significant improvement, as even one MVM with K x, using the full kernel matrix
at each round requires O(7") time. Furthermore, the theorem also shows that the running time of the
GP-TopK algorithm does not explicitly depend on the number of items n.

Regret analysis of the GP-TopK algorithm. The cumulative regret of the proposed algorithm is
Rr = Zle max, s cyye fcy, 7)) — f(cy, ™), where m, is the ranking chosen at round ¢. Optimizing
cumulative regret for top-k recommendations is challenging, requiring learning the context-arm
relationship and outperforming the best mapping. To bound cumulative regret, regularity assumptions

on the reward function f are necessary [28, 14]. We consider the following two assumptions, either
of which suffices.

Assumption 1. X is finite, meaning that only finite contexts are considered (|C| < o0), and the
reward function f is sampled from the GP prior with a noise variance of £2.

Assumption 2. X is arbitrary and the reward function f has a bounded RKHS norm for the kernel k,

ie., ||f|l, < B. The reward noises €; form an arbitrary martingale difference sequence (i.e., reward
noise does not systematically depend on its past values) and are uniformly bounded by &.

Under either Assumption 1 or 2, we prove the following regret bound for GP-TopK:

~

N
Theorem 3. If either Assumptions 1 or 2 hold, setting (; as 2log (W)

and 300, In® (%) respectively, the cumulative regret Rr of the GP-TopK ban-
dit algorithm for top-k recommendations can, with at least 1 — 0 probability,

be bounded by O(n+/CiTc(log|C|+ k +log(T272/60))) under Assumption 1, and
@(n\/Cl (2B2¢ + 300n2c2 In®*(T/8))T) under Assumption 2. Here, C; = and O

excludes logarithmic factors related ton, k, and T.
. )

8
log(1+£-2)”

Appendix B.4 provides the proof, leveraging the insight that log det|I + 0 ~2K x| for any set X1
can be effectively bounded using the finite-dimensional feature vectors introduced in this work.
Specifically, Proposition 2 utilizes the feature vectors from Section 2. Theorem 3 establishes that
the cumulative regret of the GP-TopK bandit algorithm grows sublinearly in T with high probability
under both assumptions. It also highlights the importance of usmg top-k ranking kernels, which
improve the asymptotic order o concerning n to 7/~ and n*~! under Assumptions 1 and 2,
respectively, as compared with Srinivas et al. [28]. This improvement is significant even for small
constant values of k, such as &k = 6, as detailed below in Table 3.

Table 3: Comparison with Srinivas et al. (2010) for regret bounds of the bandit algorithm under both assumptions.
Srinivas et al. (2010) This work

\
Assumption 1 ‘ D (n2 V/C1Tc (log|C| + k + log(T2m 2/66))) ‘ \/Cch(log|C| + k + log(T?*n 2/66)))

Assumption 2 ‘ ) <n2 V/C1Tc(2B2? + 300nFcIn® T/E))) \/Cch(2B2 + 300n201n3(T/6)))

5 Experiments

This section empirically evaluates the proposed GP-TopK bandit algorithms for the top-k recom-
mendations using a simulation based on the MovieLens dataset [4]. The reliance on simulation for
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evaluating bandit algorithms is prevalent in the literature. It stems from the difficulty of conducting
online evaluations in real-world bandit scenarios, mainly when there are combinatorial arms [29].
Next, we provide details of the simulation setup and considered reward settings. Following that, we
present results for the empirical regret for small and large numbers of arms below, respectively.

Simulation setup and reward settings. The bandit simulation setup follows the framework outlined
by Jeunen et al. [8], utilizing real-world datasets on user-item interactions. Specifically, we train user
and item embeddings using a collaborative filtering approach [6]. The user embeddings are accessed
by the bandit algorithms as context embeddings, while the item embeddings remain hidden. In the
non-contextual setup, the first user from the dataset is chosen as a fixed context throughout the bandit
algorithm run, allowing us to use the same reward functions as the contextual bandit algorithm.

For setting up the reward functions, we utilize a similarity function s(c,6) = o(a - (¢*6) — b) to
measure similarity between any user and item embeddings, where a and b are similarity score and
shift scalars, respectively. The sigmoid function ¢ maps similarity scores to a range between 0 and 1,
enhancing the interpretability of the reward signal [32]. We set a and b to 6 and 0.3, respectively, to
fully utilize the range of the similarity function, as assessed by evaluating its value for many arms.

We set up two preliminary reward functions based on the similarity function s. The first is the

DCG metric, fdcg(c, T = Zle 10g2(++1)3(c’ 0,), where c and 6., represent the context and item
embeddings, respectively. The second is the diversity measure, fgv(T) = 75 Zle Zle ij O,
These metrics quantify the relevance and diversity of top-k recommendations, respectively.

We use these functions in two contextual reward settings. The first setting focuses on normalized-

DCG (n-DCG), fndcg(c,w) = % [7]. The second setting combines fndcg and fdiv as
max_ s deg C, T

fndcgdiv(c, m)=A- fndcg(c, ) 4+ (1 — A) - faiv(), evaluating the aggregate effect of relevance and

diversity. We set A = 0.25 to emphasize relevance over diversity.

Evaluation for small arm space. This section presents empirical results for the cumulative regret
of bandit algorithms with a limited number of arms. Specifically, with n = 20 and k = 3, there are
6, 840 top-k rankings, allowing for an exhaustive search to optimize the acquisition function. All
bandit algorithms run in batch mode, updating every five rounds. We consider both reward settings
for contextual and non-contextual scenarios, using a subset of five users for the contextual setting.
Several baselines are set to assess the benefits of ranking (Kendall) kernels. Section C details the
remaining hyper-parameter configurations and details of other baseline bandit algorithms.

400 300
+— Random
—— &-greedy

—— MAB
= WK
200 150
a4 —— CK

0 0 100 200 0 100 700 0 100 200 0 100 700
T T T T
(a) (b) (c) @

Figure 2: Comparative evaluation of bandit algorithms: The cumulative regret Rr over 1" rounds is shown.
Lower values indicate better performance. Plots (a) and (b) represent non-contextual settings for nDCG ( fndcg)
and nDCG + diversity ( fndcgdiv) rewards, respectively. Plots (c) and (d) show results for contextual settings for
five users using the same rewards. The y-axis for (a) and (b) is on the left, and for (c) and (d) on the right.
The GP-TopK algorithm with Kendall kernels, especially the weighted convolutional Kendall (WCK) kernel,
outperforms others. Details on other algorithms are in the text. Results are averaged over six trials.

The Random algorithm randomly recommends any k items. The e-greedy algorithm alternates
between recommending a random top-k ranking with a probability of € and choosing the top-k
ranking with the highest observed mean reward. In contextual settings, e-greedy differentiates arms
for each unique context. Similarly, MAB-UCB conceptualizes each ranking as an independent arm,
an equivalent of using a direct delta kernel approach for GPs along with UCB AF. In contextual
scenarios, MAB-UCB also treats arms distinctly per context. Each variant of the top-k ranking kernel
yields one variation of the proposed GP-TopK algorithm, namely, WK, CK, and WCK. Figure 2
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presents empirical values of the cumulative regrets for the above baseline and the proposed GP-TopK
algorithms. In all cases, across both reward settings and in both contextual and non-contextual setups,
the variants of the proposed GP-TopK algorithm outperform baselines that do not use Kendall kernels,
highlighting the significance of top-k ranking kernels for full bandit feedback. Specifically, the CK
and WCK kernels significantly outperform the WK kernel regarding the converged values of the
regret, with the WCK kernel further improving on the CK kernel variant.

Evaluation for large arm space.
We evaluate bandit algorithms in a

o 1600
large arm space scenario with n = -~ Random

50 and k = 3 and k = 5, resulting - ;‘2;*‘”

in 1.1 x 10° and 1.1 x 10'° possible = 800 wK =

top-k rankings, respectively. Using IR

local search, we focus on the nDCG /

reward. The remaining configura- o

S . . 0 50 100 0 50 100
tion is consistent with the small arm T T

Space se;tup. We use 10 {‘esta}‘ts and Figure 3: Comparative evaluation of bandit algorithms for large arm
5 steps in each Search dlre(j‘tlon for spaces, with > 1.1 x 10° arms for the left plot and > 1.1 x 10*°
the local search, starting with 1000 arms for the right plot. Cumulative regret with respect to the rounds of
initial candidates. the bandit algorithm is depicted. Results are averaged over six trials.
In both settings, the WCK approach outperforms other baselines. For

Figure 3 shows that the regret for more details, see the textual description.

the GP-TopK variants remains con-
sistently lower even with a large arm
space, despite the use of local search. The WCK approach significantly outperforms the CK, es-
pecially for £ = 5, as illustrated in the right plot of Figure 3. Additional empirical results on the
effectiveness of local search in a large arm space and other rewards are given in Appendix C.

6 Discussion

This work develops a contextual bandit algorithm for top-k recommendations using Gaussian pro-
cesses with Kendall kernels in a full-bandit feedback setting. We make no restrictive assumptions
about feedback or reward models. Gaussian processes allow computationally free model updates for
accumulated feedback data, although inference remains challenging. We address this by providing
features for Kendall kernels for top-k rankings, resulting in a faster inference algorithm that reduces
the complexity from O(T*) to O(T?). Additionally, we address issues with known variants and
propose a more expressive Kendall kernel for top-k recommendations. Finally, we present theoretical
and empirical results on cumulative regret to evaluate the proposed GP-TopK bandit algorithm.

Future Directions and Limitations. This work opens several research avenues. Efficient matrix-
vector multiplication with Kendall kernel matrices can enable faster bandit algorithms with various
acquisition functions, such as Thompson sampling and expected improvement. Exploring other
kernels, like Mallow kernels, for top-k rankings and developing efficient algorithms for them is
an intriguing direction, especially since the effectiveness of our algorithm depends on the function
space induced by the RKHS of the underlying kernel. Assessing how well these kernels approximate
various reward functions for top-k recommendations would provide valuable insights.

Exploring other bandit problem settings, such as stochastic item availability or delayed feedback,
would enhance the applicability of this work to more complex scenarios. Extending the finite-
dimensional GP framework to other acquisition functions using local search is another promising
direction. One limitation of our regret analysis is that it does not account for approximations in the
arm selection step due to local search [20]. This limitation is common in continuous domains, where
optimizing acquisition functions often involves non-convex optimization [28].

Impact. This research advances bandit algorithms for top-k item recommendations. By improving
recommendation efficiency and accuracy, our algorithms can enhance user experiences across plat-
forms, promoting content relevancy and engagement. However, they may reinforce implicit biases in
training data, limiting content diversity and entrenching prejudices. Therefore, monitoring over time
is essential when deploying these algorithms in real-world environments.
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A Kendall Kernels for Full and Top-k Rankings — Omitted Details

This section includes the proofs that were omitted from Section 2, presented in the following order:

* In Section A.1, we present proofs for Claims 2 and 3, which concern the feature representa-
tions of Kendall kernels.

* In Section A.2, we provide Algorithms 2 and a proof of its correctness for computing the
WCK kernel in O(k?) time, thereby proving Claim 1. Additionally, we extend this proof
to cover the proof of correctness for Algorithm 3, which can compute the CK kernel in
O(klog k), initially introduced by Jiao et al. [9]. The original paper presented the algorithm
without a formal proof of correctness, a gap we address and fill in this section.

 Section A.3 details the proof for Theorem 1, discussing the matrix-vector multiplications
with the Kendall kernel matrix for top-k rankings. This proof builds on the Algorithm 2
given for computing the WCK kernel for top-k rankings.

A.1 Feature Representation for Kendall Kernels for Top-k Rankings

This section revisits the claims regarding the feature representations of the weighted Kendall kernel
and the weighted convolutional Kendall kernel, subsequently providing the proofs for these claims
mentioned earlier.

e )
Claim 2. Let ¢** (o) : TI" — R() be a vector indexed by unique item pairs (1, j), defined as:

1

k(Y .

?fj (0) = T ws(pf,p;’) : (P§7<j - Pf>j) )
V()

where wg is the symmetric weighting function in product-symmetric weights. Then, ¢** is a

linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.
. s

Proof. Following the definition of linear feature representation, we need to prove that k% (o1, 05) =
#(a1)T ¢(02) for the product-symmetric weight kernel as given in Equation 5. Recalling from
Equation 2, we have k%% (o, 02) as follows:

w 1 o1 o1 o o
K% (01,00) = T)-Zw«p,; ,p7"), (P72, P7%)) - 13 s (01, 02),
2/ i<y
]‘ (o2 o o (oa
= m : Zws(pilvpjl) : ws(pizvpj2) : ni,j(01302)7 (7)
2 1<j

where the second line incorporates the use of the product-symmetric weight kernel. Next, our focus
shifts to the simplification of n; ; (01, o2), which is elaborated as follows:

- _ 101 | .02 01 402 _ 01 02 _ 01 02
Mg (01,02) = Pid; P52, +P5%; - Pis; — Pis; - Pis; — Pisj - Pid)
— 01 02 02 g1, o2 _ 02

=pic; (P72, —pi2;) 0%, - (72, — P72,),

= (p72; —pi2;) - (0725 — p73;)-
Combining the above factorization of 7); ; with Equation 7, we get:
w 1 o lea o g o (e [eg o
E“(01,00) = W ‘ Zws(pilvpjl) 'ws(pizvpjz) (P72 — pi;j) (P72, — pi;j)
2) i<y
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= i) 3" 6 (0) - 62 (02)

(2 i<j
= ¢(a1)" ¢(02)
O
e " )
Claim 3. Let ¢*°*(r) : IF — R() be a vector indexed by unique item pairs (i, j) given as:
Wk (1) = Eg) W () - (p7e; — P ;), where wiSF (1) is determined as follows:
ws(p7,P7) if P} € [k] & pj € [K]
Wik () = ws(p7,-) elseif pf € [k] & p] ¢ [K],
4J ws(p7,-) elseif pT ¢ [k] & p} € [k],
0 otherwise,
where wg denotes symmetric weights and w,((, ) = —+ Z;l: ka1 Ws(L, J). Then, the vector
#"°* is a linear feature vector for the WCK kernel k™. By uniformly setting ws(-,-) = 1 in
the definitions above, ;“”]Ck () specializes to a linear feature vector for the CK kernel.
. )

Proof. The main idea revolves around leveraging the feature representation of the Weighted Kendall
kernel for a full ranking and the linearity of the convolution operation. It is already established
that k¥ (o1, 02) = ¢¥*(01)T ¢¥*(02), as demonstrated in Claim 2. Recall that the WCK kernel
requires a double summation over pairs of rankings from B, and B,,, which represent the sets of
full rankings consistent with their respective top-k rankings, as described in Equation 4. We simplify
the WCK kernel as follows:

wce 1 w w
KWk (1, ) = o IBml S 6 (01)T 6" (0n)

01€Bxr) 02€Bx,

1 X 1
= |B | : Z ¢U2k(0.1)T : |B | : Z ¢U1k(0.2)

01€Bxr, 02€Br,

;:¢zuck (7"2)
— (bwck (Wl)Tgf)ka (7_‘,2).

The simplification above reveals that the feature representation, ¢, for the WCK kernel, is a (Z)
dimensional vector and can be indexed by unique pairs of items (4, j), much like the ¢**. However,
the double summation is over an exponentially large number of pairs of rankings. Moving forward,
we shift our focus to the individual entries of this representation involving this summation, elucidating
the analytical values within the summation by exploring four unique cases, each dependent on whether
these specific items fall within the top-k rankings.

In Case 1, we examine the scenario where items 7 and j are within the top-k ranking 7. Here, the
focus is on the feature representation of the pair, specifically when both elements are ranked among
the top-k positions.

Case 1: pf € [k] and p] € [k]

UjJCk Z *Wg pz 7pj) (pf<3 7p;f>J)
. ﬁ
1 1 %
T B ) (Z o 2 p"”)

ceB cEB,
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\/7 * Ws pzapj (|B7T|p;r<J7|B7T|pZT>])
ws(P§

,P}) - (P — Ps;) - ®)

(2)

477 The simplification in lines 3rd and 4th follows from the fact that any full ranking o € B, consistent
478 with the top-k ranking 7, the relative ranks and weights of items ¢ and j remains unchanged, given
a79 p} € [k] and p] € [k]. Concretely, this implies p7_; = p7_, for all o € B, and similar with the
40 other term.

481 In Case 2, we analyze when item ¢ is in the top-k ranking while item 7 is not.
482

ss3 Case 2: p7 € [k] and P] ¢ [k].

1 1
YR = == Y ~wy(p?,p7) - (Ple; — PT;)
Bl =
1

B |Bl7r| . B .anBﬂ ws(p7,p7) - (1 —0) (since p] € [k] and p} ¢ [k])
- B1 = > w.(p},pd).
Bl )

a4+ Next, every possible consistent ranking is considered jointly while fixating on a specific rank outside
485 top-k elements, leading to (n — k — 1)! different rankings. Given that |B,| = (n — k)!, we can refine
ags the above expression as follows:

1 1 -
S5t = 5 Y we(pl ) - (n—k—1)!

(2) =kt
_(—k-D! 1 3 w.(pT
I R
= ! ik ’ Z w (pz al)

(z) "TF =

—_

V&

487 In Case 3, we analyze when item ¢ is not in the top-k ranking while item j is.

a9 Case 3: p] ¢ [k] and p] € [k]. Similar to case 2, the simplification follows analogously, with the

490 only change being 1pf<j — 1p§>j = —1 instead of 1. Thus, by symmetry between ¢ and j, we have
491 the following:

wck -1 T -1 ™ .

e (m) = ws(~,pj) = — ~ws(pj ,) (using symmetry of wy). (10)

(3) (3)
492 Lastly, in Case 4, we analyze when items ¢ and j are not in the top-k ranking.
a3 Case 4: pf ¢ [k] and p7 ¢ [k].

L = e 3 )

ceB,
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1 1

= |B | : : Z ws(P?ap?) : (pf<j - pzq>j)
VAR S
=0 (by symmetry). (11

The result of zero arises from symmetry. Since p7 and pf are not in the top-k ranking, they are
treated symmetrically in the summation overall rankings in B,.. For any ranking o, suppose pJ = !
and p7 = m, there exists a corresponding ranking o’ such that only the items 7 and j are swapped.
Therefore, jointly, these two rankings yield w (I, m) and —w,(l,m). Since w; is symmetric, the
overall contribution from each pair of such rankings is zero. Hence, the entire summation nets to
Zero.

Thus, with the explanation provided for each case and combining results from Equations 8, 9, 10 and
11, it’s trivial to validate the Claim 3, i.e., % (m) = %) ~witi(m) - (pie; — pT.;) for all unique
pair of items. From Case 4, we have O((n — k)?) entries leaving at max only O(k? + 2nk) non-zero
entries. O

A.2 Algorithms for Computing Kendall Kernels for top-k Rankings

In this section, we provide and delve into the proofs of Algorithms 2 and 3 for the weighted
convolutional Kendall kernel and the convolutional Kendall kernel, as previously discussed in Section
2. Section A.2.1 for valid both the correctness and computational complexity of Algorithm 2 as given
earlier in Claim 1. Following this, Section A.2.2 revisits Algorithm 3, initially introduced by Jiao
et al. [10]. The original publication presented the algorithm without formal proof of its correctness,
which we rectify and offer in Section A.2.2.

A.2.1 Efficiently Computing the Weighted Convolutional Kendall Kernel

This section provides a proof to Claim 1 to establish the efficiency and accuracy of Algorithm 2 in
computing the weighted convolutional Kendall kernel, as specified in Equation 4, with a focus on its
computational complexity.

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k?) time.

Proof. The claim is proven through Algorithm 2, where we establish its correctness and demonstrate
its computation requirement is O(k?). The essence of our proof centers on analyzing the feature
representation of the WCK kernel, ¢*“*, as outlined in Claim 3. The feature vectors of ¢*<*
reside in a (Z) dimensional space, indexed by pairs of items. Our approach is to demonstrate
that Algorithm 2 accurately computes the right-hand side (RHS) of the equation k¥ (71, ) =
¢k (1) T ¢ (). This involves a summation over item pairs, expressed as k“¢F (7, mo) =

Zl<m Qf’%izk (Wl)Td);ljﬁf (71—2)'

Our proof analyzes various scenarios: cases where pairs of items, namely [ and m, fall within the
top-k, scenarios with one item within the top-k and the other outside, and situations where neither
item is within the top-k. Each of these cases contributes distinctively to the computation of the
overall kernel, resulting in different terms in the algorithmic computation. This is encapsulated in
Algorithm 2, where kY (7, m5) = Z?:l s;(m1,m2), and each s; corresponds to the terms given
earlier in Algorithm 2 from Section 2.

Before proceeding with the cases of this summation as given in Table 4, we recall the notations utilized
by Algorithm 3 in Definition 1. Also, remember that we will be proving for product-symmetric
weights as given in Equation 5, where, w; : [n] X [n] — R™ and its one-dimensional marginals are
ws(l, ) = ﬁ Z;L:k 41 ws(#, j) Table 4 shows how these cases are organized and relate to different
s; terms required for computing the WCK kernel. The key strategy involves breaking down the
kernel’s computation into cases based on the positioning of item pairs within the top-k rankings.
In case 1, we consider all the scenarios when both indices are within the set of items in both top-k
rankings, i.e., all items in the set 11 U Is.
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537

Case | Description

1 Both items ({,m) in I; U I5. Branches into the following three sub-cases based
on the presence of items in /3 N Is:
1-a: Both items in I; N I5. The concerned term is s;.
1-b: One item in I; N I5. Subdivided into 1-b-i (other in I; \ I5) and 1-b-ii
(other in I3 \ I1); concerned terms are sz and s3.
1-c: No item in I; N I5. Addresses cases where [ and m are in different sets
(11 \ Ir and I \ I1); concerned term is sy4.

2 One item in [; U 5. Le., either [ is I; Ul or m is in I; U I5, leading to sub-cases
2-a and 2-b; concerned term is ss.
3 No item in I; U I5. Addresses the scenario where neither [ nor m is in I; U Is;

value trivially zero.

Table 4: Case categorization for the proof of Algorithms 2 and 3 based on item pair ranks, where I; and I are
the sets of items for top-k rankings 71 and 72, respectively.

g
Definition 1. Algorithm 2 and 3 and utilize following notations.

» [y and I, are the sets of items in rankings 71 and s, respectively.

* 01 € 1l and T E N2l gre the full rankings of I, and I; N I3, both consistent
with the input top-k ranking . Le., relative ranks of items is same yielding ¥l,m €
LN, pil;,=pi;

* Analogously, oo and T are constructed utilizing the set 15 and ranking mo.

Algorithm 2 Computing Weighted Convolutional Kendall Kernel

Input: Two permutations 71, 2 € IT¥. Ranking weighting function wy : [n] x [n] — R™ and

its one dimensional marginals are w,(¢,-) = 1+ > imhi1 ws(&, 7).
Output: Convolutional Weighted Kendall kernel £V (7, o).

— Let I; and I5 be the sets of items in rankings 7; and 79, respectively.

1: if |Il n .[2| > 2 then

2 s1(m1,m) = iy Sicicmentimenors V(B PR - ws (B BR) - mm(ma,72)
3: end if
4: if|11 OIQ| > 1 and |Il \12‘ > 1 then
5. sa(m,m) = (Tl) : ws(P], Pt) - ws (P, ) (P — P12,0)
2 lelinIzmel\I2
end if

if |[I; N Iz| > 1and |5\ I| > 1 then

8: 83(771’ 7‘-2) = (% ws(p;n ) ) : UIs(erz,pi) . (P?<2m - Pfim)

) lel NI |mel\I;

SUNCH

9: end if

10: if |Il \IQ| > 1 andllg \ Il‘ > 1 then

11: 84(7‘—177‘—2):_@' ws(P?la')‘ws(P;?a‘)
2/ lehi\Iz|melx\I1

12: end if

13: if|[1 ﬁ[2| Z 1 and |[n] \ (I1 UIQ)| Z 1 then
14:  s5(m,m) = (Tl) (n—=|LUL)- > wsp,-) ws(p;?-)

2 leliNly
15: end if
16: KWk (y,ma) = s1(m1, m2) + sa(m1, m2) + s3(m1, m2) + sa(m1, m2) + 85(71, 72)

Case 1: The pair (I,m) € I; U I falls within the top-k, leading to three distinct cases. Below, we
provide s; terms for each case as given in Table 4.
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s Case 1-a:  Two items in I; N I3, meaning both [ and m belong to I; N 5. Using Claim 3 regarding
s39  the feature vector *°F, we simplify s as follows:

s1(m1,m2) = > () - $il (2)
1<l<m<n|l,mel NIz
1
= > —— w7 PE) - (b7 — D)
1<l<m<nl|l,mel; NIz (2)

V)

1 i I i T
:(T) Z ws(P s P ) - ws(Py25 Pr) - Mm (1, m2). (12)
2

1<l<m<n|l,meIl; NI,

s40 Case 1-b: When one item is in I N I, the other must reside either in I3 \ I3 or I \ 11, thus leading
541 to two distinct sub-cases. This is specified in Table 4. Concretely, if the other item is in [; \ Io, it
542 contributes to the sy terms, whereas if it’s in I \ I3, it contributes to the s3 terms.

s43  Corresponding to Case 1-b-i, when the other item is in I; N I, i.e., so is the term corresponding to
s44 indices where [ is in I; N I3 and m in I; \ I, or the reverse, represented by partial sums « and v. For
545 the partial sum w, with [ in I; N Iy and m in I; \ I», we find that p;* is in [k], while p}2 is not. The
s46  simplification of u proceeds using Claim 3 as follows:

1
u= D —— w7 P+ (P — P
1<t<m<nlicnnlzimen\L \/ (5)
1
= - ws(P”) (P2 = PI2m)

(5)

1
) > ws(Pr, Pt ) - ws (P25 ) (Pt — Plm) -

2/ 1<l<m<n|le1NI2|mel\I>

s47  Similarly, the partial sum v can be simplified as follows:

1
v = T ws(p;", P ) (p?<1m - pgm)
V(G

1<i<m<n|melNlx|lel1\I2

-1
= ws () (P72, = 912,)
(5)
-1 T s T g
= m Z ws(p;t, P ) - ws(P*5 ) - (Pl<1m _pl>1m)
2/ 1<i<m<n|lmeLNIz|leI;\ 12
—1
= ﬁ Z ws(Piiivpfl) “ws(Ppzs ) - (pﬂml<l - p:rnl>l)
2/ 1<m<i<n|le1NI2|mel\I2
1
=1 > ws(P, Pt) - ws (P2, -) (Pt — Pin) -
2/ 1<m<i<nlle1NIz|mel\I2

s4¢  In the above, the first two lines use results from Claim 3 and use similarity of w,. In the following
s49 line, [ and m are exchanged. Lastly, the negative sign is pushed into the indicator functions to make
ss0 the summand function of this partial sum v similar to the partial sum u, and the similarity of the wg
ss51  is utilized. The above partial sums simplify so as follows:
1
so(mima) = o > wi(PL PR we(PrF ) (it — P, - (13)
(2) leliNIz|mel\I2
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Analogously, in Case 1-b-ii, we deduce the corresponding term s3 for the pair of indices as described
in Table 4 through symmetry. Specifically, the term sz can be outlined as follows:

> wer ) wa ) (02, - b2,) - (14)
leiNlzgmelx\I

83(7T1,7T2) =

—~
N 3| =

Case 1-c:  Both items are outside I; N I, specifically, I € I; \ Io and m € I, \ I; or the reverse.
Like Case 1-b-i, we divide s, into partial summations v and v. Now, we calculate u under the
condition that! € I; \ [r and m € I; \ I;.

1 ™ s ™
U= Z .ws(pll’.) ’ (pl<1m 7pl>1m)
1<i<m<nliel\Llmer\T \/ (5)
1

ws(PR2, ) - (P72, — 972, s

(5)
= > we(f, ) (1= 0) (P, ) - (0-1),

n
(2 1<l<m<n|le1\I2|mel\I1

6 Z ws(p;"+) - ws(Prs )

T
2) 1<i<m<n|leI;\I2|mel\I;

—_ ~——

Similarly, we can estimate partial sum v forthe set! € I\ Iy & m € I \ I». Using calculations
similar to Case-1-b-i for summing u and v, we have:

—1 T T
84(71'1,772):@- Z ws(Plla')'ws(sz,-). (15)
2 leli\I2|melx\I1

Case 2: One item exists in [; N Io, the other in [n] \ (I3 N I3). It branches into two sub-cases: Case
2-a with one item in /; U Io, and Case 2-b, where one item outside /; N I but is in I1 U I5. Focusing
on Case 2-a, represented by s5, we simplify as follows. This involves two index scenarios, either
leIlNIyand m ¢ I; U I or vice versa, represented by partial sums u and v. We now simplify «
below:

1 1 T T 1
U = (T) Z " ws(pl 7.> ’ (pl<m - pl>m)

n
1§l<m§n‘l€]1ﬂ[2‘m¢]1U[2 (2)

. \/]<-T) . ws(p?v ) : (szm - p;—;m) ’
2
(% 2 we(pf, ) - wy(P]* )

1<i<m<n|le1NIa|mgI1 Ul

1
NG > ws(p;',-) - ws(p[?, ) - (n — [ U L))
2/ 1<l<m<n|lel; NI

Using steps similar to the previous case, we get the following value for s5:

1 s T2
85(7T1,7T2)=ﬁ-(n—\11u12|)- > we(pt,-) - wa(pi?, ) (16)
2 lel;NIy

For Case 2-b, [ or m are absent from I; or I, leading to two sub-scenarios. Consequently, either
wek (701) is zero or ¥ (7o) is zero. Therefore, these terms don’t contribute to the overall WCK
kernel value.
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Case 3: No item is in the top-k, i.e., both I, m ¢ I U I5. As both items are absent from the top-k
in either ranking, the value trivially reduces to zero.

After covering all configurations of [ and m, we incorporate results from Equations 12, 13, 14, 15,
and 16. This integration yields the expression k“* (71, ) = Z?:l s;(m1, m2), where, each term s;
matches precisely with its corresponding expression in Algorithm 2. The proof for the correctness of
Algorithm 2 is complete, as each term s; corresponds to its respective expression in the algorithm.
Regarding the time complexity of Algorithm 2, each term s; sums at most k2 quantities, and each
quantity summed can be computed in O(1) time. Therefore, the computation time required for
Algorithm 2 is O(k?). O

A.2.2 Efficiently Computing the Convolutional Kendall Kernel

This section provides Algorithm 3 for computing the convolutional Kendall kernel, as specified in
Equation 3. Later, its efficiency and accuracy are proved in Claim 4.

( N

Algorithm 3 Computing Convolutional Kendall Kernel [10]

Input: Two top-k rankings 7, mo € II*.
Output: Convolutional Kendall kernel k¥ (7, 7).
— Let I; and I, be the sets of items in rankings 7; and 7y, respectively.
— Let 0y € ITI"1l and 7 € 1117721 be the full rankings of I; and I; N I5, both consistent
with the input top-k ranking ;.
— Analogously, construct o and 7» utilizing the set /> and ranking 7o.
1: if |Il n .[2| > 2 then
2: sy(my,mo) = (Tl) . (‘11212‘) - kk (1, T2)
2
3: end if
4: if|]1 OIQ| > 1 and |11 \12‘ > 1 then
5: 82(71'1,7'1'2) = (1) 0 Zlelmlz 2- (Ul(l) - Tl(l)) —k 4 ‘Il N I2|
2
6: end if
7
8
9
0

:if|[[; N Iz| > 1and |5\ I| > 1 then
5 83(71'1,7'('2) = (1) . Zlehﬁlz 2- (Ug(l) — Tg(l)) —k + ‘Il ﬂ[2|

d if :

. end i

: s4(my, M) = *(i) I\ o] - |11\ Lo
2

11: S5(7T1,’/T2) = é . |I1 ﬂI2| . |[TL] \ (Il UIQ)‘

~—|

12: k% (71, m2) = s1(m1,m2) + s2(m1, m2) + s3(m1, m2) + sa(mw1, m2) + 85(71, 72)
N\ J

Claim 4. Algorithm 3 computes the convolutional Kendall kernel (as given in the Equation 3) )

with a computational complexity of O(k?).
& J

Proof. To establish the correctness of Algorithm 3, we will adopt the same proof approach as the one
used for Claim 1 concerning Algorithm 2. Specifically, we will adhere to the earlier categorization in
Table 4 and notations given in Definition 1. Since the CK kernel can be derived by uniformly setting
the weight function w; (4, j) = 1, we will insert them in s; terms as given in Algorithm 2. These
cases will be revisited and simplified by applying the condition ws(4,j) = 1. Note that this also
implies its one-direction marginal weights to be 1, i.e., ws(i,-) =1

Simplifying the s; Term: For the WCK kernel, Case 1-a leads to the expression of s; as stated in
Equation 12. In this case, when two items, specifically [ and m, are both in the intersection I; N I,
it implies that p}”, SN p?, and p72 all rank within the top-k, denoted as [k]. We simplify the s;
term for CK kernel as follows:
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s1(m1,7m2) = 3 w, (BT DI - Wy (BT P2) - Mo (1, 2)
1<l<m<n|l,mel; NI,

A > Mm (71, 72)

1<i<m<n|l,mel NIz
1 |Ilﬂ12|)
= @ Z 77l’,m/(7-177-2) = ﬁk‘Sk(Tth). 17)

1<l <m/<|IiNI| 2

The simplification process begins by assigning unit rank weights in the first line, i.e., w; = 1.
Following this, by relabeling the items in I; N Is and using 7y and 79, which are the rankings of
w1 and 7o limited to the set I; N I as defined in Definition 1, it is established that 1y ./ (71, 72) =
M,m (71, m2). This is because the relative order of any pair of items is maintained in 7y and 7».
Consequently, this leads to the final simplification to a scaled value of the standard Kendall kernel
k5% as given in Equation 1.

Simplifying the s; and s3 Terms: The s; and s3 terms are obtained for Case 1-b, which is for
case when one item is in I; N I5 and the other item is either in I \ I or I» \ I;. We divide this into
two sub-cases. Case 1-b-i: The other item is in [ \ I, with s, representing the summation terms
derived from the CK’s inner product. Case 1-b-ii: The other item is I5 \ I, where s3 denotes the
summation terms. We simplify the s term for the CK kernel as follows:

1
sa(mim) = o > wi(p PR wa(P2 ) (P, — P
( )l611ﬂ12|m611\12

=1 > b, R

leliNIzmel\I2

oo L m
:m Z Picm (n) Z Prsm -

2/ 1ennlmeii\I» 2/ lennlymel\Is

=u =v

Next, we examine the terms u and v in detail, starting with u. The term u, which corresponds to
P2, signifies instances where item [ is ranked before item m in the top-k ranking ;. This can be
derived from the observation that o () — 1 items are positioned before item [ in the set I;. Out of
these items, 71 (1) — 1 also belong to the intersection I; N I5. This follows from the definition of
the full rankings o7 and 71 on the set /; and the intersection I; N I5, respectively. Consequently, it
can be concluded that o1 (I) — 71 (1) items from the set difference I; \ I are ranked before item .
The second term, v, corresponds to p;22 and involves a calculation that takes into account the items
ranked after the [-th item in the set I. Specifically, there are k — o1 () items following the I-th item.
Within the intersection I; N Io, the number of items before [ is given by |I; N Iz| — 71 (1). Therefore,
the expression (k — o1 (1)) — (|11 N Iz| — 71(1)) represents the count of elements that are positioned
after [ in the set difference I; \ Io.

Combining the above calculations for both terms u and v, the so term for the CK kernel can be
simplified as follows:

SQ(M,M):L Y 2-(ou(l) = (1) =k + [ N L), (18)

2)

2) lel;nI,

Using the symmetry between Case 1-b-i and Case 1-b-ii, we can simplify s3 for the CK kernel as
follows:

83(71'1,71'2):(711) Z 2'(02(1)—72(1))—k+|11 ﬂ]g|. (19)

2/ lel NIy
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Simplifying the s, and s; Terms: We simplify the s4 and s5 terms for the CK kernel starting from
Equation 15 and Equation 16, respectively, as follows:

)= Tr Y el ek ) - Sl 0

len\Is|mel\I1 2

s5(1m1, 72) = % ‘(n—|LUL|)- Z ws(p;rl7 ) ,ws(p?’_) _ |[I; N I - Hrﬁl] \ (1 UIQ)‘.
(2) lelinly (2)

2n

We have obtained the values of all the simplified s; terms for the CK kernel in Equations 17, 18,
19, 20, and 21. By combining these terms, we get k¥ (71, mp) = Zle s;(m1,m2), where each term
s; precisely matches its corresponding expression in Algorithm 3. This completes the proof of the
correctness of Algorithm 3. Regarding its time complexity, each term s; sums at most k2 quantities,
and each quantity can be computed in O(1) time. Therefore, the time required for Algorithm 3 to
compute the CK kernel is O(k?). O

A.3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrix on Top-k Rankings

This section revisits Theorem 1 about the fact matrix-vector multiplication time for the Kendall kernel
matrix for top-k rankings. Specifically, we aim to eliminate the mvm (K x)’s dependence on the
number of items, i.e., n on and linear dependence in the number of rounds, i.e., T, as claimed in
Theorem 1.

Theorem 1. For the WCK kernel with product-symmetric weights wys, the computational
complexity of multiplying the kernel matrix K x, with any admissible vector is O(k*t), i.e.,
mvm(Kx,) = O(k?t), where X, is any arbitrary set of t top-k rankings.

Proof. The cornerstone of this proof lies in the computation of the WCK kernel, as delineated in
Algorithm 2. This algorithm requires only O(k?) computation. For brevity, we write X to represent
X, and the proof follows for any X4, i.e., any value of ¢, not just 7.

As also suggested previously, we will demonstrate through the equation Kx = (<I>§()T(I>’3(, where
both matrices ®% and ®% have columns with only O(k?) non-zero entries. Consequently, this
leads to the computational complexity of matrix-vector multiplication, denoted as mvm (K x ), being
Ok%-T).

From Algorithm 2, we know that each entry of the kernel matrix k(71,72 ), can be expressed as a sum
Zle s;(m1, ™). Assuming each s;(7y, m2) equals ¢% (71)T ¢% (2), and considering that all vectors
¢% and ¢% exhibit this property, we can express Kx as (®%)T ®%.. Here, the i*" row of (®%)7
and the j*" column of ®% are represented by [ (7;)T, - -+, ¢ (m;)T] and [¢*' (7)), - - - , % (7)),
respectively. Therefore, the overall mvm complexity can be characterized by the sparsity of the
vectors ¢ and ¢?, as is formalized in the claim presented below.

Claim 5. Consider a kernel matrix K x corresponding to any set X of cardinality T. Each entry
of Kx, denoted as k(x1,x2), is defined by the sum Z?:1 si(x1,x2), where each s;(x1,x2) is
the result of the dot product ¢% (z1)T ¢% (x3), where, ¢ and ¢* are vectors characterized by

having O(z) non-zero entries. Given this structure, the matrix-vector multiplication complexity
Jor Kx is O(nnz - T), ie, mvimn(Kx) = O(z-T).

Proof. We will demonstrate this in the following discussion by concentrating on the k™ entry of the
output vector, specifically K x v, for any arbitrary vector v:

5
(Kxv)i = ZKX(kaj)vj => (Z Si(ﬂk,ﬁj)> vi= <Z ¢ai(ﬁk)T¢bi(7Tj)> vj,

J i=1 j i=1
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Given that for all i, ¢* possesses only O(z) non-zero entries for any m;, the computation of
> ¢ (;)v; requires O(z) operations. This implies that the expression > i ¢ (;)v; also neces-
sitates O(z) computation. Applying a similar rationale to ¢, it follows that computing (K xv)g
demands only O(z) operations. Extending this argument to all entries of the output vector, it is
evident that computing K x v requires only O(z - T') computation O

Utilizing Claim 5, it suffices to complete the proof by showcasing that these exist vectors ¢%¢ and
#", each with only O(k?) non-zero elements, corresponding to each s; as specified in Algorithm 2.
Additionally, these vectors ensure that s; (71, T2) = ¢% (m1)T ¢% (7). We will next establish such
vectors for all s; terms. Starting with the s; term below.

Showecasing s (7, m3) = ¢ (m1)T¢% (7o) for sparse ¢ (m;) and ¢® (m5) vectors. We begin
by manipulating si, as defined in Equation 12. For the sake of brevity, their scalar factors will be
omitted in the following explanation.

s1(m1, ) = > w (P, P ) - we (P2, P2 - Miom (1, 702),
1<l<m<n|l,mel; NIy
1<l<m<n|l,mel; NIy
= > ws(PI i) - (P12 = Pt m) - ws(PT, PRz ) - (P12 — P2 )

1<l<m<n|l,mel; NIz

Y wi PR - (P = P - Lpm pm e

1<l<m<n =:¢fﬁn(m)
ws (P Pt ) - (P20 = Piom) - Lpm2 pracpi)s
=, (m2)
(¢ ()T " (). (22)

Both ¢ and ¢* are sparse by design, taking non-zero values only when [ and m appear in the top-k
rankings. This demonstrates the existence of sparse vectors for the s; term. Next, we will establish
the same for the s, and s3 terms.

Showcasing sparse vectors for s2 and s3. 'We begin by manipulating s, as defined in Equation 13,
while ignoring its scalar factor. We will exploit symmetry between so and s3 terms.

82(7{17/”-2)
= ) wd PR ws (P ) (P — P)
lelinIlzmel\I2

Do owip) D ws(e i) (Pt — )

lelinlz meli\I2
= Z ws(p727 ) < Z Ws (plﬂl’pz”bl) (pfém - pZT>1m) - Z ws(pfl’p;rll) (pfém - p?;m)
leliNIy mel meliNiy
= Z 1p?2€[k]ws(p?2, ) 1pZ'1 €[k Z ws(pfl’pwml) (plTr<1m - pgm)
lg[n] 3 mel;
::¢L21 (7T2)

::¢721 (ﬂ'l)

22
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— D> w Jws (] i) (b, — P) 23)
lymeliNiy
= ¢a21 (Wl)Tﬁbel (7T2) - Z ws(p?’Qa ')ws(pflapﬂml) (p?’ém - p?>lm) ’
lymel Ny

= (m) 9" (ma) + Y —ws(P] M prrepy

l,me[n]

. b22
=t

cwe (P (07 — P20) Lpms o ch)s 24

— 4222
=

= ¢ (m1)" 9" (m2) + ¢*22 (1) ¢"22 (m2),
= [ (m1); 622 (m2)]" [¢72' ((m2)); 022 ((m2))] = ¢ (1) 62 (m2). (25)

=¢p22 (7T1)T ::4352 (7‘(2

66t Equation 25 demonstrates the existence of vectors ¢*2 and ¢®2 for the sy term. The vectors $#2! and
e62 922, possessing O(k) and O(k?) non-zero entries respectively, are defined in Equations 23 and 24.
es3  Consequently, the ¢?2 vector has O(k?) non-zero entries. Similarly, it can be shown that ¢”2 contains
64 O(k?) non-zero entries, thus fulfilling the proof requirements for proving the s term. For the s3
665 term, we observe a symmetry between sz and s3, namely s3(m1, o) = $2(m2, 71 ). This symmetry
es6 makes it trivial to satisfy the requirements, as further highlighted by the following equation:

s3(m1, m2) = so(ma, 1) = ¢?2(ma) T ¢b2(m1) = ¢"2 (m1)T ¢2(ma) = ¢ (m1) T %2 (m2).  (26)
e g S g

e67 Showcasing sparse vectors sy (1, m) = ¢*% ()T $**(72). We begin by manipulating the s4
668 term without scalar, as defined in Equation 15.

S4(7T177T2):— Z ws(Pfla')'ws(PZfH)a

le\I2
SR ORICIRH D= R o) |
leh\I> mels meliNiy
eeo  Observing thatw := > w,(pr2,-) represents a constant value that does not depend on I, we can

melsy
670 further simplify the above expression for s4 as follows:

54(7(177‘-2) = - Z ws(Pfla')' (w_ Z ws(D?yf)')) ;

lel;\I» meliNlsz
(o= % wier) (5= F i),
lel NIy meliNis
w2+w( > wpf) Y +ws<pzr,57~>>
lel1iniy meliNIsy
- Z ws(p?l?') Z ws(p:rfv')' (27)
lelinli; meliNis

671 Next, to simplify the above equation, we first focus on the second term and have the following:

w( Z wS(plﬂlﬂ')'i' Z ws(pf,f,-)>

lelnly meliNly
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677

=D Lymepws(P ) Lyree@+ Y @ ws(pp2, ),

e - ﬁ/—/ mel;NIsy
::qﬁlal(ﬂ'l) ¢'b1( 2)
= "1 (m)"6" (m2) + Y Lym @ wa(P] )
me(k]

=292 () =m? (m2)
= ¢' (m1)T¢*" (m2) + ¢192 (m1) T 612 (m2). (28)
Next, we simplify the third and last term in the Equation 27 as follows:

Z ws(p?lv') Z ws(Ppy ) = Z ws(pfla')lpfl,pz}e[k] ws(py7, )1 p, 2, pn2E[k]

lel1NIy meliNly le[n],me(n]

=¢,%3 (m1) 13 (m2)

= ¢ (1) T 9% (m2). (29)

Next, combining the results from Equations 27, 28, and 29, we obtain the following:

sa(m,m2) = [0, 6" (11): 9" (m1); ¢ (m1)]” [~ ¢ (ma); 672 (m2); =™ (m2)] — gav ()
=¢ta(m)T

— ¢4a(7T1)T¢4b(7]'2), (30)

Equation 30 showcases both ¢*® and ¢*® has three components with having only O(k?) non-zero
entries, thus fulfilling the requirements for the s, term. Next, we focus on the s5 term.

Showcasing sparse vectors s5(m1, m2) = ¢°%(m1)T¢%* (7). We begin by examining the s5 term,
excluding its scalar component, as outlined in Equation 16.

ss(m1,m) = (n— L UL - Y wy(pl',) - ws(p®,),

e
= (n - (2k - |Il N IQD) : Z ws(pzrla') : ws(pfz, ')7
leliNIy
=(n—=2k)- > wipt,) - ws(p* ) + LNl > wi(pt, ) we(p?,-),
leliNIy lelinly

= Z v =2k -ws(p;t, ) - vVn — 2k - ws(p;?, )

lelnly
+ > wi(pt ) - we(p?, ) - [N I, 31)

lelinlz
= Z vn —2k-ws(pt,-) - Lorpy - Vn—2k- we(py?,-) - Lore i

leln]

=6 (m) =031 (x3)

+ Z U)S(pzrlv ) - w8(p?27 )N 12‘7

lelinNly
=" (m) ™ (ma) + Y wi(pt, ) ws(pP ) YL,

lel NIy meliNisy

= (67 (m1) T 9™ (ma) + > ws(pys-) - ws (P, ),

leliNnla,;mel Ny

= ¢5al (7T1)T¢5b1 (m2) + Z ws(pfla ) - 1p”1,p§}e[1€] 'ws(P?Z; -1 P2, pr2elk]
le[n],mE[n]

=y 22 (m1) =, 2 (m2)
(32)
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= ¢ (m1) T ¢%" (m2) + ¢°*2 (m1) T 672 (ma),
= [¢5*1 (m1); 9°*2 (1)) 97" (m2) + ¢°2(m2)] = ¢°*(m1)T ™" (). (33)
g5 ()T =9 (m2)

The equation shows that s5 (7, m2) = ¢°%(m1)T ¢ (72), where both ¢°@ and ¢°° possess com-
ponents with a maximum number of non-zero entries, as indicated in Equations 31 and 32. This
completes the proof requirements for the s5 term.

By combining the results from Equations 22, 25, 26, 30, and 33, we have demonstrated the existence
of vectors ¢% and gbbi, each containing only O(kQ) non-zero elements, and have established that
si(m1, ma) = ¢% (m1)T ¢b () for each i € 1,2, 3,4, 5. In conjunction with Claim 5, this completes
the proof. O

B Proposed GP-TopK Bandit Algorithm- Omitted Details

This section includes the proofs that were omitted from Section 4, presented in the following order:

* Section B.1 outlines a brief of Gaussian process regression for any domain.

* Section B.2 summarizes the committed details about the local search utilized for optimizing
the UCB function.

* Section B.3 provides the removed proof for the Theorem 2 concerning the overall time for
the bandit algorithm.

* Section B.4 provides the proof for Theorem 3 concerning regret analysis of the proposed
bandit algorithm.

B.1 Gaussian Process Regression

In GP regression [22], the training data are modeled as noisy measurements of a random function
f drawn from a GP prior, denoted f ~ N(0, k(-,-)), where k : X x X — R is a kernel function
over any domain X’. The observed training pairs (x;, ;) are collected as X = [xy,...,xr] and
y = [y1,...,yr] € RT, where, for an input x;, the observed value is modeled as y; = f(x;) + €,
with e; ~ N(0,0?). The kernel matrix on data is Kx = [k(x;,%;)]] =, € RT*T. The posterior
mean /iy and variance o s p functions for GPs are:

psip(x) = kyz (34)
op(x) = k(x,x) — kL (Kx + 0°I) 'k (35)

where ky € R” has as its i'" entry k(x,x;), z = (Kx + 02I) "'y, and [ is an identity matrix. For
GP regression on an arbitrary domain &, the kernel function must be a p.d. kernel [23].

Naive approaches rely on the Cholesky decomposition of the matrix K x + 021, which takes ©(T?)
time [23]. To circumvent the ©(7?) runtime, recent works use iterative algorithms such as the
conjugate gradient algorithm, which facilitate GP inference by exploiting fast kernel matrix-vector
multiplication (MVM) algorithms, i.e., v — Kxv [3]. In practice, these methods yield highly
accurate approximations for GP posterior functions with a complexity of ©(p - T?) for p CG
iterations, as mvm(Kx) = T2, and mvm(M) is the operation count for multiplying matrix M by
a vector. p < T proves to be efficient in practical application [3].

B.2 Contextual GP Reward Model

Optimizing the AF, i.e., UCB function, poses a significant challenge due to its enormous size of IT*.
Drawing inspiration from prior research on Bayesian optimization within combinatorial spaces, we
employ a breadth-first local search (BFLS) to optimize the UCB acquisition function [2, 19]. The
BFLS begins with the selection of several random top-k rankings. Subsequently, each specific top-k
ranking is compared with the UCB values of its neighboring rankings, proceeding to the one with the
highest UCB value.
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The neighbors of a top-k ranking include all its permutations and the permutations of modified top-k
rankings obtained by swapping one item with any of the remaining items. For any top-k ranking,
there are (n — k) - k! 4+ k! neighbors, which is often not huge as k is often < 6. This search continues
until no neighboring top-k ranking with a higher value is discovered. Although BFLS is a local
search, the initial random selection and multiple restart points help it evade local minima, a strategy
that previous studies have corroborated [19].

B.3 Assessing GP-TopK Compute Requirements

Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k?cfT?). This applies
to WK, CK, and WCK top-k ranking kernels, where £ is the number of local search evaluations
for selecting the next arm in every round.

Proof. The proof can be straightforwardly derived by combining the results presented in Table 1,
which succinctly summarizes the time complexities for each step of computing the UCB using both
feature and kernel approaches. It is important to emphasize that iterative algorithms enhance results
from O(T*) to O(T?) in computational complexity. Furthermore, these algorithms can further
reduce complexity to O(T?) when used with the feature approach.

The results presented in Table 1 can be validated through straightforward observations and by
leveraging findings from previous Sections 2. Specifically, Section 2 offers proof for the mvm (K x)
row explicitly. For the compute K x, row, the complexity of kernel approaches is deduced from
Algorithms 2 and 3. For feature approaches, the compute K x, row is inferred from the sparsity of the
feature representations as stated in Claim 3. Lastly, the memory row is straightforwardly deduced for
the kernel approach by counting its entries. For the feature approach, it is derived from the sparsity of
the feature representations. O

B.4 Regret Analysis

In this section, we revisit Theorem 3 and provide its proof. The proofs build on the work by Krause
et al. [14], delivering results for bounding the contextual regret in the context of the top-k ranking
problem. To set the stage for our regret analysis, let’s first define the critical term maximum mutual
information, denoted by ¢, is given below:

Ve = ngflzz\l))a:tj(yx; f); I(yx; f) = H(yx) — H(yx|f),

where I(yx; f) quantifies the reduction in uncertainty (measured in terms of differential Shannon
entropy) about f achieved by revealing y 4 [28]. In Gaussian observation case, the entropy can be
computed in closed form: H(N(p, X)) = 3 log|2meX)|, so that I(yx; f) = 3log|I + 0 2K x]|,
where Kx = [k(z,2)]s,2cx is the Gram matrix of k evaluated on set X C X. For the contextual
bandit algorithm, X represents contexts and arms considered until round ¢.

Before proving Theorem 3, we align the Krause et al. [14] results with our notation for consistency.
Furthermore, we modify [3; to accommodate embeddings encompassing negative values, aligning
with the fact that contextual embeddings may exhibit negative dimensions.

( Proposition 1 (Theorem 1, [14]). Let & € (0, 1), and the unknown reward function f be sampled 1
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from the known GP prior with known noise variance o>. Suppose one of the following holds:

1. Assumption 1 holds and set B, = 21og(|X [t*m2 /66).
2. Assumption 2 holds and set $; = 2B? + 300, In®(t/9).

Then the cumulative regret Ry of the contextual GP bandit algorithm with
the UCB acquisition function is bounded by O(/CiT~yrfr) w.h.p. Precisely,
Pr{RT < VC\TyrfB) +2 VT > 1} > 1 — 6, where, C; = 8/log(l + 072) and

the notation O hides logarithmic factors in n, % andT.
& J

Proposition 1 shoes that the regret R for the contextual GP bandit algorithm, utilizing the UCB
acquisition function is bounded w1th high probability within O(/C1T~7 ), where the notation
O hides logarithmic factors in n, 5 L and T To ascertain the O order for R, it is imperative to first
bound the O order of ~r 8. We begin by examining the vz term in the subsequent proposition.

Proposition 2. Under the assumptions of Theorem 3, yr can be succinctly characterized as
yr = O(nclog(nT) + clog T), which also simplifies to O(n?c), where the O notation omits
logarithmic factors inn and T.

Proof. For the GP bandit algorithm with the UCB acquisition function, 77 = C -
log (|7 + 072Kx,|), where C equals (1/2) - (1 — 1/e)~* and Ky, represents the kernel ma-
trix computed over contexts and arms across 1" rounds [28, 14]. Precisely, K x . is calculated using
the contextual kernel defined in Equation 6. It is applied to contexts and top-k ratings from the
feedback data D, corresponding to Line 6 of the generic contextual bandit Algorithm 1.

Next, we leverage the characteristic of the contextual kernel being a product kernel. Consequently, the
maximum mutual information term for the joint kernel, vy, can be upper bounded by c- (vf. +log T'),
where c denotes the dimensionality of contexts and 7. represents the maximum information gain in a
non-contextual setting [14]. Specifically, 77 is computed similarly but is confined to top-k rankings.
That is, v = C - log (|I + 0 2Kxn ) with Kxx being calculated exclusively using the top-k
kernels on the top-k rankings as selected by the bandit algorithm. X7 represents the top-k rankings
selected by the bandit algorithm, i.e., excluding the contexts from the collected feedback.

Recalling the formulation for top-k rankings kernels, we have Ky, = ®§%<I) xr, Where ®x~ €

RE) x T comprises feature columns pertinent to the top-k ranking kernels, as elucidated in Section A.
Utilizing the Weinstein—Aronszajn identity, v7- is expressed as C'-log (|I +0 ?0xsy <I>}T(% |) . Further,

we deduce that v < C - Zgi)l log (|1 +072X;]), where ; is an eigenvalue of ®xz % . Given
the Gershgorin circle theorem, which bounds all eigenvalues of a matrix by the maximum absolute
sum of its rows, therefore we can conclude that 7% = O(n? log(n?T)), as for all the columns of the
®x~ have bounded normed as given in Claims 2 and 3, i.e., ||¢(7)||5 < 1 [30].

By combmmg vE = O(n?log(n*T)) with the contextual product kernel, we obtain v =
O(n%clog(n®T) + ¢ log T'), thereby providing the claimed bound in the proposition. O

Next, we build on Propositions 1 and 2 to prove the main theorem regarding the regret of the proposed
GP-TopK bandit algorithm for top-k recommendations.

~

N
Theorem 3. If either Assumptions 1 or 2 hold, setting B; as 2log (‘CHH;#)

and 3007; In® (%) respectively, the cumulative regret Ry of the GP-TopK ban-
dit algorithm for top-k recommendations can, with at least 1 — 0 probability,

be bounded by O(n+/CiTc(log|C|+ k + log(T272/60))) under Assumption 1, and

(n\/6’1 (2B2¢ + 300n2c2 In®(T'/8))T) under Assumption 2. Here, C; = and O
excludes logarithmic factors related ton, k, and T.

8
log(1+£72)”
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Proof. We will prove the above theorem for both cases separately.

For Assumption-1. Given |C| is finite and 87 = 21og(|D|T?72/66). First, we focus on bounding
B as follows:

Br = 2log(|D|T*7?/66)
= O (log|C| + log|TT*| + log(T?7? /60))

As (7) < nF and k! < k¥, we also have log|IT¥| = log ((})k!) < log (n*k*) = O(klog(nk)),

which implies that 87 = O(log|C| + klog(nk) + log(T?n?/65)). Combining this with Proposition
2, we have following:

O(vrBr) = O ((n*clog(n®T) + clog T)(log|C| + klog(nk) + log(T?7%/65))
= O (n*clog(n®T)(log|C| + klog(nk) + log(T?7*/65))  (Ignoring clog T term)
= O (n*c (log|C| + k + log(T*7*/64))) .
Thus, we showcase the asserted bound for the regret Rp as O (VCiTvrBr) =
%) (n\/C'ch(log|C| Tk + log(I2n2 /66))).

For Assumption-2. Given || f||, < B and ; = 2B + 300, In®(¢/4). First, we bound the 7 term
using Proposition 2 as follows:

Br = 2B + 300 - vr - In*(T/6),
= 2B +300 - (n*clog(n®T) + clogT) - In*(7/6).

Using the above result, we have the following:
O(CiTvyrpr) =0 (\/ClTVT - (2B2 + 300 -y - IHS(T/5))) ;

o (\/ClTn2clog(n2T) - (2B% + 300 - n2clog(n?T) - 1n3(T/5))> )

o (n\/C’ch(2B2 + 300n201n3(T/5))> .

O

Comparison with Srinivas et al. (2010). Using the identity kernel for top-k rankings, we can
develop a finite-dimensional feature for the contextual kernel and apply Theorem 5 by Srinivas et al.
(2010). Given that v = O(nFclog T'), the regret bounds are as follows under both assumptions. For
instance, the calculations for the O(1/C1 T~y Br) under the Assumption 2 are as follows:

O CiTyrpr) = O <\/ClT’YT - (2B2 +300 - y7 - 1H3(T/5))> ;

=0 <\/C’1T (n*clogT) - (2B2 + 300 - (nkclogT) - ln3(T/5))> ,

=0 (ng \/C’ch(QB2 + 300nkcln3(T/5))) .

Similarly, we can analogously perform the analysis for Assumption 1 and combine it with Proposi-
tion 1 to obtain the regret bounds mentioned in the Table 3.

C Experiments — Omitted Details

This section presents omitted details from the main body of the text.
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Figure 4: Local search results for optimizing combinatorial objectives in I1* for n = 50 and k = 6. For details,
see the textual description. Left (a) shows how many times out of 100 trials the local search recovers the exact
maximizer, i.e., 7r', and right plot (b) shows the average value of the objective for the returned maximizer. These
results indicate that the local search utilized in this work is effective.

C.1 Compute resources

We utilized multiple NVIDIA Tesla M40 GPUs with 40 GB RAM on our in-house cluster for our
experiments. The experiments in Section 5 required approximately 5 GPU-hours for small arm
space and 24 GPU-hours per iteration for large arm space. We conducted about 50 to 100 iterations
throughout the project. The results reported in Section C.3 required the same computational resources
as the large arm space experiments.

C.2 Bandit Simulation and Hyper-parameter Configurations — Omitted Details

To set up the simulation, we utilized embeddings trained on the MovieLens dataset using a collabora-
tive filtering approach [6]. We consider a 1M variant of the MovieLens dataset, which contains 1
million ratings from 6040 users for 3677 items. Specifically, we train user embeddings c,, and item
embeddings 6; such that the user’s attraction to the items are captured by the inner product of the user
embedding with the item embeddings, respectively. Both context and item embeddings, i.e., c,, and
0;, are 5-dimensional, optimized by considering the 5-fold performance on this dataset. The reward
provided in our experiments is contaminated with zero mean and standard deviation equals 0.05.

For the e-greedy baselines, we considered various values of e are considered, specifically e =
{0.01,0.05,0.1}. The outcomes are presented for the configuration that demonstrates optimal
performance. For MAB-UCB baseline, the algorithm has an upper confidence score uch(i) =

B + Bmaby/ % [11]. Here, [; represents the average reward, n denotes the total number of

rounds, and n; signifies the frequency of arm ¢ being played. 3,4 is a hyper-parameter. We evaluate
Bmap values within the set {0.1,0.25,0.5} and disclose results for the best-performing configuration.
For the parameters of proposed GP-TopK bandit algorithms, we set 3; = 3, - log(|X| - t* - 7%) with
Bgp € {0.05,0.1,0.5}, reporting results the value that yields the best performance. The choice of f3;
is informed by prior work in GP bandits [28]. The selection of ¢ for all variants is determined by
optimizing the log-likelihood of the observed after very 10 rounds by considering values in the set
{0.01,0.05,0.1}.

C.3 Additional results

Local search results for optimizing combinatorial objectives in II* for n = 50 and k = 6. Specif-
ically, 7 = max, ¢"(m)T¢" (), where ¢"(r represents the feature vector for Kendall kernels
on top-k rankings. Notably, for this optimization problem, it is known that the optimal value is 1

obtained by only . Figure 4 shows results for this optimization problem when applied to WK, CK,
and WCK kernels.

Reward results for large arm space for the nDCG + diversity reward. Similar to Figure 3, a large
setup with n = 50 for ¥ = 3 and k£ = 6, is considered. For & = 6, the possible arms are over
1.1 x 100 possible top-k rankings. Given the vastness of this arm space, computing the optimal
arm for the diversity reward is not straightforward. Therefore, we focus on reporting the cumulative
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Figure 5: Comparative evaluation of bandit algorithms for large arm spaces for the nDCG + diversity reward,
with > 1.1 x 10° for the left plot and > 1.1 x 10'° for the right plot, respectively. Cumulative reward with
respect to the rounds of the bandit algorithm is depicted. Results are averaged over 6 trials. In both settings, the
WCK approach outperforms other baselines. For more details, see the textual description.

reward in Figure 5. We implement this setup using a Local search in batch mode, updating every 5
round and considering a substantial horizon of 7' = 100 rounds. Specifically, we use 5 restarts, 5
steps in every search direction, and start with 1000 initial candidates. Figure 5 shows that the WCK
approach demonstrates superior performance, continuing to learn effectively even after extensive
rounds.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1 briefs both contributions and scope of this work.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 reflects on the limitations of this work.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs of all Claims and Theorems are provided in the Appendix.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 provides necessary details of bandit simulator and experimental
setups considered in this work.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code can be accessed using this hyper-link.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 provides experimental details and a few remaining details are given
in the Appendix C.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All figures reported in this work have errorbars with them.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section C provides relevant information about compute resources.
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section 6 reflects on the impact of this work.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: this work does not release any such resource or asset.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: this work release only code with instructions for its usage.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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