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Abstract

Algorithms that utilize bandit feedback to optimize top-k recommendations are1

vital for online marketplaces, search engines, and content platforms. However, the2

combinatorial nature of this problem poses a significant challenge, as the possible3

number of ordered top-k recommendations from n items grows exponentially with4

k. As a result, previous work often relies on restrictive assumptions about the5

reward or bandit feedback models, such as assuming that the feedback discloses6

rewards for all recommended items rather than offering a single scalar feedback7

for the entire set of top-k recommendations. We introduce a novel contextual8

bandit algorithm for top-k recommendations, leveraging a Gaussian process with a9

Kendall kernel to model the reward function. Our algorithm requires only scalar10

feedback from the top-k recommendations and does not impose restrictive assump-11

tions on the reward structure. Theoretical analysis confirms that the proposed12

algorithm achieves sub-linear regret in relation to the number of rounds and arms.13

Also, empirical results using a bandit simulator show that the proposed algorithm14

surpasses other baselines across several scenarios.15

1 Introduction16

The top-k recommendation problem involves providing a ranked list of k items, such as news17

articles or products, from a pool of n items [35, 13]. Online algorithms must adapt to dynamic user18

preferences, making bandit algorithms suitable due to their use of limited feedback [1]. Developing19

bandit algorithms is challenging due to limited feedback and the need for computational efficiency in20

real-time recommendation environments. Recent research on user interfaces for recommendations21

shows that the overall layout of the recommendation page is crucial for user appeal as designs22

transition from simple dropdown lists to complex layouts [17, 13, 18]. As a result, bandit algorithms23

must comprehensively select and display all top-k items jointly rather than merely selecting the most24

relevant k items and displaying them in decreasing order of user relevance [32].25

The joint consideration of top-k items makes the number of arms (possible actions for the bandit26

algorithm) combinatorially large, i.e., Θ(nk). Previous research on bandit algorithms often impose27

strict assumptions about feedback models [31, 21], e.g., semi-bandit feedback gives a scalar value for28

each of the top k items. Although semi-bandit feedback decomposes feedback from the combinatorial29

number of arms to feedback for every recommended item, it is often unavailable [33]. Another30

prevalent feedback assumption is cascade browsing [16], which posits that users examine items in a31

pre-determined order and stop searching upon finding a desirable item, which provides item-specific32

scalar feedback but does not fully capture possible non-linear interactions [27]. Figure 1 illustrates33

the limitations of the cascade model in accurately representing user interactions within contemporary34

top-k recommendation interfaces. These limitations motivate us to focus on a strictly more general35

setting of the full-bandit feedback, where a single value for the entire top-k set is assumed [24].36

Beyond feedback assumptions, the reward of bandit algorithms must be decomposable into scalars37

over individual items to avoid a combinatorial explosion of arms, which is not always possible. For38
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Figure 1: A snapshot from Etsy show-
cases Father’s Day shopping recommenda-
tions. There is no obvious linear search or-
der, which challenges the assumptions of the
cascade model. Additionally, item proxim-
ity and arrangement are likely to influence
clicks, suggesting a complex interaction pat-
tern and advocating for full-bandit feedback
without assumptions about user interaction
with the recommended items.

Table 1: Compute and memory analysis for GP-TopK. Rows
indicate different costs: overall compute and overall memory for
T rounds, time for matrix-vector multiplication (mvm) with the
kernel matrix KXt at time t, and time to update KXt . Columns
indicate approaches: kernel approach uses full kernel matrices,
while our novel feature approach performs the same operations
via feature expansions and scales better with respect to T . The
symbols c, k, and T represent the embedding size for contexts,
the number of items, and the number of rounds, respectively.

Tasks kernel approach feature approach

compute O(T3) O(c · k2 ·T2)
memory O(T2) O(c · k2 ·T)
mvm(KXt

) O(t2) O(c · k2 · t)
compute KXt

O((c+ k2) · t) O(c · k2)

instance, modern e-commerce platforms consider objectives such as diversity and fairness [1], which39

cannot be measured by focusing solely on individual items [15]. This necessitates algorithms for40

full-bandit feedback settings without assumptions about the objective or rewards [24].41

This work develops a bandit algorithm that uses Gaussian processes (GPs) to model rewards under42

full-bandit (i.e., one scalar value) feedback. GPs are selected for their flexibility in modeling feedback43

for discrete, continuous, and mixed domains, such as continuous contexts and discrete rankings44

[34]. Additionally, unlike parametric models that require optimization for accumulated feedback, GP45

model updates are computationally inexpensive, involving only data updates [24]. While inference46

for GPs may generally face computational limits, we will develop efficient inference methods tailored47

to our proposed algorithm. Another challenge in developing GP-based bandit algorithms for top-k48

recommendations is creating expressive positive-definite kernels that capture the similarity between49

top-k recommendations [9].50

GPs have been previously explored for bandit algorithms [28, 19]. Krause et al. [14] used GPs for51

contextual bandits in continuous domains; we focus on the discrete domain of top-k recommendations.52

Vanchinathan et al. [29] used GPs with a position-based feedback model, and Wang et al. [32] used53

GPs with semi-bandit feedback for recommending top-k items. In contrast, our work does not focus54

on a specific reward model or feedback assumption, and develops an efficient GP-based bandit55

algorithm for top-k recommendations.56

1.1 Contributions57

Our primary contribution is the GP-TopK algorithm, a contextual bandit algorithm for recommending58

top-k items. This algorithm operates in a full-bandit feedback setting without relying on assumptions59

on reward, offering broader applicability than prior works. We leverage GPs with variants of the60

Kendall kernel [12] to model the reward function and optimize the upper confidence bound (UCB) [28]61

acquisition function to select the next arm. Further, we give a novel weighted convolutional Kendall62

kernel for top-k recommendations that address pathologies in existing variants of the Kendall kernel63

applied to top-k recommendations.64

Our second key contribution is to improve the scalability of the GP-TopK algorithm for longer65

time horizons. The initial computational demand for top-k ranking with GP-TopK is O(T 4) for T66

rounds. We first reduce this to O(T 3) using iterative algorithms from numerical linear algebra [26].67

Then, we derive sparse feature representations for the novel weighted convolutional Kendall kernel,68

which, allows us to further improve the overall compute requirements from O(T 4) to O(T 2) and69

memory requirements from O(T 2) to O(T ). Table 1 summarizes these time and memory requirement70

improvements, including their dependence on other parameters.71

We also provide a theoretical analysis showing that GP-TopK’s regret is sub-linear in T and benefits72

from the feature representations of the Kendall kernels we introduce. We show the regret’s upper73
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bound is almost quadratic in n, which improves significantly over the naive bound of Θ(nk) for top-k74

recommendations without using specialized kernels [28]. Finally, we empirically validate GP-TopK’s75

regret through simulations on real-world datasets and show improved regret compared to baselines.76

1.2 Organization77

The remainder of this paper is as follows: Section 2 presents Kendall kernels for full and top-k78

rankings, including the novel weighted convolutional Kendall kernel. Section 3 presents faster79

matrix-vector multiplication (MVM) algorithms for Kendall kernels, making the proposed bandit80

algorithm faster, as detailed later in Section 4, along with the regret analysis. Lastly, Sections 5 and 681

present empirical results and discussion, respectively.82

2 Kendall Kernels for Full and Top-k Rankings83

This section overviews Kendall kernels and their extensions for top-k recommendations. First, we84

establish some notation. Let [n] = {1, 2, . . . , n}, and let π represent a top-k ranking, which is an85

ordered tuple of k distinct elements from [n]. We use σ to denote a full ranking (k = n) and let86

Πk represent the set of all possible top-k rankings. Note that |Πk| = Θ(nk). The vector pσ ∈ R
n

87

corresponds to a full ranking σ with entry pσ
i giving the rank of item i. For top-k rankings, pπ ∈ R

n
88

is constructed by arbitrarily assigning distinct ranks to items not in the top k. Indicator functions89

pσi<j and pσi>j indicate whether item i is ranked before or after item j, respectively in σ. Also, pπi<j90

and pπi>j are indicator functions defined for top-k rankings.91

2.1 Kendall Kernels for Full Rankings92

Jiao et al. [9] showed that the Kendall tau rank correlation [12] is a positive definite (p.d.) kernel for93

full rankings, which we refer to as the standard Kendall (SK) kernel. The weighted Kendall (WK)94

kernel generalizes the SK kernel by differentially weighting item pairs [10]. Specifically, the SK and95

WK kernels for full rankings σ1, σ2 are defined as:96

ksk(σ1, σ2) :=
1
(
n
2

)

∑

i<j

ηi,j(σ1, σ2) (1)

kwk(σ1, σ2) :=
1
(
n
2

)

∑

i<j

w((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) · ηi,j(σ1, σ2), (2)

where ηi,j is 1 if the pair (i, j) is concordant (ordered the same in both rankings) and −1 oth-97

erwise; concretely, ηi,j(σ1, σ2) := p
σ1
i<j · pσ2

i<j + p
σ1
i>j · pσ2

i>j − p
σ1
i<j · pσ2

i>j − p
σ1
i>j · pσ2

i<j ; and98

ww((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) is the value of a positive definite weighting kernel w(·, ·) : [n]2×[n]
2 7→99

R that operates on pairs of ranks. The wi,j allows flexibility and can assign varying importance100

to ranks, similar to the discounted cumulative gain (DCG) metric [7]. Note that both SK and WK101

kernels are p.d. and right-invariant with respect to Πn [10]. In other words, they compute similarity102

based only on the relative ranks of pairs, not on the labels of items, as evident from Equations 1 and 2.103

2.2 Kendall Kernels for Top-k Rankings104

Weighted Kendall (WK) and Convolutional Kendall (CK) kernels. To adapt the WK kernel105

from full rankings to top-k rankings, Jiao et al. [10] set the weighting function w(i, j, σ1, σ2) to106

zero if either item is not in the top-k of either ranking. This scheme yields a p.d. kernel but does107

not consider items outside the intersection of top-k rankings. The convolutional operation offers an108

alternative for adapting the standard Kendall kernel to top-k rankings. Let Bπ denote the set of full109

rankings consistent with the top-k ranking π (i.e., for every item i in π, ∀σ ∈ Bπ,p
π
i = pσ

i ). The110

CK kernel is defined as:111

kck(π1, π2) =
1

|Bπ1
| · |Bπ2

|
∑

σ1∈Bπ1 , σ2∈Bπ2

ksk(σ1, σ2), (3)

where ksk is the standard Kendall kernel. The CK kernel is a p.d. kernel as it is a convolution112

of another p.d. kernel [5]. Unlike the WK kernel for top-k rankings, the CK kernel accounts for113
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items not in both top-k rankings. However, computing the CK kernel using Eq. (3) is expensive as it114

requires exponentially many evaluations of the kernel ksk in the double summation. Therefore, Jiao115

et al. [9] developed an efficient algorithm to bypass this double summation and compute the kernel in116

O(k log k) time.117

Proposed Weighted Convolutional Kendall (WCK) Kernel. To combine the strengths of the WK118

and CK kernels for top-k rankings, we propose the weighted convolutional Kendall kernel for top-k119

rankings π1 and π2 ∈ Πk:120

kwck(π1, π2) :=
1

|Bπ1
| · |Bπ2

|
∑

σ1∈Bπ1 ,σ2∈Bπ2

kwk(σ1, σ2), (4)

where kwk represents the weighted Kendall kernel for full rankings σ1, σ2 ∈ Πn. The proposed WCK121

kernel combines the flexibility of weighting different ranks (among the top-k items) differently, like122

the WK kernel, with the ability to account for items outside the intersection of both top-k rankings,123

like the CK kernel. Also, since it’s a convolution of a p.d. kernel it is also a p.d.. However, its124

computation is again challenging as the RHS of Equation 4 evaluates kwk exponentially many times.125

To simplify, we focus on a specific form of rank weights for kwk, which we call product-symmetric126

rank weights:127

wps((i1, j1), (i2, j2)) := ws(i1, j1) · ws(i2, j2), (5)

where, ws(i, j) : [n]× [n] 7→ R is a symmetric function, i.e., ws(i, j) = ws(j, i). Notably, the WCK128

kernel can be computed efficiently for the case of wps weights (Claim 1 below).129

Table 2: Comparison of Kendall kernel similarities for top-
k rankings. The table shows kernel values k(π0, ·) for the
top-k ranking π0 = [1, 2, 3] with other rankings (π1, π2,
π3, π4) for n = 7 and k = 3. Rankings are ordered left
to right by increasing similarity to π0. WCK kernel values,
based on DCG rank weights, increase from left to right. All
kernels are unit normalized.

Top-k π1 π2 π3 π4

Kernels [4, 5, 6] [3, 2, 1] [2, 1, 3] [1, 3, 2]

WK 0.00 −1.00 0.33 0.33
CK −0.60 0.60 0.87 0.87
WCK −0.38 0.09 0.46 0.87

The WCK kernel, even with the relatively130

simple wps weights, has notable properties131

as shown in Table 2. In this table we use132

ws(i, j) =
1

log(i+1) · 1
log(j+1) inspired by the133

DCG metric used in recommendation sys-134

tems [7]. Note that the WK kernel ranks two135

rankings with no overlap (π0 and π1) as more136

similar than two rankings with the same items137

but reverses ordering (π0 and π2), a clear138

pathology. On the other hand, the CK kernel139

fails to differentiate between reversed pairs at140

different ranks (kck(π0, π3) = kck(π0, π4)),141

another clear limitation. The WCK kernel142

with product-symmetric ranking weights can143

address these shortcomings and provide a144

more nuanced similarity comparison for top-k rankings.145

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k2) time.

Appendix A provides the proof, which exploits the structure of product-symmetric rank weights wps146

to establish the existence of a feature representation for the WCK kernel, as given in Claim 3 below.147

We then show that the inner product of these features, and thus the WCK kernel, can be computed148

in O(k2) time (Algorithm 2 in the appendix). Similarly to the result of Jiao et al. [9], we can avoid149

exponentially many evaluations of kwk on the RHS of Equation (4) by computing the WCK kernel150

directly by another means.151

3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrices152

In GPs, inference can be accelerated by using iterative algorithms that take advantage of fast matrix-153

vector-multiplications (MVMs) with the kernel matrix [3]. This section focuses on fast algorithms154

for kernel MVMs that exploit the structure of Kendall kernel matrices. Specifically, let mvm(KXt
)155

denote the running time to multiply the t× t kernel matrix KXt
= (k(xi, xj))xi,xj∈Xt

by a vector.156

Naively, mvm(KXt
) = O(t2). However, if k(xi, xj) = ϕa(xi)

Tϕb(xj) for vectors ϕa(xi) and157

ϕb(xj) with only z non-zero entries, then mvm(KXt
) reduces to O(z · t), which is much faster than158
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O(t2) when z ≪ t. When ϕa = ϕb, we call ϕa the linear feature vector for the kernel k. Before159

focusing on top-k ranking kernels, we provide a linear feature vector for the WK kernel on full160

rankings as defined in Equation 2.161

Claim 2. Let ϕwk(σ) : Πn 7→ R
(n2) be a vector indexed by unique item pairs (i, j), defined as:

ϕwk
i,j (σ) :=

1
√
(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
p
σ
i<j − p

σ
i>j

)
,

where ws is the symmetric weighting function in product-symmetric weights. Then, ϕwk is a
linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.

Using Claim 2, the linear feature vector for the WK kernel can be extended to the WK top-k ranking162

kernel utilizing the structure of the product-symmetric weights. Furthermore, the feature vector163

ϕwk(π) contains only O(k2) non-zero entries due to the WK kernel’s focus on item pairs within the164

top-k, resulting in mvm(KXt
) = O(k2 · t) for the WK kernel matrix.165

Claim 3. Let ϕwck(π) : Πk 7→ R
(n2) be a vector in-

dexed by unique item pairs (i, j) given as: ϕwck
i,j (π) :=

1
√

(n2)
· wwck

i,j (π) ·
(
pπi<j − pπi>j

)
, where wwck

i,j (π) is

determined as follows:

wwck
i,j (π) =







ws(p
π
i ,p

π
j ) if pπ

i ∈ [k] & pπ
j ∈ [k]

ws(p
π
i , ·) else if pπ

i ∈ [k] & pπ
j /∈ [k] ,

ws(p
π
j , ·) else if pπ

i /∈ [k] & pπ
j ∈ [k] ,

0 otherwise,

where ws denotes symmetric weights and ws(ℓ, ·) =
1

n−k

∑n
j=k+1 ws(ℓ, j). Then, the vector ϕwck is a lin-

ear feature vector for the WCK kernel kwck. By uni-
formly setting ws(·, ·) ≡ 1 in the definitions above,

ϕwck
i,j (π) specializes to a linear feature vector for the

CK kernel.

Next, we focus on fast MVMs with166

the WCK kernel, which includes167

the CK kernel as a particular case.168

We observe that any convolutional169

kernel inherits linear features from170

its constituent kernel. Specifically,171
∑

σ∈Bπ
ϕwk
i,j (σ) forms a feature vec-172

tor for the WCK kernel, which follows173

from Equation 4 and Claim 2.174

However, computing this feature vec-175

tor explicitly requires the exponential176

summation over all σ ∈ Bπ. Claim 3177

shows that the summation can be com-178

puted analytically and provides ex-179

plicit linear feature vectors for the180

WCK and CK kernels. It also shows181

that ϕwck has only O(k2 + 2nk) non-182

zeros among its O(n2) entries. Con-183

sequently, mvm(KXt
) for the WCK184

kernel requires O((k2 + 2nk) · t) operations, which improves from O(t2) to linear in t. However,185

this introduces a dependence on n and is beneficial only for n ≤ t. We next leverage redundancy in186

ϕwck to eliminate this dependence, leading to the following main theorem about the mvm(KXt
).187

Theorem 1. For the WCK kernel with product-symmetric weights wps, the computational

complexity of multiplying the kernel matrix KXt
with any admissible vector is O(k2t), i.e.,

mvm(KXt
) = O(k2t), where Xt is any arbitrary set of t top-k rankings.

Appendix A provides the proof in two steps. First, we leverage the values of ϕwck from Claim 3 and188

categorize ϕwck(π1)
Tϕwck(π2) based on item pairs, as summarized in Table 4. Next, we show that189

only five combinations yield non-zero values, i.e., ϕwck(π1)
Tϕwck(π2) =

∑5
i=1 si(π1, π2). Each190

term si(π1, π2) is a dot product of vectors ϕai(π1)
Tϕbi(π2), which contains at most O(k2) non-zero191

entries. Thus, for WCK and CK kernels, mvm(KXt
) = O(k2t) as these vectors for all five terms192

have only O(k2) non-zero entries. Consequently, Theorem 1 demonstrates that using these vector193

representations for top-k rankings yields faster MVMs, i.e., mvm(KXt
) = O(k2t) ≪ O(t2).194

4 Proposed GP-TopK Bandit Algorithm195

This section outlines the top-k recommendation problem and introduces a generic contextual bandit196

algorithm for top-k recommendations. We then explain how the components of this algorithm197
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are instantiated using our GP approach. An analysis of the proposed algorithm’s computational198

complexity and regret follows this.199

Let T be the number of rounds. Contexts C are in a finite c-dimensional space, C ⊆ R
c. In the tth200

round, we receive a context ct ∈ C and select a top-k ranking πt ∈ Πk. We then obtain a noisy reward201

yt = f̂(ct, πt)+ ϵt, where f̂ is the true reward function and ϵt is round-independent noise. The regret202

is rt := maxπ′∈Πk f̂(ct, π
′

)− f̂(ct, πt), with cumulative regret RT :=
∑T

t=1 rt. The accumulated203

data at the tth round is Dt = (ci, πi, yi)
t
i=1. Algorithm 1 presents the bandit algorithm’s generic204

schematic, aiming to minimize cumulative regret while ensuring computational efficiency.205

Algorithm 1 Contextual Bandit Algorithm for Top-k Recommendations

Input: Total rounds T , initial reward model M0, and acquisition function AF .
1: for t = 1, · · · , T do
2: Observe a context ct from the context space C.
3: Select a top-k ranking πt that maximizes AF(Mt−1(ct, π)) for the context ct.
4: Obtain the scalar reward yt.
5: Update the reward model Mt using the accumulated feedback Dt.
6: end for

The above algorithm requires two components: a) a reward model Mt that can estimate the reward206

value given any context and top-k ranking utilizing the accumulated feedback Dt and b) an acquisition207

function AF for selecting πt given the current reward model Mt and observed context ct.208

Reward model M and acquisition function AF . Our proposed GP-TopK bandit algorithm uses209

GP regression to model rewards for contexts and top-k rankings. GP regression is briefly covered210

in Section B.1 for completeness. In essence, the reward model M maintains a distribution over211

functions f , i.e., f ∼ N (0, k(·, ·)), where k is a product kernel function over both contexts and top-k212

rankings (C⊗Πk). Specifically, the kernel function k is defined as follows:213

k((c1, π1), (c2, π2)) := kc(c1, c2) · kr(π1, π2), (6)

where kc(c1, c2) = cT1 c2 is the dot-product kernel and kr is a kernel for top-k rankings. We use214

variants of the Kendall kernel for kr from Section 2. Updating the reward model Mt at the tth
215

round involves adding new data points to our GP regression, which is computationally inexpensive216

compared to the fine-tuning steps required by parametric models to incorporate the latest feedback.217

We utilize the UCB function for the acquisition function as it effectively balances exploration and218

exploitation by selecting actions that maximize the upper confidence bound on the estimated reward219

[28]. The UCB acquisition function is AF(Mt(ct, π)) := µf |D((ct, π)) + β
1
2 · σf |D((ct, π)),220

where σf |D((ct, π)) =
√
kf |D((ct, π), (ct, π)), and β controls the trade-off between exploration221

and exploitation. µf |D and kf |D are the GP posterior mean and covariance functions, as detailed222

in Section B.1. At the tth round, the algorithm selects the top-k ranking π ∈ Πk that maximizes223

AF(Mt(ct, π)), which is performed using local search [19], as detailed in Appendix B.224

Computational complexity. The GP-TopK bandit algorithm requires no compute for model updates.225

i.e., updating Mt in the Line 5 of the Algorithm 1 requires only updating Dt. The GP-TopK relies226

on local search for optimizing AF , so the compute requirements arise only from AF evaluations in227

the local search. As shown in Section B.1, computing the GP variance term for evaluating AF , i.e,228

σf |D((ct, π)) involves solving
[
KXt

+ σ2I
]−1

v for a vector v, where Xt = [(c1, π1), · · · , (ct, πt)].229

Naively, this requires O(t3) time per round, leading to O(T 4) over T rounds. Iterative algorithms can230

expedite the process using our results on fast MVMs with kernel matrices, as discussed previously in231

Section 3 [25]. Theorem 2 formalizes the computational demands of the GP-TopK algorithm.232
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Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k2cℓT 2). This applies
to WK, CK, and WCK top-k ranking kernels, where ℓ is the number of local search evaluations.

The proof of Theorem 2 is provided in Appendix B. It demonstrates efficiency gains from integrating233

feature representation with iterative algorithms, reducing the computational time from O(T 3) to234

O(T 2). This is a significant improvement, as even one MVM with KXt
using the full kernel matrix235

at each round requires O(T 3) time. Furthermore, the theorem also shows that the running time of the236

GP-TopK algorithm does not explicitly depend on the number of items n.237

Regret analysis of the GP-TopK algorithm. The cumulative regret of the proposed algorithm is238

RT =
∑T

t=1 maxπ′∈Πk f̂(ct, π
′

)− f̂(ct, πt), where πt is the ranking chosen at round t. Optimizing239

cumulative regret for top-k recommendations is challenging, requiring learning the context-arm240

relationship and outperforming the best mapping. To bound cumulative regret, regularity assumptions241

on the reward function f̂ are necessary [28, 14]. We consider the following two assumptions, either242

of which suffices.243

Assumption 1. X is finite, meaning that only finite contexts are considered (|C| < ∞), and the244

reward function f̂ is sampled from the GP prior with a noise variance of ξ2.245

Assumption 2. X is arbitrary and the reward function f̂ has a bounded RKHS norm for the kernel k,246

i.e., ∥f∥k ≤ B. The reward noises ϵt form an arbitrary martingale difference sequence (i.e., reward247

noise does not systematically depend on its past values) and are uniformly bounded by ξ.248

Under either Assumption 1 or 2, we prove the following regret bound for GP-TopK:249

Theorem 3. If either Assumptions 1 or 2 hold, setting βt as 2 log
(

|C|·|Πk|·t2·π2

6δ

)

and 300γt ln
3
(
t
δ

)
respectively, the cumulative regret RT of the GP-TopK ban-

dit algorithm for top-k recommendations can, with at least 1 − δ probability,

be bounded by Õ(n
√

C1Tc(log|C|+ k + log(T 2π2/6δ))) under Assumption 1, and

Õ(n
√

C1(2B2c+ 300n2c2 ln3(T/δ))T ) under Assumption 2. Here, C1 = 8
log(1+ξ−2) , and Õ

excludes logarithmic factors related to n, k, and T .

Appendix B.4 provides the proof, leveraging the insight that log det|I + σ−2KXT
| for any set XT250

can be effectively bounded using the finite-dimensional feature vectors introduced in this work.251

Specifically, Proposition 2 utilizes the feature vectors from Section 2. Theorem 3 establishes that252

the cumulative regret of the GP-TopK bandit algorithm grows sublinearly in T with high probability253

under both assumptions. It also highlights the importance of using top-k ranking kernels, which254

improve the asymptotic order Õ concerning n to nk/2−1 and nk−1 under Assumptions 1 and 2,255

respectively, as compared with Srinivas et al. [28]. This improvement is significant even for small256

constant values of k, such as k = 6, as detailed below in Table 3.

Table 3: Comparison with Srinivas et al. (2010) for regret bounds of the bandit algorithm under both assumptions.

Srinivas et al. (2010) This work

Assumption 1 Õ

(

n
k
2
√

C1Tc (log|C| + k + log(T 2π2/6δ))

)

Õ
(

n
√

C1Tc(log|C| + k + log(T 2π2/6δ))
)

Assumption 2 Õ

(

n
k
2
√

C1Tc(2B2 + 300nkc ln3(T/δ))

)

Õ
(

n
√

C1Tc(2B2 + 300n2c ln3(T/δ))
)

257

5 Experiments258

This section empirically evaluates the proposed GP-TopK bandit algorithms for the top-k recom-259

mendations using a simulation based on the MovieLens dataset [4]. The reliance on simulation for260
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evaluating bandit algorithms is prevalent in the literature. It stems from the difficulty of conducting261

online evaluations in real-world bandit scenarios, mainly when there are combinatorial arms [29].262

Next, we provide details of the simulation setup and considered reward settings. Following that, we263

present results for the empirical regret for small and large numbers of arms below, respectively.264

Simulation setup and reward settings. The bandit simulation setup follows the framework outlined265

by Jeunen et al. [8], utilizing real-world datasets on user-item interactions. Specifically, we train user266

and item embeddings using a collaborative filtering approach [6]. The user embeddings are accessed267

by the bandit algorithms as context embeddings, while the item embeddings remain hidden. In the268

non-contextual setup, the first user from the dataset is chosen as a fixed context throughout the bandit269

algorithm run, allowing us to use the same reward functions as the contextual bandit algorithm.270

For setting up the reward functions, we utilize a similarity function s(c, θ) := σ(a · (cT θ) − b) to271

measure similarity between any user and item embeddings, where a and b are similarity score and272

shift scalars, respectively. The sigmoid function σ maps similarity scores to a range between 0 and 1,273

enhancing the interpretability of the reward signal [32]. We set a and b to 6 and 0.3, respectively, to274

fully utilize the range of the similarity function, as assessed by evaluating its value for many arms.275

We set up two preliminary reward functions based on the similarity function s. The first is the276

DCG metric, f̂dcg(c, π) =
∑k

i=1
1

log2(i+1)s(c, θπi
), where c and θπi

represent the context and item277

embeddings, respectively. The second is the diversity measure, f̂div(π) =
1
k2

∑k
i=1

∑k
j=1 θ

T
πj
θπi

.278

These metrics quantify the relevance and diversity of top-k recommendations, respectively.279

We use these functions in two contextual reward settings. The first setting focuses on normalized-280

DCG (n-DCG), f̂ndcg(c, π) =
f̂dcg(c,π)

maxπ′ f̂dcg(c,π′)
[7]. The second setting combines f̂ndcg and f̂div as281

f̂ndcgdiv(c, π) = λ · f̂ndcg(c, π) + (1− λ) · f̂div(π), evaluating the aggregate effect of relevance and282

diversity. We set λ = 0.25 to emphasize relevance over diversity.283

Evaluation for small arm space. This section presents empirical results for the cumulative regret284

of bandit algorithms with a limited number of arms. Specifically, with n = 20 and k = 3, there are285

6, 840 top-k rankings, allowing for an exhaustive search to optimize the acquisition function. All286

bandit algorithms run in batch mode, updating every five rounds. We consider both reward settings287

for contextual and non-contextual scenarios, using a subset of five users for the contextual setting.288

Several baselines are set to assess the benefits of ranking (Kendall) kernels. Section C details the289

remaining hyper-parameter configurations and details of other baseline bandit algorithms.290

0 100 200
T

0

200

400

R T

Random
-greedy
MAB
WK
CK
WCK

(a)

0 100 200
T

(b)

0 100 200
T
(c)

0 100 200
T

0

150

300

(d)
Figure 2: Comparative evaluation of bandit algorithms: The cumulative regret RT over T rounds is shown.

Lower values indicate better performance. Plots (a) and (b) represent non-contextual settings for nDCG (f̂ndcg)

and nDCG + diversity (f̂ndcgdiv) rewards, respectively. Plots (c) and (d) show results for contextual settings for
five users using the same rewards. The y-axis for (a) and (b) is on the left, and for (c) and (d) on the right.
The GP-TopK algorithm with Kendall kernels, especially the weighted convolutional Kendall (WCK) kernel,
outperforms others. Details on other algorithms are in the text. Results are averaged over six trials.

The Random algorithm randomly recommends any k items. The ϵ-greedy algorithm alternates291

between recommending a random top-k ranking with a probability of ϵ and choosing the top-k292

ranking with the highest observed mean reward. In contextual settings, ϵ-greedy differentiates arms293

for each unique context. Similarly, MAB-UCB conceptualizes each ranking as an independent arm,294

an equivalent of using a direct delta kernel approach for GPs along with UCB AF . In contextual295

scenarios, MAB-UCB also treats arms distinctly per context. Each variant of the top-k ranking kernel296

yields one variation of the proposed GP-TopK algorithm, namely, WK, CK, and WCK. Figure 2297
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presents empirical values of the cumulative regrets for the above baseline and the proposed GP-TopK298

algorithms. In all cases, across both reward settings and in both contextual and non-contextual setups,299

the variants of the proposed GP-TopK algorithm outperform baselines that do not use Kendall kernels,300

highlighting the significance of top-k ranking kernels for full bandit feedback. Specifically, the CK301

and WCK kernels significantly outperform the WK kernel regarding the converged values of the302

regret, with the WCK kernel further improving on the CK kernel variant.303

0 50 100
T

0

800

1600

R T

Random
-greedy
MAB
WK
CK
WCK

0 50 100
T

Figure 3: Comparative evaluation of bandit algorithms for large arm
spaces, with > 1.1 × 105 arms for the left plot and > 1.1 × 1010

arms for the right plot. Cumulative regret with respect to the rounds of
the bandit algorithm is depicted. Results are averaged over six trials.
In both settings, the WCK approach outperforms other baselines. For
more details, see the textual description.

Evaluation for large arm space.304

We evaluate bandit algorithms in a305

large arm space scenario with n =306

50 and k = 3 and k = 5, resulting307

in 1.1×105 and 1.1×1010 possible308

top-k rankings, respectively. Using309

local search, we focus on the nDCG310

reward. The remaining configura-311

tion is consistent with the small arm312

space setup. We use 10 restarts and313

5 steps in each search direction for314

the local search, starting with 1000315

initial candidates.316

Figure 3 shows that the regret for317

the GP-TopK variants remains con-318

sistently lower even with a large arm319

space, despite the use of local search. The WCK approach significantly outperforms the CK, es-320

pecially for k = 5, as illustrated in the right plot of Figure 3. Additional empirical results on the321

effectiveness of local search in a large arm space and other rewards are given in Appendix C.322

6 Discussion323

This work develops a contextual bandit algorithm for top-k recommendations using Gaussian pro-324

cesses with Kendall kernels in a full-bandit feedback setting. We make no restrictive assumptions325

about feedback or reward models. Gaussian processes allow computationally free model updates for326

accumulated feedback data, although inference remains challenging. We address this by providing327

features for Kendall kernels for top-k rankings, resulting in a faster inference algorithm that reduces328

the complexity from O(T 4) to O(T 2). Additionally, we address issues with known variants and329

propose a more expressive Kendall kernel for top-k recommendations. Finally, we present theoretical330

and empirical results on cumulative regret to evaluate the proposed GP-TopK bandit algorithm.331

Future Directions and Limitations. This work opens several research avenues. Efficient matrix-332

vector multiplication with Kendall kernel matrices can enable faster bandit algorithms with various333

acquisition functions, such as Thompson sampling and expected improvement. Exploring other334

kernels, like Mallow kernels, for top-k rankings and developing efficient algorithms for them is335

an intriguing direction, especially since the effectiveness of our algorithm depends on the function336

space induced by the RKHS of the underlying kernel. Assessing how well these kernels approximate337

various reward functions for top-k recommendations would provide valuable insights.338

Exploring other bandit problem settings, such as stochastic item availability or delayed feedback,339

would enhance the applicability of this work to more complex scenarios. Extending the finite-340

dimensional GP framework to other acquisition functions using local search is another promising341

direction. One limitation of our regret analysis is that it does not account for approximations in the342

arm selection step due to local search [20]. This limitation is common in continuous domains, where343

optimizing acquisition functions often involves non-convex optimization [28].344

Impact. This research advances bandit algorithms for top-k item recommendations. By improving345

recommendation efficiency and accuracy, our algorithms can enhance user experiences across plat-346

forms, promoting content relevancy and engagement. However, they may reinforce implicit biases in347

training data, limiting content diversity and entrenching prejudices. Therefore, monitoring over time348

is essential when deploying these algorithms in real-world environments.349
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A Kendall Kernels for Full and Top-k Rankings ± Omitted Details437

This section includes the proofs that were omitted from Section 2, presented in the following order:438

• In Section A.1, we present proofs for Claims 2 and 3, which concern the feature representa-439

tions of Kendall kernels.440

• In Section A.2, we provide Algorithms 2 and a proof of its correctness for computing the441

WCK kernel in O(k2) time, thereby proving Claim 1. Additionally, we extend this proof442

to cover the proof of correctness for Algorithm 3, which can compute the CK kernel in443

O(k log k), initially introduced by Jiao et al. [9]. The original paper presented the algorithm444

without a formal proof of correctness, a gap we address and fill in this section.445

• Section A.3 details the proof for Theorem 1, discussing the matrix-vector multiplications446

with the Kendall kernel matrix for top-k rankings. This proof builds on the Algorithm 2447

given for computing the WCK kernel for top-k rankings.448

A.1 Feature Representation for Kendall Kernels for Top-k Rankings449

This section revisits the claims regarding the feature representations of the weighted Kendall kernel450

and the weighted convolutional Kendall kernel, subsequently providing the proofs for these claims451

mentioned earlier.452

Claim 2. Let ϕwk(σ) : Πn 7→ R
(n2) be a vector indexed by unique item pairs (i, j), defined as:

ϕwk
i,j (σ) :=

1
√
(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
p
σ
i<j − p

σ
i>j

)
,

where ws is the symmetric weighting function in product-symmetric weights. Then, ϕwk is a
linear feature vector for the weighted Kendall kernel with product-symmetric weights wps.

Proof. Following the definition of linear feature representation, we need to prove that kwk(σ1, σ2) =453

ϕ(σ1)
Tϕ(σ2) for the product-symmetric weight kernel as given in Equation 5. Recalling from454

Equation 2, we have kwk(σ1, σ2) as follows:455

kwk(σ1, σ2) =
1
(
n
2

) ·
∑

i<j

w((pσ1
i ,pσ1

j ), (pσ2
i ,pσ2

j )) · ηi,j(σ1, σ2),

=
1
(
n
2

) ·
∑

i<j

ws(p
σ1
i ,pσ1

j ) · ws(p
σ2
i ,pσ2

j ) · ηi,j(σ1, σ2), (7)

where the second line incorporates the use of the product-symmetric weight kernel. Next, our focus456

shifts to the simplification of ηi,j(σ1, σ2), which is elaborated as follows:457

ηi,j(σ1, σ2) = p
σ1
i<j · pσ2

i<j + p
σ1
i>j · pσ2

i>j − p
σ1
i<j · pσ2

i>j − p
σ1
i>j · pσ2

i<j ,

= p
σ1
i<j · (pσ2

i<j − p
σ2
i>j) + p

σ1
i>j · (pσ2

i>j − p
σ2
i<j),

= (pσ1
i<j − p

σ1
i>j) · (pσ2

i<j − p
σ2
i>j).

Combining the above factorization of ηi,j with Equation 7, we get:458

kwk(σ1, σ2) =
1
(
n
2

) ·
∑

i<j

ws(p
σ1
i ,pσ1

j ) · ws(p
σ2
i ,pσ2

j ) · (pσ1
i<j − p

σ1
i>j) · (pσ2

i<j − p
σ2
i>j)
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=
1
(
n
2

) ·
∑

i<j

ϕwk
i,j (σ1) · ϕwk

i,j (σ2)

= ϕ(σ1)
Tϕ(σ2).

459

Claim 3. Let ϕwck(π) : Πk 7→ R
(n2) be a vector indexed by unique item pairs (i, j) given as:

ϕwck
i,j (π) := 1

√

(n2)
·wwck

i,j (π) ·
(
pπi<j − pπi>j

)
, where wwck

i,j (π) is determined as follows:

wwck
i,j (π) =







ws(p
π
i ,p

π
j ) if pπ

i ∈ [k] & pπ
j ∈ [k]

ws(p
π
i , ·) else if pπ

i ∈ [k] & pπ
j /∈ [k] ,

ws(p
π
j , ·) else if pπ

i /∈ [k] & pπ
j ∈ [k] ,

0 otherwise,

where ws denotes symmetric weights and ws(ℓ, ·) = 1
n−k

∑n
j=k+1 ws(ℓ, j). Then, the vector

ϕwck is a linear feature vector for the WCK kernel kwck. By uniformly setting ws(·, ·) ≡ 1 in

the definitions above, ϕwck
i,j (π) specializes to a linear feature vector for the CK kernel.

Proof. The main idea revolves around leveraging the feature representation of the Weighted Kendall460

kernel for a full ranking and the linearity of the convolution operation. It is already established461

that kwk(σ1, σ2) = ϕwk(σ1)
Tϕwk(σ2), as demonstrated in Claim 2. Recall that the WCK kernel462

requires a double summation over pairs of rankings from Bπ1
and Bπ2

, which represent the sets of463

full rankings consistent with their respective top-k rankings, as described in Equation 4. We simplify464

the WCK kernel as follows:465

kwck(π1, π2) =
1

|Bπ1
| ·

1

|Bπ2
| ·

∑

σ1∈Bπ1

∑

σ2∈Bπ2

ϕwk(σ1)
Tϕwk(σ2)

=




1

|Bπ1
| ·

∑

σ1∈Bπ1

ϕwk(σ1)
T



 ·




1

|Bπ2
| ·

∑

σ2∈Bπ2

ϕwk(σ2)





︸ ︷︷ ︸

:=ϕwck(π2)

= ϕwck(π1)
Tϕwck(π2).

The simplification above reveals that the feature representation, ϕwck, for the WCK kernel, is a
(
n
2

)
466

dimensional vector and can be indexed by unique pairs of items (i, j), much like the ϕwk. However,467

the double summation is over an exponentially large number of pairs of rankings. Moving forward,468

we shift our focus to the individual entries of this representation involving this summation, elucidating469

the analytical values within the summation by exploring four unique cases, each dependent on whether470

these specific items fall within the top-k rankings.471

In Case 1, we examine the scenario where items i and j are within the top-k ranking π. Here, the472

focus is on the feature representation of the pair, specifically when both elements are ranked among473

the top-k positions.474

475

Case 1: pπ
i ∈ [k] and pπ

j ∈ [k].476

ϕwck
i,j (π) =

1

|Bπ|
·
∑

σ∈Bπ

1
√
(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
p
σ
i<j − p

σ
i>j

)

=
1

|Bπ|
· 1
√
(
n
2

) · ws(p
π
i ,p

π
j ) ·

(
∑

σ∈Bπ

p
σ
i<j −

∑

σ∈Bπ

p
σ
i>j

)
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=
1

|Bπ|
· 1
√
(
n
2

) · ws(p
π
i ,p

π
j ) ·

(
|Bπ| · pπi<j − |Bπ| · pπi>j

)

=
1

√
(
n
2

) · ws(p
π
i ,p

π
j ) ·

(
p
π
i<j − p

π
i>j

)
. (8)

The simplification in lines 3rd and 4th follows from the fact that any full ranking σ ∈ Bπ , consistent477

with the top-k ranking π, the relative ranks and weights of items i and j remains unchanged, given478

pπ
i ∈ [k] and pπ

j ∈ [k]. Concretely, this implies pσi<j = pπi<j for all σ ∈ Bπ and similar with the479

other term.480

In Case 2, we analyze when item i is in the top-k ranking while item j is not.481

482

Case 2: pπ
i ∈ [k] and pπ

j /∈ [k].483

ϕwck
i,j (π) =

1

|Bπ|
·
∑

σ∈Bπ

1
√
(
n
2

) · ws(p
σ
i ,p

σ
j ) ·

(
p
σ
i<j − p

σ
i>j

)

=
1

|Bπ|
· 1
√
(
n
2

) ·
∑

σ∈Bπ

ws(p
σ
i ,p

σ
j ) · (1− 0) (since pπ

i ∈ [k] and pπ
j /∈ [k])

=
1

|Bπ|
· 1
√
(
n
2

) ·
∑

σ∈Bπ

ws(p
π
i ,p

σ
j ).

Next, every possible consistent ranking is considered jointly while fixating on a specific rank outside484

top-k elements, leading to (n− k− 1)! different rankings. Given that |Bπ| = (n− k)!, we can refine485

the above expression as follows:486

ϕwck
i,j (π) =

1

|Bπ|
· 1
√
(
n
2

) ·
n∑

l=k+1

ws(p
π
i , l) · (n− k − 1)!

=
(n− k − 1)!

|Bπ|
· 1
√
(
n
2

) ·
n∑

l=k+1

ws(p
π
i , l)

=
1

√
(
n
2

) ·
1

n− k
·

n∑

l=k+1

ws(p
π
i , l)

=
1

√
(
n
2

) · ws(p
π
i , ·). (9)

In Case 3, we analyze when item i is not in the top-k ranking while item j is.487

488

Case 3: pπ
i /∈ [k] and pπ

j ∈ [k]. Similar to case 2, the simplification follows analogously, with the489

only change being 1pσ
i<j

− 1pσ
i>j

= −1 instead of 1. Thus, by symmetry between i and j, we have490

the following:491

ϕwck
i,j (π) =

−1
√
(
n
2

) · ws(·,pπ
j ) =

−1
√
(
n
2

) · ws(p
π
j , ·) (using symmetry of ws). (10)

Lastly, in Case 4, we analyze when items i and j are not in the top-k ranking.492

Case 4: pσ
i /∈ [k] and pσ

j /∈ [k].493

ϕwck
i,j (π) =

1

|Bπ|
·
∑

σ∈Bπ

ϕwk
i,j (σ)
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=
1

|Bπ|
· 1
√
(
n
2

) ·
∑

σ∈Bπ

ws(p
σ
i ,p

σ
j ) ·

(
p
σ
i<j − p

σ
i>j

)

= 0 (by symmetry). (11)

The result of zero arises from symmetry. Since pσ
i and pσ

j are not in the top-k ranking, they are494

treated symmetrically in the summation overall rankings in Bπ . For any ranking σ, suppose pσ
i = l495

and pσ
j = m, there exists a corresponding ranking σ′ such that only the items i and j are swapped.496

Therefore, jointly, these two rankings yield ws(l,m) and −ws(l,m). Since ws is symmetric, the497

overall contribution from each pair of such rankings is zero. Hence, the entire summation nets to498

zero.499

Thus, with the explanation provided for each case and combining results from Equations 8, 9, 10 and500

11, it’s trivial to validate the Claim 3, i.e., ϕwck
i,j (π) = 1

√

(n2)
·wwck

i,j (π) ·
(
pπi<j − pπi>j

)
for all unique501

pair of items. From Case 4, we have O((n− k)2) entries leaving at max only O(k2 +2nk) non-zero502

entries.503

A.2 Algorithms for Computing Kendall Kernels for top-k Rankings504

In this section, we provide and delve into the proofs of Algorithms 2 and 3 for the weighted505

convolutional Kendall kernel and the convolutional Kendall kernel, as previously discussed in Section506

2. Section A.2.1 for valid both the correctness and computational complexity of Algorithm 2 as given507

earlier in Claim 1. Following this, Section A.2.2 revisits Algorithm 3, initially introduced by Jiao508

et al. [10]. The original publication presented the algorithm without formal proof of its correctness,509

which we rectify and offer in Section A.2.2.510

A.2.1 Efficiently Computing the Weighted Convolutional Kendall Kernel511

This section provides a proof to Claim 1 to establish the efficiency and accuracy of Algorithm 2 in512

computing the weighted convolutional Kendall kernel, as specified in Equation 4, with a focus on its513

computational complexity.514

Claim 1. The weighted convolutional Kendall kernel (Equation 4) with product-symmetric rank
weights (Equation 5) can be computed in O(k2) time.

Proof. The claim is proven through Algorithm 2, where we establish its correctness and demonstrate515

its computation requirement is O(k2). The essence of our proof centers on analyzing the feature516

representation of the WCK kernel, ϕwck, as outlined in Claim 3. The feature vectors of ϕwck
517

reside in a
(
n
2

)
dimensional space, indexed by pairs of items. Our approach is to demonstrate518

that Algorithm 2 accurately computes the right-hand side (RHS) of the equation kwck(π1, π2) =519

ϕwck(π1)
Tϕwck(π2). This involves a summation over item pairs, expressed as kwck(π1, π2) =520

∑

l<m ϕwck
l,m (π1)

Tϕwck
l,m (π2).521

Our proof analyzes various scenarios: cases where pairs of items, namely l and m, fall within the522

top-k, scenarios with one item within the top-k and the other outside, and situations where neither523

item is within the top-k. Each of these cases contributes distinctively to the computation of the524

overall kernel, resulting in different terms in the algorithmic computation. This is encapsulated in525

Algorithm 2, where kwck(π1, π2) =
∑5

i=1 si(π1, π2), and each si corresponds to the terms given526

earlier in Algorithm 2 from Section 2.527

Before proceeding with the cases of this summation as given in Table 4, we recall the notations utilized528

by Algorithm 3 in Definition 1. Also, remember that we will be proving for product-symmetric529

weights as given in Equation 5, where, ws : [n]× [n] 7→ R
n and its one-dimensional marginals are530

ws(ℓ, ·) = 1
n−k

∑n
j=k+1 ws(ℓ, j) Table 4 shows how these cases are organized and relate to different531

si terms required for computing the WCK kernel. The key strategy involves breaking down the532

kernel’s computation into cases based on the positioning of item pairs within the top-k rankings.533

In case 1, we consider all the scenarios when both indices are within the set of items in both top-k534

rankings, i.e., all items in the set I1 ∪ I2.535
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Case Description

1 Both items (l,m) in I1 ∪ I2. Branches into the following three sub-cases based
on the presence of items in I1 ∩ I2:
1-a: Both items in I1 ∩ I2. The concerned term is s1.
1-b: One item in I1 ∩ I2. Subdivided into 1-b-i (other in I1 \ I2) and 1-b-ii
(other in I2 \ I1); concerned terms are s2 and s3.
1-c: No item in I1 ∩ I2. Addresses cases where l and m are in different sets
(I1 \ I2 and I2 \ I1); concerned term is s4.

2 One item in I1∪I2. I.e., either l is I1∪I2 or m is in I1∪I2, leading to sub-cases
2-a and 2-b; concerned term is s5.

3 No item in I1 ∪ I2. Addresses the scenario where neither l nor m is in I1 ∪ I2;
value trivially zero.

Table 4: Case categorization for the proof of Algorithms 2 and 3 based on item pair ranks, where I1 and I2 are
the sets of items for top-k rankings π1 and π2, respectively.

Definition 1. Algorithm 2 and 3 and utilize following notations.

• I1 and I2 are the sets of items in rankings π1 and π2, respectively.

• σ1 ∈ Π|I1| and τ1 ∈ Π|I1∩I2| are the full rankings of I1 and I1 ∩ I2, both consistent
with the input top-k ranking π1. I.e., relative ranks of items is same yielding ∀l,m ∈
I1 ∩ I2, p

π1
i>j = p

τ1
i>j .

• Analogously, σ2 and τ2 are constructed utilizing the set I2 and ranking π2.

Algorithm 2 Computing Weighted Convolutional Kendall Kernel

Input: Two permutations π1, π2 ∈ Πk. Ranking weighting function ws : [n]× [n] 7→ R
n and

its one dimensional marginals are ws(ℓ, ·) = 1
n−k

∑n
j=k+1 ws(ℓ, j).

Output: Convolutional Weighted Kendall kernel kwck(π1, π2).
− Let I1 and I2 be the sets of items in rankings π1 and π2, respectively.

1: if |I1 ∩ I2| ≥ 2 then
2: s1(π1, π2) =

1

(n2)

∑

1≤l<m≤n|l,m∈I1∩I2
ws(p

π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2)

3: end if
4: if |I1 ∩ I2| ≥ 1 and |I1 \ I2| ≥ 1 then

5: s2(π1, π2) =
1

(n2)
· ∑

l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
p
π1

l<m − p
π1

l>m

)

6: end if
7: if |I1 ∩ I2| ≥ 1 and |I2 \ I1| ≥ 1 then

8: s3(π1, π2) =
1

(n2)
· ∑

l∈I1∩I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2

l ,pπ2
m ) ·

(
p
π2

l<m − p
π2

l>m

)

9: end if
10: if |I1 \ I2| ≥ 1 and |I2 \ I1| ≥ 1 then
11: s4(π1, π2) = − 1

(n2)
· ∑

l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·)

12: end if
13: if |I1 ∩ I2| ≥ 1 and |[n] \ (I1 ∪ I2)| ≥ 1 then
14: s5(π1, π2) =

1

(n2)
· (n− |I1 ∪ I2|) ·

∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·)
15: end if
16: kwck(π1, π2) = s1(π1, π2) + s2(π1, π2) + s3(π1, π2) + s4(π1, π2) + s5(π1, π2)

Case 1: The pair (l,m) ∈ I1 ∪ I2 falls within the top-k, leading to three distinct cases. Below, we536

provide si terms for each case as given in Table 4.537
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Case 1-a: Two items in I1 ∩ I2, meaning both l and m belong to I1 ∩ I2. Using Claim 3 regarding538

the feature vector ϕwck, we simplify s1 as follows:539

s1(π1, π2) =
∑

1≤l<m≤n|l,m∈I1∩I2

ϕwck
l,m (π1) · ϕwck

l,m (π2)

=
∑

1≤l<m≤n|l,m∈I1∩I2

1
√
(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
p
π1

l<m − p
π1

l>m

)

· 1
√
(
n
2

) · ws(p
π2

l ,pπ2
m ) ·

(
p
π2

l<m − p
π2

l>m

)

=
1
(
n
2

)

∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2). (12)

Case 1-b: When one item is in I1 ∩ I2, the other must reside either in I1 \ I2 or I2 \ I1, thus leading540

to two distinct sub-cases. This is specified in Table 4. Concretely, if the other item is in I1 \ I2, it541

contributes to the s2 terms, whereas if it’s in I2 \ I1, it contributes to the s3 terms.542

Corresponding to Case 1-b-i, when the other item is in I1 ∩ I2, i.e., s2 is the term corresponding to543

indices where l is in I1 ∩ I2 and m in I1 \ I2, or the reverse, represented by partial sums u and v. For544

the partial sum u, with l in I1 ∩ I2 and m in I1 \ I2, we find that pπ2

l is in [k], while pπ2
m is not. The545

simplification of u proceeds using Claim 3 as follows:546

u =
∑

1≤l<m≤n|l∈I1∩I2|m∈I1\I2

1
√
(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
p
π1

l<m − p
π1

l>m

)

· 1
√
(
n
2

) · ws(p
π2

l , ·)
(
p
π2

l<m − p
π2

l>m

)

=
1
(
n
2

)

∑

1≤l<m≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
p
π1

l<m − p
π1

l>m

)
.

Similarly, the partial sum v can be simplified as follows:547

v =
∑

1≤l<m≤n|m∈I1∩I2|l∈I1\I2

1
√
(
n
2

) · ws(p
π1

l ,pπ1
m ) ·

(
p
π1

l<m − p
π1

l>m

)

· −1
√
(
n
2

) · ws(p
π2

l , ·) ·
(
p
π2

l<m − p
π2

l>m

)

=
−1
(
n
2

)

∑

1≤l<m≤n|m∈I1∩I2|l∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·) ·
(
p
π1

l<m − p
π1

l>m

)

=
−1
(
n
2

)

∑

1≤m<l≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1
m ,pπ1

l ) · ws(p
π2
m , ·) ·

(
p
π1

m<l − p
π1

m>l

)

=
1
(
n
2

)

∑

1≤m<l≤n|l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
p
π1

l<m − p
π1

l>m

)
.

In the above, the first two lines use results from Claim 3 and use similarity of ws. In the following548

line, l and m are exchanged. Lastly, the negative sign is pushed into the indicator functions to make549

the summand function of this partial sum v similar to the partial sum u, and the similarity of the ws550

is utilized. The above partial sums simplify s2 as follows:551

s2(π1, π2) =
1
(
n
2

) ·
∑

l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
p
π1

l<m − p
π1

l>m

)
. (13)
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Analogously, in Case 1-b-ii, we deduce the corresponding term s3 for the pair of indices as described552

in Table 4 through symmetry. Specifically, the term s3 can be outlined as follows:553

s3(π1, π2) =
1
(
n
2

) ·
∑

l∈I1∩I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2

l ,pπ2
m ) ·

(
p
π2

l<m − p
π2

l>m

)
. (14)

Case 1-c: Both items are outside I1 ∩ I2, specifically, l ∈ I1 \ I2 and m ∈ I2 \ I1 or the reverse.554

Like Case 1-b-i, we divide s4 into partial summations u and v. Now, we calculate u under the555

condition that l ∈ I1 \ I2 and m ∈ I2 \ I1.556

u =
∑

1≤l<m≤n|l∈I1\I2|m∈I2\I1

1
√
(
n
2

) · ws(p
π1

l , ·) ·
(
p
π1

l<m − p
π1

l>m

)

· 1
√
(
n
2

) · ws(p
π2
m , ·) ·

(
p
π2

l<m − p
π2

l>m

)
,

=
1
(
n
2

) ·
∑

1≤l<m≤n|l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · (1− 0) · ws(p
π2
m , ·) · (0− 1) ,

=
−1
(
n
2

) ·
∑

1≤l<m≤n|l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·).

Similarly, we can estimate partial sum v for the set l ∈ I2 \ I1 & m ∈ I1 \ I2. Using calculations557

similar to Case-1-b-i for summing u and v, we have:558

s4(π1, π2) =
−1
(
n
2

) ·
∑

l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·). (15)

Case 2: One item exists in I1 ∩ I2, the other in [n] \ (I1 ∩ I2). It branches into two sub-cases: Case559

2-a with one item in I1 ∪ I2, and Case 2-b, where one item outside I1 ∩ I2 but is in I1 ∪ I2. Focusing560

on Case 2-a, represented by s5, we simplify as follows. This involves two index scenarios, either561

l ∈ I1 ∩ I2 and m /∈ I1 ∪ I2 or vice versa, represented by partial sums u and v. We now simplify u562

below:563

u =
1
(
n
2

)

∑

1≤l<m≤n|l∈I1∩I2|m/∈I1∪I2

1
√
(
n
2

) · ws(p
π1

l , ·) ·
(
p
π1

l<m − p
π1

l>m

)

· 1
√
(
n
2

) · ws(p
π2

l , ·) ·
(
p
π2

l<m − p
π2

l>m

)
,

=
1
(
n
2

)

∑

1≤l<m≤n|l∈I1∩I2|m/∈I1∪I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

=
1
(
n
2

)

∑

1≤l<m≤n|l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · (n− |I1 ∪ I2|).

Using steps similar to the previous case, we get the following value for s5:564

s5(π1, π2) =
1
(
n
2

) · (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·). (16)

For Case 2-b, l or m are absent from I1 or I2, leading to two sub-scenarios. Consequently, either565

ϕwck
l,m (π1) is zero or ϕwck

l,m (π2) is zero. Therefore, these terms don’t contribute to the overall WCK566

kernel value.567
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Case 3: No item is in the top-k, i.e., both l,m /∈ I1 ∪ I2. As both items are absent from the top-k568

in either ranking, the value trivially reduces to zero.569

After covering all configurations of l and m, we incorporate results from Equations 12, 13, 14, 15,570

and 16. This integration yields the expression kwck(π1, π2) =
∑5

i=1 si(π1, π2), where, each term si571

matches precisely with its corresponding expression in Algorithm 2. The proof for the correctness of572

Algorithm 2 is complete, as each term si corresponds to its respective expression in the algorithm.573

Regarding the time complexity of Algorithm 2, each term si sums at most k2 quantities, and each574

quantity summed can be computed in O(1) time. Therefore, the computation time required for575

Algorithm 2 is O(k2).576

A.2.2 Efficiently Computing the Convolutional Kendall Kernel577

This section provides Algorithm 3 for computing the convolutional Kendall kernel, as specified in578

Equation 3. Later, its efficiency and accuracy are proved in Claim 4.579

Algorithm 3 Computing Convolutional Kendall Kernel [10]

Input: Two top-k rankings π1, π2 ∈ Πk.
Output: Convolutional Kendall kernel kck(π1, π2).
− Let I1 and I2 be the sets of items in rankings π1 and π2, respectively.

− Let σ1 ∈ Π|I1| and τ1 ∈ Π|I1∩I2| be the full rankings of I1 and I1 ∩ I2, both consistent
with the input top-k ranking π1.
− Analogously, construct σ2 and τ2 utilizing the set I2 and ranking π2.

1: if |I1 ∩ I2| ≥ 2 then

2: s1(π1, π2) =
1

(n2)
·
(
|I1∩I2|

2

)
· ksk(τ1, τ2)

3: end if
4: if |I1 ∩ I2| ≥ 1 and |I1 \ I2| ≥ 1 then
5: s2(π1, π2) =

1

(n2)
·∑l∈I1∩I2

2 · (σ1(l)− τ1(l))− k + |I1 ∩ I2|
6: end if
7: if |I1 ∩ I2| ≥ 1 and |I2 \ I1| ≥ 1 then
8: s3(π1, π2) =

1

(n2)
·∑l∈I1∩I2

2 · (σ2(l)− τ2(l))− k + |I1 ∩ I2|
9: end if

10: s4(π1, π2) = − 1

(n2)
· |I1 \ I2| · |I1 \ I2|

11: s5(π1, π2) =
1

(n2)
· |I1 ∩ I2| · |[n] \ (I1 ∪ I2)|

12: kck(π1, π2) = s1(π1, π2) + s2(π1, π2) + s3(π1, π2) + s4(π1, π2) + s5(π1, π2)

Claim 4. Algorithm 3 computes the convolutional Kendall kernel (as given in the Equation 3)
with a computational complexity of O(k2).

Proof. To establish the correctness of Algorithm 3, we will adopt the same proof approach as the one580

used for Claim 1 concerning Algorithm 2. Specifically, we will adhere to the earlier categorization in581

Table 4 and notations given in Definition 1. Since the CK kernel can be derived by uniformly setting582

the weight function ws(i, j) = 1, we will insert them in si terms as given in Algorithm 2. These583

cases will be revisited and simplified by applying the condition ws(i, j) = 1. Note that this also584

implies its one-direction marginal weights to be 1, i.e., ws(i, ·) = 1585

Simplifying the s1 Term: For the WCK kernel, Case 1-a leads to the expression of s1 as stated in586

Equation 12. In this case, when two items, specifically l and m, are both in the intersection I1 ∩ I2,587

it implies that pπ1

l , pπ1
m , pπ2

l , and pπ2
m all rank within the top-k, denoted as [k]. We simplify the s1588

term for CK kernel as follows:589
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s1(π1, π2) =
1
(
n
2

)

∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
πl

i ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2)

=
1
(
n
2

)

∑

1≤l<m≤n|l,m∈I1∩I2

ηl,m(π1, π2)

=
1
(
n
2

)

∑

1<l′<m′≤|I1∩I2|

ηl′,m′(τ1, τ2) =

(
|I1∩I2|

2

)

(
n
2

) ksk(τ1, τ2). (17)

The simplification process begins by assigning unit rank weights in the first line, i.e., wi = 1.590

Following this, by relabeling the items in I1 ∩ I2 and using τ1 and τ2, which are the rankings of591

π1 and π2 limited to the set I1 ∩ I2 as defined in Definition 1, it is established that ηl′,m′(τ1, τ2) =592

ηl,m(π1, π2). This is because the relative order of any pair of items is maintained in τ1 and τ2.593

Consequently, this leads to the final simplification to a scaled value of the standard Kendall kernel594

ksk, as given in Equation 1.595

Simplifying the s2 and s3 Terms: The s2 and s3 terms are obtained for Case 1-b, which is for596

case when one item is in I1 ∩ I2 and the other item is either in I1 \ I2 or I2 \ I1. We divide this into597

two sub-cases. Case 1-b-i: The other item is in I1 \ I2, with s2 representing the summation terms598

derived from the CK’s inner product. Case 1-b-ii: The other item is I2 \ I1, where s3 denotes the599

summation terms. We simplify the s2 term for the CK kernel as follows:600

s2(π1, π2) =
1
(
n
2

)

∑

l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2
m , ·)

(
p
π1

l<m − p
π1

l>m

)

=
1
(
n
2

)

∑

l∈I1∩I2|m∈I1\I2

(
p
π1

l<m − p
π1

l>m

)

=
1
(
n
2

)

∑

l∈I1∩I2|m∈I1\I2

p
π1

l<m

︸ ︷︷ ︸
:=u

− 1
(
n
2

)

∑

l∈I1∩I2|m∈I1\I2

p
π1

l>m

︸ ︷︷ ︸
:=v

.

Next, we examine the terms u and v in detail, starting with u. The term u, which corresponds to601

p
π1

l<m, signifies instances where item l is ranked before item m in the top-k ranking π1. This can be602

derived from the observation that σ1(l)− 1 items are positioned before item l in the set I1. Out of603

these items, τ1(l) − 1 also belong to the intersection I1 ∩ I2. This follows from the definition of604

the full rankings σ1 and τ1 on the set I1 and the intersection I1 ∩ I2, respectively. Consequently, it605

can be concluded that σ1(l) − τ1(l) items from the set difference I1 \ I2 are ranked before item l.606

The second term, v, corresponds to p
π1

l>m and involves a calculation that takes into account the items607

ranked after the l-th item in the set I . Specifically, there are k − σ1(l) items following the l-th item.608

Within the intersection I1 ∩ I2, the number of items before l is given by |I1 ∩ I2| − τ1(l). Therefore,609

the expression (k − σ1(l))− (|I1 ∩ I2| − τ1(l)) represents the count of elements that are positioned610

after l in the set difference I1 \ I2.611

Combining the above calculations for both terms u and v, the s2 term for the CK kernel can be612

simplified as follows:613

s2(π1, π2) =
1
(
n
2

)

∑

l∈I1∩I2

2 · (σ1(l)− τ1(l))− k + |I1 ∩ I2|. (18)

Using the symmetry between Case 1-b-i and Case 1-b-ii, we can simplify s3 for the CK kernel as614

follows:615

s3(π1, π2) =
1
(
n
2

)

∑

l∈I1∩I2

2 · (σ2(l)− τ2(l))− k + |I1 ∩ I2|. (19)
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Simplifying the s4 and s5 Terms: We simplify the s4 and s5 terms for the CK kernel starting from616

Equation 15 and Equation 16, respectively, as follows:617

s4(π1, π2) =
−1
(
n
2

) ·
∑

l∈I1\I2|m∈I2\I1

ws(p
π1

l , ·) · ws(p
π2
m , ·) = −|I1 \ I2| · |I2 \ I1|

(
n
2

) (20)

s5(π1, π2) =
1
(
n
2

) · (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) = |I1 ∩ I2| · |[n] \ (I1 ∪ I2)|
(
n
2

) .

(21)

We have obtained the values of all the simplified si terms for the CK kernel in Equations 17, 18,618

19, 20, and 21. By combining these terms, we get kck(π1, π2) =
∑5

i=1 si(π1, π2), where each term619

si precisely matches its corresponding expression in Algorithm 3. This completes the proof of the620

correctness of Algorithm 3. Regarding its time complexity, each term si sums at most k2 quantities,621

and each quantity can be computed in O(1) time. Therefore, the time required for Algorithm 3 to622

compute the CK kernel is O(k2).623

A.3 Fast Matrix-Vector Multiplication with Kendall Kernel Matrix on Top-k Rankings624

This section revisits Theorem 1 about the fact matrix-vector multiplication time for the Kendall kernel625

matrix for top-k rankings. Specifically, we aim to eliminate the mvm(KX)’s dependence on the626

number of items, i.e., n on and linear dependence in the number of rounds, i.e., T , as claimed in627

Theorem 1.628

Theorem 1. For the WCK kernel with product-symmetric weights wps, the computational

complexity of multiplying the kernel matrix KXt
with any admissible vector is O(k2t), i.e.,

mvm(KXt
) = O(k2t), where Xt is any arbitrary set of t top-k rankings.

Proof. The cornerstone of this proof lies in the computation of the WCK kernel, as delineated in629

Algorithm 2. This algorithm requires only O(k2) computation. For brevity, we write X to represent630

XT , and the proof follows for any Xt, i.e., any value of t, not just T .631

As also suggested previously, we will demonstrate through the equation KX = (Φa
X)TΦb

X , where632

both matrices Φa
X and Φb

X have columns with only O(k2) non-zero entries. Consequently, this633

leads to the computational complexity of matrix-vector multiplication, denoted as mvm(KX), being634

O(k2 · T ).635

From Algorithm 2, we know that each entry of the kernel matrix k(π1, π2), can be expressed as a sum636

∑5
i=1 si(π1, π2). Assuming each si(π1, π2) equals ϕai(π1)

Tϕbi(π2), and considering that all vectors637

ϕai and ϕbi exhibit this property, we can express KX as (Φa
X)TΦb

X . Here, the ith row of (Φa
X)T638

and the jth column of Φb
X are represented by [ϕa1(πi)

T , · · · , ϕa5(πi)
T ] and [ϕb1(πj), · · · , ϕb5(πj)],639

respectively. Therefore, the overall mvm complexity can be characterized by the sparsity of the640

vectors ϕai and ϕbi , as is formalized in the claim presented below.641

Claim 5. Consider a kernel matrix KX corresponding to any set X of cardinality T . Each entry

of KX , denoted as k(x1, x2), is defined by the sum
∑5

i=1 si(x1, x2), where each si(x1, x2) is

the result of the dot product ϕai(x1)
Tϕbi(x2), where, ϕai and ϕbi are vectors characterized by

having O(z) non-zero entries. Given this structure, the matrix-vector multiplication complexity
for KX is O(nnz · T ), i.e., mvm(KX) = O(z · T ).

Proof. We will demonstrate this in the following discussion by concentrating on the kth entry of the642

output vector, specifically KXv, for any arbitrary vector v:643

(KXv)k =
∑

j

KX(k, j)vj =
∑

j

(
∑

i=1

si(πk, πj)

)

vj =
∑

j

(
5∑

i=1

ϕai(πk)
Tϕbi(πj)

)

vj ,
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=

5∑

i=1




∑

j

ϕai(πk)
Tϕbi(πj)vj



 =

5∑

i=1

ϕai(πk)
T




∑

j

ϕbi(πj)vj



 .

Given that for all i, ϕbi possesses only O(z) non-zero entries for any πj , the computation of644
∑

j ϕ
bi(πj)vj requires O(z) operations. This implies that the expression

∑

j ϕ
bi(πj)vj also neces-645

sitates O(z) computation. Applying a similar rationale to ϕai , it follows that computing (KXv)k646

demands only O(z) operations. Extending this argument to all entries of the output vector, it is647

evident that computing KXv requires only O(z · T ) computation648

Utilizing Claim 5, it suffices to complete the proof by showcasing that these exist vectors ϕai and649

ϕbi , each with only O(k2) non-zero elements, corresponding to each si as specified in Algorithm 2.650

Additionally, these vectors ensure that si(π1, π2) = ϕai(π1)
Tϕbi(π2). We will next establish such651

vectors for all si terms. Starting with the s1 term below.652

Showcasing s1(π1, π2) = ϕa1(π1)
Tϕb1(π2) for sparse ϕa1(π1) and ϕb1(π2) vectors. We begin653

by manipulating s1, as defined in Equation 12. For the sake of brevity, their scalar factors will be654

omitted in the following explanation.655

s1(π1, π2) =
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · ηl,m(π1, π2),

=
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l ,pπ2
m ) · (pπ1

l<m − p
π1

l>m) · (pπ2

l<m − p
π2

l>m),

=
∑

1≤l<m≤n|l,m∈I1∩I2

ws(p
π1

l ,pπ1
m ) · (pπ1

i<j − p
π1

l>m) · ws(p
π2

l ,pπ2
m ) · (pπ2

l<m − p
π2

l>m),

=
∑

1≤l<m≤n

ws(p
π1

l ,pπ1
m ) · (pπ1

i<j − p
π1

l>m) · 1p
π1
l

,p
π1
m ∈[k]

︸ ︷︷ ︸

:=ϕ
a1
l,m

(π1)

· ws(p
π2

l ,pπ2
m ) · (pπ2

l<m − p
π2

l>m) · 1p
π2
l

,p
π2
m ∈[k]

︸ ︷︷ ︸

:=ϕ
b1
l,m

(π2)

,

= (ϕa1(π1)
Tϕb1(π2). (22)

Both ϕa1 and ϕb1 are sparse by design, taking non-zero values only when l and m appear in the top-k656

rankings. This demonstrates the existence of sparse vectors for the s1 term. Next, we will establish657

the same for the s2 and s3 terms.658

Showcasing sparse vectors for s2 and s3. We begin by manipulating s2, as defined in Equation 13,659

while ignoring its scalar factor. We will exploit symmetry between s2 and s3 terms.660

s2(π1, π2)

=
∑

l∈I1∩I2|m∈I1\I2

ws(p
π1

l ,pπ1
m ) · ws(p

π2

l , ·)
(
p
π1

l<m − p
π1

l>m

)
,

=
∑

l∈I1∩I2

ws(p
π2

l , ·)
∑

m∈I1\I2

ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)
,

=
∑

l∈I1∩I2

ws(p
π2

l , ·)
(
∑

m∈I1

ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)
−

∑

m∈I1∩I2

ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)

)

,

=
∑

l∈[n]

1p
π2
l

∈[k]ws(p
π2

l , ·)
︸ ︷︷ ︸

:=ϕ
b21
l

(π2)

1p
π1
l

∈[k]

∑

m∈I1

ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)

︸ ︷︷ ︸

:=ϕ
a21
l

(π1)
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−
∑

l,m∈I1∩I2

ws(p
π2

l , ·)ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)
, (23)

= ϕa21(π1)
Tϕb21(π2)−

∑

l,m∈I1∩I2

ws(p
π2

l , ·)ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)
,

= ϕa21(π1)
Tϕb21(π2) +

∑

l,m∈[n]

−ws(p
π2

l , ·)1p
π2
l

,p
π2
m ∈[k]

︸ ︷︷ ︸

:=ϕ
b22
l,m

· ws(p
π1

l ,pπ1
m )
(
p
π1

l<m − p
π1

l>m

)
1p

π1
l

,p
π1
m ∈[k]

︸ ︷︷ ︸

:=ϕ
a22
l,m

, (24)

= ϕa21(π1)
Tϕb21(π2) + ϕa22(π1)

Tϕb22(π2),

= [ϕa21(π1);ϕ
a22(π2)]

T

︸ ︷︷ ︸

:=ϕa2 (π1)T

[ϕa21((π2));ϕ
b22((π2))]

︸ ︷︷ ︸

:=ϕb2 (π2

= ϕa2(π1)
Tϕb2(π2). (25)

Equation 25 demonstrates the existence of vectors ϕa2 and ϕb2 for the s2 term. The vectors ϕa21 and661

ϕa22 , possessing O(k) and O(k2) non-zero entries respectively, are defined in Equations 23 and 24.662

Consequently, the ϕa2 vector has O(k2) non-zero entries. Similarly, it can be shown that ϕb2 contains663

O(k2) non-zero entries, thus fulfilling the proof requirements for proving the s2 term. For the s3664

term, we observe a symmetry between s2 and s3, namely s3(π1, π2) = s2(π2, π1). This symmetry665

makes it trivial to satisfy the requirements, as further highlighted by the following equation:666

s3(π1, π2) = s2(π2, π1) = ϕa2(π2)
Tϕb2(π1) = ϕb2(π1)

T

︸ ︷︷ ︸

:=ϕa3 (π1)

ϕa2(π2)
︸ ︷︷ ︸

:=ϕb3 (π2)

= ϕa3(π1)
Tϕb3(π2). (26)

Showcasing sparse vectors s4(π1, π2) = ϕ4a(π1)
Tϕ4b(π2). We begin by manipulating the s4667

term without scalar, as defined in Equation 15.668

s4(π1, π2) = −
∑

l∈I1\I2

ws(p
π1

l , ·) · ws(p
π2
m , ·),

= −
∑

l∈I1\I2

ws(p
π1

l , ·) ·
(
∑

m∈I2

ws(p
π2
m , ·)−

∑

m∈I1∩I2

ws(p
π2
m , ·)

)

.

Observing that w :=
∑

m∈I2

ws(p
π2
m , ·) represents a constant value that does not depend on I2, we can669

further simplify the above expression for s4 as follows:670

s4(π1, π2) = −
∑

l∈I1\I2

ws(p
π1

l , ·) ·
(

w −
∑

m∈I1∩I2

ws(p
π2
m , ·)

)

,

= −
(

w −
∑

l∈I1∩I2

ws(p
π1

l , ·)
)

·
(

w −
∑

m∈I1∩I2

ws(p
π2
m , ·)

)

,

= −w2 + w

(
∑

l∈I1∩I2

ws(p
π1

l , ·) +
∑

m∈I1∩I2

+ ws(p
π2
m , ·)

)

−
∑

l∈I1∩I2

ws(p
π1

l , ·)
∑

m∈I1∩I2

ws(p
π2
m , ·). (27)

Next, to simplify the above equation, we first focus on the second term and have the following:671

w

(
∑

l∈I1∩I2

ws(p
π1

l , ·) +
∑

m∈I1∩I2

ws(p
π2
m , ·)

)
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=
∑

l∈[n]

1p
π1
l

∈[k]ws(p
π1

l , ·)
︸ ︷︷ ︸

:=ϕ
4a1
l

(π1)

1p
π2
l

∈[k]w
︸ ︷︷ ︸

:=ϕ
4b1
l

(π2)

+
∑

m∈I1∩I2

w · ws(p
π2
m , ·),

= ϕ4a1(π1)
Tϕ4b1(π2) +

∑

m∈[k]

1p
π1
m ∈[k]w

︸ ︷︷ ︸

:=ϕ
4a2
m (π1)

ws(p
π1
m , ·)

︸ ︷︷ ︸

:=ϕ
4b2
m (π2)

= ϕ4a1(π1)
Tϕ4b1(π2) + ϕ4a2(π1)

Tϕ4b2(π2). (28)

Next, we simplify the third and last term in the Equation 27 as follows:672

∑

l∈I1∩I2

ws(p
π1

l , ·)
∑

m∈I1∩I2

ws(p
π2
m , ·) =

∑

l∈[n],m∈[n]

ws(p
π1

l , ·)1p
π1
l

,p
π1
m ∈[k]

︸ ︷︷ ︸

:=ϕ
4a3
l,m

(π1)

ws(p
π2
m , ·)1p

π2
l

,p
π2
m ∈[k]

︸ ︷︷ ︸

:=ϕ
4b3
l,m

(π2)

,

= ϕ4a3(π1)
Tϕ4b3(π2). (29)

Next, combining the results from Equations 27, 28, and 29, we obtain the following:673

s4(π1, π2) = [w, ϕ4a1(π1);ϕ
4a1(π1);ϕ

4a3(π1)]
T

︸ ︷︷ ︸

:=ϕ4a(π1)T

[−w;ϕ4b1(π2);ϕ
4b2(π2);−ϕ4b3(π2)]:=ϕ4b(π2)

= ϕ4a(π1)
Tϕ4b(π2). (30)

Equation 30 showcases both ϕ4a and ϕ4b has three components with having only O(k2) non-zero674

entries, thus fulfilling the requirements for the s4 term. Next, we focus on the s5 term.675

Showcasing sparse vectors s5(π1, π2) = ϕ5a(π1)
Tϕ5b(π2). We begin by examining the s5 term,676

excluding its scalar component, as outlined in Equation 16.677

s5(π1, π2) = (n− |I1 ∪ I2|) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= (n− (2k − |I1 ∩ I2|)) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= (n− 2k) ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) + |I1 ∩ I2| ·
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

=
∑

l∈I1∩I2

√
n− 2k · ws(p

π1

l , ·) ·
√
n− 2k · ws(p

π2

l , ·)

+
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · |I1 ∩ I2|, (31)

=
∑

l∈[n]

√
n− 2k · ws(p

π1

l , ·) · 1p
π1
l

[k]
︸ ︷︷ ︸

:=ϕ
5a1
l

(π1)

·
√
n− 2k · ws(p

π2

l , ·) · 1p
π2
l

[k]
︸ ︷︷ ︸

:=ϕ
5b1
l

(π2)

+
∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) · |I1 ∩ I2|,

= ϕ5a1(π1)
Tϕ5b1(π2) +

∑

l∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·) ·
∑

m∈I1∩I2

1,

= (ϕ5a1(π1)
Tϕ5b1(π2) +

∑

l∈I1∩I2,m∈I1∩I2

ws(p
π1

l , ·) · ws(p
π2

l , ·),

= ϕ5a1(π1)
Tϕ5b1(π2) +

∑

l∈[n],m∈[n]

ws(p
π1

l , ·) · 1p
π1
l

,p
π1
m ∈[k]

︸ ︷︷ ︸

:=ϕ
5a2
l,m

(π1)

·ws(p
π2

l , ·) · 1p
π2
l

,p
π2
m ∈[k]

︸ ︷︷ ︸

:=ϕ
5b2
l,m

(π2)

,

(32)

24



= ϕ5a1(π1)
Tϕ5b1(π2) + ϕ5a2(π1)

Tϕ5b2(π2),

= [ϕ5a1(π1);ϕ
5a2(π1)]

T

︸ ︷︷ ︸

:=ϕ5a(π1)T

[ϕ5b1(π2) + ϕ5b2(π2)]
︸ ︷︷ ︸

:=ϕ5b(π2)

= ϕ5a(π1)
Tϕ5b(π2). (33)

The equation shows that s5(π1, π2) = ϕ5a(π1)
Tϕ5b(π2), where both ϕ5a and ϕ5b possess com-678

ponents with a maximum number of non-zero entries, as indicated in Equations 31 and 32. This679

completes the proof requirements for the s5 term.680

By combining the results from Equations 22, 25, 26, 30, and 33, we have demonstrated the existence681

of vectors ϕai and ϕbi , each containing only O(k2) non-zero elements, and have established that682

si(π1, π2) = ϕai(π1)
Tϕbi(π2) for each i ∈ 1, 2, 3, 4, 5. In conjunction with Claim 5, this completes683

the proof.684

B Proposed GP-TopK Bandit Algorithm± Omitted Details685

This section includes the proofs that were omitted from Section 4, presented in the following order:686

• Section B.1 outlines a brief of Gaussian process regression for any domain.687

• Section B.2 summarizes the committed details about the local search utilized for optimizing688

the UCB function.689

• Section B.3 provides the removed proof for the Theorem 2 concerning the overall time for690

the bandit algorithm.691

• Section B.4 provides the proof for Theorem 3 concerning regret analysis of the proposed692

bandit algorithm.693

B.1 Gaussian Process Regression694

In GP regression [22], the training data are modeled as noisy measurements of a random function695

f drawn from a GP prior, denoted f ∼ N (0, k(·, ·)), where k : X × X → R is a kernel function696

over any domain X . The observed training pairs (xi, yi) are collected as X = [x1, . . . ,xT ] and697

y = [y1, . . . , yT ] ∈ R
T , where, for an input xi, the observed value is modeled as yi = f(xi) + ϵ,698

with ϵi ∼ N (0, σ2). The kernel matrix on data is KX = [k(xi,xj)]
T
i,j=1 ∈ R

T×T . The posterior699

mean µf |D and variance σf |D functions for GPs are:700

µf |D(x) := kT
xz (34)

σf |D(x) := k(x,x)− kT
x (KX + σ2I)−1kx (35)

where kx ∈ R
T has as its ith entry k(x,xi), z = (KX + σ2I)−1y, and I is an identity matrix. For701

GP regression on an arbitrary domain X , the kernel function must be a p.d. kernel [23].702

Naive approaches rely on the Cholesky decomposition of the matrix KX + σ2I , which takes Θ(T 3)703

time [23]. To circumvent the Θ(T 3) runtime, recent works use iterative algorithms such as the704

conjugate gradient algorithm, which facilitate GP inference by exploiting fast kernel matrix-vector705

multiplication (MVM) algorithms, i.e., v 7→ KXv [3]. In practice, these methods yield highly706

accurate approximations for GP posterior functions with a complexity of Θ(p · T 2) for p CG707

iterations, as mvm(KX) = T 2, and mvm(M) is the operation count for multiplying matrix M by708

a vector. p ≪ T proves to be efficient in practical application [3].709

B.2 Contextual GP Reward Model710

Optimizing the AF , i.e., UCB function, poses a significant challenge due to its enormous size of Πk.711

Drawing inspiration from prior research on Bayesian optimization within combinatorial spaces, we712

employ a breadth-first local search (BFLS) to optimize the UCB acquisition function [2, 19]. The713

BFLS begins with the selection of several random top-k rankings. Subsequently, each specific top-k714

ranking is compared with the UCB values of its neighboring rankings, proceeding to the one with the715

highest UCB value.716
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The neighbors of a top-k ranking include all its permutations and the permutations of modified top-k717

rankings obtained by swapping one item with any of the remaining items. For any top-k ranking,718

there are (n− k) · k! + k! neighbors, which is often not huge as k is often ≤ 6. This search continues719

until no neighboring top-k ranking with a higher value is discovered. Although BFLS is a local720

search, the initial random selection and multiple restart points help it evade local minima, a strategy721

that previous studies have corroborated [19].722

B.3 Assessing GP-TopK Compute Requirements723

Theorem 2. Assuming a fixed number of iterations required by the iterative algorithms, the
total computational time for running the GP-TopK bandit algorithm for T rounds of top-k
recommendations, using the contextual product kernel (Equation 6), is O(k2cℓT 2). This applies
to WK, CK, and WCK top-k ranking kernels, where ℓ is the number of local search evaluations
for selecting the next arm in every round.

Proof. The proof can be straightforwardly derived by combining the results presented in Table 1,724

which succinctly summarizes the time complexities for each step of computing the UCB using both725

feature and kernel approaches. It is important to emphasize that iterative algorithms enhance results726

from O(T 4) to O(T 3) in computational complexity. Furthermore, these algorithms can further727

reduce complexity to O(T 2) when used with the feature approach.728

The results presented in Table 1 can be validated through straightforward observations and by729

leveraging findings from previous Sections 2. Specifically, Section 2 offers proof for the mvm(KX)730

row explicitly. For the compute KXt
row, the complexity of kernel approaches is deduced from731

Algorithms 2 and 3. For feature approaches, the compute KXt
row is inferred from the sparsity of the732

feature representations as stated in Claim 3. Lastly, the memory row is straightforwardly deduced for733

the kernel approach by counting its entries. For the feature approach, it is derived from the sparsity of734

the feature representations.735

B.4 Regret Analysis736

In this section, we revisit Theorem 3 and provide its proof. The proofs build on the work by Krause737

et al. [14], delivering results for bounding the contextual regret in the context of the top-k ranking738

problem. To set the stage for our regret analysis, let’s first define the critical term maximum mutual739

information, denoted by γt, is given below:740

γt := max
X⊆X :|X|=t

I(yX ; f), I(yX ; f) = H(yX)−H(yX |f),

where I(yX ; f) quantifies the reduction in uncertainty (measured in terms of differential Shannon741

entropy) about f achieved by revealing yA [28]. In Gaussian observation case, the entropy can be742

computed in closed form: H(N(µ,Σ)) = 1
2 log |2πeΣ|, so that I(yX ; f) = 1

2 log |I + σ−2KX |,743

where KX = [k(x, x′)]x,x′∈X is the Gram matrix of k evaluated on set X ⊆ X . For the contextual744

bandit algorithm, X represents contexts and arms considered until round t.745

Before proving Theorem 3, we align the Krause et al. [14] results with our notation for consistency.746

Furthermore, we modify βt to accommodate embeddings encompassing negative values, aligning747

with the fact that contextual embeddings may exhibit negative dimensions.748

Proposition 1 (Theorem 1, [14]). Let δ ∈ (0, 1), and the unknown reward function f̂ be sampled

749
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from the known GP prior with known noise variance σ2. Suppose one of the following holds:

1. Assumption 1 holds and set βt = 2 log(|X |t2π2/6δ).

2. Assumption 2 holds and set βt = 2B2 + 300γt ln
3(t/δ).

Then the cumulative regret RT of the contextual GP bandit algorithm with

the UCB acquisition function is bounded by Õ(
√
C1TγTβT ) w.h.p. Precisely,

Pr
{
RT ≤ √

C1TγTβt) + 2 ∀T ≥ 1
}

≥ 1 − δ, where, C1 = 8/ log(1 + σ−2) and

the notation Õ hides logarithmic factors in n, 1
δ and T .

750

Proposition 1 shoes that the regret RT for the contextual GP bandit algorithm, utilizing the UCB751

acquisition function is bounded with high probability within Õ(
√
C1TγTβT ), where the notation752

Õ hides logarithmic factors in n, 1
δ and T . To ascertain the Õ order for RT , it is imperative to first753

bound the Õ order of γTβt. We begin by examining the γT term in the subsequent proposition.754

Proposition 2. Under the assumptions of Theorem 3, γT can be succinctly characterized as

γT = O(n2c log(n2T ) + c log T ), which also simplifies to Õ(n2c), where the Õ notation omits
logarithmic factors in n and T .

Proof. For the GP bandit algorithm with the UCB acquisition function, γT = C ·755

log
(
|I + σ−2KXT

|
)
, where C equals (1/2) · (1 − 1/e)−1 and KXT

represents the kernel ma-756

trix computed over contexts and arms across T rounds [28, 14]. Precisely, KXT
is calculated using757

the contextual kernel defined in Equation 6. It is applied to contexts and top-k ratings from the758

feedback data Dt, corresponding to Line 6 of the generic contextual bandit Algorithm 1.759

Next, we leverage the characteristic of the contextual kernel being a product kernel. Consequently, the760

maximum mutual information term for the joint kernel, γT , can be upper bounded by c · (γπ
T +log T ),761

where c denotes the dimensionality of contexts and γπ
T represents the maximum information gain in a762

non-contextual setting [14]. Specifically, γπ
T is computed similarly but is confined to top-k rankings.763

That is, γπ
T = C · log

(
|I + σ−2KXπ |

)
, with KXπ

T
being calculated exclusively using the top-k764

kernels on the top-k rankings as selected by the bandit algorithm. Xπ
T represents the top-k rankings765

selected by the bandit algorithm, i.e., excluding the contexts from the collected feedback.766

Recalling the formulation for top-k rankings kernels, we have KXT
= ΦT

Xπ
T
ΦXπ

T
, where ΦXπ ∈767

R
(n2)×T comprises feature columns pertinent to the top-k ranking kernels, as elucidated in Section A.768

Utilizing the Weinstein±Aronszajn identity, γπ
T is expressed as C ·log

(

|I + σ−2ΦXπ
T
ΦT

Xπ
T
|
)

. Further,769

we deduce that γπ
T ≤ C ·∑(n2)

i=1 log
(
|1 + σ−2λi|

)
, where λi is an eigenvalue of ΦXπ

T
ΦT

Xπ
T

. Given770

the Gershgorin circle theorem, which bounds all eigenvalues of a matrix by the maximum absolute771

sum of its rows, therefore we can conclude that γπ
T = O(n2 log(n2T )), as for all the columns of the772

ΦXπ have bounded normed as given in Claims 2 and 3, i.e., ||ϕ(π)||22 ≤ 1 [30].773

By combining γπ
T = O(n2 log(n2T )) with the contextual product kernel, we obtain γT =774

O(n2c log(n2T ) + c log T ), thereby providing the claimed bound in the proposition.775

Next, we build on Propositions 1 and 2 to prove the main theorem regarding the regret of the proposed776

GP-TopK bandit algorithm for top-k recommendations.777

Theorem 3. If either Assumptions 1 or 2 hold, setting βt as 2 log
(

|C|·|Πk|·t2·π2

6δ

)

and 300γt ln
3
(
t
δ

)
respectively, the cumulative regret RT of the GP-TopK ban-

dit algorithm for top-k recommendations can, with at least 1 − δ probability,

be bounded by Õ(n
√

C1Tc(log|C|+ k + log(T 2π2/6δ))) under Assumption 1, and

Õ(n
√

C1(2B2c+ 300n2c2 ln3(T/δ))T ) under Assumption 2. Here, C1 = 8
log(1+ξ−2) , and Õ

excludes logarithmic factors related to n, k, and T .
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Proof. We will prove the above theorem for both cases separately.778

For Assumption-1. Given |C| is finite and βT = 2 log(|D|T 2π2/6δ). First, we focus on bounding779

βT as follows:780

βT = 2 log(|D|T 2π2/6δ)

= O
(
log|C|+ log|Πk|+ log(T 2π2/6δ)

)

As
(
n
k

)
≤ nk and k! ≤ kk, we also have log|Πk| = log

((
n
k

)
k!
)
≤ log

(
nkkk

)
= O(k log(nk)),781

which implies that βT = O(log|C|+ k log(nk) + log(T 2π2/6δ)). Combining this with Proposition782

2, we have following:783

O(γTβT ) = O
(
(n2c log(n2T ) + c log T )(log|C|+ k log(nk) + log(T 2π2/6δ)

)

= O
(
n2c log(n2T )(log|C|+ k log(nk) + log(T 2π2/6δ)

)
(Ignoring c log T term)

= Õ
(
n2c

(
log|C|+ k + log(T 2π2/6δ)

))
.

Thus, we showcase the asserted bound for the regret RT as Õ
(√

C1TγTβT

)
=784

Õ
(

n
√

C1Tc(log|C|+ k + log(T 2π2/6δ))
)

.785

For Assumption-2. Given ∥f∥k ≤ B and βt = 2B2 + 300γt ln
3(t/δ). First, we bound the βT term786

using Proposition 2 as follows:787

βT = 2B2 + 300 · γT · ln3(T/δ),
= 2B2 + 300 ·

(
n2c log(n2T ) + c log T

)
· ln3(T/δ).

Using the above result, we have the following:788

O(
√

C1TγTβT ) = O
(√

C1TγT ·
(
2B2 + 300 · γT · ln3(T/δ)

)
)

,

= O
(√

C1Tn2c log(n2T ) ·
(
2B2 + 300 · n2c log(n2T ) · ln3(T/δ)

)
)

,

= Õ
(

n

√

C1Tc(2B2 + 300n2c ln3(T/δ))

)

.

789

Comparison with Srinivas et al. (2010). Using the identity kernel for top-k rankings, we can790

develop a finite-dimensional feature for the contextual kernel and apply Theorem 5 by Srinivas et al.791

(2010). Given that γT = O(nkc log T ), the regret bounds are as follows under both assumptions. For792

instance, the calculations for the O(
√
C1TγTβT ) under the Assumption 2 are as follows:793

O(
√

C1TγTβT ) = O
(√

C1TγT ·
(
2B2 + 300 · γT · ln3(T/δ)

)
)

,

= O
(√

C1T (nkc log T ) ·
(
2B2 + 300 · (nkc log T ) · ln3(T/δ)

)
)

,

= Õ
(

n
k
2

√

C1Tc(2B2 + 300nkc ln3(T/δ))

)

.

Similarly, we can analogously perform the analysis for Assumption 1 and combine it with Proposi-794

tion 1 to obtain the regret bounds mentioned in the Table 3.795

C Experiments ± Omitted Details796

This section presents omitted details from the main body of the text.797
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Figure 4: Local search results for optimizing combinatorial objectives in Πk for n = 50 and k = 6. For details,
see the textual description. Left (a) shows how many times out of 100 trials the local search recovers the exact

maximizer, i.e., π
′

, and right plot (b) shows the average value of the objective for the returned maximizer. These
results indicate that the local search utilized in this work is effective.

C.1 Compute resources798

We utilized multiple NVIDIA Tesla M40 GPUs with 40 GB RAM on our in-house cluster for our799

experiments. The experiments in Section 5 required approximately 5 GPU-hours for small arm800

space and 24 GPU-hours per iteration for large arm space. We conducted about 50 to 100 iterations801

throughout the project. The results reported in Section C.3 required the same computational resources802

as the large arm space experiments.803

C.2 Bandit Simulation and Hyper-parameter Configurations ± Omitted Details804

To set up the simulation, we utilized embeddings trained on the MovieLens dataset using a collabora-805

tive filtering approach [6]. We consider a 1M variant of the MovieLens dataset, which contains 1806

million ratings from 6040 users for 3677 items. Specifically, we train user embeddings cu and item807

embeddings θi such that the user’s attraction to the items are captured by the inner product of the user808

embedding with the item embeddings, respectively. Both context and item embeddings, i.e., cu and809

θi, are 5-dimensional, optimized by considering the 5-fold performance on this dataset. The reward810

provided in our experiments is contaminated with zero mean and standard deviation equals 0.05.811

For the ϵ-greedy baselines, we considered various values of ϵ are considered, specifically ϵ =812

{0.01, 0.05, 0.1}. The outcomes are presented for the configuration that demonstrates optimal813

performance. For MAB-UCB baseline, the algorithm has an upper confidence score ucb(i) =814

µi + βmab

√
2 ln(t+1)

ni
[11]. Here, µi represents the average reward, n denotes the total number of815

rounds, and ni signifies the frequency of arm i being played. βmab is a hyper-parameter. We evaluate816

βmab values within the set {0.1, 0.25, 0.5} and disclose results for the best-performing configuration.817

For the parameters of proposed GP-TopK bandit algorithms, we set βt = βgp · log(|X | · t2 · π2) with818

βgp ∈ {0.05, 0.1, 0.5}, reporting results the value that yields the best performance. The choice of βt819

is informed by prior work in GP bandits [28]. The selection of σ for all variants is determined by820

optimizing the log-likelihood of the observed after very 10 rounds by considering values in the set821

{0.01, 0.05, 0.1}.822

C.3 Additional results823

Local search results for optimizing combinatorial objectives in Πk for n = 50 and k = 6. Specif-824

ically, π⋆ = maxπ ϕ
r(π)Tϕr(π

′

), where ϕr(π
′

represents the feature vector for Kendall kernels825

on top-k rankings. Notably, for this optimization problem, it is known that the optimal value is 1826

obtained by only π
′

. Figure 4 shows results for this optimization problem when applied to WK, CK,827

and WCK kernels.828

Reward results for large arm space for the nDCG + diversity reward. Similar to Figure 3, a large829

setup with n = 50 for k = 3 and k = 6, is considered. For k = 6, the possible arms are over830

1.1 × 1010 possible top-k rankings. Given the vastness of this arm space, computing the optimal831

arm for the diversity reward is not straightforward. Therefore, we focus on reporting the cumulative832
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Figure 5: Comparative evaluation of bandit algorithms for large arm spaces for the nDCG + diversity reward,
with > 1.1 × 105 for the left plot and > 1.1 × 1010 for the right plot, respectively. Cumulative reward with
respect to the rounds of the bandit algorithm is depicted. Results are averaged over 6 trials. In both settings, the
WCK approach outperforms other baselines. For more details, see the textual description.

reward in Figure 5. We implement this setup using a Local search in batch mode, updating every 5833

round and considering a substantial horizon of T = 100 rounds. Specifically, we use 5 restarts, 5834

steps in every search direction, and start with 1000 initial candidates. Figure 5 shows that the WCK835

approach demonstrates superior performance, continuing to learn effectively even after extensive836

rounds.837
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