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Abstract. This paper describes the decion-making architecture for an
autonomous airborne scientist that closes planning loops over high fi-
delity weather models. The autonomy architecture exploits: local com-
puting on the aircraft; edge computing in the field; and cloud computing
accessible through the Internet, and other sensing and computing at fixed
sites. This paper describes strategic-level information-space planning for
determining where to fly and when to release air-launched drifters and
tactical-level motion planning in complex flow fields.
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1 Introduction

Aerial robotic systems operating in complex environments will need to reason
over high-fidelity models and large amounts of data. Aerial robots are fundamen-
tally limited by size, power, and weight constraints. These constraints limit the
payload and thus computational power that can be carried by any single robot.
While there is a tendency to make these robots self-contained, that approach lim-
its system capability. By leveraging computing dispersed across different robots,
located in ground control stations in the field, or housed in high-performance
computing centers, significantly more complex prediction, learning, and planning
algorithms can be run compared to what could be implemented locally onboard.

Cloud robotics [11,19], the Internet of robotic things [15], and the dynamic
data-driven application systems paradigm [5,1] are related concepts whereby
networked communication bridges the gap between dispersed computational and
physical elements. This paper describes an architecture built on networked com-
mand and control with dispersed computing that has been deployed [4] for a vari-
ety of applications that include coordinating uncrewed aircraft tracking moving
targets [3], accessing numerical weather predictions within UAS planning al-
gorithms from the field [7] and sampling severe thunderstorms from multiple
unmanned aircraft simultaneously [2,9].

The motivating application for this paper is targeted observation of a super-
cell thunderstorm to understand tornado formation. The region of the storm hy-
pothesized to influence tornado formation [13] is 32,000 m by 8,000m by 1,600m.
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Fig. 1: The autonomy architecture exploits local computing on the aircraft, edge
computing in the field on a mobile command center, cloud computing accessible
through the Internet, and other sensing and computing at fixed sites.

Assuming SUAS speed of 20 m/s and sensing resolution of 1 m2, it would take
over 650 years to sample this region. Since this type of exhaustive sampling
is not feasible, even with hundreds of aircraft, targeted observation schemes are
needed in which online measurements guide the sensing system to good locations
to improve model forecasts and to increase scientific understanding.

The focus of this paper is on the decision-making architecture for a new type
of autonomous airborne scientist. This architecture fits the dynamic data driven
application system paradigm by closing decision-making loops over ensembles
of high fidelity weather models (Figure 1). Furthermore, this dispersed auton-
omy architecture exploits local computing on the aircraft, edge computing in
the field on a mobile command center, cloud computing accessible through the
Internet, and other sensing and computing at fixed sites. Because severe storm
models cannot be run online fast enough for decision-making loops yet, ensemble
subsetting is used to create a set of weather models for planning. These models
are used at runtime for planning. As measurements are acquired, the decision-
making loop dynamically updates its probabilistic understanding of the model
subsets and uses this new understanding to control further path planning.

This paper describes steps toward online planning across dispersed computing
in the context of targeted observation of complex atmospheric flows, by describ-
ing strategic-level information-space planning for determining where to fly and
when to release air-launched drifters [18] and tactical-level motion planning in
complex flow fields.
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2 Strategic Level: Information Space Planning

Autonomous robots encounter uncertainty across all fields. This uncertainty in
the robot’s environment can be introduced by factors like noise in dynamics or
measurements, and shifting unstructured surroundings. Such environments are
characterized as being partially observable, where the robot cannot accurately
perceive the true state of the environment. In the context of severe weather
observation, the primary uncertainty is in the state of the weather system. The
Partially Observable Markov Decision Process (POMDP) provides a principled
mathematical framework for modeling aleatoric uncertainty in the outcomes of
actions and epistemic uncertainty resulting from only partial observability of the
state of the environment. Unfortunately finding the exact solution to POMDPs
is computationally intractable [14], so we solve them approximately.

Recent efforts to solve POMDPs focus on using online sampling-based tree
search techniques [17,20]. These tree searches are guided by maintaining value
estimates over every node in the tree which are generally initialized by running
a roll-out policy [8]. The overall system works as follows. The agent maintains
a belief over the state space which measures the likelihood of a particular state
being the true state of the environment at that time. Starting from the cur-
rent belief, the agent builds a tree that helps it reason over the possible future
outcomes and choose the best action within a fixed computation budget. The
agent executes that action, receives a new observation, and updates its belief.
This repeats until the termination criterion is met. Although building the belief
tree to find the best action seems straightforward, its computational complexity
increases exponentially with the number of states, actions, observations, and the
planning horizon.

(a) Difference in temperature values of
two different models.

(b) Difference in pressure values of two
different models.

Fig. 2
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For applications such as numerical weather prediction, the objective is to
reduce uncertainty about the state of the environment, rather than maximize the
expected reward. This class of problems is a generalization of the POMDP where
the cost may be an arbitrary function, such as the entropy, of the belief [16]. In
this work, we assume we have access to an ensemble of weather models and need
to identify which model from the ensemble best explains the observed data. To
achieve this, we need to identify regions in the environment where the SUAS
should fly to gather observations that will minimize the entropy of our belief
over the weather models.

For our experimental purposes, we generate seven different weather models
that make up the ensemble. Each weather model generates only three quantities
of interest: wind, temperature, and pressure. We sample three regions at random
in a square field of size 10000m × 10000m where the model outputs are signifi-
cantly different (Fig. 2). Flying through these regions is essential to identify the
true weather model. We compare three policies for this problem: a random policy
that takes random actions, a straight-line policy that flies the SUAS straight,
and a tree-search policy (MCTS). Our preliminary results from fifty different ex-
periments are summarized in Figure 3. We observe that the MCTS policy is able
to identify the true weather model from the ensemble of seven models in more
than 90% of the experiments. In contrast, both random and straight-line poli-
cies struggle a lot. Moreover, MCTS policy can identify which high-information
regions are feasible to reach under the given wind pattern as shown in Figure
3.b. Our ongoing work focuses on using the Weather Research and Forecasting
(WRF) model to obtain an ensemble of realistic weather models and deploy-
ing the SUAS in severe weather conditions to validate the effectiveness of our
approach.

(a) POMDP planning performance com-
pered to simple heuristics.

(b) High level path executed by the
SUAS using POMDP planning.

Fig. 3: POMDP planning results
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3 Tactical Level: Sample-based Motion Planning in Flow

Given the high-level strategic plan, tactical-level planning rapidly determines
trajectories that are feasible given the nonlinear dynamics of the aircraft in com-
plex flow fields. Access to dispersed computing opens the possibility for sample-
based methods that can i.) forward-propagate nonlinear system dynamics; ii.)
use importance sampling to capture uncertainties in the system [6], and iii.) be
parallelized. A standard method for achieving asymptotic optimality in motion
planning is through path rewiring [10]. For vehicles with complex, nonlinear dy-
namics models, rewiring is computationally prohibitive since it requires solving
a two point boundary value problem. Instead, this work uses a planner that
rapidly and efficiently explores the domain without rewiring.

The Local Optimality Grid (LOG) planner (Algorithm 1) is a lightweight
planning algorithm that utilizes the grid provided by the wind field prediction
or weather forecasting subsystem as a basis for storing information about nodes
of the graph that are regionally optimal. It fundamentally consists of three com-
ponents: selecting a node (Algorithm 2), propagating that node, and evaluating
the result (Algorithm 3).

Speed improvements are made through quick and intelligent node selection
for dynamics propagation. Such improvements are mainly gained from minimiz-
ing nearest neighbor searches (NNS) which become expensive as graphs expand.
Intelligent node selection is facilitated through the use of a data structure simi-
lar to the structure of the wind field. This data structure stores information on
nearby nodes with the best costs and is quick to build and access.

Algorithm 1 LOCAL OPTIMALITY GRID
for N iterations do

xprop ← State_Selection(X)
xnew ← Dynamics_Propagation(xprop)
if Collision_Free(xprop, xnew) then

Evaluate_Node(xnew)

Algorithm 2 STATE_SELECTION(X)
xrand ← State_Sample()
clocal ← Local_Cell(xrand)
if clocal is populated then return rep of clocal
for neighbor of clocal do

if neighbor is populated then return rep of neighbor
return nearest active node

The LOG algorithm was compared against an SST algorithm [12], a simi-
lar forward-propagating planner that avoids rewire functions. Each planner was
run in identical environments using the same dynamics propagation and control
space. Graph data structures and NNS algorithms were also the same for both
implementations as they are fundamental to planner speed.
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Algorithm 3 EVALUATE_NODE(xnew)
clocal ← Local_Cell(xrand)
if clocal is unpopulated then

populate clocal with xnew

add xnew to graph and activate
else if xnew.cost < clocal.rep.cost then

make clocal.rep inactive
add xnew to graph and activate
make xnew rep of clocal

Fig. 4: LOG planner run including obstacles, wind field, graph, and solution path.

An environment of dense obstacles with a strong non-uniform wind field was
used along with a kinematic unicycle model. Ninety instances of each planner
were run for 100 seconds each controlling for initial RNG seed. Each algorithm
was run single threaded on a 3.3 GHz AMD Ryzen 9 5900hx.

Planner results are shown in Fig. 5. Inverse solution cost averaged over all
planner instances is tracked over time for both planning algorithms (left). No-
table points in the algorithms progression are marked along with their respective
iteration counts. The progression of planner iterations over time for both algo-
rithms is shown (right). LOG finds solutions significantly faster than SST and
continues to refine solution quality until approaching convergence. SST, how-
ever, is unable to find near-optimal trajectories in this environment as the large
graph necessary to saturate the environment slows planner operation. The log
planner is not slowed by large graph sizes, but rather speeds up as more of the
enviornment is saturated and fewer NNS operations are required.

Although it appears that the two algorithms are converging upon different
path costs, viewing the progression of both algorithms iteration-wise implies
that SST has yet to converge, and practically is unable to in the given environ-
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(a) Planner inverse solution cost over time
averaged over all runs.

(b) Iterations over time for both planner
instances

Fig. 5

ment. The LOG planner finds initial solutions in fewer iterations than SST and
requires over one million iterations to begin to converge. SST, however, finds
initial solutions slower and does not exceed 300 thousand iterations throughout
the entire 100 second run. Therefore it is likely that SST is simply unable to
converge in the given computation time and the asymptotic-appearing behavior
of the average inverse cost is simply because the planner has slowed too much
to make significant progress in optimizing solutions.

4 Conclusion

This paper described the decion-making architecture for an autonomous air-
borne scientist that closes planning loops over high fidelity weather models.
The strategic-level planner uses a Partially Observable Markov Decision Pro-
cess (POMDP) to formulate a problem which is solved using Monte Carlo Tree
Search. The tactical planner uses a new Local Optimality Grid (LOG) planner
to determine feasible motion plans. Both levels use sample-based methods which
are amenable to parallelization as part of future work.
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