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Abstract

It was always obvious that SGD with small minibatch size yields for neural networks much higher
asymptotic fluctuations in the updates of the weight matrices than GD. It has also been often reported
that SGD in deep RELU networks shows empirically a low-rank bias in the weight matrices. A recent
theoretical analysis derived a bound on the rank and linked it to the size of the SGD fluctuations [25].
In this paper, we provide an empirical and theoretical analysis of the convergence of SGD vs GD, first
for deep RELU networks and then for the case of linear regression, where sharper estimates can be
obtained and which is of independent interest. In the linear case, we prove that the component W⊥ of
the weight matrix W , corresponding to the null space of the data matrix X, converges to zero for both
SGD and GD, provided the regularization term is non-zero. Because of the larger number of updates
required to go through all the training data, the convergence rate per epoch of these components is much
faster for SGD than for GD. In practice, SGD has a much stronger bias than GD towards solutions for
weight matrices W with high fluctuations – even when the choice of mini batches is deterministic – and
low rank, provided the initialization is from a random matrix. Thus SGD with non-zero regularization,
shows the coupled phenomenon of asymptotic noise and a specific low-rank bias– unlike GD.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.



1 Introduction
Over the past few years, deep neural networks have challenged machine learning theory with several
puzzles. One of them is the role and properties of minibatch SGD vs GD. It seems generally accepted
that, apart from computational advantages, SGD is similar to GD in its basic properties. There are,
however, clear differences. In particular, SGD updates never reach equilibrium across updates (for
fixed learning rate, small mini-batch size and weight decay λ > 0): the gradient of the loss is never
zero, as shown in Figure 1 – unlike GD [1]. Hence, Neural Collapse as described by [2] does not strictly
take place. This in turn implies that SGD, unlike GD, asymptotically shows both a specific “SGD
noise” and, as we suggest, a specific form of low rank bias.

1.1 Related Work
Stochastic gradient descent (SGD) is a widely used method for optimizing deep learning models [3].
Despite the inherent similarities between Stochastic Gradient Descent (SGD) and Gradient Descent
(GD), recent research has highlighted various distinctions between the solutions learned by both al-
gorithms. For example, in the context of stochastic convex optimization, SGD is known to converge
within O

(
1
ϵ2

)
iterations to a solution with ϵ excess expected error. In contrast, GD, using an equal

number of iterations, might result in overfitting [4]. On the empirical side, it was observed that SGD
with smaller batches generalizes more effectively than with larger batches [5, 6], and that GD. Despite
numerous studies, the subtle yet significant effects of SGD, especially in comparison to GD regarding
tendencies towards large fluctuations and low rank, are not completely understood. Current literature
lacks comprehensive comparisons of SGD and GD in these respects.

In an effort to understand the success of deep learning, various papers have explored the implicit
regularization effects of gradient-based optimization. A major focus of significant research in recent
years has been the implicit bias of linear neural networks towards rank minimization. The majority
of this interest centered around the matrix factorization problem, which is equivalent to training a
depth-2 linear neural network with multiple outputs with respect to the square loss. For instance,
[7] conjectured and provided both empirical and theoretical evidence that, with sufficiently small
step sizes and initialization close to the origin, gradient descent on a full-dimensional factorization
converges to the minimum nuclear norm solution. However, this conjecture was later refuted by [8],
which demonstrated that norm minimization does not occur in a wide range of matrix factorization
problems. [9] postulated that the implicit regularization in matrix factorization can be explained
by rank minimization and also hypothesized that some notion of rank minimization may be key to
explaining generalization in deep learning. [8] provided evidence that the implicit regularization in
matrix factorization acts as a heuristic for rank minimization. Beyond factorization problems, [10]
demonstrated that in linear networks with an output dimension of 1, gradient flow (GF) with respect
to exponentially-tailed classification loss functions converges to networks where the weight matrix of
every layer has a rank of 1.

In the non-linear case, the situation is more complex. An empirical study found that during mini-
mization SGD spans a small subspace, implying an effective bias on the rank of the weight matrices [11].
A couple of papers tried to study the inductive bias of gradient-based methods to learn low-rank weight
matrices from a theoretical standpoint. For example, in [12, 13, 14] they considered a setting where the
model is at the global minima of the L2 regularization subject to fitting all of the training samples. For
example, [13] showed that in this setting, the weight matrices of a two-layer network become rank 1 at
the global minimum when the data is assumed to lie on a one-dimensional manifold. This result was
later extended in [12] for datasets that lie on higher dimensional spaces. Additionally, [14] discovered
that in sufficiently deep ReLU networks, when fitting the data, the weight matrices in the topmost
layers become low-rank at the global minimum. This observation is also related to the property of
Neural Collapse [15, 1]. In separate work, [16] prove that for linear multilayer networks SGD, but not
GD, has a non-zero probability to jump from a higher rank minimum to a lower rank one1.

Despite recent advancements in understanding the tendency of weight matrices to be low-rank at
the global minimum, the fundamental causes of this behavior during the optimization process are not
yet fully understood. Previous studies [10] have demonstrated that when univariate linear networks
are trained on binary classification tasks using exponentially-tailed loss functions through gradient

1This work assumes a matrix completion task and additive regularization instead of the (more natural) choice of
regularizing the product of the norms of the layers (as we assume here, see Appendix and see [1]).
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flow (GF), the networks tend to converge to weight matrices with a rank of one, especially when the
data is linearly separable. Building on this, a more recent paper [17] found that when training ReLU
networks with multiple linear top layers using GF, these top layers also tend to converge to rank one
weight matrices.

In this work we describe an empirical and theoretical analysis of SGD vs GD convergence, first
for deep RELU networks and then for the case of linear regression. We describe relevant differences
between GD and SGD: the latter is characterized by asymptotic intrinsic fluctuations in the weight
matrices in the bottom and middle layers – even in the absence of any explicit randomness in the
algorithm – which are coupled with a bias towards shrinking the components of the weight matrices
in the null space of the data – which can be described as a specific form of a bias towards small rank.
For one-layer linear networks we provide an analysis of convergence of SGD vs GD in a special but
important case: the components of the matrix W corresponding to the null space of the data matrix
X converges to zero for both SGD and GD, but the decay is much faster for SGD (measured over an
epoch). Thus SGD is much more effective than GD at pruning features that are not supported by the
input or output data.

2 Deep RELU networks
In a previous paper [1] we discussed several differences between SGD and GD. In particular, in the
presence of regularization, SGD never converges, across its updates of the weights, to a perfect equi-
librium: there is always, generically, SGD noise. We concluded that the underlying reason is a rank
constraint in the SGD updates that depends on the size of the mini-batches – an observation that,
to our knowledge, seems to have escaped previous studies. The argument can be seen by considering
the SGD update equations, which are given here in terms of reparametrization of the weight matrices
Wk using ρkVk = Wk, ρk = ∥Wk∥, ρ = ΠL

k=1ρk (see [1]). We also define the output of the network as
g(x) = ρf(x); f̄n = ynfn > 0, µ = 1

N

∑
n f̄n and M = 1

N

∑
n f̄

2
n.

The normalized weight matrices Vk and ρ are first initialized, and then iteratively updated in the
following manner

ρ← ρ− η
2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
2

B
ρ

B∑
j=1

[(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)] (1)

where S ′ is selected uniformly as a subset of the training set S of size B, η > 0 is the learning rate.
It is important to emphasize that we assume here regularization on the product of the norms of the
layers (instead of the sum of the norms). Such a regularization follows from normalizing each weight
matrix by weight normalization; it is a natural choice to preserve homogeneity of the network.

A study of Equations 1 is in the Appendix. A main result is the following lemma (proof in the
Appendix):

Lemma 1. Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the pro-
cess described above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}L

k=1)
∂ρ =

0 and ∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that
∀ n ∈ [N ] : f̄n ̸= 0. Then, the ranks of the matrices Vk are at most ≤ 2.

Lemma 1 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. More details of the argument are illustrated in [18]. When λ = 0,
interpolation of all data points is expected: in this case, the GD equilibrium can be reached without
any fluctuation since the SGD-specific noise essentially disappears, as shown by the histograms on the
left and the right hand side of Figure 10 in [1]. For λ > 0, however, the solution {Vk}, k = 1, · · · , L
is not the same for all samples: there is no convergence to a unique solution but instead fluctuations
between solutions during training.

3



2.1 Testing key predictions about SGD fluctuations
The analysis of section C in the Appendix leads to a few predictions about SGD noise that we have
tested in our experiments.

(1) Fluctuations in f̄n during training should be minimal for λ = 0 – just due to the finite learning
rate of gradient descent – and increase for increasing λ. Separately, µ, which is the average
margin over all the training data, increases according to the theory with increasing λ because
µ = (M +λ)ρ. The corresponding margin f̄n for different λ in the case of binary classification on
CIFAR10 trained with SGD are shown in Figure 1. As predicted, the variance of the fluctuations
is small with λ = 0 and grows with increasing λ. Notice that the asymptotic fluctuations in
fn across different n, are due to fluctuations in the Vk weight matrices for k < L, that is, for
weight matrices that did not undergo neural collapse. From an analysis of the equations (see [1],
it seems likely that the fluctuations in ρ are small.

(2) According to Lemma 1 there should be no SGD specific noise when the mini-batch size is equal to
the training dataset size – that when SGD becomes GD – and no dependence of these fluctuations
on λ. Our experiments confirm this prediction, see Figure 2. There are large fluctuations because,
using the same hyper-parameters of the other experiments, GD does not converge to zero square
loss and in fact is quite far from it with a significant percentage of incorrect classifications on
the training set.

(3) According to Equation 25 the norm of the update of Vk depends on λ, because λ > 0 ensures
ℓn > 0. It should be minimal at the top layer, assuming that the top layer is close to converging
to Neural Collapse, since the rank of the top layer is small (2 in our case). Figure 3 confirms our
prediction and shows the dependency on k and λ.

(4) Larger rank of Vk leads to larger ∥Vk(t+1)−Vk(t)∥ as suggested by Equation 1: compare Figure
4(a) and Figure 4(b).

(5) In the case of exponential-type loss functions such as the logistic loss, the presence of the SGD-
specific noise is expected, even when λ = 0, because of Equation 17. The cross-entropy loss
margin results with different λ are shown in Figure 5 (a), while the square loss results are shown
in (b). Even for λ = 0 there cannot be interpolation: the value of e−ρf̄n

1+e−ρf̄n
in the Equation 17

is always positive (and controlled by ρ). Of course the size of the fluctuations is expected to
increase further with increasing λ, as shown in Figure 5 (a).

2.2 Low-rank bias of SGD?
In previous work [1] we suggested that the rank constraint of the SGD updates not only implies SGD-
specific fluctuations, as described in the previous sections, but also a bias towards low rank solutions2.
This conjecture was formalized in an upper bound on the rank [18] which however is quite loose in
most practical cases. The underlying intuition was based on Equations 1. In the case of B = N , the
equations describe gradient descent for which it is well known that ∥Vk(t + 1) − Vk(t)∥ goes to zero
with t→∞. In the case of B = 1, however, the right hand side of the Vk equation is not a gradient of
the loss. Thus we cannot infer that the SGD update necessarily decreases in norm. The SGD update
equations only suggests that at the end of one epoch Vk is the linear combination of rank 1 matrix
updates, implying that Vk has rank ≤ N . We will show in the next section, however, that for a linear
network under the same conditions yielding SGD-specific fluctuations (λ > 0 and B < N) there is
a SGD specific bias towards aggressively pruning the components of W that are in the null space of
the data. We believe that this argument can be directly extended to multilayer, nonlinear networks,
applying the linear result to each layer starting from the top layer to the bottom one and iterating.

2This bias reinforces a similar bias that SGD shares with GD – due to maximization of the margin under normalization
(that can be inferred from [14])
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Figure 1: (a) Margin distributions – that is histograms of f(xn) – over 10000 training data samples for
binary classification on the CIFAR10, trained with SGD and our deep ReLU networks with varying λ.
(b) A zoomed-in view of the blue rectangular region in (a) reveals more detailed margin changes with
λ ranging from 0 (without regularization) to 1e-04. The margins exhibit little noise (i.e., very small
standard deviations) when λ = 0 and 1e-06. An increase of λ from 5e-05 to 0.01, leads to an increase
in the average margin, but, more interestingly to an increase in the standard deviation of the noise
distribution.

3 Linear regression

3.1 SGD and GD
Consider the linear regression problem of finding the best linear network W ∈ Rm×d that satisfies
Wx = y from a set of N training data xi ∈ Rd with i = 1, · · · , N , and corresponding target yi ∈ Rm

with i = 1, · · · , N . We always assume to be in an overparameterized setting where N < d. The
empirical loss/risk with weight decay is given by

L(W ) =
N∑
i=1

∥Wxi − yi∥2 + λ∥W∥2, (2)

where λ denotes the weight decay regularization parameter, and ∥W∥ the Frobenius norm of the weight
matrix. The loss L is minimized by the gradient flow

Ẇ = − ∂L
∂W

= − 2

N

N∑
i=1

(Wxi − yi)x
T
i − 2λW. (3)

The corresponding gradient descent iteration corresponds is

W (t+ 1)−W (t) = −2η

N

N∑
i=1

(W (t)xi − yi)x
T
i − 2ηλW (t), (4)

and the Stochastic Gradient descent (SGD) iteration is

W (t+ 1)−W (t) = −2η

B

∑
i∈St

(W (t)xi − yi)x
T
i − 2ηλW (t), (5)

where one minibatch St of size B ≤ N is selected uniformly as a subset of the training dataset S; η > 0
is the learning rate which we assume fixed in this paper (unlike typical setups in which η decreases
with iterations). Gradient descent is the special case where St = S (i.e., minibatch size B = N). In
the following we consider a realization of the stochastic process associated with SGD. In fact there is
no difference in the analysis of this section if we just assume that the mini-batches of size 1 are selected
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Figure 2: Margin distribution over all training data for binary classification on the CIFAR10, trained
with GD using our deep ReLU model and varying λ. (a) We used the same training hyperparameters
as previous experiments, but with a large batch size (B) of 10000, which matches the entire training
data size (N). The fluctuations here are not SGD-specific (see text); GD here is far from zero square
loss with about 20% classification errors on the training set. (b) Training our model with a constant
larger learning rate η = 0.05, B = 10000, and 5000 epochs; GD achieved small classification errors
(< 1%) that is comparable to the performance achieved with SGD. The fluctuations w.r.t. different λ
are much smaller than those observed in (a).

deterministically from 1 to N in each epoch. The key convention in the Neural Network literature is
about epochs: one epoch means one pass over all the training examples; thus minibatch batch size is
the number of training examples used for one update of the weights and the number of iterations per
epoch is the number of minibatches per epoch. Example: with 1000 training examples, and batch size
500, then it will take 2 iterations to complete 1 epoch.

3.2 Bias of SGD towards shrinkage of the null space
Assume asymptotic equilibrium, that is ∂L

∂W = 0 (or W (t+ 1)−W (t) = 0) and assume B = 1.
In this case, Equation 5 for St = 1 becomes

∆W (t) = W (t+ 1)−W (t) = −2η(W (t)xit − yit)x
T
it − 2ηλW (t). (6)

Since we assume overparameterization, if λ = 0 this implies Wxi = yi ∀i, that is exact interpo-
lation of the training data. If λ > 0, exact interpolation is impossible (see Lemma 1 in [1]), that is
∥Wxi − yi∥ ̸= 0 ∀i. Then 0 = −(Wxi − yi)x

T
i − λW ∀i, which yields for all t sufficientrly large

∆W (t) = −yitxT
it(λI + xitx

T
it)

−1 (7)

Since the inverse of (λI + xix
T
i ) exists (see for instance the Sherman–Morrison formula) and has

full rank, the rank of W would be the rank of yix
T
i . Thus the assumption of equilibrium for SGD,

that is zero fluctuations in W , implies that W has rank 1– – which is not consistent, in general, with
a small square error in regression (for d > 1). Therefore, the assumption ∆W = 0 asymptotically
must be wrong. The situation is different for GD (corresponding to SGD with B = N). In this case
the matrix

∑N
i=1(Wxi − yi)x

T
i can be expected to be full rank or close to it, since it is the sum of N

rank 1 matrices. In this case the assumption ∆W = 0 does not lead to a contradiction: asymptotic
equilibrium can be reached.

More succinctly, the GD and SGD updates have the form

W (t+ 1)−W (t) = −2 η

B
(W (t)−W ∗)XXT − 2ηλW (t) (8)
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Figure 3: Layer-wise SGD noise ∥Vk(t+ 1) − Vk(t)∥ in logarithmic scale by 10 different λ at “conver-
gence”. ∥Vk(t+1)−Vk(t)∥ is small when λ is 0 or 1e-06. An increase of λ from 1e-05 to 0.01 generates
larger fluctuations, especially for the first four convolution layers. The last two fully connected layers
tend to consist of low-rank matrices, corresponding to smaller ∥Vk(t+ 1)− Vk(t)∥.

where X is the matrix composed of the xi belonging to the minibatch, and Y = W ∗X. It is important
to notice that GD and SGD are quite different wrt an epoch: when the minibatch size is 1, W is
updated N times in the case of SGD and only once in the case of GD. For GD, XXT is generically full
rank, whereas it is rank deficient for SGD with B < N . It is well known that when W is initialized
as W 0 = 0, and provided the step-size is chosen appropriately, both SGD and GD converge [?] and it
if the data are generated by a linear low rank matrix, the correct rank is recovered. However, when
W is initialized as a random matrix (possibly of small norm) then the convergence of SGD and GD is
quite different as shown in Figures A.1 and A.2.

The formal version of the argument is the following observation:

Observation 1. Consider the linear regression problem WX = Y . Assume that W ∈ Rm,d is found
by SGD with minibatch of size B or by GD, both with learning rate η and regularization parameter λ.
Assume overparametrization, that is the data matrix is X ∈ Rd,N with d > N . Let π be the projection
on the span of the data (the columns of X), W ∥ = Wπ the weight matrix restricted to the data span,
and W⊥ = W (I − π) the weight matrix W restricted to the null space of X, so that W = W ∥ +W⊥.
Then for each epoch assuming minibatches of size 1,

• if W at initialization is the zero matrix (or more generally Wπ = W ), both SGD and GD will
converge to the same regularized solution;

• if W at initialization is a non-zero matrix (more generally Wπ ̸= W ), such as a random matrix,
SGD and GD will also converge to the regularized solution. However, the convergence per epoch
of W⊥ (that is, components of W that are in the null space of XXT ) to zero is much faster
for SGD than GD. The decrease is (1 − ηλ)N for SGD and (1 − ηλ) for GD (assuming η to be
constant during the epoch).

Equation 8 can be rewritten as
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Figure 4: (a) Layer-wise asymptotic values of ∥Vk(t+1)−Vk(t)∥ discretized and plotted on a logarithmic
scale parametrized by 10 different λ. The SGD noise across layers is small when λ is set to 0 or 1e-06. An
increase of λ from 1e-05 to 0.01 generates larger fluctuations, especially for the first four convolution
layers. The last two fully connected layers tend to consist of low-rank matrices, corresponding to
smaller ∥Vk(t+ 1)− Vk(t)∥. (b) Layer-wise rank of Vk by 10 different λ trained with SGD (batch size
is 128). The rank of the weight matrix Vk across different layers decrease by increasing the weight
decay parameter (λ). The last (“deeper”) four layers achieved much smaller ranks compared to the first
two layers, i.e., the top layers tend to consist of low-rank weight matrices, corresponding to smaller
∥Vk(t+ 1)− Vk(t)∥ as shown in (a).

W ∥(t+ 1) = W ∥(t)[(1− 2ηλ)I − ηλ

B
XXT ]− 2ηλY XT (9)

and
W⊥(t+ 1)−W⊥(t) = −2ηλW⊥(t) (10)

The two equation are independent; equation 10 shows that the elements of W⊥ decay to zero for
each minibatch with a factor 1− ηλ. The theorem follows considering a full epoch.

Remarks

• For minibatch size B > 1 the convergence rate per epoch of the null space of W to zero is
(1− ηλ

B )
N
B .

• The SGD update equations can be fully deterministic, running through the data from 1 to N in
the same order in each epoch. This is equivalent to randomly choosing a minibatch without rep-
etition until all data are sampled. Despite the absence of any random process there is asymptotic
noise in the predicted y.

3.3 Linear regression experiments
We consider the case of a linear, overparametrized, one layer network with input dimension d > N . We
assume that the learning rate of GD is set η = 0.5max(svd). The learning rate for SGD is the same
at initialization and then decays as ≈ 1√

t
(see Appendix D) where t is epochs. It is well-known that

SGD and GD converge to the regularized solutions (which is the minimum norm solution for λ → 0)
at a similar rate when W is initialized from W0 = 0 (see Figure A.1 in Appendix). The situation is
different when we initialize W0 to be a random matrix of small norm. In this case (see Figure A.2),
the small singular values decay to zero for SGD much faster (per epoch) than for GD. At the same
time the norm of the gradient is almost always larger for SGD than GD – as expected from Equation
5. The small singular values are almost always much smaller for SGD than GD: there is a strong per
epoch shrinkage of small eigenvalues for SGD vs GD, which is correlated with increasing gradient noise
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Figure 5: Margin distributions over all training data for binary classification on the CIFAR dataset
trained with cross entropy loss in (a) and square loss in (b) using different λ. The results in (a)
verified the prediction presented in Section 2.1, i.e., the presence of the SGD-specific noise is expected
to be significant even when λ = 0, unlike the square loss case.

– that is norm of ∥∆W∥ – and with λ. This effect is qualitatively similar to a bias towards low rank3.
SGD maintains its bias when the problem is to find a small number of active regressors among many
useless coordinates (see Figure A.3). Online gradient descent in which each example is used only once
(just one long epoch for GD and SGD) gives similar results (Figure A.4). Figure A.5 shows that the
asymptotic noise in the training of SGD does not decrease (for constant η). Notice that the update
equations used here are deterministic, running through the data from 1 to N : this is equivalent to
randomly choosing a minibatch without repetition until all data are sampled.

4 Discussion
Our analysis of minibatch SGD shows, consistently with the classical analysis, that SGD with fixed
learning rate does not strictly “converge” at the level of minibatches updates4: we observe sizeable
fluctuations under the square loss in the overparametrized case for very small λ, when degenerate
solutions, that fit the data perfectly, abound for λ = 0. This is not surprising, of course, since
minibatch SGD normally uses random samples of the training data. Furthermore, classical stochastic
gradient descent with an explicit random noise term (instead of random sampling of minibatches)
is known to converge almost surely to a global minimum when the objective function is convex or
pseudoconvex, and otherwise converges almost surely to a local minimum, provided that the learning
rate η decrease with an appropriate rate.

As shown in Figure 2, the SGD specific noise disappears when the minibatch size increases and
SGD becomes GD. This also means that Neural Collapse, as described by [2], never truly happens for
the linear regression we have studied or for generic, intermediate layers in a neural network: NC1 is
equivalent to all margins f(xn) ∀n to be the same at convergence, which cannot strictly happen for
SGD and λ > 0 (both conditions are required for NC1 to be possible[1]). On the other hand, the origin
of the minibatch SGD noise is not due to an explicit noise term, but can be described as arising from
a competition between a rank constraint in the SGD updates of Wk and the constraint of minimizing
the error for each data point. An equivalent description is that SGD never finds an asymptotic W
that is the best fit to all the data but instead finds a sequence of similar W , each one updated to fit
the last minibatch.

It is interesting to notice that in our simulations of the linear case the choice of the mini batches
is not random but it is the same sequence going through the data from 1 to N in each epoch. We

3Note that direct measurements of rank are fragile because of the discontinuous nature of rank its dependence on an
arbitrary threshold (machine precision for the function rank in Matlab).

4It does in expectation but its variance is never zero, see also [19].
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did not notice any difference wrt random choice of nonoverlapping mini batches. Despite the absence
of any randomness (apart the initial choice of the sequence order), SGD is associated with significant
noise-like fluctuations arising from the nonlinear dynamics we described. In this sense, we believe, the
SGD noise is better described as deterministic chaos.

Under the square loss the role of weight decay is key to all the results here. Interestingly, there
is growing evidence that weight decay yields better generalization in state-of-the-art systems such as
transformers. It is equally important to emphasize that weight decay is not necessary to yield SGD
specific noise when exponential loss functions are used instead of the square loss. In this context, it
may also be interesting to explore the role of early stopping when weight decay is absent since it is well
known that early stop provides an implicit regularization effect.

It is unclear whether the SGD-specific noise described here has a role in better generalization. Our
tentative answer is negative, since there is an empirical evidence that good solutions can sometimes be
found for λ = 0. It is possible, however, that the SGD-specific noise may help in searching for a global
minimizer, especially in underparametrized situations, when we expect isolated and not degenerate
global minima (see [1]).

A closely related open question is whether small rank implies better generalization. A direct effect
is possible though we do not know of any result showing that smaller rank yields better generalization
bounds for deep networks. In fact the standard Rademacher complexity of linear function classes
with L2 norm does not decrease with rank, though Rademacher complexity defined using different
norms may depend on rank. The main effect, however, is likely to be indirect. We conjecture that the
specific bias towards small rank for random initialization plays an important role in optimization, by
eliminating "features" that are not supported by the data, as we showed in the linear case. Furthermore,
this effect may be especially critical in the optimization of deep overparametrized networks, possibly
implying a significant advantage of SGD vs GD, even apart from simple computational efficiency.

As it should be clear from our analysis, the mechanism underlying the SGD-specific fluctuations
we have identified is a competition between the two terms on the right side of Equations 16 and 17 in
the Appendix. Consider the case of classification under the square loss. If the term (−Vkf̄n + ∂f̄n

∂Vk
) in

the equation

V̇k =
2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (11)

becomes small, the matrix Vk becomes closer to ∂f̄n
∂Vk

, which has rank 1. But small Vk rank implies
that the network cannot interpolate the data, which means that (1− ρf̄n) cannot be small.

The same competition arises in the case of the exponential loss, in this case independently of λ:

V̇k =
2

N
ρ
∑
n

e−ρf̄n

1 + e−ρf̄n
(−Vkf̄n +

∂f̄n
∂Vk

). (12)

The precise mechanism behind the specific bias of SGD vs GD towards low rank is clear in the
linear case: elements of W in the null space of the data matrix decay much more quickly (per epoch)
to zero under SGD than under GD. It is thus likely that the exponential decay of the null space under
SGD is the reason for the strong bias towards low rank observed in deep networks. An extension of this
result to multilayer, nonlinear networks has been empirically observed in Appendix E, indicating that
the bias towards low rank by SGD is not limited to linear cases. However, a comprehensive theoretical
justification for this phenomenon in deep, nonlinear networks remains an open question.
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Traiectory of Eigenvalue with Smallest Norm at Final Epoch Over Epochs for SGD and GD 
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Figure A.1: Solving Wx = y, for a data matrix X with d = 11 and N = 10; SGD and GD are used with
regularization λ = 0.01 and optimal learning rate η as described in the text. The number of epochs is
10. Initialization is from W = 0. The final MSE for SGD is 0.879681 and for GD is 1.524118. At the
final epoch, the eigenvalues with the smallest norm for both SGD and GD have a norm of 0.000000.

A Linear experiments
All the figures in the Appendix describe key experiments with linear regression that help visualize the
theoretical predictions in the main text.

B Multilayer RELU networks and training
We introduce a model of the training procedure that uses square loss for binary classification, La-
grange multipliers (LM) for normalizing the weights and a regularization term controlled by λ. The
normalization technique we use is completely equivalent to the Weight Normalization [20], see the
proof in [21]. In the paper, we assume the network is overparametrized, so that there is convergence to
global minima with appropriate initialization, parameter values, and data. Under the assumption of
overparameterization, we also expect interpolation of all training data when λ = 0 [1]. In the presence
of weight decay (i.e., λ > 0), perfect interpolation of all data points cannot occur and is replaced by
“quasi-interpolation” of the labels (yn). In the special case of binary classification where yn = ±1,
quasi-interpolation is defined as ∀ n : |f(xn) − yn| ≤ ϵ, where ϵ > 0 is small. Our experiments and
analysis of the training dynamics show that the presence of regularization leads to a weaker dependence
on initial conditions, as has been observed in [22].

In this study, we consider a binary classification problem given a training dataset S = {(xn, yn)}Nn=1

of N samples, where xn ∈ Rd are the inputs (normalized such that ∥xn∥ ≤ 1) and yn ∈ {±1} are
the labels. We use deep rectified homogeneous networks with L layers (see Figure ??) to solve this
classification problem. For simplicity, we consider networks fW : Rd → Rp of the following form
fW (x) = WLσ (WL−1 . . . σ (W1x) . . .), where x ∈ Rd is the input to the network and σ : R → R,
σ(x) = max(0, x) is the rectified linear unit (ReLU) activation function that is applied coordinate-wise
at each layer. The last layer of the network is linear.

Due to the positive homogeneity of ReLU (i.e., σ(αx) = ασ(x) for all x ∈ R and α > 0), one can
reparametrize fW (x) by considering normalized5 weight matrices Vk = Wk

∥Wk∥ and define ρk = ∥Wk∥

5We choose the Frobenius norm here.
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0.020154

Figure A.2: Solving Wx = y, for a data matrix X with d = 11 and N = 10; SGD and GD are used
with regularization λ = 0.01 and optimal learning rate η as described in the text. The number of
epochs is 50000. Initialization is from W random. The final MSE for SGD is 0.126220 and for GD is
0.138375. At the final epoch, the eigenvalues with the smallest norm for SGD has norm 0.000000 and
for GD has norm 0.020154.

obtaining fW (x) = ρLVLσ (ρL−1 . . . σ (ρ1V1x) . . .), see Figure ??(a). Because of the homogeneity
of the ReLU, it is possible to pull out the product of the layer norms as ρ =

∏L
k=1 ρk and write

fW (x) = ρfV (x) = ρVLσ (VL−1 . . . σ (V1x) . . .), as shown in Figure ??(b). Notice that the two networks
– fW (x) and ρfV (x) – are equivalent reparameterizations of the same function but their optimization
generally differ. We define fn := fV (xn).

Our definitions follow the convention used in [1] that the norm ρk of the convolutional layers is
defined as the norm of their filters rather than the norm of their associated Toeplitz matrices. The ρ
calculated in this way is the quantity that enters the generalization bounds.

In the model described in Figure ??(b), we assume that all layers are normalized, except for the last
one. Thus, the weight matrices {Vk}Lk=1 are constrained by the LM term to be close to, and eventually
converge to, unit norm matrices (in fact to fixed norm matrices); notice that normalizing VL and then
multiplying the output by ρ, is equivalent to letting WL = ρVL be unnormalized. Hence, fV is the
network that at convergence has L − 1 normalized layers. Based on the aforementioned definitions,
we can write the Lagrangian corresponding to the minimization of the regularized loss function under
the constraint ∥Vk∥2 = 1 in the following manner

LS(ρ, {Vk}Lk=1) : =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N

∑
n

(1− ρf̄n)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2,

(13)

where νk are the Lagrange multipliers and λ > 0 is a predefined parameter.

Separability and Margins. Two of the most important aspects of classification are separability and
margins. Given an input training or test data sample and its label pair (x, y) and the model fW , we say
that fW correctly classifies x if f̄n = ynfn > 0. Moreover, for a given dataset S = {(xn, yn)}Nn=1, separa-
bility is defined as the condition in which all training samples are classified correctly, ∀ n ∈ [N ] : f̄n > 0.
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Figure A.3: Regression with sparse features. Solving Wx = y, for a data matrix X with d = 10 and
N = 5 with only two of components of x being relevant; SGD and GD are used with regularization λ =
0.01 and optimal learning rate η as described in the text. The number of epochs is 200. Initialization
is from random W .

Furthermore, when
∑N

n=1 f̄n > 0, we say that average separability is satisfied. The minimum of LS for
λ = 0 is usually zero under the assumption of overparametrization. This corresponds to separability.

Notice that if fW is a zero loss solution of the regression problem, then ∀ n : fW (xn) = yn, which
is also equivalent to ρfn = yn, where we denote ynfn = f̄n the margin for xn. 6 By multiplying both
sides of this equation by yn, and summing both sides over n ∈ [N ], we obtain that ρ

∑
n f̄n = N .

Thus, the norm ρ of a minimizer is inversely proportional to its average margin µ in the limit of λ = 0,
with µ = 1

N

∑
n f̄n. It is also useful to define the margin variance σ2 = M − µ2 with M = 1

N

∑
n f̄

2
n.

Notice that M = 1
N

∑
n f̄

2
n = σ2 + µ2 and that both M and σ2 are not negative.

C Theoretical Analysis

C.1 Gradient flow equations
We assume the deep networks with the ReLU units and weight normalization (in the Frobenius norm)
at each layer, enforced via Lagrange multipliers. We also assume square loss and binary classification.
The gradient flow equations in ρ (the product of the Frobenius norms of the unnormalized weight

6Notice that the term “margin” is usually defined as minn∈[N ] f̄n. Instead, we use the term “margin for xn” to
distinguish our definition from the usual one.
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Figure A.4: Regression with sparse features in an online setting. One epoch with N = 200, d = 10.
Solving Wx = y, for a data matrix X with d = 10 and N = 5 with only two of components of x being
relevant; SGD and GD are used with regularization λ = 0.01 and optimal learning rate η as described
in the text. Initialization is from random W .

matrices) and Vk (the normalized weight matrices) are as follows

ρ̇ = −∂LS(ρ, {Vk}Lk=1)

∂ρ
=

2

N

∑
n

(1− ρf̄n)f̄n − 2λρ

V̇k = −∂LS(ρ, {Vk}Lk=1)

∂Vk
=

2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2νkVk,

(14)

where f̄n = ynf(xn), yn = ±1 and n ∈ [N ]. In the equation of V̇k, we can use the unit norm constraint
on the ∥Vk∥ to determine the Lagrange multipliers (νk). Using a structural property of the gradient,
the constraint ∥Vk∥2 = 1 implies ∂∥Vk∥2

∂t = V T
k V̇k = 0, which gives

νk =
1

N

∑
n

(ρf̄n − ρ2f2
n) =

1

N

∑
n

ρf̄n(1− ρfn). (15)

Thus the gradient flow is the following dynamical system

ρ̇ =
2

N

[∑
n

f̄n −
∑
n

ρ(f̄n)
2

]
− 2λρ and V̇k =

2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (16)

The gradient flow for the logistic loss would result in

ρ̇ =
2

N

∑
n

e−ρf̄n

1 + e−ρf̄n
f̄n − 2λρ and V̇k =

2

N
ρ
∑
n

e−ρf̄n

1 + e−ρf̄n
(−Vkf̄n +

∂f̄n
∂Vk

). (17)
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Figure A.5: Regression in an online setting. One epoch with N = 100000, d = 10. Solving Wx = y,
for a data matrix X with d = 10; SGD is used with regularization λ = 0.01 and optimal learning
rate η as described in the text. Initialization is from random W . The updates are fully deterministic
without any random component. At convergence there is asymptotic noise that does not decrease
(unless learning rate goes to zero).

C.2 SGD
In the previous section, we derived the gradient flow equations of ρ and Vk. In order to iteratively
train these parameters over mini-batches, we consider a setting where Vk and ρ are trained as follows

ρ← ρ− η
∂LS′(ρ, {Vk}Lk=1)

∂ρ
= ρ− η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
∂LS′(ρ, {Vk}Lk=1)

∂Vk
= Vk − η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)(−Vkf̄n +
∂f̄n
∂Vk

),

(18)

where one minibatch S ′ of size B < |S| is selected uniformly as a subset of the training dataset S and
the learning rate η > 0.

C.3 No equilibrium
The Lemma 1 shows that the SGD cannot achieve equilibrium for all the mini-batches of size B < N ,
because otherwise all the weight matrices would have very small rank which is incompatible, for generic
data sets, with quasi-interpolation. The Lemma is

Lemma 2. Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the pro-
cess described above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}L

k=1)
∂ρ =

0 and ∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that
∀ n ∈ [N ] : f̄n ̸= 0. Then, the ranks of the matrices Vk are at most ≤ 2.
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Figure A.6: Sparse regression with N = 10, d = 2; of the two components of y, one does not depend
on the data. Solving Wx = y; GD and SGD are used with regularization λ = 0.01, over 150 epochs,
and an optimal learning rate η as described in the text.

Proof. Let fV (x) = VLσ(VL−1 . . . σ(V1x) . . . ) be the normalized neural network, where Vl ∈ Rdl+1×dl

and ∥Vl∥ = 1 for all l ∈ [L]. We would like to show that the matrix ∂fV (x)
∂Vk

is of rank ≤ 1. We note that
for any given vector z ∈ Rd, we have σ(v) = diag(σ′(v)) · v (where σ is the ReLU activation function).
Therefore, for any input vector x ∈ Rn, the output of fV can be written as follows,

fV (x) = VLσ(VL−1 . . . σ(V1x) . . . )

= VL ·DL−1(x;V ) · · ·D1(x;V ) · V1 · x,
(19)

where Dl(x;V ) = diag[σ′(ul(x;V )))] and ul(x;V ) = Vlσ(Vl−1 . . . σ(V1x) . . . ). We denote by ul,i(x;V )
the i’th coordinate of the vector ul(x;V ). We note that ul(x;V ) are continuous functions of V .
Therefore, assuming that none of the coordinates ul,i(x;V ) are zero, there exists a sufficiently small
ball around V for which ul,i(x;V ) does not change its sign. Hence, within this ball, σ′(ul,i(x;V )) are
constant. We define a set V := {V | ∀l ≤ L : ∥Vl∥ = 1} and Vl,i = {V ∈ V | ul,i(x;V ) = 0}. We note
that as long as x ̸= 0, the set Vl,i is negligible within V. Since there is a finite set of indices l, i, the
set

⋃
l,i Vl,i is also negligible within V.

Let V be a set of matrices for which none of the coordinates ul,i(x;V ) are zero. Then, the matrices
{Dl(x;V )}L−1

l=1 are constant in the neighborhood of V , and therefore, their derivative with respect to
Vk are zero. Let a⊤ = VL ·DL−1(x;V )VL−1 · · ·Vk+1Dk(x;V ) and b = Dk−1(x) · Vk−1 · · ·V1x. We can
write fV (x) = a(x;V )⊤ · Vk · b(x;V ). Since the derivatives of a(x;V ) and b(x;V ) with respect to Vk

are zero, by applying ∂a⊤Xb
X = ab⊤, we have ∂fV (x)

∂Vk
= a(x;V ) · b(x;V )⊤ which is a matrix of rank at

most 1. Therefore, ∂f̄n
∂Vk

= yn
∂fV (xn)

∂Vk
is a matrix of rank at most 1. Therefore, for any input xn ̸= 0,

with measure 1, ∂f̄n
∂Vk

is a matrix of rank at most 1.
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Figure A.7: Sparse regression Wx = y with N = 6, d = 6; of the two components of y, one does not
depend on the data. GD and SGD are used with regularization λ = 0.01 and optimal learning rate η
as described in the text. Top: The scale for the singular values is logarithmic to check the prediction
for a slope that should be N times higher for SGD vs GD in the case of the smallest singular value in
the null space of the data. Here the slope for the best linear fit is −0.00153 for GD and −0.00893 for
GD with a goodness of fit (R-squared) above 0.9. The ratio of the slopes is ≈ 6 as predicted. Bottom:
The largest singular value is in the span of the data, does not decay to zero and yields very similar
rates of convergence for SGD and GD.

Since ∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ = {(xij , yij )}Bj=1 ⊂ S of size B < |S|,
we have

∂LS′(ρ, {Vk}Lk=1)

∂Vk
=

2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= 0. (20)

Since interpolation is impossible when training with λ > 0, there exists at least one n ∈ [N ] for which
ρf̄n ̸= 1. We consider two batches S ′i and S ′j of size B that differ by sample, (xi, yi) and (xj , yj). We
have

∀ i, j ∈ [N ] : 0 =
∂LS′

i
(ρ, {Vk}Lk=1)

∂Vk
−

∂LS′
j
(ρ, {Vk}Lk=1)

∂Vk

=
2

B
· ρ

[(
1− ρf̄i

)(
−Vkf̄i +

∂f̄i
∂Vk

)
−

(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)]
.

(21)

Assume that there exists a pair i, j ∈ [N ] for which (1− ρf̄i)f̄i ̸= (1− ρf̄j)f̄j . Then, we can write

Vk =

[
(1− ρf̄i) · ∂f̄i

∂Vk
+ (1− ρf̄j) · ∂f̄j

∂Vk

]
[(1− ρf̄i)f̄i − (1− ρf̄j)f̄j ]

. (22)
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Since ∂f̄i
∂Vk

and ∂f̄j
∂Vk

are matrices of rank ≤ 1 (see the analysis above), we obtain that Vk is of rank ≤ 2.
Otherwise, assume that for all pairs i, j ∈ [N ], we have α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j . In this case we
obtain that for all i, j ∈ [N ], we have(

1− ρf̄i
)
· ∂f̄i
∂Vk

=
(
1− ρf̄j

)
· ∂f̄j
∂Vk

= U. (23)

Therefore, since α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j , by Equation 20,

0 =
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= −2ραVk + 2ρU. (24)

Since the network cannot perfectly fit the dataset when trained with λ > 0, we obtain that there exists
i ∈ [N ] for which (1− ρf̄i) ̸= 0. Since f̄i ̸= 0 for all i ∈ [N ], this implies that α ̸= 0. We conclude that
Vk is proportional to U which is of rank ≤ 1.

All gradient descent methods try to converge to points in parameter space that have zero or very
small gradient, in other words they try to minimize ∥V̇k∥, ∀k. Assuming separability (that is f̄n > 0)
and λ > 0, ℓn = (1− ρf̄n) > 0, ∀n, then Equation 16 implies

∥V̇k∥ = ∥
2ρ

N

∑
n∈B

ℓn(
∂f̄n
∂Vk

− fnVk)∥, (25)

which predicts that the norm of the SGD minibatch update should depend on the rank of Vk.

C.4 Origin of SGD noise
Lemma 1 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. When λ = 0, interpolation of all data points (1 − ρf̄n = 0, ∀n) is
expected in the overparametrized case we consider: in this case, equilibrium can be reached without
any constraint on the weight matrices. In this situation, the SGD noise is expected to disappear.
Thus, during training with λ > 0, the solution {Vk}Lk=1 is not the same for all samples: there is no
convergence to a unique solution but instead fluctuations during training7.

C.5 Experiments
In our experiments, we conducted binary classification with the CIFAR10 dataset [23] using the deep
ReLU networks (see Figure ??(b)). Specifically, we extracted images with class labels “1” and “2” from
the CIFAR10 dataset, 10000 32× 32 colour images were used for training and 2000 colour images for
testing. The specific model architecture and implementation details are described below.

Model architecture. Our deep ReLU networks consists of four convolutional layers and two fully
connected layers (L = 6), without biases in any of the layers. The four convolutional layers apply
3 × 3 convolutions with stride 2 and padding 0, the corresponding output channel numbers are 32,
64, 128, and 128. The final two fully connected layers project the 3200-dimensional output of the last
convolutional layer to a 1024-dimensional vector before mapping it to 2 outputs. At the top layer,
there is a global learnable parameter ρ that is the product of the Frobenius norms of weight matrices
in all layers (see Figure ??(b)). We used the ReLU activation function in all layers except for the last
layer. The total number of model parameters is 3, 519, 335.

Training and optimization. To implement the model introduced in Section ?? (b). we used
the equivalent weight normalization (WN) algorithm, freezing the weights of the WN parameter “g”
[20] and normalized the {Vk}L−1

k=1 matrices at each layer using their Frobenius norm. We trained our
networks with the SGD optimizer (momentum 0.9), and tested two different types of loss functions
(i.e., square loss and exponential loss). The hyperparameters included an initialization scale of the
weight matrix at each layer set to 0.1, an initial learning rate (η) of 0.03 with a cosine annealing
learning rate scheduler, a batch size (B) of 128, and 2000 training epochs. Our experiments were run
on the NVIDIA RTX A6000 GPU (48GB VRAM).

7The absence of convergence of SGD to a unique solution is not surprising, in general, when the landscape is not
convex.
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D Learning rate for SGD
Consider the differential equation

dx

dt
+ γ(t)x = 0 (26)

with solution x(t) = x0e
−

∫
γ(t)dt. The condition

∫
γ(t)dt→∞ corresponds to

∑
γn =∞. Conditions

of this type are needed for asymptotic convergence to the minimum of the process x(t). Consider
now the “noisy” case dx

dt + γ(t)(x + ϵ(t)) = 0: we need γ(t)ϵ(t) → 0 to eliminate the effect of the
“noise” ϵ(t), implying at least γn → 0. The need for

∑
(γn)

2 = 0 may be seen considering the SDE
dx
dt + γnx = dW (t).

E Support Selection: Extension to Deep Nonlinear Networks

Figure A.8: Comparative Analysis of Feature Selection Efficiency in SGD vs. GD: This figure
presents heatmaps of the Gram matrix from the first weight layer of a deep neural network, both at the
start (epoch 0) and end (epoch 500) of training. The transition from dense to sparse matrices illustrates
the network’s learning process, highlighting SGD’s superior efficiency in identifying and focusing on
the most relevant features for predicting a sparse polynomial target function. The marked contrast
in sparsity levels between SGD and GD underscores SGD’s capability in discerning critical features
quickly and accurately, a key factor in its faster convergence and improved optimization performance.

To complement the statement of Observation 1 1, we explore the implication of bias toward low-rank
and the ability to identify support features in multilayer, nonlinear networks. Our empirical findings
suggest a marked efficiency in SGD’s ability to identify relevant features in deep neural network archi-
tectures, as compared to its GD counterpart.

Specifically, our experiment involved training a deep feed-forward neural network, composed of five
layers with 20 neurons each, equipped with ReLU activation functions. The network was tasked with
learning a highly sparse polynomial target function f : R10 7→ R, wherein only the first two out of ten
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Figure A.9: Visualization of the relative
feature importance over epochs: This fig-
ure highlights SGD’s faster and more precise
identification of critical support features com-
pared to GD. This plot quantifies the efficiency
of SGD in discerning the significance of fea-
tures, showcasing its accelerated capability in
pinpointing relevant features.

Figure A.10: Comparison of GD and SGD
in identifying support features within
a comparable number of update steps:
This figure illustrates the similar efficiency de-
spite the stark difference in epochs required
(500 for GD vs. 6 for SGD). This plot under-
scores the optimization’s strong dependency
on update frequency.

features significantly contributed to the function. Utilizing a dataset of 10,000 randomly generated
samples (x, y) from f , both GD and SGD were applied over 500 epochs, with a batch size of 64, a
learning rate of 10−2 and a weight decay of 10−4.

An initial analysis involved plotting a heatmap of the Gram matrix of the first weight layer for GD/SGD
at epochs 0 and 500 A.9. The Gram matrix, which reflects the correlation between the 10 features
of the target function f within the first weight matrix W1, transitioned from a densely populated at
initialization to a sparser structure, post-training. We also note that the degree of sparsity is much
more pronounced with SGD than with GD; indicating that the SGD trained network figured out more
confidently which are the relevant features for prediction.

We also quantifies relative feature importance across both optimization strategies over epochs A.10.
To do so we compute

∑
s diags/

∑
i diagi where diags are the diagonal elements of the Gram matrix

representing auto-correlation of the support features, and diagi are the diagonal elements for all fea-
tures. This metric demonstrates the accelerated and more precise identification of critical features
by SGD compared to GD. The empirical observations reveal that SGD not only identifies the rela-
tive importance of support features much more rapidly than GD but also does so with greater certainty.

Lastly, we plot a comparison of the efficiency of GD and SGD in identifying support features within
a similar number of update steps A.10. While GD achieves 500 parameter updates over 500 epochs,
whereas SGD requires only 6 epochs to accomplish the same number of updates, utilizing a batch size
of 64 from a dataset of 10,000 samples. The analysis reveals that the rate and strength with which the
network identifies relevant support features are remarkably similar between the two methods. This
observation emphasizes the critical role of update frequency in the optimization process.
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