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Abstract

The pursuit of fairness in machine learning (ML), ensuring that the models do not
exhibit biases toward protected demographic groups, typically results in a compro-
mise scenario. This compromise can be explained by a Pareto frontier where given
certain resources (e.g., data), reducing the fairness violations often comes at the
cost of lowering the model accuracy. In this work, we aim to train models that miti-
gate group fairness disparity without causing harm to model accuracy. Intuitively,
acquiring more data is a natural and promising approach to achieve this goal by
reaching a better Pareto frontier of the fairness-accuracy tradeoff. The current data
acquisition methods, such as fair active learning approaches, typically require anno-
tating sensitive attributes. However, these sensitive attribute annotations should be
protected due to privacy and safety concerns. In this paper, we propose a tractable
active data sampling algorithm that does not rely on training group annotations,
instead only requiring group annotations on a small validation set. Specifically, the
algorithm first scores each new example by its influence on fairness and accuracy
evaluated on the validation dataset, and then selects a certain number of examples
for training. We theoretically analyze how acquiring more data can improve fairness
without causing harm, and validate the possibility of our sampling approach in the
context of risk disparity. We also provide the upper bound of generalization error
and risk disparity as well as the corresponding connections. Extensive experiments
on real-world data demonstrate the effectiveness of our proposed algorithm. Our
code is available at|github.com/UCSC-REAL/FairnessWithoutHarm.

1 Introduction

Machine Learning (ML) has dramatically impacted numerous optimization and decision-making pro-
cesses across various domains, such as credit scoring [62] and demand forecasting [14]. Algorithmic
fairness embraces the principle, often enforced by law and regulations, that the decision-maker should
not exhibit biases toward protected group membership [84]], identified by characteristics such as race,
gender, or disability. However, the pursuit of fairness unavoidably results in a compromise scenario
where reducing the fairness violations usually leads to a degradation in accuracy, which has been
observed and verified by numerous literature [52} 25,181} 169, |83]]. Theoretically, the phenomenon
can be understood through a Pareto frontier on the tradeoff between group fairness and accuracy
[72,151, 10, 74]]. That is, as illustrated in Figure given certain resources such as training data, when
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a model has reached a point on the Pareto frontier, without more data resources, it is impossible that
one can improve fairness without worsening off model accuracy.

One major source of unfairness and a major cause of the fairness-accuracy tradeoff is biased training
data. If an unbiased and “fairer” dataset is available, we will be hopeful that unfairness can be
alleviated without compromising accuracy. Furthermore, such a “fairer” dataset would allow for
obtaining a fair and accurate model through the standard empirical risk minimization (ERM) with
cross-entropy (CE) loss. The above observation points to a promising way to improve fairness via
actively acquiring more informative data, aiming to shift towards a better Pareto frontier of the
fairness-accuracy trade-off [[1,46]. However, existing approaches that seek more data, such as fair
active learning [4]], typically require annotating sensitive attributes for training data. In practice, these
sensitive attribute information such as race and gender, should be protected due to privacy regulations
[35L 15, 166]]. In the normal active learning scenario, collecting more data with sensitive attributes
heightens privacy and safety risks due to the increased probability of leaking sensitive information.

Therefore, we ask the following question: When
not disclosing more annotations of training sen-
sitive attributes, how can we acquire more data
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data sampling algorithm in a training sensitive
attributes-free way, which solely requires sensi-
tive attributes on a small validation set. Partic-
ularly, the algorithm evaluates each example’s
influence on fairness and accuracy using the val-
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idation dataset for ranking and then selects a
certain number of examples to supplement the
training set for training. We name our solution
Fair Influential Sampling (FIS). The core chal-
lenge is approximating the corresponding influ-
ences of each new example without accessing its
sensitive attributes. Technically, we evaluate the
importance (influences) of each new example
by comparing its gradient to that derived from
the entire validation set. This comparison helps
quantify the hypothesized change of group fair-
ness disparity metric when adding this example
to the training set. As a result, the requirement
of training sensitive attributes can be relaxed, as gradient derivation serves as a role of fairness con-
straints to measure the group fairness disparity. The main contributions of our work are summarized
as follows.
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Figure 1: We compare the Pareto frontiers between
the model trained with scarce data and that trained
with rich data. Acquiring more data is capable of
shifting the Pareto frontier toward lower disparity
and lower error rates. In consequence, we can
reach a new trade-off point that offers improved
fairness and accuracy simultaneously, surpassing
the original trade-off point.

o We develop a tractable active data sampling algorithm (Algorithm [T) that does not rely on training
sensitive attributes. The algorithm scores each new example based on the combined influences of
prediction and fairness and then opts for a certain number of examples for training. [Section []|

e We theoretically analyze how acquiring more data can improve fairness without harm from a
distribution shift perspective view, and validate the possibility of our sampling approach in the
context of risk disparity. We also provide the upper bound of generalization error and risk disparity
as well as the corresponding connections (Theorem [5.1]and Theorem|[5.2). [Section

e Empirical experiments on real-world datasets (CelebA, Adult, and COMPAS) substantiate our
claims, indicating the effectiveness and potential of our proposed algorithm in achieving fairness
for ML classifiers. [Section[6]

2 Related work

Fairness-accuracy tradeoff There are numerous works that have been successful at mitigating
fairness disparities [24} 132, 2| 78] 169]]. However, these works typically rely on protected sensitive
attributes of training examples to measure the fairness disparities across groups. Moreover, a fairness-



accuracy tradeoff has been shown, meaning that enforcing fair constraints heavily degrades the model
performance [52, 25} 181]]. Notably, Chen et al. [20] characterized the change of the fairness violation
when the data distribution is shifted. Except for training sensitive attributes, this paper does not work
in the classical regime of the fairness-accuracy tradeoff. By properly collecting new data, we can
improve both accuracy and fairness, which cannot be achieved by working on a static training dataset
that naturally incurs such a tradeoff. Besides, compared to prior works [52, |56]], our method does
not require additional assumptions about the classifier and the characteristics of the training/testing
datasets (e.g., distribution shifts). Relevant work [42] utilizes the influence function to reweight the
data examples but requires re-training. Our method focuses on soliciting additional samples from an
external dataset while [42] reweights the existing and fixed training dataset.

Active learning The core idea of active learning is to rank unlabeled instances by developing
specific measures, including uncertainty [41}145], representativeness [22]], inconsistency [[70], variance
[34], and error [59]. A related line of work [48| (71} 131} [76] concentrates on ranking unlabeled
instances based on the influence function. Compared to these studies with a focus on prediction
performance, our work poses a distinct challenge taking into account fairness violations. Our
approach is more closely with the fair active learning approach [4]. However, this framework still
relies on training sensitive attributes and then unavoidably encounters the tradeoff between fairness
and accuracy.

Fair classifiers without demographics There are various studies to achieve fairness without
demographics. For example, Zhao et al. [82] explores the correlations between sensitive attributes
and non-sensitive attributes to learn fair and accurate classifiers. Yan et al. [77] investigates the
class imbalance problem with a KNN-based pre-processing method. Chai et al. [[16] utilizes the soft
labels from an overfitting teacher model to train a student model to avoid using demographics. A
line of research establishes theoretical connections between features and attributes to avoid using
demographic information, employing methods like causal graphs [63]], correlation shifts [S8]], and
demographic shifts [30]. In contrast, our approach refrains from making assumptions. Another
line of work utilizes distributionally robust optimization (DRO) to reduce fairness disparity without
relying on training sensitive attributes [33} 138} 147, 40, |67, 164]. Although these works evaluate the
worst-case group performance in the context of fairness, their approaches differ as they do not strive
to equalize the loss across groups. Besides, in these studies, accuracy and worst-case accuracy are
used as fairness metrics to showcase the efficacy of the proposed algorithms. However, these fairness
metrics are restrictive and inconsistent with common definitions such as demographic parity (DP).

Fair classification The fairness-aware learning algorithms, in general, can be categorized into pre-
processing, in-processing, and post-processing methods. Pre-processing methods typically reweigh
or distort the data examples to mitigate the identified biases [7} 9} 165} 60, [15} 17, 80, |18} 68]. More
relevant to this work is the importance reweighting, which assigns weights to training examples
(37,136, 23, 21} 157, 144]. Our algorithm bears similarity to a specific case of importance reweighting,
particularly the O-1 reweighting applied to newly added data. Other parallel studies utilize importance
weighting to learn a complex generative model in a weakly supervised setting [23} 21], or to mitigate
representation bias in training datasets [44]. Post-processing methods typically enforce fairness
on a learned model through calibration [26} 27, [32], but these work might not achieve the best
fairness-accuracy tradeoff [75, 55]]. In contrast, these post-processing works still require sensitive
attributes during the inference phase. Recent work [[19] develops a bias score classifier that operates
independently of sensitive attributes; however, it is constrained to binary classifications.

3 Preliminaries

Problem setup We consider a standard K-class classification task whose training (test) data
distribution is P (Q). Let P := {zn}lnP:‘1 represent the training dataset following distribution
P, where | P| denotes the corresponding sample size. Each example, denoted as z,, 1= (2, Yn),
comprises two random variables: the feature vector x and the label y. The model trained on P is
evaluated by the rest dataset Q) := {zo}nQ:‘l, where (-)° denotes that the data follows distribution Q,
each example z¢ := (z°,y°, s°), and the sensitive group s, often refers to characteristics such as
race, gender, etc. To align the fairness requirements on the test set () with the model trained on P, a




popular way is to exploit the sensitive attributes s [24} [72] or their proxies [84]] in P and use them to
formulate Lagrangians during training. However, extending these approaches to the active learning
setting would require disclosing more sensitive attributes during sampling and training [4], which
contradicts our goal. To avoid disclosing more sensitive attributes, we align the fairness requirements

by a small hold-out validation dataset ), = {zfl}lfz”ll that is independent and identically distributed

(IID) with the test set ). We defer more technical details to Section [4]

Following the general active learning setting [4], we would acquire new examples from a large

unlabeled dataset U = {a/,}!"!, within a limited labeling budget B(< |U|) [48l 71l 31]. Denote
the solicited example by z], := (xz,,v,,), where y, is the ground-truth label. Note that the protected
sensitive attributes from datasets P and U remain undisclosed during sampling and training. In this
paper, we aim to incrementally update a model that was initially trained on P using standard ERM,
by incorporating newly solicited data z/,, such that the model can improve fairness without worsening
model accuracy. Thus, the core challenge is efficiently determining new examples that induce a
significantly better Pareto frontier. In the proceeding section[d, we shall delve into how to acquire
new data from unlabeled set.

Fairness definition Note that this work focuses solely on active sampling to build a fairer dataset,
which is then used to train the model through standard ERM with Cross-Entropy (CE) loss. Without
relying on additional assumptions about the model or training/testing dataset, an intuitive and natural
approach is to analyze the expected risk. Therefore, we introduce the concept of risk disparity as an
intermediate-term for theoretical analysis of fairness.

Definition 3.1 (Risk disparity [33L79,13])). Define Q. as the sub-distribution of Q corresponding to
group k. Given the optimized model parameters w* trained on set P, risk disparity is defined as:
Ro, (W) — Ro(w?), where Rg(w) := E,.o[l(w, 2)] denotes expected risk induced on target
distribution Q.

Definition[3.1 naturally quantifies the discrepancy in a trained model’s performance between a specific
group set Qi and the entire test set (). That is, a model can be deemed fair if it exhibits consistent
performance for a group set )y, as compared to the test dataset (). In settings such as face or speech
recognition, this fairness definition implies the necessity for all demographic groups to receive the
same quality service [13]. For completeness, we also include two well-known definitions of fairness:

Definition 3.2 (Demographic Parity (DP)). A classifier [ adheres to demographic parity concerning
the sensitive attribute s if: E[f(w,x)] = E[f(w, x)]s].

Definition 3.3 (Equalized Odds (EOQ [32]). A classifier f meets the equalized odds with respect to
the sensitive attribute s if: E[f(w,x)|y] = E[f(w, z)ly, s].

Even though there may be a general incompatibility between risk disparity and popular group fairness
metrics like DP and EOd, under the criteria of the proposed fairness notion, these definitions could be
encouraged [61133]. More details and proof can be found in the Appendix [B]

Proposition 3.1. (Informal) Under appropriate conditions, the risk disparity can serve as a lower
bound for fairness disparities based on common fairness definitions, such as DP and EOd.

Remark 3.1 (Connections to other fairness definitions). Definition targets group-level risk
fairness, which has similar granularity to other fairness notions such as accuracy parity [78],
device-level parity [43l], small accuracy loss for groups [|79 10,50\ 133, and bounded group loss [3|].

4 Improving fairness without harm via data influential sampling

In this section, we first introduce how to measure the importance (influence) of each example
on accuracy and fairness without using the corresponding sensitive attributes, respectively. Then,
we propose an influence-guided sampling algorithm that actively acquires new data based on the
influences for further training.

4.1 Finding influential examples

To avoid using training sensitive attributes, our primary idea is to find newly acquired data that assists
in creating a “fairer” dataset, which allows for training a fair and accurate model via standard ERM.



Initially, we explore whether newly acquired data enhances fairness by examining the training process,
where the model is typically updated using gradient descent. The change of model parameters by
performing one step gradient descent on newly acquired data 2’ is

Wip1 = Wy — 1) - Ow, L(Wy, 2') (D

where 7 refers to the learning rate and ¢(+) is the training loss function. It should be noted that before
we solicit the true labels of samples z’, we first use proxy labels. In the following subsection @, we
will present a strategy for proxy labels. Training on 2’ affects the model’s prediction on validation
data z; regarding both accuracy and fairness. If the updated model w,; outperforms the previous
one w; evaluated on the validation dataset in terms of fairness and accuracy, this acquired data 2’
helps to reduce the fairness disparity without worsening accuracy.

To separately measure the accuracy and fairness performance of the updated model on the validation
set, we introduce two types of loss functions: fairness loss ¢(w, z7) and accuracy loss ¢(w, z2 ),

where validation data z2 = (22, y2, so). Note that these loss functions are developed for sampling,
not for training. Besides, training loss function £(-) can be reused as the accuracy loss function due to
the same update target. One can identify training loss £(-, z") and accuracy loss £(-, z7 ) based on the
input data used. Without loss of generality, we assume that £(-) and ¢(-) are differentiable w.r.t. w.
Here, we do not restrict the generality of the fairness loss function; it can be any smoothed version of
fairness metrics such as DP or EOd. Following this, we develop the influence of the accuracy and

fairness components for finding the samples, respectively.

Influence of accuracy component When model parameters are updated from w; to w;;1 by
adding a new example z’, the influence of model’s accuracy on one validation example z is:

o .

InﬂaCC(Zlv Zna Wt? Wt+1) = é(Wt.}rl, Z’?L) - K(Wh Z?L)

o

For ease of notation, we use Inflaee(2/, 27) to represent Inflace (27, 255 Wy, wiy1). By applying first-

order Taylor expansion, we obtain the following closed-form statement:

Lemma 4.1. The accuracy influence of new example 2’ on the validation dataset Q,, is:

Inflaee(2') == Z | Inflace(2', 25) =~ —n Zne\Q | (Ow, bW, 2'), O, b(We, 20))  (2)

n€lQy

Intuitively, the more negative Inflacc(2”) is, the more positive the model accuracy (performance) that
example 2’ can provide.

Influence of fairness component When model parameters are updated from w, to w1 by adding
anew example z’, the influence of model’s fainess on one validation example z is:

INfligic (27, 205 Wi, Wig1) i= O(Wipn, 2,) — d(we, ;). (3)

For simplicity, we write Infle (27, 20; Wi, Wiep1) as Inflge (27, 220). Then, similarly, we have:

» PN

Lemma 4.2. The fairness influence of new example z' on the validation dataset Q. is:

INflair(2') =Y Infligin(2', 22) = —n Zne@ | (Ow, bW, 2'), 0w, (Wi, 27))  (4)

ne€|Qy|

Similar to the accuracy component, the greater the negativity of Infli;(27) is, the greater the positive
impact that the example 2’ has on fairness.

Intuitions These two components evaluate the accuracy and fairness impact of each example by
comparing the gradient originating from a single data sample with the gradient derived from the entire
validation set, respectively. This comparison helps quantify the potential advantage of including
this specific example in training. For instance, if the gradient obtained from one example has a
similar direction to the gradient from the validation set, it indicates that incorporating this example
contributes to enhancing the model’s fairness or accuracy.



Algorithm 1 Fair influential sampling (FIS)

1: Input: training set P, unlabeled set U, validation set @, new acquired set S; = {}, V¢ € [T
rounds, number of new selected examples in each round r, tolerance .

2: Warmup: Train a classifier f solely on P by minimizing the empirical risk R,. Obtain model
parameters wy and validation accuracy (on @Q,) VALy.

3: fortin {1,2,--- ,T} do

4 Guess proxy label ¢’ for new examples 2’ using Eq. .

5:  Compute the influence of accuracy and fairness component using Eq. (2) and Eq. @):

6: Soriginal = {Inflfai,(é’) | Inflacc(éj’) <0, Inflfair(é’) <0, e U}

7:  while |S;| < r do

8 Find top-(r — |:S;|) annotated examples 2/, based on the lowest fairness influence and then

inquire about true labels 3’:

9 2} M L2} e TOp-(r — | ) (i)
100 S, S UL, | Inflace(2,) < 0, Infleie(2,) < 0}
11: U+ UnNSy Soriginal — Soriginal NS

12:  end while

13:  Continue to train the model f on the set .S; via standard ERM. Obtain the updated model
parameters wy 1. If the model’s validation accuracy (on @Q,) VAL, does not meet the desired
threshold VAL, reject the updated model.

14: end for

15: Output: models {w; | VAL; > VAL, — €}

Training sensitive attributes are not disclosed One can easily check that neither the influence of
accuracy nor fairness components require the sensitive attributes of any example 2/, as the example 2’
only appears in the first-order gradient of the accuracy loss Oy, £(Wy, z'). In the fairness component,
calculating the Oy, (W, z;) only relies on validation example z3’s sensitive attributes. Here, we
also validate how accurate the first-order estimation of the influence is in comparison to the real
influence [39], and find that the estimated influences for most of the examples are very close to their
actual influence values. We refer the readers to Appendix [C.1 for more details.

Even without disclosing training sensitive attributes, the correlations between non-demographic
features and demographic information may still lead to privacy leakage issues [82]. To address this
potential privacy concern, we provide further discussions and theoretical analysis using differential
privacy in Appendix

4.2 Algorithm: fair influential sampling (FIS)

Following Lemma [.1] and Lemma [4.2] we can efficiently select those examples with the most
negative fairness influence and negative accuracy influence. This sampling method aids in reducing
fairness disparities without worsening model accuracy.

Labeling Before presenting our sampling algorithm, it is necessary to address the problem of not
accessing the true labels of new solicited examples. Lacking the label information for new examples
poses a challenge in determining the corresponding influence on accuracy and fairness, a fact that is
substantiated by Lemma[4.1)and Lemma[4.2. Intuitively, one can always recruit human annotators to
get the ground-truth labels for those unlabeled examples. However, it is impractical due to the limited
labeling budgets. To tackle this problem, another common approach is utilizing a model that has
been effectively trained on dataset P to produce proxy labels, which approximate the calculation of
influences for examples from a substantial unlabeled dataset U. It’s important to note that these proxy
labels are exclusively used during the sampling phase. To maintain good model performance, we still
need to inquire about the true labels of the selected data examples for subsequent training. Here, we
propose to annotate the proxy labels with the model trained on the labeled set P. In particular, we
introduce a strategy that employs lowest-influence labels for annotating label ' given z':

§ = argmin [Inflaso(a’, )], ©)
ke{l, K}

Here, we denote 2’ := (2/, ¢') for the proxy labels.



Proposed algorithm The full procedure is outlined in Algorithm 1. Note that the tolerance ¢ is
applied to monitor the performance drop in validation accuracy. In Line 2, we initiate the process by
training a classifier f solely on dataset P, that is, performing a warm start. Subsequently, 7-round
sampling iterations are applied to acquire more examples to dataset P. Following the iterative fashion,
FIS guesses labels using Eq. (5) in Line 4. Then, we calculate the scores for proxy examples based
on the accuracy and fairness influence using Eq. (2) and Eq. (@) respectively. In Lines 6-12, we
would opt for r samples based on the influence scores, and inquire about the true labels of these
examples. However, due to the gap between proxy labels ¢’ and true label 3, the accuracy and fairness
influences of the top-r samples based on inquired true labels 2’ may not necessarily satisfy the same
conditions (Inflaec(2) < 0, Infligir(27) < 0). Therefore, we use a while loop to iteratively select the
top-(r — |S¢|) examples for labeling until we obtain r samples whose fairness influences based on
true labels meet the conditions. Subsequently, in Line 11, we update sets U and Soriginal to prevent
duplicate sampling. In Line 13, we would continue training using new examples with true inquired
labels from set S;. We save the model parameters at each round as checkpoints w;. To avoid potential
accuracy drops incurred by excessively large random perturbations, we exclusively choose and offer
models for output whose validation accuracy exceeds the initial validation accuracy VALy. Although
we propose a specific strategy for guessing labels, our algorithm is flexible and compatible with other
labeling methods. A comparative analysis of computational costs is detailed in Appendix [C.2.

5 How more data improves fairness without harm?

In general, acquiring new data to supplement the original training dataset would potentially raise the
distribution shift problem, affecting both accuracy and fairness. In this section, from a distribution
shift perspective view, we first present a generalization error bound (accuracy side, Theorem [5.T) and
risk disparity bound (fairness side, Theorem[5.2). The theoretical results jointly provide a high-level
key insight that controlling the negative impact of distribution shift on generalization error, which
refers to the model accuracy, could allow for improving fairness without harm. This theoretical
insight validates the possibility of our sampling approach.

Without loss of generality, we discretize the whole distribution space and suppose that the train/test
distributions are both drawn from a series of component distributions {71, - -- , 7} [28]. Then, the
empirical risk R p(w) calculated over a training set P can be reformulated by splitting samples based
on the component distributions:

Rp(w) = Eocplt(w,2)] = 3

where p() (m = i) represents the frequencies of examples in P drawn from component distribution
m;. Then, we can define the measure of probability distance between two sets or distributions as

dist(A, B) := 25:1 |ptA) (1 = 4) — pB) (7 = 4)|. To reflect the implicit unfairness in the models,

we introduce two basic assumptions in convergence analysis [43].

I
i=1 p(P)(’/T = Z) : EZNM V(Wa Z)]

Assumption 5.1 (L-Lipschitz Continuous). There exists a constant L > 0, for any v,w € R%,
Rp(v) < Rp(w)+ (VRp(w),v —w) + £|v — w3

Assumption 5.2 (Bounded Gradient on Random Sample). The stochastic gradients on any sample z
are uniformly bounded, i.e., E[||VRp(wy, 2)||?] < G?, and training epocht € [1,--- ,T).

Analogous to Assumption we further make a mild assumption to bound the loss over the
component distributions 7; according to the corresponding model, that is, .., [((wF, 2)] <
Gp,Vi € I, where Gp is a bounding constant. For completeness, we first analyze the upper bound
of generalization error, specifically from the standpoint of distribution shifts. Omitted proof can be
found in Appendix D.

Theorem 5.1 (Generalization error bound). Let dist(P, Q), G p be defined therein. With probability
at least 1 — § with § € (0,1), the generalization error bound of the model trained on dataset P is

RQ(WP) < Gp-dist(P, Q)+ M + RP(WP).
—_— 2|P|

distribution shift

Note that the generalization error bound is predominantly impacted by the shift in distribution,
especially when we consider an overfitting model, i.e., the empirical risk R p(w’) — 0.



Theorem 5.2 (Upper bound of risk disparity). Suppose Rg(-) follows Assumption[5.1. Let dist(P, Q),
Gp, dist(Py, Qx) and dist(Py, P) be defined therein. The initial learning rate 1y satisfies N3 <

\/;T I where T is the number of training epochs. Given model w' and w* trained exclusively on

group k’s data Py, with probability at least 1 — 6 with 6 € (0,1), then the upper bound of risk
disparity is

Ro, (WF)—Ro(wF) < Gy, - dist(Py, Q) + Gp - dist(P, Q) + AL*G? - dist(Py,, P)* +Y  (6)

distribution shift group gap
where T = \/log(ﬁflé) + \/lof‘(;k/f) + @ + w. Note that B, [{(W*, 2)] < Gy, w = Rp(wl) —
R (W) and wj, = Rp, (W) — o (W), w and wy, can be regarded as constants because

Rp(w?) and Rp, (w") correspond to the empirical risks, R (W<) and Ry (w<) represent the

k
ideal minimal empirical risk of model w< trained on distribution Q and Qy, respectively.

Interpretations of Theorem [5.2] Eq. (6) illustrates several aspects that induce unfairness. (1)
Group biased data. For group-level fairness, the more balanced the data is, the smaller the risk
disparity would be; (2) distribution shift. For source/target distribution, the closer the distributions
are, the smaller the performance gap would be; (3) Data size. For training data size, a larger data size
(potentially eliminating data bias across groups) would lead to a smaller performance gap.

Main observation Theorem|5.1 underscores how the generalization error is impacted by distribution
shifts. Theorem[5.2 implies that the risk disparity is essentially influenced by the distribution shift and
the inherent group gap term. In practice, approaches that mitigate the group gap, such as imposing
fairness regularizers, acquiring new data, or reweight the training data samples [37], will inevitably
incur additional distribution shifts between the training and test data. The incurred distribution shift
further leads to a performance drop due to the generalization error in Theorem [5.1] Nonetheless, one
theoretical insight is that if one can control the negative impacts of potential distribution shifts through
generalization error while implementing fairness-enhancing strategies, it is possible to achieve the
goal of improving fairness without causing harm. This high-level insight supports the effectiveness
of our proposed sampling approach, in which we acquire new data to reduce the group gap through
fairness components while preventing the potential adverse impacts of distribution shifts using the
accuracy influence component.

6 Empirical results

In this section, we empirically demonstrate the disparate impact across groups and present the
effectiveness of the proposed Fair Influential Sampling method to mitigate the disparity.

6.1 Experimental setup

We evaluate the performance of our algorithm on three real-world datasets across three different
modalities: CelebA [49], UCI Adult [8] and Compas [6]. We implement the fairness loss ¢(-) based
on three common group fairness metrics: difference of demographic parity (DP), difference of equality
of opportunity (EOp), and difference of equal odds (E0d). We compare our method with five baselines:
1) Base (ERM): directly train the model on the training dataset P; 2) Random: train the model
on dataset P and randomly sampled data from U with inquired true labels; 3) BALD [[12]: active
sampling according to the mutual information; 4) ISAL [48]]: selects unlabeled examples based on
the calculated influence in an active learning setting. We apply model predictions as pseudo-labels;
5) Just Train Twice (JTT) [47]]: reweighting those misclassified examples for re-training. Here, we
examine a weight of 20 for misclassified examples, marked as JTT-20. Recall that we present the
average result of the classifier w; outputs from Algorithm[I] The general term “fairness violation” is
utilized to quantify the absolute differences based on fairness metrics, such as DP and EOd. More
details on datasets and hyper-parameters are provided in Appendix [E.1]

6.2 Main results

Note that all the experimental results presented subsequently are from three independent trials,
each conducted with distinct random seeds. We present the primary results as tuples in the form
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Figure 2: Main results on CelebA, Adult and Compas datasets. The Y axis shows
fairness_violation; X axis denotes test_accuracy. CelebA: Four binary targets: Smiling,
Attractive, Young, and Big_Nose; Sensitive attribute: gender. Adult: Binary target: Income;
Sensitive attribute: Age. Compas: Binary target: Recidivism; Sensitive attribute: Race. We select
two fairness metrics DP and Eop to measure fairness violations for each setting. The vertical dotted
line at the random baseline accuracy helps easily identify which results achieve fairness without
sacrificing performance (accuracy).

(test_accuracy, fairness_violation) to facilitate comparison of the fairness-accuracy tradeoff.
Due to space limits, we provide a full version of the experimental results (tables) in Appendix [E.2]

Results on image datasets Initially, we train a vision transformer using a patch size of (8, 8) on the
CelebA face attribute dataset [49]. We select four binary classification targets, including Smiling,
Attractive, Young, and Big Nose. The sensitive attribute is gender. 2% of the labeled data is
allocated for training, while the remaining 98% is reserved for sampling purposes. Then, the test
dataset is split into two independent portions: a new test set and a validation set, with 10% of the
test data randomly designated as the hold-out validation set. For ease of computation, only the last
two layers of the model are used to calculate the influence of accuracy and fairness components.
For Figure 2, one main observation is that FIS outperforms baselines with a significant margin on
three fairness metrics while maintaining the same accuracy level. This improvement, as indicated
in Theorem [5.2] can be attributed to FIS assigning priority to new examples based on the fairness
influence, then avoiding accuracy reduction via their accuracy influence.

Results on tabular datasets Next, we work with multi-layer perceptron (MLP) with two layers
trained on the Adult [8]] and Compas dataset [[6], respectively. We select age as the sensitive attribute
for the Adult dataset and race for the Compas dataset. For two datasets, we resample the data to
balance the class and group membership [17]]. The whole dataset is split into training and test sets at
a 4:1 ratio. Then, we randomly re-select 20% of the training set for initial training and the remaining
80% for sampling. Also, 20% examples of the test set are selected to form a validation set. The
MLP model is a two-layer ReLU network with a hidden size of 64. We utilize the whole model
parameters to compute the influence of accuracy and fairness for examples. Figure 2] summarizes the
main results of the Adult and Compas datasets. On the Adult dataset, we observe that our sampling
method achieves the lowest violation for equality of opportunity and has a comparable performance
for the DP metric. Besides, our algorithm achieves a much better accuracy-fairness trade-off than



other baselines on the Compas dataset. JTT-20 achieves a lower fairness violation with the price of a
significant accuracy drop compared to other baselines.

6.3 Ablation study

What is the impact of label budgets? Here, we examine how the varying label budgets r affect
the trade-off between accuracy and fairness. For ease of comparison, we adhere to a consistent label
budget per round to illustrate their respective impacts. As shown in Figure[3| our method consistently
preserves a lower fairness violation than the BALD and ISAL baselines with a similar test accuracy.
While we observe that the JTT-20 algorithm can achieve a near-zero fairness violation under a limited
budget on the CelebA dataset, we argue that the model accuracy is rather uninformative (about 50%).
More empirical results can be found in Appendix[E.3]

How does the validation set size affect the performance? We further explore the impact of
adjusting the validation set size on our algorithm’s performance. We present the test accuracy and
fairness violations across different validation set sizes on the CelebA dataset. Note that the default
validation set size is set to 1% of the whole dataset size. In particular, the minimum scale of the
validation set size is set to 1/5x (nearly 400 CelebA images). The results in Figure indicate that our
algorithm still retains the test accuracy and fairness violation when we vary the validation set size.
Additional results conducted on Adult and Compas datasets are provided in Appendix[E.4]
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Figure 3: Left: The impact of label budgets on the test accuracy & DP gap in the CelebA dataset.
Right: The impact of the validation set size on (test_accuracy, fairness_violation) results.

7 Conclusions and limitations

In this work, we are interested in facilitating ML models that mitigate group fairness disparity
without harming model accuracy. To achieve this, different from current active sampling methods,
we propose a tractable fair influential sampling method FIS, which avoids the need for training
group annotations during the sampling or training phase, thereby preventing the potential exposure
of sensitive information. In particular, this algorithm acquires data samples from a large dataset for
training based on the influence of fairness and accuracy evaluated on the auxiliary validation dataset.
Empirical experiments on real-world data validate the efficacy of our proposed method.

Nonetheless, we recognize that our method has limitations. Although the proposed sampling algorithm
does not require sensitive attribute information from the massive data, it relies on a clean and
informative validation set that contains the sensitive attributes of data examples. We consider this as a
reasonable requirement in practice, given the relatively modest size of the validation set. Besides, one
potential concern is that the sampling strategy may become inefficient when the collected validation
set is noisy. However, this practical issue can be heavily alleviated by using loss correction methods
[54.184] or noise-tolerant fairness loss functions to rectify the error terms [53} (73} [29]. In future work,
we aim to address this limitation by developing more robust sampling strategies that can perform
effectively even with noisy validation sets.
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Broader Impact

This paper presents work whose goal is to advance the field of fairness in machine learning. There
are many potential societal consequences of our work. While the proposed algorithm does intend
to infer sensitive attributes of data examples that may be protected by privacy regulations, it does
not necessitate direct access to such sensitive information. On the other hand, our work can serve as
an effective approach leading to mitigating the disparity with a limited annotation budget. We have
thoroughly examined the potential ethical implications of our work and, based on our assessment, do
not identify any issues that we deem necessary to emphasize here specifically.
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Appendix

The Appendix is organized as follows.

e Section[A provides more details of the related work.

e Section[BJexplores the relationship between our proposed fairness notion risk disparity and common
fairness metrics, such as DP and EOd. In particular, we provide the full proof for Proposition (3.1

e Section [C] provides a detailed analysis of the FIS algorithm including 1) evaluating first-order
influence estimations against real influence, 2) a comparative analysis of computational costs, and
3) the exploration of the labeling strategies.

e Section[D presents the full proofs for the Lemmas and Theorems shown in Sectiond]and Section 3]

e Section|E presents detailed descriptions of all datasets, corresponding parameter settings, and full
version of the experimental results. In particular, to demonstrate FIS’s advantage at the same levels
of information, we introduce a new baseline called Random+Val.

e Section [F] discusses the privacy concern potentially caused by the correlations between non-
demographic and demographic features.

A More details of related work

Active learning The core idea of active learning is to rank unlabeled instances by developing specific
significant measures, including uncertainty [41, 45]], representativeness [22]], inconsistency [70],
variance [34], and error [59]]. Each of these measures has its criterion to determine the importance
of instances for enhancing classifier performance. For example, uncertainty considers the most
important unlabeled instance to be the nearest one to the current classification boundary. A related
line of work [48| 71, 31} [76] concentrates on ranking unlabeled instances based on the influence
function. Compared to these studies with a focus on prediction accuracy, our work poses a distinct
challenge taking into account fairness violations. We note that adopting a particular sampling strategy
can lead to distribution shifts between the training and testing data. What’s worse, even though
fairness is satisfied within the training dataset, the model may still exhibit unfair treatments on the
test dataset due to the distribution shift. Therefore, it becomes imperative for the sampling approach
to also account for its potential impacts on fairness.

Pareto optimality In the field of fairness in machine learning, Pareto optimality indicates the
theoretical frontier of fairness accuracy tradeoff, meaning that fairness can not be improved without
worsening model accuracy. Existing methods primarily focus on seeking the Pareto frontier of fairness
accuracy tradeoff for the neural network classifier, instead of reaching a better one. For example,
Balashankar et al. [10] first analyzes the Pareto optimality for classifiers within the context of fairness
constraints. Wang et al. [72]] explores the multi-dimensional Pareto frontiers of the fairness-accuracy
tradeoff in the multi-task setting. Another works [51}150] target to obtain a Pareto efficient classifier
to reduce worst-case group risks by formulating group fairness as a multiple-objective optimization
problem, where each group risk is an objective function.

Fair classification The fairness-aware learning algorithms, in general, can be categorized into pre-
processing, in-processing, and post-processing methods. Pre-processing methods typically reweigh or
distort the data examples to mitigate the identified biases [7} 9} 165,160, 15} [17, 180} [18]. More relevant
to us is the importance reweighting, which assigns different weights to different training examples to
ensure fairness across groups [37, 136, 23} 21} 57, 144]]. Our proposed algorithm bears similarity to
a specific case of importance reweighting, particularly the 0-1 reweighting applied to newly added
data. The main advantage of our work, however, lies in its ability to operate without needing access
to the sensitive attributes of either the new or training data. Other parallel studies utilize importance
weighting to learn a complex fair generative model in a weakly supervised setting [23, 21]], or to
mitigate representation bias in training datasets [44]. Post-processing methods typically enforce
fairness on a learned model through calibration [26, 27, |32]]. Although this approach is likely to
decrease the disparity of the classifier, by decoupling the training from the fairness enforcement, this
procedure may not lead to the best trade-off between fairness and accuracy [75} 55]. In contrast, our
work can achieve a better trade-off between fairness and accuracy, because we reduce the fairness
disparity by mitigating the adverse effects of distribution shifts on generalization error. Additionally,
these post-processing techniques necessitate access to the sensitive attribute during the inference
phase, which is often not available in many real-world scenarios.
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B Understanding risk disparity through common fairness metrics

Here, we provide a brief proof to illustrate Proposition [3.1] that is, the relationship between risk
parity and common fairness metrics, such as DP and EOd. For completeness, here we provide a more
detailed version of Proposition|3.1} as well as its proof.

Proposition [3.1} Consider a binary classification scenario involving two demographic groups
S € {k,k’}. When two groups are balanced, i.c., % = 1, where Y denotes the predicted
label, risk disparity can serve as a lower bound for fairness disparities based on EOd. Similarly, if
the group sufficiency ratio can be calibrated by 1,i.e., P(Y = y|S =k, YV =y) = P(Y = y|S =
K, Y = y) = R where R is calibration score, risk disparity can be formulated as a lower bound for
DP-based fairness disparity.

Proof. Consider a scenario involving two demographic groups S € {k, k'}, alongside a 0-1 loss
function.

Fairness metric EOd For EOd, the risk disparity can be reformulated as

R, (w") = Raq,, (w")|

1 1
= |7TA 7 § I An n) — 7~ 1 2 I An n
‘Qk‘ (Tn,yn)EQK (y 7Y ) |Qk’| (Tn,yn)EQy (y 7y )
:’P(Y¢Y|S:k)7P(Y7£Y|S:k')

= Z([P’(Y—y|S—k’)IP’(Y—y|S—k/,Y—y)—P(Y—y|S—k)P(Y—y|S—k,Y—y))'

Yy

—ZWW—yW—H%@W—yS—Hy—w—wm@m?—yS—hY—ww
Y
=Py =1S = k) - (P(Y:1|S:k’,Y:1)—w50d(y:1)-JP>(Y:1|S:k,Y:1)) # binary case

+IP’(Y:O\S:I<:')-(IP’(Y:O\S:k',Y:O)—wEOd(yIO)-]P’(Yzo\S:k,Y:O))‘

:P(Y:1|S:k’)-(P(Y:1|S:kxyz1)—wEOd(y:1)-P(Y:1|5:k,Y:1))
+P(Y:O\S:k')‘(wEOd(y:O)P(Y:l|S:k7Y:0)—]P’(Y:1|S:k’,Y:0))
B =0/ = K) - (1 = weouly = 0)
:P(Y:1|S:k’)-(P(?:HS:k’,Y:l)f]P(Y:I|S:k,Y:1))
—P(Y:O\S:k')-([@(f’:l\S:H,Y:O)—IP’(Y:l\S:k,Y:O))‘ # balanced groups
SJP’(Y:1|S:I<:’)-’P(Y:HS:k’,Y:l)—P(Y:l|S:I@Y:1)’

+]P’(Y:0\S:k’)~‘IP’(Y:1|S:k’,Y:0)f]P’(Y:1\S:k,Y:O)‘

5

ye{0,1}

IP’(Y:l\S:k’,Y:y)—IP’(Y:l|S:k,Y:y)‘

EOd-based fairness disparity

P(Y =y|S=k)
P(Y =y|S=k’)"
assumption that the two demographic groups are balanced, i.e., wgoq(y) = 1. Then, we can see that
the last item measures the fairness disparity based on EOd for binary classification problems. Thus,
we can claim that reducing risk disparity can promote the fairness metric EOd.

where we define wgoa(y) = serving as the bias weight. Here, we make a mild
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Fairness metric DP  Similarly, for DP, we formulate the risk disparity as

R, (w") = Ra,, (w")]

1 1
el Br=—— I An n) — T~ I An n
|Qk| Z(l'nvyn)EQk (y ?é Y ) |Qk/| Z(ﬂcruyn)EQk/ (y # Y )
:’P(Y%Y\S:k)fIP’(Y#Y|S:k’)

= Z(}p(f/—y|S—k’)JP=(Y—y|S—k’,f/—y)—P(Y—y|S—k)]}v(y—yw—k,f/—y))'

= ZP(Y:y|S:k’,Y:y)~(]P’(Y:yS:k')—wnp(y)P(Y:yS:k))'

:‘IP’(Y — 1S =K,V =1)- (IP(Y —1]S=K)—wply=1)-BY =1]5 = k)) # binary case
+IF’(Y:O\S:I<:',Y:O)~(IP’(Y/:O|S:k’)—pr(y:O)-IP()7:O\S:k))‘
:‘]P’(Y:HS:k’,f/: ) - ]P’(Y:l|S:k')fwgp(y:1)~]P’(Y:1|S:k))
+R(Y =08 =K, ¥ =0) - (worly = 0) - P(Y = 1| S =k) = P(¥ = 1| S = "))

+P(Y =0[S=K,Y =0)- (1 —woe(y = 0))' # Calibrating group sufficiency

DP-based fairness disparity

where we define wpp(y) := W. In fact, wpp(y) measures the group sufficiency
ratio [61]]. Note that the group sufﬁciency is closely related to the idea of calibration [11]. Thus,
we make a mild assumption that the group sufficiency ratio wpp(y) can be calibrated by 1, i.e.,
P(Y =y|S =k, Y =y) =P(Y =y|S = k',Y =y) = R, where R is a calibration score. When
two demographic groups are balanced, i.e., wpp(y) = 1, we can see that the last inequality indicates
the DP-based fairness disparity for binary classification problems. Therefore, we can also claim that

the fairness metric DP can also be encouraged when reducing the risk disparity.
O

C Detailed analysis of the fair influential sampling algorithm

C.1 Evaluating first-order influence estimations against real influence

Recall that the influence score derived in this paper primarily utilizes a first-order approach. Here, we
will demonstrate how accurate the first-order estimation of the influence is in comparison to the real
influence.

C.2 Comparative analysis of computational costs

Recall that the proposed algorithm FIS needs to pre-calculate the accuracy loss and fairness loss for
evaluating the performance of a certain example. However, the extra computation cost is comparable
to the cost of traditional model training. Note that the main extra computation cost in FIS (Algorithm
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Figure 4: We validate how accurate the first-order estimation of the influence is in comparison to the
real influence. The x-axis represents the actual influence per sample, and the y-axis represents the
estimated influence. We observe that while some of the examples are away from the diagonal line
(which indicates the estimation is inaccurate), the estimated influences for most of the data samples
are very close to their actual influence values.

mainly results from model gradients. Let p denote the number of model parameters, then the cost
for computing the gradients is O(p) per sample. Specifically, in each round that involves sampling,
we need to calculate three parts of gradients: the gradients of |U| unlabeled instances, the average
gradient of | @, | validation instances w.r.t. accuracy loss, and the gradient of |@,,| validation instances
w.r.t. fairness loss. Note that in general, |Q,| < |U|. In practical implementation, to speed up the
calculation of gradients over |U| instances, we randomly sample 0.2-0.5% of the unlabeled dataset in
each sampling batch. Additionally, we can increase the number of newly selected examples for each
round (7) to save computation costs. In our experiments, we usually have 10-20 sampling rounds.
For instance, running one experiment for the CelebA dataset on a single GPU roughly requires about
4 hours.

C.3 Exploration of the labeling strategies

Note that we provide a strategy that employs lowest-influence labels for annotating labels. This
section will explore an alternative strategy that employs model predictions for the purpose of labeling.
For completeness, we outline the two proposed labeling strategies as follows.

Strategy 1 Use low-influence labels. That is, § = argmin () [INflacc(’, k)|, which corre-
sponds to using the most uncertain point.

Strategy I~ Rely on model prediction. Thatis, § = arg max;.¢ (g f(z; w)[k], where f(z; w)[y]
indicates the model’s prediction probability on label y.

Remark C.1. Suppose that the model is trained with cross-entropy loss. The labels obtained through
Strategy 11 are sufficient to minimize the influence of the prediction component, i.e., INflaee(’, k).
That said, the|Strategy I\ will produce similar labels as Strategi Jil

Proof. Based on the definition of the influence of the prediction component, as delineated in Eq. (2)),
it becomes evident that the most uncertain points are obtained when the proxy labels closely align
with the true labels. Consequently, the model predictions used in Strategy II also approximate the
true labels to minimize the cross-entropy loss. Thus, in a certain sense, Strategy I and Strategy II can
be considered equivalent.

19



D Omitted proofs

In this section, we present complete proofs for the lemmas and theorems in Section @ and 5] respec-
tively.

D.1 Proof of Lemma[4.1]

Lemma The influence of predictions on the validation dataset Q,, can be denoted by

Inflaee(2') == Z Inflace (2, 25) ~ —n ZnE\Qr ‘ (Ow, (Wi, 2"), O, (Wi, 27))
nelQu| ”

Proof. Taking the first-order Taylor expansion, we will have

ol(w, z2)

e(WH—la Zn) ~ K(Wt, Zn) + < af(W> .CL'%)

 f(Wey1,23) — f(WtaiE?l)> :

W=W,

where we take this expansion with respect to f(w, 22 ). Similarly, we have

owenrsa) = fiwaf) = (B s )
O Jof(w,a8) l(w,)\|
"< ow ' ow >’w_w;

where the last equality holds due to Eq. (I). Therefore,
ol(w, z0) <8f(w, z2) Ol(w,z2) >> ‘
W=wW¢

e(wt—&-la Z;)L) - g(wta Z:;.) ~-n <

af(w,z2)’ ow ' Ow
[ Of(w,ap) 9l(w,z)
7 ow ' Ow wew,

Then the accuracy influence on the validation dataset V' can be denoted by

INflage(2) := > Inflace(2', 25) = —n <8wt€(wt,z’), > aw,,e(wt,z;;)>

Tlelel 716|Qv|

D.2 Proof of Lemma[4.2]

Lemma[d.2, The influence of fairness on the validation dataset Q,, can be denoted by

Inflir(2') = Y Inflgr(2',20) = =1 Y (Ow, (Wi, '), O, (W1, 25))
nele‘ nelel

Proof. By first-order approximation, we have

S(Wir1,2) ~ bWy, 25) + <0¢<WM>

of(w,z2) af(Wt+1,fo)—f(Wt7x;)>_

W=W¢

Recall by first-order approximation, we have

°) ~ —p <5f(W,fo)78€(w,z)>‘ N

f(Wepr,zy) — f(w, 2, Tw Sw

Therefore,

- <ae<w,z'> (Wi, ) >'W_Wt

¢(Wt+1’ Z’:)l) - ¢(Wt’ Zn) ™~ ow ’ ow
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Note the loss function in the above equation should be ¢ since the model is updated with ¢-loss.
Therefore,

INflgair (27) = Z Inflee (2, 28) &~ — 1 Z <3€wz 3¢(;V;z,i)>

ne|Qy| ne|Qy|

W=wW;

D.3 Proof of Theorem [5.1]

Theorem[il. (Generalization error bound). Let dist(P, Q), Gp be defined therein. With probability
at least 1 — d with § € (0,1), the generalization error bound of the model trained on dataset P is

log(4/6)

P
2P| +Rp(wh). )

Ro(w?) < Gp - dist(P, Q) +
N———’
distribution shift
Note that the generalization error bound is predominantly influenced by the shift in distribution

when we think of an overfitting model, i.e., the empirical risk Rp(w') — 0. The detailed proof is
presented as follows.

Proof. The generalization error bound is

Ro(w") = (Ra(w") - Ro(w") ) + (Rp(w?) ~ Re(w") ) + Re(w")
——
empirical risk

distribution shift Hoeffding’s inequality
log(4/6
< Gp - dist(P, Q) + OgQ?P/') +Rp(wh)

For the first term (distribution shift), we have

Ro(w”) = Rp(w") = E.nol(w”,2)] = E.op[l(w”, 2)]
I I
= Zp(g) (m=1)E.nnr, [E(Wpa Z)} - ZP(P) (mr=1)E.nnm, [K(WP’ Z)]

=1
I
<Y PP (= i) = p D (= ) [Eenr, [U(W 7, 2)]
< Gp - dist(P, Q).

where we define dist(P, Q) = Y, [p™) (x = i) —p(@) (7 = i)| and B, [((WF, 2)] < Gp,Vi €
I because of Assumption [5.2] To avoid mlsunderstandlng, we use a subscript P of the constant
G to clarify the corresponding model w’. Then, for the second term (Hoeffding inequality), with

probability at least 1 — J, we have [Rp(w?) — Rp(wl)| < 105413/'6)' O

D.4 Proof of Theorem [5.2]

Theorem (5.2 E (Upper bound of fairness disparity). Suppose Rg(-) follows Assumption - 5.1 Let
dist(P, Q), Gp, dist(Py, Q) and dist(Py, P) be defined therein. The initial learnlng rate N <

ﬁ, where T denotes the number of training epochs. Given model w* and w* trained exclusively

on group k’s data Py, with probability at least 1 — 6 with § € (0, 1), then the upper bound of the
fairness disparity is

Ro, (W) —Ro(wP) < Gp - dist(P, Q) + 4L*G? - dist(Py, P)* +GY, - dist(Py,, Qx) + Y

distribution shift group gap
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where T = \/102?413/‘6) + \/102g|(;k/|5) + @ + @y Note that E ., [((w*,2)] < Gy, @ =Rp(wl) —
REH(WS) and @y, = Rp, (W) — Ro, (wk). Specifically, © and w, can be regarded as constants
because Rp(w') and Rp, (w") correspond to the empirical risks, R (w2) and RG, (wx)
represent the ideal minimal empirical risk of model w< trained on distribution Q and Qy, respectively.

Moreover, these quantities w and wy, are not taken into account during the training phase, but rather
in relation to the final model.

Proof. First of all, we have
Ro, (w") = Ro(w”)
=(Ro(w"™) = Ro(w")) + (Ro,(w") = Ro(w'™))
=(Ro(w"™) = Ro(w")) + (Ro,(W") = R, (w'™)) + (Ro, (W) — Ro(w™))
<(Ro(w™) =Ro(w")) + (R, (w") = Ro, (w))

where w’* represents the model trained exclusively on group k’s data. For simplicity, when there is
no confusion, we use w¥ to substitute w'*. The inequality Ro, (W*) — Ro(w") > 0 holds because
the model tailored for a single group & can not generalize well to the entirety of the test set Q.

Then, for the first term, we have
(a) L
Ro(w") = Ro(w") < (VRo(w"), wh —w”) + §||w’“ - w’|?
2 Lk = WP + [ VRo(w)?
= oLV ve

© .
< L|w" —w"|? + (Ro(w") — R(w?))

group gap train-test model gap

where inequality (a) holds because of the L-smoothness of expected loss Rg (), i.e., Assumption [i
Specifically, inequality (b) holds because, by Cauchy-Schwarz inequality and AM-GM inequality, we
have

L 1
(VRo(wP),wh = w’) < J|wh = wl]2 + [ VRo(w!)|%.
Then, inequality (c) holds due to the L-smoothness of Ro(-) (Assumption , we can get a variant
of Polak-Lojasiewicz inequality, which follows
[VRo(w?)|I* < 2L(Ro(w) — R (w*?)).

where (R%(w<)) denotes the ideal minimal empirical risk of model w< trained on distribution Q.
Following a similar idea, for the second term, we also have

Ro, (wF) = Ro, (w") < LIw" = w* | + (Ro, (w") - R, (w))

Combined with two terms, we have

Ro, (W) = Ro(w") < (Ro(w”) = Ro(w?)) + 2L|w" — w”|* +(Rg, (W") = Ry, (W)

train-test model gap group model gap
Lastly, integrating with Lemmas and[D.3] we can finish the proof. O

Lemma D.1. (Train-test model gap) With probability at least 1 — §, given the model w* trained on
train set P, we have

Ro(w) — REH(W?) < Gp - dist(P, Q) + 105;?;13/5) + w.

where dist(P, Q) = Zle IpP)(r = i) — p'D(r =4)| and B, [0(WF, 2)] < Gp,Vi €I, and a
constant w := Rp(wP) — REH(WE).
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Proof. First of all, we have,
Ro(w") — Ry(w?) = (RQ<WP> - Rp<wP>) T Rp(wh) — Riy(wO)
<G -dist(P, Q) + Rp(wh) = RH(W?)

< G- dist(P, Q) + <R7>(WP) - RP(WP)> + (Rp(wp) - R*Q(WQ)>

distribution shift

Hoeffding’s inequality overfitting & ideal case

For the first term (distribution shift), we have

Ro(w") = Rp(w') = E.o[l(w", 2)] — Esop[t(w”, 2)]

I
= Zp(g) (m=19)Esn, [E(WP’ z)] — ZP(P) (m=19)Esnn, [K(WP’ z)]
i=1 i

I
<Y PP (=) = p D (= ) [Eonr, [U(W 7, 2)]
=1
< Gp - dist(P, Q).
I

where we define dist(P, Q) = >, [pP) (7 = i) —p( (7 = i)| and E, ., [{(WF,2)] < Gp,Vi €
I because of Assumption [5.2] For the second term, with probability at least 1 — §, we have

Rp(wF) —Rp(wh)| < %. Note that the third term R p(w?!’) — Ro (w<) can be regarded
as a constant to.because R p(w?!’) is the empirical risk and RS (w<) is the ideal minimal empirical
risk of model w2 trained on distribution Q.

Therefore, with probability at least 1 — §, given model wl,

Ro(wh) — REH(wW?) < Gp - dist(P, Q) + 105;?;13/5) + w.

O

Lemma D.2. (Group model gap) Suppose Assumptions and hold for empirical risk Rp(-).
The initial learning rate ng < ﬁ, where T denotes the number of training epochs. Then, we have

)2.

Proof. According to the above definition, we similarly define the following empirical risk R p, (W)
over group k’s data Pj; by splitting samples according to their marginal distributions, shown as
follows.

1

[wh —wP|]? < 2LG2(Z

i=1

P =i) = p P (m =)

I
R (w) =Y p® (r = DB [(w, 2)].

i=1

Let 7, indicate the learning rate of epoch ¢. Then, for each epoch ¢, group k’s optimizer performs
SGD as follows:

I
Wf = Wz,:g—l — M Zp(k) (7 =19)VwE.n, [E(Wf—la z)].
i=1
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For any epoch ¢ + 1, we have

wa-&-l *WEHHQ

I
= ||k —n, Zp T = )VaBem [UWF,2)] =Wl + 0 Y pP) (1 = 1) VB, (W), 2)] ||

i=1

< ”Wt - W H2 +77tHZp k) (m =19)VwE.on[{ Wt» ZP(P (m=1) w]EZ~7ri[£(Wt ) )HP
i=1

< [lwy = wi | + 207 ||ZP(P) m=1i)Lr, [V Eer (0w}, 2)] = ViBEenr, [((w], 2)]| ||

i=1

+ 217 ||Z( W7 = i) —p P —z’))vwEMint ,2)]|1?

I

2
< Wk = wP|? + 202 (Zp“%r )L, ) e

=1

I 2
+ 2007 g2 00 (W ?)(Z P (w = i) — pP)(r = i)|>
i=1
I 2
< (12 (Lo =itn ) Jiwk - wl?
=1
I

2
LR (w (Z ) (= i) <P><w=z‘>|)

I 2
< (22wt~ TP 206 (3 n =)~ 5w = )]

=1

where the third inequality holds since we assume that Vo E, ., [{(w, z)] is L,-Lipschitz continuous
e [V Bonm [6(W7 2)] = Vi e [((w, 2)]I| < Lo, |l Wi — w7, and denote gy (w)) =

max;_q ||VwEzmr, [0(W; z)] ||. The last inequality holds because the above-mentioned assumption

that L = L,, = L,,Vi € I, i.e., Lipschitz-continuity will not be affected by the samples’ classes.
Then, gmaz (wt ) < G because of Assumptlon
For T training epochs, we have

Iwh — wr||?

I 2
< (L4 2RL7)wWh s —wh |7+ an%GQ(Z p® (= i) — pP) (= z'>|)

=1
T 2
H (14 2n2L2) |wk — wl||? +2LG22 n?(1+2n2L*)T <Z ™) (=) — pP) (7 = i)|)
t=0 t=0
T 2
<2LG*Y (7 (1+207L%)" (Z p®(m = i) — pP)(z = i)) :
t=0

where the last inequality holds because the initial models are the same, i.e., wo = w§ = w{, Vk
When the condition 77 < n¢ < \/§1T - satisfies, 2L.G? S (n2(1 + 2n2L2))T~* can be simplifited

as 2L G2, which is independent of the learning algorithm. This condition is easy to be satisfied since

the learning rate 7; is a small value (< 0.0001) and usually set to be decay with the training epoch
(i.e., M1 < my). O
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Lemma D.3. With probability at least 1 — 6, given the model w* trained on group k’s dataset Py,
we have

log(4/6
Ro, (WF) = RG, (W) < Gy - dist(Pr, Qx) + °2g|(P/|) + @y,
k

where dist(Py, Q) = 25:1 IpPe) (1 = i) — p() (1 = i)| and B.r,[L(WF, 2)] < G}, Vi € I,
and wy, := Rp, (Wh) — Ry, (W),

Proof. Building upon the proof idea presented in Lemma D.I] for completeness, we provide a full
proof here. Firstly, we have,

Ro, (wh) =Ry, (wo)

= (R, (W") = Rp, (W")) + (Rp, (W*) = Rp, (W")) + (Rp, (W") = R, (W)

distribution shift Hoeffding’s inequality overfitting & ideal case

For the first term, we have

ng (Wk) - RPk (Wk)
I I
= SO (1 = B 6w, 2)] = 3PP = ), [, )]

i=1 =1
I
< S pP0 (7 = i) — ) (1 = §)|Esm, [0(WF, 2)]
=1

<Gy - diSt(Pk, Qk)

where dist(Py, Qx) := Y21, [p(P%) (r = i) — (@) (= )| and B, [((WF, 2)] < Gy, Vi € I due
to Assumption[5.2. Recall that the constant G|, clarifies the bound of loss on the corresponding model

log(4/4)
2|Py| -

For the third term, we define @), := Rp, (WF) — R, (w<+), which can be regarded as a constant.

w* . For the second term, with probability at least 1 —§, we have |Rp, (W*)—Rp, (w*)| <

This is because R p, (w") represents empirical risk and R, (w<¥) is the ideal minimal empirical
risk of model w<* trained on sub-distribution Qj,.

Therefore, with probability at least 1 — &, given model w*,

log(4/8
Ro, (wk) - R, (WQ'“) < Gy, - dist(Py, Q) + 02g|(P/| ) +w
k

E More experimental results

E.1 Datasets and parameter settings

We empirically evaluate FIS on the CelebA dataset, an image dataset commonly used in the fairness
literature [49]. We also evaluate FIS on two tabular datasets: UCI Adult [8] and Compas dataset [6].

E.1.1 CelebA dataset

Dataset details CelebA [49] is an image dataset with 202,599 celebrity face images annotated
with 40 attributes, including gender, hair colour, age, smiling, etc. The sensitive attribute is gender:
S = {Men, Women}. We select four binary classification targets, including smiling, attractive, young,
and big nose. For example, the task is to predict whether a person in an image is young (Y = 1) or
non-young (Y = 0), among other attribute predictions.
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Hyper-parameter details In all our experiments using the CelebA dataset, we train a vision
transformer with patch size (8, 8) using SGD optimizer and a batch size of 128. The epochs are split
into two phases: warm-up epochs (5 epochs) and training epochs (10 epochs). The default label budget
per round, which represents the number of solicited data samples, is set to 256. Additionally, the
default values for learning rate, momentum, and weight decay are 0.01, 0.9, and 0.0005, respectively.
We initially allocate 2% of the training set for training purposes and the remaining 98% for sampling.
Then, we randomly select 10% of the test data for validation. For JTT, we explore 10% data for
training purposes with weights A = 20 for retraining misclassified examples.

E.1.2 UCI Adult dataset

Dataset details. The Adult dataset [8] predicts whether an individual’s annual income falls below
or exceeds 50K, denoted as Y = 0 and Y = 1, respectively. This prediction is based on a variety of
continuous and categorical attributes, including education level, age, gender, occupation, etc. The
default sensitive attribute in this dataset is gender S = {Men, Women} [80]. In particular, we also
group this dataset using age S = {Teenager, Non-teenager}. To achieve a balanced age distribution in
the dataset, individuals with an age of less than 30 are grouped as “Teenagers". The dataset contains a
total of 45,000 instances. The dataset exhibits an imbalance: there are twice as many men as women,
and only 15% of those with high incomes are women.

Hyper-parameter details. In the experiments using the Adult dataset, we train a two-layer ReLU
network with a hidden size of 64. The epochs are split into two phases: warm-up epochs (100 epochs)
and training epochs (60 epochs). The default label budget per round, which represents the number of
solicited data samples, is set to 1024. Additionally, the default values for learning rate, momentum,
and weight decay are 0.00001, 0.9, and 0.0005, respectively. We resample the datasets to balance the
class and group membership [17]. The dataset is randomly split into a train and a test set in a ratio of
80 to 20. Then, we randomly re-select 20% of the training set for initial training and the remaining
80% for sampling. Also, 20% examples of the test set are selected to form a validation set. We utilize
the whole model to compute the prediction influence and fairness for examples. Then, we randomly
select 10% of the test data for validation. For JTT, we explore 30% data for training purposes with
weights A = 20 for retraining misclassified examples.

E.1.3 Compas dataset

Dataset details. Compas dataset, also known as the Correctional Offender Management Profiling
for Alternative Sanctions dataset, is a collection of data related to criminal defendants. It contains
information on approximately 6,172 individuals who were assessed for risk of re-offending. The
primary task associated with this dataset is predicting whether a defendant will re-offend (Y = 1) or
not (Y = 0) within a certain time frame after their release. The sensitive attribute is often considered
to be race, specifically whether the individual is classified as African American or not.

Hyper-parameter details. In the experiments using the Compas dataset, we train a multi-layer
neural network with one hidden layer consisting of 64 neurons. The epochs are split into two phases:
warm-up epochs (20 epochs) and training epochs (50 epochs). The default label budget per round,
which represents the number of solicited data samples, is set to 128. Furthermore, the default values
for learning rate, momentum, and weight decay are 0.01, 0.9, and 0.0005, respectively. We resample
the datasets to balance the class and group membership [17]]. The dataset is initially split into training
and test sets at an 80-20 ratio. Then, we further split 20% of the training set for initial training,
reserving the remaining 80% for sampling. Additionally, 20% of the test set is selected to create a
validation set. We use the entire model to calculate prediction influence and evaluate fairness for the
dataset examples.

E.2 Full version of experimental results
E.3 Exploring the impact of label budgets
In our study, we examine how varying label budgets r influence the balance between accuracy and

fairness. We present the results of test accuracy and fairness disparity across different label budgets
on the CelebA, Compas, and Adult datasets. In these experiments, we use the demographics parity
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Table 2: We report the (test_accuracy, fairness_violation) for evaluating the performance on
the CelebA dataset with two binary classification targets Young and Big Nose. We select gender
as the sensitive attribute.

CelebA - Young

e =0.05
(Test_acct, DPJ) (Test_accT, EOpl) (Test_acc?, EOd|)
Base(ERM) (0.755 +0.002, 0.190 £ 0.017)  (0.759 + 0.005, 0.102 + 0.005)  (0.755 £ 0.002, 0.182 + 0.018)
Random (0.763 £ 0.008, 0.158 £ 0.016)  (0.698 +0.109, 0.075 £ 0.021)  (0.766 £ 0.011, 0.156 + 0.017)
BALD (0.776 £ 0.021, 0.165 £ 0.019)  (0.775 + 0.020, 0.076 + 0.007)  (0.779 + 0.005, 0.162 + 0.021)
ISAL (0.781 £ 0.020, 0.180 £ 0.014)  (0.781 £ 0.020, 0.084 + 0.006)  (0.780 £ 0.021, 0.173 £ 0.012)
JTT-20 (0.774 £ 0.026, 0.167 £ 0.016)  (0.774 £ 0.024, 0.083 + 0.007)  (0.772 £ 0.023, 0.171 + 0.025)
FIS (0.763 + 0.004, 0.104 £ 0.059)  (0.773 £ 0.003, 0.041 £ 0.015)  (0.763 £ 0.005, 0.118 + 0.074)
=005 CelebA - Big Nose
(Test_acct, DPJ) (Test_accT, EOp)) (Test_accT, EOd|)
Base(ERM) (0.752 +0.024, 0.198 £ 0.034)  (0.755 +0.022, 0.206 + 0.018)  (0.755 +0.022, 0.183 + 0.029)
Random (0.760 + 0.009, 0.177 £ 0.014)  (0.757 £ 0.004, 0.190 + 0.029)  (0.759 £ 0.006, 0.167 + 0.029)
BALD (0.777 £ 0.004, 0.184 £ 0.016)  (0.765 +0.003, 0.209 + 0.014)  (0.770 £ 0.004, 0.170 + 0.015)
ISAL (0.782 £ 0.001, 0.148 £ 0.059)  (0.782 £ 0.001, 0.154 £ 0.080)  (0.779 £ 0.006, 0.145 + 0.065)
JTT-20 (0.771 £0.014, 0.191 £ 0.036)  (0.758 £ 0.026, 0.223 £ 0.018) (0.764 £ 0.019, 0.193 £ 0.016)
FIS (0.779 £ 0.009, 0.089 + 0.076)  (0.780 £ 0.013, 0.046 +£ 0.072)  (0.772 £ 0.015, 0.062+ 0.081)

Table 3: The performance results of (test_accuracy, fairness_violation) on the Adult dataset.

The sensitive attribute is age.

Income (age)

e =10.05
(Test_acct, DPJ) (Test_accT, EOpl) (Test_acct, EOd|)

Base(ERM)  (0.665 + 0.045, 0.255 £0.041)  (0.665 +0.045, 0.115 £ 0.036)  (0.665 + 0.045, 0.158 + 0.030)
Random (0.765 £ 0.021, 0.209 £ 0.042)  (0.758 £ 0.027, 0.127 £ 0.013)  (0.764 £ 0.018, 0.133 + 0.027)
BALD (0.767 £0.019,0.203 £ 0.017)  (0.703 £0.111,0.117 £0.013)  (0.763 £ 0.022, 0.128 + 0.014)
ISAL (0.765 + 0.020, 0.215 £ 0.011)  (0.755 £ 0.028, 0.128 £ 0.013)  (0.761 + 0.024, 0.138 + 0.009)
JTT-20 (0.751 £ 0.013, 0.262 +£ 0.020)  (0.742 £ 0.018, 0.149 £ 0.021)  (0.745 £ 0.014, 0.171 £ 0.012)
FIS (0.766 £ 0.013, 0.214 £ 0.009)  (0.757 £0.034, 0.113 £0.017)  (0.763 £0.011, 0.143 + 0.023)

Table 4: The performance results of (test_accuracy, fairness_violation) on the Compas

dataset. The selected sensitive attribute is race.

=005 Recidivism
(Test_acct, DPJ) (Test_accT, EOpJ) (Test_accT, EOd|)

Base(ERM) (0.675 +0.005, 0.333 £ 0.008) (0.675 +0.005, 0.267 £ 0.010)  (0.675 + 0.005, 0.284 + 0.010)
Random (0.689 + 0.007, 0.305 £ 0.023)  (0.686 +0.016, 0.253 + 0.035)  (0.688 + 0.006, 0.256 + 0.023)
BALD (0.688 +0.011,0.313 £0.012) (0.686 +0.015, 0.256 £ 0.031)  (0.688 +£0.011, 0.263 +0.011)
ISAL (0.697 + 0.002, 0.308 + 0.025)  (0.698 + 0.004, 0.274 +0.022)  (0.697 + 0.001, 0.260 + 0.026)
JTT-20 (0.646 + 0.009, 0.240 + 0.016)  (0.630 +0.024, 0.141 £0.028)  (0.646 + 0.009, 0.200 + 0.007)
FIS (0.690 + 0.002, 0.299 +0.029)  (0.694 +0.002, 0.241 + 0.035)  (0.698 + 0.005, 0.252 + 0.030)

(DP) as our fairness metric. For convenience, we maintain a fixed label budget per round, using
rounds of label budget allocation to demonstrate its impact. The designated label budgets per round
for the CelebA, Compas, and Adult are 256, 128, and 512, respectively. In the following figures, the
z-axis is both the number of label budget rounds. The y-axis for the left and right sub-figures are
test accuracy and DP gap, respectively. As observed in Figures compared to the three baselines
(BALD, JTT-20, and ISAL), our approach substantially reduces the DP gap without sacrificing test
accuracy.

Specifically, on the Adult dataset, both accuracy and fairness violation converge to similar numerical
values when the budget is lower than 20, suggesting a potential overfitting of the model to insufficient
training examples. With a larger budget, our algorithms outperform other baseline methods, achieving
higher accuracy and lower demographic disparity.
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Figure 5: The impact of label budgets on the test accuracy & DP gap in the CelebA dataset. The
binary classification targets is Smiling.
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Figure 6: The impact of label budgets on the test accuracy & DP gap in the Adult dataset. The
sensitive attribute is sex.

E.4 The role of validation dataset size

In this subsection, we explore the impact of adjusting the validation set size on our algorithm’s
performance. We present the test accuracy and fairness disparity across different validation set sizes
on the CelebA, Compas, and Adult datasets. Note that the default validation set size for image and
tabular datasets is set to 1% and 4% of the whole dataset size, respectively. That is, the default
validation set sizes are 1996 (CelebA), 1800 (Adult), and 247 (Compas) instances, respectively. In
particular, given the smaller size of the default validation set, the minimum scale of the validation set
size is set to 1/5x (nearly 400 CelebA images). Tables|5|and |§|present the performance results on the
CelebA, UCI Adult, and Compas datasets, respectively.

Table 5: The performance results of (test_accuracy, fairness_violation) on the CelebA
dataset when the validation set size is reduced to 1/2x and 1/5x. Our algorithm retains the test
accuracy and fairness violation when we vary the validation set size.

€=0.05 CelebA - Smiling CelebA - Attractive
(Test_acct, DP|) (Test_acct, EOp)) (Test_acct, EOd]) (Test_acct, DP]) (Test_acct, EOpl) (Test_acct, EOd|)
1x (0.848, 0.084) (0.876, 0.031) (0.864, 0.030) (0.680, 0.285) (0.695, 0.148) (0.692, 0.148)
1/2x (0.872, 0.105) (0.891, 0.042) (0.880, 0.028) (0.648, 0.249) (0.688, 0.188) (0.678, 0.147)
1/5x (0.872,0.117) (0.863, 0.057) (0.886, 0.028) (0.604, 0.171) (0.707, 0.209) (0.645, 0.145)
€=0.05 CelebA - Young CelebA - Big_Nose
(Test_acct, DP]) (Test_acct, EOp)) (Test_acct, EOd)) (Test_acct, DP]) (Test_acct, EOpl)) (Test_acct, EOd|)
1x (0.766, 0.139) (0.775, 0.043) (0.769, 0.168) (0.771, 0.156) (0.765, 0.129) (0.758, 0.155)
1/2x (0.735, 0.093) (0.762, 0.067) (0.769, 0.055) (0.771, 0.054) (0.761, 0.162) (0.748, 0.096)
1/5x (0.743, 0.107) (0.780, 0.097) (0.757, 0.166) (0.772, 0.095) (0.750, 0.300) (0.760, 0.156)

E.5 Benchmarking model performance with validation set enhancements

Note that we resort to an additional validation set for developing FIS. To demonstrate FIS’s advantage
at the same levels of information, we introduce a new baseline called Random+Val. This method
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Figure 7: The impact of label budgets on the test accuracy & DP gap in the Compas dataset. The
sensitive attribute is race.

Table 6: We examine the performance results of (test_accuracy, fairness_violation) on the
tabular datasets (Left: Adult; Right: Compas) when the validation set size is reduced to 1/2x, 1/ax,
and 1/20x. We observe that our algorithm still retains the test accuracy and fairness violation when
we vary the validation set size.

€—0.05 Adult - Income(Age) Compas - Recidivism
(Test_acctT, DP]) (Test_acct, EOpl) (Test_acct, EOd]) (Test_acct, DP|) (Test_acct, EOpl) (Test_acct, EOd|)
1x (0.757, 0.198) (0.718, 0.124) (0.750, 0.125) (0.690, 0.313) (0.696, 0.249) (0.702, 0.257)
1/2% (0.717, 0.259) (0.634, 0.123) (0.736, 0.143) (0.683, 0.270) (0.680, 0.247) (0.693, 0.244)
1/ax (0.749, 0.196) (0.750, 0.121) (0.747, 0.137) (0.677, 0.283) (0.682, 0.276) (0.680, 0.244)
1/20x (0.721, 0.205) (0.706, 0.148) (0.706, 0.179) (0.689, 0.289) (0.668, 0.236) (0.683, 0.252)

involves continuing to train the model with a randomly sampled validation set. Specifically, we start
with the Random’s last saved checkpoint and train it further using the validation set. In particular,
we would incorporate a fairness regularizer with dynamic weight to train the model using validation
data, considering its sensitive attributes to reduce fairness disparity. Due to its small size, we limit
training to 10 epochs to avoid overfitting. The performance results of Random, Random+Val, and FIS
are given in Table

Table 7: Comparative analysis of (test_accuracy, fairness_violation) in the CelebA, Adult
and Compas datasets. The table illustrates that even at the same information level (using the validation
set to train), FIS can obtain better performances. Similarly, we highlight all the fairer but without
sacrificing accuracy results in boldface compared to Random.

c—0.05 CelebA - Smiling CelebA - Attractive
(Test_acct, DP]) (Test_acct, EOpl)) (Test_acct, EOd|) (Test_acct, DP)) (Test_acct, EOpl)) (Test_acct, EOd|)
Random (0.853,0.132) (0.863, 0.053) (0.861, 0.031) (0.696, 0.367) (0.708, 0.253) (0.696, 0.243)
Random + Val (0.801, 0,115) (0.872,0.139) (0.879, 0.153) (0.638,0.199) (0.699, 0.366) (0.699, 0.355)
FIS (0.877, 0.122) (0.886, 0.040) (0.882, 0.023) (0.680, 0.285) (0.695, 0.148) (0.692, 0.148)
c—0.05 Adult - Income(Age) Compas - Recidivism
(Test_acct, DP])  (Test_acct, EOpl) (Test_acct, EOd|) (Test_acct, DP]) (Test_acct, EOpl) (Test_acct, EOd|)
Random (0.745, 0.236) (0.729, 0.136) (0.748, 0.151) (0.696, 0.316) (0.698, 0.258) (0.694, 0.269)
Random + Val (0.762, 0.161) (0.743, 0.266) (0.788, 0.131) (0.604, 0.136) (0.623, 0.147) (0.628, 0.153)
FIS (0.751, 0.205) (0.725, 0.130) (0.750, 0.125) (0.688, 0.316) (0.695, 0.250) (0.693, 0.254)

F Potential privacy leakage from non-demographic and demographic feature
correlations

Note that some non-demographic features may correlate with sensitive attributes (demographic
information), which could lead to potential privacy leakage issues [82]. However, it is crucial to
clarify that our method specifically limits its query to the data. We only query the true labels for
a selected subset of unlabeled examples. While correlations between non-demographic variables
and sensitive attributes may exist in the underlying data, our method itself does not introduce any
additional privacy leakage beyond what is inherent in the original dataset. On the other hand, our
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work’s primary focus is not on addressing privacy concerns related to demographic information.
Rather, our main objective is to reduce fairness disparities while maintaining a favorable utility
trade-off. We achieve this without explicitly incorporating any additional sensitive information into
the process and without directly engaging with the complex privacy implications of demographic
data usage.

To address this potential privacy concern, we can analyze it via differential privacy. Consider a
function ¢(-) that maps non-demographic information (feature  and label ) to a sensitive attribute
s. Due to insufficient information, ¢(-) is not deterministic, making it unable to precisely estimate s.
If a deterministic mapping function existed, it would unavoidably lead to privacy leakage. Therefore,
we assume that given the same features and label, the function ¢(-) output might vary. For example,
in the Adult dataset,  includes age and credit history, y is the income, and s is the gender. In
practice, both men and women have a probability of earning more than 50K (i.e., y = 1) given the
same age, credit history, etc (same feature x). Suppose P(¢(x,y) =s| S = s,2,y) <1 — ¢y and
P(¢(x,y) =s|S=5,x,y) > e forall x,y, s, s’ (where s # s'). Here, S represents the sensitive
attribute variable, which is unknown to ¢(+). Then, we have

Plo(w,y) = 8|S = s,@,y) _ maxP(o(z,y) =3[ S=s,a,y) _1-c _ .
P(¢(x,y) = 8|S = s',x,y) ~ minP(p(x,y) =53] S =5",z,9y) = e ’

1—60
€1

_ 1—6 . . . . . . .
where € = In (TO) In practice, if the mapping function is too strong, i.e. In ( ) is too large,

we can add additional noise to reduce their informativeness and therefore better protect privacy.
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