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Abstract

Artificial neural networks are being proposed as
models of parts of the brain. The networks are
compared to recordings of biological neurons,
and good performance in reproducing neural re-
sponses is considered to support the model’s valid-
ity. A key question is how much this system iden-
tification approach tells us about brain computa-
tion. Does it validate one model architecture over
another? We evaluate the most commonly used
comparison techniques, such as a linear encoding
model and centered kernel alignment, to correctly
identify a model by replacing brain recordings
with known ground truth models. System identi-
fication performance is quite variable; it also de-
pends significantly on factors independent of the
ground truth architecture, such as stimuli images.
In addition, we show the limitations of using func-
tional similarity scores in identifying higher-level
architectural motifs.

1. Introduction

Over the last two decades, the dominant approach for ma-
chine learning engineers in search of better performance
has been to use standard benchmarks to rank networks from
most relevant to least relevant. This practice has driven
much of the progress in the machine learning community.
A standard comparison benchmark enables the broad vali-
dation of successful ideas. Recently such benchmarks have
found their way into neuroscience with the advent of experi-
mental frameworks like Brain-Score (Schrimpf et al., 2020)
and Algonauts (Cichy et al., 2021), where artificial models
compete to predict recordings from real neurons in animal
brains. Can engineering approaches like this be helpful in
the natural sciences?
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Figure 1. Illustration of the research question: If one of the
candidate models matches the target neural network (brain) closely,
can the current model evaluation methods accurately find that out?

The answer is clearly yes: the “engineering approach” de-
scribed above ranks models that predict neural responses
better as better models of animal brains. While such rank-
ings may be a good measure of absolute performance in
approximating the neural responses, which on its own is
valuable for various applications (Bashivan et al., 2019), it
is an open question whether they are sufficient. In neuro-
science, understanding natural intelligence at the level of the
underlying neural circuits requires developing model sys-
tems that reproduce the abilities of their biological analogs
while respecting the constraints provided by biology, in-
cluding anatomy and biophysics (Marr & Poggio, 1976;
Schaeffer et al., 2022). A model that reproduces neural
responses well but turns out to require connectivity or bio-
physical mechanisms that are different from the biological
ones is thereby falsified.

Consider the conjecture that the similarity of responses be-
tween model units and brain neurons allows us to conclude
that brain activity fits better, for instance, a convolutional
motif rather than a dense architecture. If this were true, it
would mean that functional similarity over large data sets
effectively constrains architecture. Then the need for a sepa-
rate test of the model at the level of anatomy would become,
at least in part, less critical for model validation. Therefore,
we ask the question: could functional similarity be a reliable
predictor of architectural similarity?

We describe an attempt to benchmark the most popular sim-
ilarity techniques by replacing the brain recordings with
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data generated by various known networks with drastically
different architectural motifs, such as convolution vs. atten-
tion. Such a setting provides a valuable upper bound to the
identifiability of anatomical differences.

1.1. System Identification from Leaderboards

When artificial models are compared against common bi-
ological benchmarks for predictivity (Yamins & DiCarlo,
2016), models with the top score are deemed better mod-
els for neuroscience. As improvements to scores are made
over time, ideally, more relevant candidates emerge. Nev-
ertheless, if two artificial models with distinctly different
architectures, trained on the same data, happen to be sim-
ilar in reproducing neural activities (target model), then
it would be impossible to conclude what accounts for the
similarity. It can be biologically relevant motifs from each
architecture, the properties of the stimulus input, or simi-
larity metric. Such ambiguity is due to the many-to-one
mapping of a model onto a leaderboard score. Our work
shows that multiple factors play a role in representational
similarities.

An interesting example is offered by Chang et al. (2021),
which compares many different models with respect to their
ability to reproduce neural responses in the inferotemporal
(IT) cortex to face images. The study concludes that the 2D
morphable model is the best, even though the operations
required in the specific model, such as correspondence and
vectorization, do not have an apparent biological implemen-
tation in terms of neurons and synapses. This highlights
that there are multiple confounds besides the biological
constraints which affect neural predictivity.

2. Related Work

While the analogy between neural network models and the
brain has been well validated (Bashivan et al., 2019), the
extent of this correspondence across multiple levels (Marr
& Poggio, 1976) has not been fully understood. Yet, previ-
ous works often make connections between representational
and architectural levels of analyses, drawing implications
about computational properties directly from functional cor-
respondence. One previous study (Kar et al., 2019) argues
for recurrent connections in the ventral stream, partly based
on the higher neural predictivity of recurrent neural net-
works. Another study (Nonaka et al., 2021) observed that
purely feedforward neural networks outperform those with
branching or skip connections in terms of a similarity mea-
sure on neural activations. They concluded that the results
indicate the significance of feedforward connections in the
brain. Additionally, their interpretation suggests that certain
brain areas may be responsible for spatial integration, as
fully-connected layers, which have the ability to integrate
visual features spatially, better match these brain areas.

This assumed correspondence could be attributed to method-
ological limitations of evaluating such models simultane-
ously across all levels. Jonas & Kording (2017) investigated
the robustness of standard analysis techniques in neuro-
science with a microprocessor as a ground-truth model to de-
termine the boundaries of what conclusions could be drawn
about a known system. The presumption of correspondence
could also be attributed to underappreciated variability from
model hyperparameters (Schaeffer et al., 2022). In a similar
spirit to Jonas & Kording (2017); Lazebnik (2002), we eval-
uate system identification on a known ground-truth model
to establish the boundaries of what architectural motifs can
be reliably uncovered. We perform our analysis under favor-
able experimental conditions to establish an upper bound.

As modern neural network models have grown more promi-
nent in unison with the corresponding resources to train
these models, pre-trained reference models have become
more widely available in research (Wightman, 2019). Conse-
quently, the need to compare these references along different
metrics has followed suit. Kornblith et al. (2019); Morcos
et al. (2018) explored using different similarity measures
between the layers of artificial neural network models. Ko-
rnblith et al. (2019) propose various properties a similarity
measure should be invariant such as orthogonal transfor-
mations and isotropic scaling while not invariant to invert-
ible linear transformations. Kornblith et al. (2019) found
centered kernel alignment (CKA), a method very similar
to Representation Similarity Analysis (Kriegeskorte et al.,
2008), to best satisfy these requirements. Ding et al. (2021)
explored the sensitivity of methods like canonical correla-
tion analysis, CKA, and orthogonal procrustes distance to
changes in factors that do not impact the functional behavior
of neural network models.

3. Background and Methods

The two predominant approaches to evaluating computa-
tional models of the brain are using metrics based on linear
encoding analysis for neural predictivity and population-
level representation similarity. The first measures how
well a model can predict the activations of individual units,
whereas the second metric measures how correlated the
variance of internal representations is. We study the fol-
lowing neural predictivity scores consistent with the typical
approaches: Linear Regression and Centered Kernel Align-
ment (CKA).

In computational neuroscience, we usually have a neural
system (brain) that we are interested in modeling. We call
this network a target and the proposed candidate model a
source. Formally, for a layer with p, units in a source model,
let X € R™"*P= be the matrix of representations with p,
features over n stimulus images. Similarly, let Y € R™"*Pv
be a matrix of representations with p,, features of the target
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model (or layer) on the same n stimulus images. Unless
otherwise noted, we subsample 3000 target units to test an
analogous condition as in biology, where recordings are far
from exhaustive (more discussion in Appendix A.4). Our
analyses partially depend upon the target coverage, and we
later examine the effect of increasing the number of target
units.

3.1. Encoding Model: Linear Regression

Following the procedure developed by previous works
(Schrimpf et al., 2020; Yamins et al., 2014; Conwell et al.,
2021; Kar et al., 2019; Mitchell et al., 2008), we linearly
project the feature space of a single layer in a source model
to map onto a single unit in a target model (a column of
Y'). The linear regression score is the Pearson’s correla-
tion (-, -) coefficient between the predicted responses of a
source model and the ground-truth target responses to a set
of stimulus images.

B = argming||Y — XSB||% + A|BlIF (D)
LR(X,Y) =r(XSB,Y) 2)

We first extract activations on the same set of stimulus im-
ages for source and target models. To reduce computational
costs without sacrificing predictivity, we apply sparse ran-
dom projection S € RP=*% for q,, << p,, on the activa-
tions of the source model (Conwell et al., 2021). This projec-
tion reduces the dimensionality of the features to g, while
still preserving relative distances between points (Li et al.,
2006). We determine the dimensionality of random projec-
tion based on the Johnson—Lindenstrauss lemma (Johnson,
1984) with the distortion factor ¢ = 0.1, which leads to
6862 random projections for 3000 stimulus images. Unlike
principal component analysis, sparse random projection is a
dataset-independent dimensionality reduction method. This
removes any data-dependent confounds from our processing
pipeline for linear regression and isolates dataset depen-
dence into our variables of interest: linear regression and
candidate model.

We apply ridge regression on every layer of a source model
to predict a target unit using these features. We use nested
cross-validations in which the regularization parameter A is
chosen in the inner loop and a linear model is fitted in the
outer loop. The list of tested A is [0.01,0.1, 1.0, 10.0, 100].
We use 4-fold cross-validation for inner loops and 5-fold
cross-validation for outer loops. As there are multiple target
units, the median of Pearson’s correlation coefficients be-
tween predicted and true responses is the aggregate score for
layer-wise comparison between source and target models.
Note that a layer of a target model is usually assumed to
correspond to a visual area, e.g., V1 or IT, in the visual cor-

tex. For a layer-mapped model, we report maximum linear
regression scores across source layers for target layers.

3.2. Centered Kernel Alignment

Another widely used type of metric builds upon the idea
of measuring the representational similarity between the
activations of two neural networks for each pair of images.
While variants of this metric abound, including RSA or re-
weighted RSA (Kriegeskorte et al., 2008; Khaligh-Razavi
et al., 2017), we use CKA (Cortes et al., 2012) as Kornblith
et al. (2019) showed strong correspondence between lay-
ers of models trained with different initializations, which
we will further discuss as a validity test we perform. We
consider linear CKA in this work:

YT X
CKA(X.,Y) = 3
XY ==Xy, O

Kornblith et al. (2019) showed that the variance explained
by (unregularized) linear regression accounts for the singu-
lar values of the source representation. In contrast, linear
CKA depends on the singular values of both target and
source representations. Recent work (Diedrichsen et al.,
2020) notes that linear CKA is equivalent to a whitened
representational dissimilarity matrix (RDM) in RSA under
certain conditions. We also call CKA a neural predictivity
score because a target network is observable, whereas a
source network gives predicted responses.

3.3. Identifiability Index

To quantify how selective predictivity scores are when a
source matches the target architecture compared to when
the architecture differs between source and target networks,
we define an identifiability index as:

score(s = t) — score(s # t)
score(s = t) + score(s # t)

Identifiability Index = 4

where s is the source or candidate model, and ¢ is the target
model. In brief, it is a normalized difference between the
score for the true positive and the mean score (score) for the
true negatives. Previous works (Dobs et al., 2022; Freiwald
& Tsao, 2010) defined selectivity indices in the same way
in similar contexts, such as the selectivity of a neuron to
specific tasks.

3.4. Simulated Environment

If a target network is a brain, it is essentially a black box,
making it challenging to understand the properties or lim-
itations of the comparison metrics. Therefore, we instead
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Figure 2. Linear regression scores of deep neural networks for
brain activations in the macaque visual cortex. Architecture list
in Appendix A.1. For V1, the top performing three models are in
the VOneNet family (Dapello et al., 2020), which are explicitly
designed to mimic the known properties of V1.

use artificial neural networks of our choice as targets for our
experiments.

We investigate the reliability of a metric to compare models,
mainly to discriminate the underlying computations spec-
ified by the model’s architecture. We intentionally create
favorable conditions for identifiability in a simulated envi-
ronment where the ground truth model is a candidate among
the source models. Taking these ideal conditions further,
our target and source models are deterministic and do not
include adverse conditions typically encountered in biologi-
cal recordings, such as noise and temporal processing. We
consider the following architectures:

Convolutional: AlexNet (Krizhevsky et al., 2012), VGG11
(Simonyan & Zisserman, 2014), ResNet18 (He et al., 2016)

Recurrent: CORnet-S (Kubilius et al., 2019)
Transformer: ViT-B/32 (Dosovitskiy et al., 2020)
Mixer: MLP-Mixer-B/16 (Tolstikhin et al., 2021)

These architectures are emblematic of the vision-based mod-
els used today. Each architecture has a distinct motif, mak-
ing it unique from other models. For example, transformer
networks use the soft-attention operation as a core motif,
whereas convolutional networks use convolution. Recurrent
networks implement feedback connections which may be
critical in the visual cortex for object recognition (Kubilius
et al., 2019; Kar et al., 2019). Moreover, mixer networks
(Tolstikhin et al., 2021; Touvron et al., 2021; Melas-Kyriazi,
2021) uniquely perform fully-connected operations over
image patches, alternating between the feature and patch
dimensions.

4. Results

4.1. Different Models with Equivalent Neural
Predictivity

We compare various artificial neural networks with pub-
licly shared neural recordings in primates (Majaj et al.,
2015; Freeman et al., 2013) via the Brain-Score framework
(Schrimpf et al., 2020). Our experiments show that the
differences between markedly different neural network ar-
chitectures are minimal after training (Figure 2), consistent
with the previous work (Schrimpf et al., 2020; Kubilius
et al., 2019; Conwell et al., 2021). Previous works focused
on the relative ranking of models and investigated which
model yields the highest score. However, if we take a closer
look at the result, the performance difference is minimal,
with the range of scores having a standard deviation < 0.03
(for V2=0.021, V4=0.023, IT=0.016) except for V1. For
V1, VOneNets (Dapello et al., 2020), which explicitly build
in properties observed from experimental works in neuro-
science, significantly outperform other models. Notably, the
models we consider have quite different architectures based
on combinations of various components, such as convolu-
tional layers, attention layers, and skip connections. This
suggests that architectures with different computational op-
erations reach almost equivalent performance after training
on the same large-scale dataset, i.e., ImageNet.

4.2. Identification of Architectures in an Ideal Setting

One potential interpretation of the above result would be
that different neural network architectures are equally good
(or bad) models of the visual cortex. An alternative expla-
nation would be that the method we use to compare models
with the brain has limitations in identifying precise com-
putational operations. To test the hypothesis, we focus on
where underlying target neural networks are known instead
of being a black box, as with biological brains. Specifically,
we replace the target neural recordings with artificial neural
network activations. By examining whether the candidate
source model with the highest predictivity is identical to the
target model, we can evaluate to what extent we can identify
architectures with the current approach.

4.2.1. LINEAR REGRESSION

We first compare various source models (AlexNet, VGG11,
ResNet18, CORnet-S, ViT-B/32, MLP-Mixer-B/16) with a
target network, the same architecture as one of the source
models and is trained on the same dataset but initialized
with a different seed. We test a dataset composed of 3200
images of synthetic objects studied in (Majaj et al., 2015)
to be consistent with the evaluation pipeline of Brain-Score.
The ground-truth source model will yield a higher score than
other models if the model comparison pipeline is reliable.
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Figure 3. Linear regression scores as a function of target network layer. Each unit in a target layer yields an independent score. Boxplots
show the distribution of scores for subsampled 3000 units / target layer. The statistics displayed by boxplots are: min, max, median, and
the first and third quartiles. When the architecture of source and target networks matches, different initialization seeds are used for source
networks, except for one (MLP-Mixer-B/16*), which uses identical weights. Black dots e indicate that the correct architecture does not
outperform others with statistically significant differences (p > 0.01). Red dots e indicate that the median scores for those networks are
higher than the median for the correct architecture. The ranking of source models is typically based on median scores (Schrimpf et al.,

2020).

For most target layers, source networks with the highest
median score are the correct network (Figure 3). How-
ever, strikingly, for several layers in VGG11, ResNetl8,
and CORnet-S the best-matched layers belong to a source
model that is not the correct architecture. In other words,
given the activations of ResNet18, for instance, and based
on linear regression scores, we would make an incorrect
prediction that the system’s underlying architecture is clos-
est to a recurrent neural network CORnet-S. While it has
been argued that recurrent neural networks essentially corre-
spond to ResNets with weight shared across layers (Liao &
Poggio, 2016), the ResNet18 architecture we consider here
does not have such weight-sharing. The confusion between
ResNet18 and CORnet-S is especially noteworthy in that the
prediction leads to an incorrect inference about the presence
of recurrent connections in the target network.

In addition, because of our ideal setting, where an identical
network is one of the source models, we expect to see a
significant difference between matching and non-matching
models. However, for multiple target layers, linear regres-
sion scores for the non-identical architectures, when com-
pared with those for the identical one, do not show a signif-
icant decrease in predictivity based on Welch’s t-test with
p < 0.01 applied as a threshold (Figure 3). This result sug-
gests that the identification of the underlying architectures

of unknown neural systems is far from perfect.

4.2.2. CENTERED KERNEL ALIGNMENT

Next, we examine another widely used metric, CKA, for
comparing representations. Again, we compare different
source models to a target model, also an artificial neural
network. For the target models we tested, the ground-truth
source models achieve the highest score (Figure 4). Still,
some unmatched source networks lead to scores close to
the matched networks, even for the target MLP-Mixer-B/16,
where the source network of the same architecture type also
has identical weights.

When applying CKA to compare representations, we sub-
sample a set (3000) of target units to mimic the limited cov-
erage of single-unit recordings. Assuming we can increase
the coverage for future experiments with more advanced
measurement techniques, we test whether the identifiabil-
ity improves if we include all target units. Additionally,
methods similar to CKA, such as RSA, are often applied to
interpret neural recordings, including fMRI, MEG, and EEG
(Cichy & Oliva, 2020; Cichy & Pantazis, 2017), which can
have full coverage of the entire brain or a specific region of
interest. Therefore, we simulate such analyses by having all
units in the targets. Overall, the ground-truth source models
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Figure 4. CKA for different source and target networks. The number of subsampled units in a target layer is 3000. Bar plots display the
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Figure 5. Top Sample images of each stimulus image type. (a) Identifiability index using CKA and (b) linear regression for various types
of stimulus images and target networks.
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outperform the other source models by a significant margin
(Figure 7 in the Appendix). This suggests system identifi-
cation can be more reliable with more recording units and
complete target coverage.

4.3. Effects of the Stimulus Distribution on
Identifiability

A potentially significant variable overlooked in comparing
computational models of the brain is the type of stimulus
images. What types of stimulus images are suited for evalu-
ating competing models? In Brain-Score, stimulus images
for comparing models of the high-level visual areas, V4
and IT, are images of synthetic objects (Majaj et al., 2015).
In contrast, those for the lower visual areas, V1 and V2,
are images of texture and noise (Freeman et al., 2013). To
examine the effect of using different stimulus images, we
test images of synthetic objects (3200 images) and texture
and noise (135 images), and additionally, ImageNet (3000
images) and web-crawled images LAION (3000 images)
(Schuhmann et al., 2021) which are more natural images
than the first two datasets.

In Figure 5, we analyze Identifiability Index for different
stimulus images. More realistic stimulus images, i.e., syn-
thetic objects, ImageNet, and LAION, show higher identifi-
ability than texture and noise images for all target models.
We observe identifiability increases with layer depth. No-
tably, even for early layers in target models, which would

correspond to V1 and V2 in the visual cortex, texture and
noise images fail to give higher identifiability.

Additionally, testing LAION images leads to Identifiability
Indices as high as, or often higher than, those obtained using
ImageNet images, on which all target systems are trained.
This result indicates that the stimuli do not need to be exactly
in-distribution with the training data for better identification
and suggests that natural image statistics may be sufficient.

It is important to note that the images of texture and noise
used in the experiment help characterize certain aspects of
V1 and V2, as shown in previous work (Freeman et al.,
2013). Specifically, the original study investigated the func-
tional role of V2 in comparison to V1 and demonstrated that
naturalistic structure modulates V2. While the image set
plays an influential role as a variable in a carefully designed
experiment to address specific hypotheses, it does not serve
as a sufficient test set for any general hypothesis, such as
evaluating different neural networks.

4.4. Challenges of Identifying Key Architectural Motifs

Interesting hypotheses for a more biologically plausible
design principle of brain-like models often involve key high-
level architectural motifs. For instance, potential questions
are whether recurrent connections are crucial in visual pro-
cessing or, with the recent success of transformer models
in deep learning, whether the brain similarly implements
computations like attention layers in transformers. The de-
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tails beyond the key motif, such as the number of layers or
the exact type of activation functions, may vary and be un-
derdetermined within the scope of such research questions.
Likewise, it is unlikely that candidate models proposed by
scientists align with the brain at every level, from low-level
specifics to high-level computation. Therefore, an ideal
methodology for comparing models should help separate
the key properties of interest while being invariant to other
confounds.

Considering it is a timely question, with the increased in-
terest in transformers as models of the brain in different
domains (Schrimpf et al., 2021; Berrios & Deza, 2022; Whit-
tington et al., 2021), we focus on the problem of identifying
convolution vs. attention. We test 12 Convolutional Net-
works and 14 Vision Transformers of different architectures
(list in Appendix A.2), and to maximize identifiability, we
use ImageNet stimulus images. Note that an identical archi-
tecture with the target network is not included as a source
network.

Figure 6 shows that for both CKA and regression, there is
high inter-class variance for many target layers. For CKA,
one layer in VGG13, 7 layers in ResNet34, and 7 layers
in ViT-L/16, and for regression, three layers in VGG13, 6
layers in ResNet34, and one layer in ViT-L/16 do not show
a statistically significant difference between the two model
classes based on Welch’s t-test with p < 0.01 used as a
threshold. The significant variance among source models
suggests that model class identification can be incorrect
depending on the precise variation we choose, especially if
we rely on a limited set of models.

5. Discussion

Under idealized settings, we tested the identifiability of var-
ious artificial neural networks with differing architectures.
We present two contrasting interpretations of model identifi-
ability based on our results, one optimistic (Glass half full)
and one pessimistic (Glass half empty).

Glass half full: Despite the many factors that can lead
to variable scores, linear regression and CKA give reason-
able identification capability under unrealistically ideal con-
ditions. Across all the architectures tested, identifiability
improves as a function of depth.

Glass half empty: However, system identification is highly
variable and dependent on the properties of the target archi-
tecture and the stimulus data used to probe the candidate
models. For architecture-wide motifs, like convolution vs.
attention, scores overlap significantly across almost all lay-
ers. This indicates that such distinct motifs do not play a
significant role in the score.

Our results suggest two future directions for improving

system identification with current approaches: 1) Using
stimuli images that are more natural. 2) With more neurons
recorded in the brain, neural predictivity scores can be more
reliable in finding the underlying architecture.

On the other hand, it is worthwhile to note that we may
have reached close to the ceiling using neural predictivity
scores for system identification. As an example, when our
source network is AlexNet, its regression scores against the
brain (Figure 2) are on par with, or slightly higher than, the
scores against another AlexNet (Figure 3). In other words,
based on the current methods, AlexNet predicts the brain
as well as, if not better than, predicting itself. This obser-
vation is not limited to AlexNet but applies to other target
networks. This fundamental limitation of present evaluation
techniques, such as the linear encoding analysis used in
isolation, emphasizes the need to develop new approaches
beyond comparing functional similarities.

As we argued earlier, ranking models in terms of their agree-
ment with neural recordings is the first step in verifying
or falsifying a neuroscience model. Since several different
models are very close in ranking, the next step — architec-
tural validation — is the key. Furthermore, it may have to
be done independently of functional validation and with
little guidance from it, using standard experimental tools
in neuroscience. A parallel direction is, however, to try to
develop specially designed, critical stimuli to distinguish
between different architectures instead of measuring the
overall fit to data. As a simple example, it may be possible
to discriminate between dense and local (e.g., CNN) net-
work architectures by measuring the presence or absence
of interactions between parts of a visual stimulus that are
spatially separated.
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A. Appendix
A.1. Model details for Section 4.1: Brain-Score

Below is the full list of models tested on the benchmarks of Brain-Score as reported in Section 4.1. In addition to testing
vision models pre-trained on ImageNet available from PyTorch’s torchvision model package version 0.12, we test VOneNets
that are pre-trained on ImageNet and made publicly available by the authors (Dapello et al., 2020). VOneNets are also a
family of CNNs.

Convolutional Networks: AlexNet, VGG11, VGG13, VGG19, ResNet18, ResNet34, ResNet50, ResNet101, VOneAlexNet,
VOneResNet50, VOnetCORnet-S

Transformer Networks: ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32

A.2. Model details for Section 4.5: finding the key architectural motif

For each target network reported in Section 4.5, namely VGG13, ResNet34, and ViT-L/16, below is the full list of source
models tested to compare two model classes, CNN and transformer. For Tokens-to-token ViTs (T2T) (Yuan et al., 2021), we
use models released by the authors. We use Twins Vision Transformers and a Visformer from timm library (Wightman,
2019). All other models are available from PyTorch’s torchvision model package version 0.12. All models are pre-trained
on ImageNet.

Convolutional Networks: AlexNet, VGG11, VGG13, VGG16, VGG13_bn, ResNetl18, ResNet34, ResNet50, Wide-
ResNet50_2, SqueezeNetl_0, Densenet121, MobileNet_v2

Transfomer Networks: ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32, T2T-ViT_t-14, T2T-ViTt-19, T2T-ViT-7, T2T-ViT-10,
Swin-B, Swin-S, Swin-T, Twins-PCPVT-Small, Twins-SVT-Small, Visformer-Small
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A.3. Model details: number of layers included for each model

Table 1.

Model Number of Layers
AlexNet 10
CORnet-S 12
Densenet121 30
MLP-Mixer-B16-224 24
Mobilenet_v2 14
ResNet18 10
ResNet34 18
ResNet50 18
Squeezenet]_0 13
Swin-B 24
Swin-S 24
Swin-T 12
T2T-ViT-10 13
T2T-ViT-7 10
T2T-ViT_t-14 17
T2T-ViT_t-19 22
Twins-PCPVT-Small 16
Twins-SVT-Small 18
VGGl11 10
VGG13 12
VGG13-BN 12
VGG16 15
Visformer-Small 16
ViT-B-16 12
ViT-B-32 12
ViT-L-16 24
ViT-L-32 24
Wide-ResNet502 18
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A 4. Coverage of neural recordings in target systems

For single-unit neural recordings, we have a limited number of recording sites. In our experimental settings, this is analogous
to subsampling units in a target system. Collins et al. (2010) estimates that there are approximately 35 million neurons in V1
in the primate visual cortex, with a decreasing number of neurons in higher visual areas, such as MT, which has 1.6 million
neurons. When different visual areas are combined, single-neuron recording sites generally amount to a few hundred. To
maximize coverage, assuming approximately 100 sites for each of V1, V2, V4, and IT combined in one visual area, we
can approximate the number of neural recording sites as 400 neurons for a back-of-the-envelope calculation. If we apply a
similar coverage ratio from the brain to neural network models, the number of subsampled units would range from 1 to 200
for a single layer, considering that the number of units in models roughly ranges from 800K (early layers of ResNet) to 4096
(later layer of AlexNet). This range is smaller than our experimental condition of subsampling 3000 neurons per target layer.

While increasing the number of recording sites for better system identification may not be easily feasible currently, we
cannot rule out the possibility that recording techniques will be substantially improved in the future. Furthermore, applying
CKA as a comparison metric may be more analogous to using RSA on neuroimaging data, such as fMRI or MEG, which
captures signals from the whole brain. Therefore, we consider the condition of measuring all target units (Figure 7).
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Figure 7. CKA scores when all target units are tested. Experimental setups are identical to Figures 4, 5, and 6 otherwise. See Section 4.2.2
for discussion. For the target MLP-Mixer-B/16 in (a), the source MLP-Mixer-B/16 has identical weights with the target; thus CKA is

trivially 1.
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