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Abstract

In this paper, we investigate the Rademacher complexity of deep sparse neural networks, where
each neuron receives a small number of inputs. We prove generalization bounds for multilayered
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associated Toeplitz matrices, independently of weight sharing between neurons.
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sparsity of the underlying target function is critical to the success of deep neural networks.
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Abstract
In this paper, we investigate the Rademacher com-
plexity of deep sparse neural networks, where
each neuron receives a small number of inputs.
We prove generalization bounds for multilayered
sparse ReLU neural networks, including convo-
lutional neural networks. These bounds differ
from previous ones, as they consider the norms
of the convolutional filters instead of the norms
of the associated Toeplitz matrices, independently
of weight sharing between neurons.

As we show theoretically, these bounds may be
orders of magnitude better than standard norm-
based generalization bounds and empirically, they
are almost non-vacuous in estimating general-
ization in various simple classification problems.
Taken together, these results suggest that compo-
sitional sparsity of the underlying target function
is critical to the success of deep neural networks.

1. Introduction
Over the last decade, deep learning with large neural net-
works has greatly advanced the solution of a wide range of
tasks including image classification (He et al., 2016; Doso-
vitskiy et al., 2021; Zhai et al., 2021), language process-
ing (Vaswani et al., 2017; Devlin et al., 2019; Brown et al.,
2020), interacting with open-ended environments (Silver
et al., 2016; Arulkumaran et al., 2019), and code synthe-
sis (Chen et al., 2021). Despite traditional theories (Vapnik,
1998), recent findings (Zhang et al., 2017; Belkin, 2021)
show that deep neural networks can generalize well even
when their size far exceeds the number of training samples.

To address this question, recent efforts in deep learning the-
ory study the generalization performance of deep networks
by analyzing the complexity of the learned function.
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Recent work has suggested generalization guarantees for
deep neural networks based on various norms of their weight
matrices (Neyshabur et al., 2015; Golowich et al., 2017;
Bartlett & Mendelson, 2001; Harvey et al., 2017; Bartlett
et al., 2017; Neyshabur et al., 2018; Cao & Gu, 2019;
Daniely & Granot, 2019; Wei & Ma, 2019; Allen-Zhu et al.,
2019; Li et al., 2018). Many efforts have been made to
improve the applicability of these bounds to realistic scales.
Some studies have focused on developing norm-based gen-
eralization bounds for complex network architectures, such
as residual networks (He et al., 2019). Other studies investi-
gated ways to reduce the dependence of the bounds on the
product of spectral norms (Wei & Ma, 2019; Nagarajan &
Kolter, 2019), or to use compression bounds based on PAC-
Bayes theory (Zhou et al., 2019; Lotfi et al., 2022), or on
the optimization procedure used to train the networks (Cao
& Gu, 2019; Arora et al., 2019; Richards & Kuzborskij,
2021). However, most of these studies have focused on
fully-connected networks which empirically have lower per-
formance compared to other architectures. In particular,
these studies cannot directly explain the success of current
successful architectures (LeCun et al., 1998; Vaswani et al.,
2017; Dosovitskiy et al., 2020).

To fully understand the success of deep learning, it is neces-
sary to analyze a wider scope of architectures beyond fully-
connected networks. An interesting recent direction (Ledent
et al., 2021; Long & Sedghi, 2020) suggests better general-
ization bounds for neural networks with shared parameters,
such as convolutional neural networks. In fact, (Ledent
et al., 2021) was the first to show that convolutional layers
contribute to generalization bounds with a norm component
smaller than the norm of the associated linear transformation.
However, many questions remain unanswered, including (a)
Why certain compositionally sparse architectures, such as
convolutional networks, perform better than fully-connected
architectures? (b) Is weight sharing necessary for the suc-
cess of convolutional neural networks? In this paper, we
contribute to an understanding of both of these questions.

1.1. Related Work

Approximation guarantees for multilayer sparse net-
works. While fully-connected networks, including shal-
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low networks, are universal approximators (Cybenko, 1989;
Hornik, 1991) of continuous functions, they are largely lim-
ited in theory and in practice. Classic results (Mhaskar,
1996; Maiorov & Pinkus, 1999; Maiorov et al., 1999;
Maiorov, 1999; Hanin & Sellke, 2017) show that, in the
worst-case, approximating r-continuously differentiable
target functions (with bounded derivatives) using fully-
connected networks requires Θ(ϵ−d/r) parameters, where d
is the input dimension and ϵ is the approximation rate. The
exponential dependence on d is also known as the “curse of
dimensionality”.

A recent line of work (Mhaskar et al., 2017; Poggio et al.,
2020; Poggio, 2022) shows that the curse of dimensionality
can be avoided by deep, sparse networks, when the target
function is itself compositionally sparse. Furthermore, it
has been conjectured that efficiently computable functions,
that is functions that are computable by a Turing machine
in polynomial time, are compositionally sparse. This sug-
gests, in turns, that, for practical functions, deep and sparse
networks can avoid the curse of dimensionality.

These results, however, lack any implication about general-
ization; in particular, they do not show that overparametrized
sparse networks have good generalization properties.

Norm-based generalization bounds. A recent thread
in the literature (Neyshabur et al., 2015; Golowich et al.,
2017; Bartlett & Mendelson, 2001; Harvey et al., 2017;
Bartlett et al., 2017; Neyshabur et al., 2018; Cao & Gu, 2019;
Daniely & Granot, 2019; Wei & Ma, 2019) has introduced
norm-based generalization bounds for neural networks. In
particular, let S = {(xi, yi)}mi=1 be a training dataset of m
independently drawn samples from a probability measure
P defined on the sample space X × Y , where X ⊂ Rd and
Y = {±1}. A fully-connected network is defined as

fw(x) = WLσ(WL−1σ(. . . σ(W 2σ(W 1x)) . . . )), (1)

where L is the depth of the network, W l ∈ Rdl+1×dl

and σ(x) is the element-wise ReLU activation function
max(0, x). A common approach for estimating the
gap between the train and test errors of a neural net-
work is to use the Rademacher complexity of the net-
work. For example, in (Neyshabur et al., 2015), an up-
per bound on the Rademacher complexity is introduced
based on the norms of the weight matrices of the net-
work of order O( 2L√

m

∏L
l=1 ∥W l∥F ). Later, (Golowich

et al., 2017) showed that the exponential dependence
on the depth can be avoided by using the contraction
lemma and obtained a bound that scales with O(

√
L).

In (Bartlett et al., 2017), a Rademacher complexity bound
based on covering numbers was introduced, which scales

as Õ

(∏L
l=1 ∥W l∥2√

m
·
(∑L

l=1

∥(W l−M l)⊤∥2/3
2,1

∥W l∥2/3
2

)3/2
)

, where

M l ∈ Rdl+1×dl are fixed reference matrices and ∥ · ∥2 is the

spectral norm.

While these results provide solid upper bounds on the test
error of deep neural networks, they only take into account
very limited information about the architectural choices of
the network. In particular, when applied to convolutional
networks, the matrices W l represent the linear operation per-
formed by a convolutional layer whose filters are wl. How-
ever, since W l applies wl to several patches (dl patches),
we have ∥W l∥F =

√
dl∥wl∥F . As a result, the bound

scales with O(
√∏L

l=1 dl), that grows exponentially with L.
This means that the bound is not suitable for convolutional
networks with many layers as it would be very loose in
practice. In this work, we establish generalization bounds
that are customized for convolutional networks and scale
with

∏L
l=1 ∥wl∥F instead of

∏L
l=1 ∥W l∥F .

In (Jiang et al., 2020) they conducted a large-scale ex-
periment evaluating multiple norm-based generalization
bounds, including those of (Bartlett et al., 2017; Golowich
et al., 2017). They argued that these bounds are highly
non-vacuous and negatively correlated with the test error.
However, in all of these experiments, they trained the neu-
ral networks with the cross-entropy loss which implicitly
maximizes the network’s weight norms once the network
perfectly fits the training data. This can explain the observed
negative correlation between the bounds and the error.

In this work, we empirically show that our bounds provide
relatively tight estimations of the generalization gap for
convolutional networks trained with weight normalization
and weight decay using the MSE loss.

Generalization bounds for convolutional networks. Sev-
eral recent papers have introduced generalization bounds
for convolutional networks that take into account the unique
structure of these networks. In (Li et al., 2018), a gener-
alization bound for neural networks with weight sharing
was introduced. However, this bound only holds under the
assumption that the weight matrices are orthonormal, which
is not realistic in practice. Other papers introduce general-
ization bounds based on parameter counting for convolu-
tional networks that improve classic guarantees for fully-
connected networks but are typically still vacuous by several
orders of magnitude. In (Long & Sedghi, 2020), norm-based
generalization bounds for convolutional networks were in-
troduced by addressing their weight-sharing. However, this
bound scales roughly as the square root of the number of
parameters. In (Du et al., 2018), size-free bounds for con-
volutional networks in terms of the number of trainable
parameters for two-layer networks were proved. In (Ledent
et al., 2021), the generalization bounds in (Bartlett et al.,
2017) were extended for convolutional networks where the
linear transformation W l at each layer is replaced with the
trainable parameters. While this paper provides generaliza-
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tion bounds in which each convolutional filter contributes
only once to the bound, it does not hold when different fil-
ters are used for different patches, even if their norms are
the same. In short, their analysis treats different patches
as “datapoints” in an augmented problem where only one
linear function is applied at each layer. If several choices of
linear functions (different weights for different patches) are
allowed, the capacity of the function class would increase.

While all of these papers provide generalization bounds for
convolutional networks, they all rely on the number of train-
able parameters or depend on weight sharing. None of these
works, in particular, address the question of whether weight
sharing is necessary for convolutional neural networks to
generalize well.

1.2. Contributions

In this work, we study the generalization performance of
multilayered sparse neural networks (Mhaskar et al., 2017),
such as convolutional neural networks. Sparse, deep neural
networks are networks of neurons represented as a Directed
Acyclic Graph (DAG), where each neuron is a function
of a small set of other neurons. We derive norm-based
generalization bounds for these networks. Unlike previous
bounds (Long & Sedghi, 2020; Ledent et al., 2021), our
bounds do not rely on weight sharing and provide favor-
able guarantees for sparse neural networks that do not use
weight sharing. These results suggest that it is possible to
obtain good generalization performance with sparse neural
networks without relying on weight sharing.

Finally, we conduct multiple experiments to evaluate our
bounds for convolutional neural networks trained on simple
classification problems. We show that our bound is relatively
tight, even in the overparameterized regime.

2. Problem Setup
We consider the problem of training a model for a standard
classification problem. Formally, the target task is defined
by a distribution P over samples (x, y) ∈ X × Y , where
X ⊂ Rc0d0 is the instance space (e.g., images), and Y ⊂
Rk is a label space containing the k-dimensional one-hot
encodings of the integers 1, . . . , k.

We consider a hypothesis class F ⊂ {f ′ : X → Rk}
(e.g., a neural network architecture), where each function
fw ∈ F is specified by a vector of parameters w ∈ RN

(i.e., trainable parameters). A function fw ∈ F assigns a
prediction to an input point x ∈ X , and its performance on
the distribution P is measured by the expected error

errP (fw) := E(x,y)∼P [I[sign(fw(x)) ̸= y]] , (2)

where I : {True, False} → {0, 1} be the indicator function
(i.e., I[True] = 1 and vice versa).

Since we do not have direct access to the full population
distribution P , the goal is to learn a predictor, fw, from
some training dataset S = {(xi, yi)}mi=1 of independent and
identically distributed (i.i.d.) samples drawn from P along
with regularization to control the complexity of the learned
model. In addition, since I is a non-continuous function, we
typically use a surrogate loss function ℓ : Rk ×Y → [0,∞)
is a non-negative, differentiable, loss function (e.g., MSE or
cross-entropy losses).

2.1. Rademacher Complexities

In this paper, we examine the generalization abilities of
overparameterized neural networks by investigating their
Rademacher complexity. This quantity can be used to upper
bound the worst-case generalization gap (i.e., the distance
between train and test errors) of functions from a certain
class. It is defined as the expected performance of the class
when averaged over all possible labelings of the data, where
the labels are chosen independently and uniformly at ran-
dom from the set {±1}. In other words, it is the average
performance of the function class on random data. For more
information, see (Mohri et al., 2018a; Shalev-Shwartz &
Ben-David, 2014; Bartlett & Mendelson, 2002).

Definition 2.1 (Rademacher Complexity). Let F be a set
of real-valued functions fw : X → R defined over a set X .
Given a fixed sample X ∈ Xm, the empirical Rademacher
complexity of H is defined as follows:

RX(H) :=
1

m
Eξ

[
sup
fw∈F

∣∣∣ m∑
i=1

ξifw(xi)
∣∣∣] .

The expectation is taken over ξ = (ξi, . . . , ξm), where,
ξi ∈ {±1} are i.i.d. and uniformly distributed samples.

In contrast to the Vapnik–Chervonenkis (VC) dimension,
the Rademacher complexity has the added advantage that it
is data-dependent and can be measured from finite samples.

The Rademacher complexity can be used to upper bound
the generalization gap of a certain class of functions (Mohri
et al., 2018a). In particular, we can easily upper bound
the test classification error errP (fw) using the Rademacher
complexity for models fw that perfectly fit the training sam-
ples, i.e., fw(xi) = yi = ±1.

Lemma 2.2. Let P be a distribution over Rc0d0 × {±1}
and F ⊂ {f ′ : X → {±1}}. Let S = {(xi, yi)}mi=1 be a
dataset of i.i.d. samples selected from P and X = {xi}mi=1.
Then, with probability at least 1− δ over the selection of S,
for any fw ∈ F that perfectly fits the data (i.e., fw(xi) =
yi), we have

errP (fw) ≤ 2RX(F) + 3

√
log(2/δ)

2m
. (3)



Norm-based Generalization Bounds for Compositionally Sparse Neural Networks

Proof. We apply a standard Rademacher complexity-based
generalization bound with the ramp loss function. The ramp
loss function is defined as follows:

ℓramp(y, y
′) :=


1, if yy′ ≤ 0

1− yy′, if 0 ≤ yy′ ≤ 1

0, if yy′ ≥ 1

.

By Theorem 3.3 in (Mohri et al., 2018b), with prob-
ability at least 1 − δ, for any function fw ∈ F ,
E(x,y)∼P [ℓramp(fw(x), y)] is bounded by

1

m

m∑
i=1

ℓramp(fw(xi), yi) + 2RX(F) + 3

√
log(2/δ)

2m
.

We note that for any function fw for which fw(xi) = yi =
±1, we have ℓramp(fw(xi), yi) = 0. In addition, for any
function fw and pair (x, y), we have ℓramp(fw(x), y) ≥
I[sign(fw(x)) ̸= y], hence, E(x,y)∼P [ℓramp(fw(x), y)] ≥
errP (fw). Therefore, we conclude that with probability at
least 1− δ, for any function fw ∈ F that perfectly fits the
training data, we have the desired inequality.

The above lemma provides an upper bound on the test er-
ror of a trained model fw that perfectly fits the training
data. The bound is decomposed into two parts; one is the
Rademacher complexity and the second scales as O(1/

√
m)

which is small when m is large. In section 3 we derive
norm-based bounds on the Rademacher complexity of com-
positionally sparse neural networks.

2.2. Architectures

A neural network architecture can be formally defined using
a Directed Acyclic Graph (DAG) G = (V,E). The class
of neural networks associated with this architecture is de-
noted as FG. The set of neurons in the network is given by
V =

⋃L
l=0{zl1, . . . , zldl

}, which is organized into L layers.
An edge (zli, z

l−1
j ) ∈ E indicates a connection between a

neuron in layer l − 1 and a neuron in layer l. The full set of
neurons at the layer lth is denoted by vl := (zlj)

dl
j=1.

A neural network function fw : Rc0d0 → Rk takes “flat-
tened” images x as input, where c0 is the number of input
channels and d0 is the image dimension represented as a
vector. Each neuron zli : Rc0d0 → Rcl computes a vec-
tor of size cl (the number of channels in layer l). The
set of predecessor neurons of zli, denoted by pred(l, i),
is the set of j ∈ [dl−1] such that (zli, z

l−1
j ) ∈ E, and

vli := (zlj)j∈pred(l,i) denotes the set of predecessor neurons
of zli. The neural network zLj0(x) := zL1 (x) := fw(x) is
recursively defined as follows:

zli(x) := wl
iσ(v

l−1
i (x)),

where wl
i ∈ Rcl×(cl−1·|pred(l−1,i)|) is a weight matrix, x =

(z0i (x))
d0
i=1 and each z0i (x) is a vector of dimension c0 rep-

resenting a “pixel” in the image x.

The degree of sparsity of a neural network can be measured
using the degree, which is defined as the maximum number
of predecessors for each neuron.

deg(G) := max
l∈[L],j∈[dl]

|pred(l, j)|.

A compositionally sparse neural network is a neural network
architecture G for which the degree deg(G) = O(1) (with
respect to maxi=0,...,L(di) and L). These considerations
extend easily to networks that contain sparse layers as well
as fully-connected layers.

Convolutional neural networks. A special type of com-
positionally sparse neural networks is convolutional neural
networks. In such networks, each neuron acts upon a set
of nearby neurons from the previous layer, using a kernel
shared across the neurons of the same layer.

To formally analyze convolutional networks, we consider
a broader set of neural network architectures that includes
sparse networks with shared weights. Specifically, for an
architecture G with |pred(l, j)| = kl for all j ∈ [dl], we
define the set of neural networks F sh

G to consist of all neural
networks fw ∈ F sh

G that satisfy the weight sharing prop-
erty wl := wl

j1
= wl

j2
for all j1, j2 ∈ [dl] and l ∈ [L].

Convolutional neural networks are essentially sparse neural
networks with shared weights and locality (each neuron is a
function of a set of nearby neurons of its preceding layer).

Norms of neural networks. As mentioned earlier, pre-
vious papers (Golowich et al., 2017; Neyshabur et al.,
2018; Arora et al., 2018; Neyshabur et al., 2017; Bartlett
et al., 2017) have proposed different generalization bounds
based on different norms measuring the complexity of fully-
connected networks. One approach that was suggested
by (Golowich et al., 2017) is to use the product of the norms
of the weight matrices given by ρ̃(w) :=

∏L
l=1 ∥W l∥F .

In this work, we derive generalization bounds based on the
product of the maximal norms of the kernel matrices across
layers, defined as:

ρ(w) := ∥wL
1 ∥2 ·

L−1∏
l=1

max
j∈[dl]

∥wl
j∥F , (4)

where ∥ · ∥F and ∥ · ∥2 are the Frobenius and the spectral
norms. Specifically, for a convolutional neural network, we
have a simplified form of ρ(w) = ∥wL∥2 ·

∏L−1
l=1 ∥wl∥F ,

due to the weight sharing property.

We observe that this quantity is significantly smaller than the

quantity ρ̃(w) =
∏L

l=1

√∑dl

j=1 ∥wl
j∥2F used by (Golowich

et al., 2017). For instance, when weight sharing is applied,

we can see that ρ̃(w) = ρ(w) ·
√∏L

l=1 dl.

Classes of interest. In the next section, we study
the Rademacher complexity of classes of compositionally



Norm-based Generalization Bounds for Compositionally Sparse Neural Networks

sparse neural networks that are bounded in norm. We focus
on two classes: FG,ρ := {fw ∈ FG | ρ(w) ≤ ρ} and
F sh

G,ρ := {fw ∈ F sh
G | ρ(w) ≤ ρ}, where G is a composi-

tionally sparse neural network architecture and ρ is a bound
on the norm of the network parameters.

3. Theoretical Results
In this section, we introduce our main theoretical results.
The following theorem provides an upper bound on the
Rademacher complexity of the class FG,ρ of neural net-
works of architecture G of norm ≤ ρ.
Proposition 3.1. Let G be a neural network architecture
of depth L and let ρ > 0. Let X = {xi}mi=1 be a set of
samples. Then,

RX(FG,ρ) ≤ ρ

m
·
(
1 +

√
2L log(2deg(G))

)
·

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)| ·
m∑
i=1

∥z0jL(xi)∥2,

where the maximum is taken over j1, . . . , jL, such that,
jL−l+1 ∈ pred(l, jL−l) for all l ∈ [L].

The proof for this theorem is provided in Appendix B and
builds upon the proof of Theorem 1 in (Golowich et al.,
2017). A summary of the proof is presented in section 3.1.
As we show next, by combining Lemma 2.2 and Proposi-
tion 3.1 we can obtain an upper bound on the test error of
compositionally sparse neural networks fw that perfectly fit
the training data (i.e., for all i ∈ [m] : fw(xi) = yi).

Theorem 3.2. Let P be a distribution over Rc0d0 × {±1}.
Let S = {(xi, yi)}mi=1 be a dataset of i.i.d. samples selected
from P . Then, with probability at least 1 − δ over the
selection of S, for any fw ∈ FG that perfectly fits the data
(for all i ∈ [m] : fw(xi) = yi), we have

errP (fw) ≤ (ρ(w) + 1)

m

(
1 +

√
2L log(2deg(G))

)
·

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)|
m∑
i=1

∥z0jL(xi)∥2

+ 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

where the maximum is taken over j1, . . . , jL, such that,
jL−l+1 ∈ pred(l, jL−l) for all l ∈ [L].

The theorem above provides a generalization bound
for neural networks of a given architecture G. To
understand this bound, we first analyze the term
maxj1,...,jL

∏L
l=1 |pred(l, jL−l)| ·

∑m
i=1 ∥z0jL(xi)∥2. We

consider a setting where d0 = 2L, cl = 1 and each neuron
takes two neurons as input, kl := |pred(l, j)| = 2 for all l ∈
[L] and j ∈ [dl]. In particular,

∏L
l=1 kl = 2L and z0j (xi) =

xij is the jth pixel of xi. By assuming that the norms of the

pixels are β-balanced, i.e., ∀i ∈ [m] : maxj∈[d0] ∥xij∥2 ≤
βAvgj∈[d0][∥xij∥2] (for some constant β > 0), we obtain
that

∏L
l=1 kl ·maxj

∑m
i=1 ∥z0j (xi)∥2 ≤ β

∑m
i=1 ∥xi∥2. In

addition, we note that the second term in the bound is typi-
cally smaller than the first term as it scales with

√
log(ρ(w))

instead of ρ(w) and has no dependence on the size of the
network. Therefore, our bound can be simplified to

O
(

ρ(w)√
m

√
Lβ log(deg(G))Avgmi=1[∥xi∥2]

)
. (5)

Similar to the bound in (Golowich et al., 2017), our bound
scales with O(

√
L), where L is the depth of the network.

Convolutional neural networks. As previously stated in
section 2, convolutional neural networks utilize weight shar-
ing neurons in each layer, with each neuron in the lth layer
having an input dimension of kl. The norm of the network
is calculated as ρ(w) =

∏L
l=1 ∥wl∥F , and the degree of the

network is determined by the maximum input dimension
across all layers, deg(G) = maxl∈[L] kl. This results in a
simplified version of the theorem.
Corollary 3.3 (Rademacher Complexity of ConvNets). Let
G be a neural network architecture of depth L and let ρ > 0.
Let X = {xi}mi=1 be a set of samples. Then,

RS(F sh
G,ρ) ≤ ρ

m

(
1 +

√
2L log(2 deg(G))

)
·

√√√√ L∏
l=1

kl · max
j∈[d0]

m∑
i=1

∥z0j (xi)∥2,

where kl denotes the kernel size in the l’th layer.

Comparison with the bound of (Golowich et al., 2017).
The result in Corollary 3.3 is a refined version of the analysis
in (Golowich et al., 2017) for the specific case of convo-
lutional neural networks. Theorem 1 in (Golowich et al.,
2017) can of course be applied to convolutional networks by
treating their convolutional layers as fully-connected layers.
However, this approach yields a substantially worse bound
compared to the one proposed in Corollary 3.3.

Consider a convolutional neural network architecture G.
The lth convolutional layer takes the concatenation of
(σ(zl1), . . . , σ(z

l
dl
)) as input and returns (zl+1

1 , . . . , zl+1
dl+1

)

as its output. Each zl+1
j is computed as follows

zl+1
j = wl+1σ(vlj(x)). Therefore, the matrix W l+1

associated with the convolutional layer contains dl+1

copies of wl+1 and its Frobenius norm is therefore√
dl+1 · ∥wl+1∥F . In particular, by applying Theorem 1

in (Golowich et al., 2017), we obtain a bound that scales as

O
(

ρ
m

√
L
∏L

l=1 dl ·
∑m

i=1 ∥xi∥2
)

. In particular, if each

convolutional layer has kl = 2 with no overlaps and
d0 = 2L, then, dl = 2L−l and the bound therefore scales
as O

(
ρ√
m

√
L20.5L(L−1) ·Avgmi=1[∥xi∥2]

)
. On the other
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hand, as we discussed earlier, if the norms of the pixels of
each sample x are β-balanced (for some constant β > 0),
our bound scales as O

(
ρ√
m

√
LAvgmi=1[∥xi∥2]

)
which is

smaller by a factor of 20.25L(L−1) than the previous bound.

Comparison with the bound of (Long & Sedghi, 2020).
A recent paper (Long & Sedghi, 2020) introduced general-
ization bounds for convolutional networks based on param-
eter counting. This bound roughly scales like

O
(√

N(
∑L

l=1 ∥wl∥2+log(1/γ))+log(1/δ)

m

)
,

where γ is a margin (typically smaller than 1), and N is
the number of trainable parameters (taking weight sharing
into account by counting each parameter of convolutional
filters only once). While these bounds provide improved
generalization guarantees when reusing parameters, it scales
as Ω(

√
N/m) which is very large in practice. For example,

the standard ResNet-50 architecture has approximately N =
23M trainable parameters while the MNIST dataset has only
m = 50000 training samples.

Comparison with the bound of (Ledent et al., 2021). A
recent paper (Ledent et al., 2021) introduces a generaliza-
tion bound for convolutional networks that is similar to the
analysis presented in (Bartlett et al., 2017). Specifically, the
bounds in Theorem 17 of (Ledent et al., 2021) roughly scale
as

O

 L∏
l=1

∥W l∥2
√
m

(
L−1∑
l=1

k

α
2
l

∥(wl−ul)⊤∥α2,1
∥wl∥α2

+
∥wL∥α2

max
i

∥wL
i,:∥

α
2

) 1
α

Iα

 ,

where kl is the kernel size of the lth layer and W l is the
matrix corresponding to the linear operator associated with
the lth convolutional layer, wi,: is the ith row of a matrix
w, α is either 2 or 2/3, Iα = L if α = 2 and Iα = 1
otherwise and ul are predefined “reference” matrices of the
same dimensions as wl.

In general, our bounds and the ones in (Ledent et al., 2021)
cannot be directly compared, with each being better in
different cases. However, our bound has a significantly
better explicit dependence on the depth L than the bound
in (Ledent et al., 2021). To see this, consider the simple case
where each convolutional layer operates on non-overlapping
patches and we choose ul = 0 for all l ∈ [L − 1] (which
is a standard choice of reference matrices). We notice that
∥W l∥2 = ∥wl∥2 and that for any matrix A ∈ Rn×m, the fol-
lowing inequalities hold: rank(A) ≥ ∥A⊤∥2,1

∥A∥2
≥ ∥A∥F

∥A∥2
≥ 1

and rank(A) ≥ ∥A∥2

maxi ∥Ai,:∥2
≥ 1. Therefore, the bound

in (Ledent et al., 2021) is at least
∏L

l=1 ∥wl∥2√
m

· L3/2, which

scales at least as Ω(L3/2) with respect to L, while our bound
scales as O(

√
L) (when ρ(w) is independent of L), mean-

ing that the dependence on the depth is significantly better
than that of the bound in (Ledent et al., 2021).

3.1. Proof Sketch

We propose an extension to a well-established method for
bounding the Rademacher complexity of norm-bounded
deep neural networks. This approach, originally developed
by (Neyshabur et al., 2015) and later improved by (Golowich
et al., 2017), utilizes a “peeling” argument, where the com-
plexity bound for a depth L network is reduced to a complex-
ity bound for a depth L− 1 network and applied repeatedly.
Specifically, the lth step bounds the complexity bound for
depth l by using the product of the complexity bound for
depth l − 1 and the norm of the lth layer. By the end of
this process, we obtain a bound that depends on the term
Eξg(|

∑m
i=1 ξixi|) (g(x) = x in (Neyshabur et al., 2015)

and g = exp in (Golowich et al., 2017)), which can be fur-
ther bounded using maxx∈X ∥x∥2. The final bound scales
with ρ̃(w) · maxx∈X ∥x∥. Our extension aims to further
improve the tightness of these bounds by incorporating ad-
ditional information about the network’s degrees of sparsity.

To bound RX(FG,ρ) using ρ(w) ·maxx∈X ∥x∥, we notice
that each neuron operates on a small subset of the neurons
from the previous layer. Therefore, we can bound the contri-
bution of a certain constituent function zlj(x) = wl

jv
l−1
j (x)

in the network using the norm ∥wl
j∥F and the complexity

of vl−1
j (x) instead of the full layer vl−1(x).

To explain this process, we provide a proof sketch of Propo-
sition 3.1 for convolutional networks G = (V,E) with non-
overlapping patches. For simplicity, we assume that d0 =
2L, cl = 1, and the strides and kernel sizes at each layer
are k = 2. In particular, the network fw can be represented
as a binary tree, where the output neuron is computed as
fw(x) = zLj0(x) = wL ·σ(zL−1

1 (x), zL−1
2 (x)), zL−1

1 (x) =

wL−1 · σ(zL−2
1 (x), zL−2

2 (x)) and zL−1
2 (x) = wL−1 ·

σ(zL−2
3 (x), zL−2

4 (x)) and so on. Similar to (Golowich
et al., 2017), we first bound the Rademacher complexity
using Jensen’s inequality,

mRX(FG,ρ) =
1
λ
log exp

(
λEξ sup

fw

m∑
i=1

ξifw(xi)

)

≤ 1
λ
log

(
Eξ sup

fw

exp

(
λ

m∑
i=1

ξifw(xi)

))
, (6)

where λ > 0 is an arbitrary parameter. As a next step,
we rewrite the Rademacher complexity in the following
manner:

Eξ sup
fw

exp

∣∣∣∣∣
m∑
i=1

ξi · fw(xi)

∣∣∣∣∣
= Eξ sup

fw

exp

√√√√∣∣∣∣∣
m∑
i=1

ξi · wL · σ(zL−1
1 (xi), z

L−1
2 (xi))

∣∣∣∣∣
2

≤ Eξ sup
fw

exp

√√√√∥wL∥22 ·
2∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(zL−1
j (xi))

∥∥∥∥∥
2

. (7)
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We notice that each zL−1
j (x) is itself a depth L − 1

binary-tree neural network. Therefore, intuitively we
would like to apply the same argument L − 1 more
times. However, in contrast to the above, the net-
works σ(zL−1

1 (x)) = σ(wL−1(zL−2
1 (x), zL−2

2 (x))) and
σ(zL−1

2 (x)) = σ(wL−1(zL−2
3 (x), zL−2

4 (x))) end with
a ReLU activation. To address this issue, (Neyshabur
et al., 2015; Golowich et al., 2017) proposed a “peeling
process” based on Equation 4.20 in (Ledoux & Talagrand,
1991) that can be used to bound terms of the form

Eξ sup
f ′∈F ′,W : ∥W∥F≤R

exp[

√
α ∥
∑m

i=1 ξi · σ(Wf ′(xi))∥
2
].

However, this bound is not directly applicable when there
is a sum inside the square root, as in equation 7 which
includes a sum over j ∈ {1, 2}. Therefore, a modified
peeling lemma is required to deal with this case.
Lemma 3.4 (Peeling Lemma). Let σ be a 1-Lipschitz,
positive-homogeneous activation function which is applied
element-wise (such as the ReLU). Then for any class of
vector-valued functions F ⊂ {f = (f1, . . . , fq) | ∀j ∈
[q] : fj : Rd → Rp}, and any convex and monotonically
increasing function g : R → [0,∞),

Eξ sup
f∈F

Wj : ∥Wj∥≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2


≤ 2Eξ sup
j∈[q], f∈F

g

(
√
qR

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
)
.

By applying this lemma L − 1 times with g = exp and f
representing the neurons preceding a certain neuron at a
certain layer, we obtain the following inequality

Eξ sup
fw

exp

∣∣∣∣∣
m∑
i=1

ξi · fw(xi)

∣∣∣∣∣
≤ 2LEξ sup

j,w
exp

√√√√∥wL∥22
L−1∏
l=1

∥wl∥2F · 2L
∣∣∣∣∣

m∑
i=1

ξixij

∣∣∣∣∣
2

≤ 2L
d∑

j=1

Eξ exp

(
λ2L/2ρ ·

∣∣∣∣∣
m∑
i=1

ξixij

∣∣∣∣∣
)

≤ 4L sup
j

exp

λ22Lρ2·
∑m

i=1 x2
ij

2
+ λ2L/2ρ ·

√√√√ m∑
i=1

x2
ij

 ,

where the last inequality follows from standard concentra-
tion bounds. Finally, by equation 6 and properly adjusting
λ, we can finally bound RX(FG,ρ) as O(

√
Lρ√
m
).

4. Experiments
In section 3 we showed that the Rademacher complexity
of compositionally sparse networks is bounded by O(ρ(w)√

m
)

(when maxi∈[m] ∥xi∥ and L are constants). In this section,

103 104 105

m

10 4

10 3

10 2

10 1

100

101

102

103
(w)
m

Train error
Test error
Generalization gap

103 104 105

m

65
70
75
80
85
90
95

100 (w)

Figure 1. Comparing our bound with the train and test errors
and the generalization gap of a 5-layers network. (top) We
report ρ(w)√

m
, the train error errS(fw), the test error errP (fw) and

the generalization gap |errP (fw) − errS(fw)| when varying the
number of training samples (in logarithmic scales). (bottom) We
display the value of ρ(w) when varying the number of training
samples. We used the following hyperparameters: ρl = 0.1,
λ = 1e−3. More detailed results can be found in Table 1.

we conduct an empirical evaluation of the performance, the
term ρ(w)√

m
and ρ(w) for neural networks trained with a vary-

ing number of training samples. Further, in Appendix A, we
provide additional experiments that illustrate the evolution
of these quantities throughout the training process.

Network architecture. We use two types of deep neural
network architectures. Both consist of four hidden convo-
lutional layers, which use 3× 3 convolutions, stride 2, and
padding 0, and have output channel numbers of 32, 64, 128,
and 128, respectively. The final fully connected layer maps
the 3200-dimensional output of the final convolutional layer
to 2 outputs, with ReLU activation applied to all layers ex-
cept the last one. The second architecture is identical, but
it replaces the last linear fully connected layer with two
fully connected layers that project the 3200-dimensional
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Figure 2. Comparing our bound with the generalization gap
and the test error of a 6-layers network. See Figure 1 for details.
More detailed numerical results can be found in Table 2. We used
the following hyperparameters: ρl = 0.01, λ = 5e−4.

output of the final convolutional layer to a 128-dimensional
vector before mapping it to 2 outputs. The total number of
parameters in the first model is 246886 and in the second is
650343 parameters.

Optimization process. In Theorem 3.2, a general-
ization bound is proposed that scales with ρ(w) =

∥wL∥2 ·
∏L−1

l=1 ∥wl∥F . To control ρ(w), we regularize∏L
l=1 ∥wl∥F ≥ ρ(w) by applying weight normalization

to all trainable layers, except for the last one, which is left
un-normalized. Specifically, we fix the norm of the weights
wl in each layer by decomposing them into a direction and
magnitude, such that wl = ρlvl (where ∥vl∥F = 1). To
initialize wl, we use the default PyTorch initialization and
normalize vl to have a norm of 1. We only update vl us-
ing the method described in (Salimans & Kingma, 2016)
while keeping ρ1, . . . , ρL−1 constant. This way we can reg-
ularize

∏L
l=1 ∥wl∥F , by applying weight decay of rate λ

exclusively to the weights of the top layer.

Each model was trained using MSE-loss minimization be-
tween the logits of the network and the one-hot encodings of
the training labels. To train the model we used the Stochastic
Gradient Descent (SGD) optimizer with an initial learning
rate µ = 0.03, momentum of 0.9, batch size 128, and a
cosine learning rate scheduler (Loshchilov & Hutter, 2016).

Varying the number of samples. In this experiment we
trained the same model for binary classification between
the first two classes of the CIFAR-5m dataset (Nakkiran
et al., 2020) with a varying number of training samples.
This dataset contains 6 million synthetic CIFAR-10-like
images (including the CIFAR10 dataset). It was generated
by sampling the DDPM generative model of (Ho et al.,
2020), which was trained on the CIFAR-10 training set. For
each number of samples m, we chose m random training
samples from the dataset and trained the model on these
samples for 5000 epochs over 5 different runs.

In Figures 1-2, we report the values of ρ(w), ρ(w)√
m

, the train
and test errors, and the generalization gap for each model
as a function of m. Each quantity is averaged over the last
100 training epochs (i.e., epochs 4900-5000). Since we
do not have access to the complete population distribution
P , we estimated the test error by using 1000 test samples
per class. As seen in the figures, ρ(w)√

m
provides a relatively

tight estimation of the generalization gap even though the
network is overparameterized. For example, when m is
greater than 10000, the quantity ρ(w)√

m
is smaller than 1 for

the 5-layer model. Additionally, it is observed that ρ(w) is
bounded as a function of m, even though it could potentially
increase with the size of the training dataset. Therefore,
ρ(w)√

m
appears to decrease at a rate of O(1/

√
m).

5. Conclusions
We studied the question of why certain deep learning archi-
tectures, such as CNNs and Transformers, perform better
than others on real-world datasets. To tackle this question,
we derived Rademacher complexity generalization bounds
for sparse neural networks, which are orders of magnitude
better than a naive application of standard norm-based gen-
eralization bounds for fully-connected networks. In contrast
to previous papers (Long & Sedghi, 2020; Ledent et al.,
2021), our results do not rely on parameter sharing between
filters, suggesting that the sparsity of the neural networks
is the critical component to their success. This sheds new
light on the central question of why certain architectures
perform so well and suggests that sparsity may be a key
factor in their success. Even though our bounds are not prac-
tical in general, our experiments show that they are quite
tight for simple classification problems, unlike other bounds
based on parameter counting, suggesting that the underlying
theory is sound and does not need a basic reformulation.
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A. Additional Experiments
A.1. Additional Details for the Experiments in Figures 1-2

In Figures 1-2 we provided multiple plots demonstrating the behaviors of various quantities (e.g., ρ(w), the train and test
errors) when varying the number of training samples m. For completeness, in Tables 1-2 we explicitly report the values of
each quantity reported in Figures 1-2.

m ρ(w) Train error Test error Train loss Test loss Generalization gap ρ(w)√
m

500 99.499 0.007 0.188 0.032 0.161 0.182 4.450
1000 82.050 0.013 0.087 0.038 0.085 0.074 2.595
2000 71.701 0.021 0.057 0.042 0.062 0.036 1.603
3000 72.128 0.028 0.053 0.045 0.058 0.025 1.317
4000 69.004 0.030 0.052 0.047 0.056 0.022 1.091
5000 68.359 0.031 0.05 0.048 0.056 0.019 0.967
7500 69.241 0.033 0.048 0.048 0.052 0.016 0.800
9000 69.172 0.034 0.047 0.048 0.052 0.013 0.729
10000 68.003 0.035 0.048 0.049 0.052 0.013 0.68
20000 64.326 0.029 0.032 0.044 0.046 0.003 0.455
40000 64.598 0.029 0.031 0.044 0.045 0.003 0.323
80000 64.904 0.028 0.029 0.043 0.044 0.004 0.229
100000 65.418 0.028 0.030 0.043 0.043 0.001 0.207
150000 64.530 0.029 0.029 0.044 0.044 0.001 0.167
182394 65.040 0.029 0.026 0.044 0.043 0.003 0.152

Table 1. We report the averaged values of the norm ρ(w), the train and test errors, the training and test losses, the generalization gap, and
ρ(w)√

m
for the experiment in Figure 1.

m ρ(w) Train error Test error Train loss Test loss Generalization gap ρ(w)√
m

500 277.829 0.000 0.210 0.005 0.177 0.210 12.425
1000 263.867 0.000 0.085 0.008 0.068 0.085 8.344
2000 287.343 0.002 0.065 0.012 0.052 0.062 6.425
3000 297.993 0.007 0.054 0.015 0.045 0.048 5.441
4000 312.316 0.011 0.044 0.017 0.037 0.033 4.938
5000 298.258 0.014 0.042 0.019 0.036 0.028 4.218
7500 293.125 0.015 0.035 0.021 0.032 0.021 3.385
9000 298.155 0.018 0.034 0.022 0.031 0.016 3.143
10000 298.442 0.017 0.032 0.022 0.029 0.014 2.984
20000 272.198 0.016 0.026 0.018 0.024 0.010 1.925
40000 265.294 0.018 0.020 0.019 0.021 0.003 1.326
80000 261.114 0.018 0.020 0.020 0.020 0.004 0.923
100000 262.034 0.018 0.021 0.019 0.021 0.004 0.829
150000 258.874 0.019 0.019 0.020 0.020 0.003 0.668
182394 259.392 0.018 0.019 0.020 0.020 0.002 0.607

Table 2. We report the averaged values of the norm ρ(w), the train and test errors, the training and test losses, the generalization gap, and
ρ(w)√

m
for the experiment in Figure 2.

A.2. Evaluating Networks During Training

In section 4, we examined the behavior of ρ(w), the train and test errors, and our bound while varying the number of training
samples. In this section, we conduct supplementary experiments that compare these quantities throughout the training
process. Additionally, to add diversity to the study, we utilize a slightly different training method in these experiments.
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Figure 3. Varying the number of layers. We report ρ(w)√
m

, the train error errS(fw), the test error errP (fw) and the generalization gap
|errP (fw)− errS(fw)| of CONV-L-1000 trained on MNIST with a varying number of layers. We trained the models with batch size 64
and learning rate µ = 1. For the top plots we used λ = 2e−3 and for the bottom ones we used λ = 3e−3.

Network architecture. In this experiment, we employed a simple convolutional network architecture denoted by CONV-
L-H . The network consists of a stack of two 2× 2 convolutional layers with a stride of 2 and zero padding, utilizing ReLU
activations. This is followed by L− 2 stacks of 3× 3 convolutional layers with H channels, a stride of 1, and padding of 1,
also followed by ReLU activations. The final layer is a fully-connected layer. No biases are used in any of the layers.

Optimization process. In the current experiment we trained each model with a standard weight normalization (Salimans
& Kingma, 2016) for each parametric layer. Each model was trained using MSE-loss minimization between the logits of the
network and the one-hot encodings of the training labels. To train the model we used the Stochastic Gradient Descent (SGD)
optimizer with an initial learning rate µ that is decayed by a factor of 0.1 at epochs 60, 100, 300, momentum of 0.9 and
weight decay with rate λ.

In Figure 3, we present the results of our experimentation where we trained models of varying depths on the MNIST
dataset (LeCun & Cortes, 2010). One of the key observations from our experiment is that as we increase the depth of the
model, the term ρ(w)√

m
empirically generally decreases, even though the overall number of training parameters grows with the

number of layers. This is in correlation with the fact that the generalization gap is lower for deeper networks. suggests that
deeper models have a better generalization ability despite having more parameters. Furthermore, we also observed that in all
cases, the term ρ(w)√

m
is quite small, reflecting the tightness of our bound.

In Figures 4 and 5, we present the results of an experiment where we varied the number of channels H in models trained
on MNIST and Fashion MNIST (respectively). As can be seen, the bound remains largely unchanged when increasing
H despite the network’s size scaling as Θ(H2). We also observed that, after the network achieves good performance, the
bound is highly correlated with the generalization gap. Specifically, for MNIST, the generalization gap and the bound are
relatively stable, while for Fashion-MNIST, the bound seems to grow at the same rate as the generalization gap. Since the
results are presented in log-scales, this suggests that the generalization gap is empirically proportional to our bound.

B. Proofs
Lemma B.1 (Peeling Lemma). Let σ be a 1-Lipschitz, positive-homogeneous activation function which is applied element-
wise (such as the ReLU). Then for any class of vector-valued functions F ⊂ {f = (f1, . . . , fq) | ∀j ∈ [q] : fj : Rd → Rp},
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Figure 4. Varying the number of channels. We report ρ(w)√
m

, the train error errS(fw), the test error errP (fw) and the generalization gap
|errP (fw)− errS(fw)| of CONV-6-H trained on MNIST with a varying number of channels. We trained the models with batch size 64,
µ = 1, and λ = 3e−3.

and any convex and monotonically increasing function g : R → [0,∞), we have

Eξ sup
f∈F

Wj : ∥Wj∥≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2
 ≤ 2Eξ sup

j∈[q], f∈F
g

(
√
qR

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
)
.

Proof. Let W ∈ Rh×p be a matrix and let w1, . . . , wh be the rows of the matrix W . Define a function Qj(w) :=(∑m
i=1 ξi · σ(

w⊤
r

∥wr∥fj(xi))
)2

for some fixed functions fj . We notice that

q∑
j=1

∥∥∥∥∥
m∑
i=1

ξi · σ(Wjfj(xi))

∥∥∥∥∥
2

=

q∑
j=1

h∑
r=1

∥wjr∥2
(

m∑
i=1

ξi · σ(
w⊤

jr

∥wjr∥fj(xi))

)2

=

q∑
j=1

h∑
r=1

∥wjr∥2 ·Qj(
wjr

∥wjr∥ ).

For any wj1, . . . , wjh, we have

h∑
r=1

∥wjr∥2 ·Qj(
wjr

∥wjr∥ ) ≤ R ·max
r

Qj(
wjr

∥wjr∥ ), (8)

which is obtained for ŵj1, . . . , ŵjh, where ŵji = 0 for all i ̸= r∗ and ŵjr∗ of norm R for some r∗ ∈ [h]. Together with the
fact that g is a monotonically increasing function, we obtain

Eξ sup
f∈F

Wj : ∥Wj∥≤R

g


√√√√ q∑

j=1

∥∥∥∥∥
m∑
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∥∥∥∥∥
2
 ≤ Eξ sup

f∈F
w1...,wq : ∥wj∥=R

g

√√√√ q∑
j=1

∣∣ m∑
i=1

ξi · σ(w⊤
j fj(xi))

∣∣2

≤ Eξ sup
j∈[q], f∈F

w1...,wq : ∥wj∥=R

g

√√√√q ·
∣∣ m∑
i=1

ξi · σ(w⊤
j fj(xi))

∣∣2
= Eξ sup

j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·
∣∣ m∑
i=1

ξi · σ(w⊤fj(xi))
∣∣) .
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Figure 5. Varying the number of channels. We report ρ(w)√
m

, the train error errS(fw), the test error errP (fw) and the generalization gap
|errP (fw)− errS(fw)| of CONV-8-H trained on Fashion-MNIST with a varying number of channels. We trained the models with batch
size 128 and learning rate µ = 1. For the top plots we used λ = 1e−3, and for the bottom ones we used λ = 2e−3.

Since g(|z|) ≤ g(z) + g(−z),

Eξ sup
j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·
∣∣ m∑
i=1

ξi · σ(w⊤fj(xi))
∣∣) ≤ Eξ sup

j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))

)

+ Eξ sup
j∈[q], f∈F
w: ∥w∥=R

g

(
−√

q ·
m∑
i=1

ξi · σ(w⊤fj(xi))

)

= 2Eξ sup
j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))

)
,

where the last equality follows from the symmetry in the distribution of the ξi random variables. By Equation 4.20
in (Ledoux & Talagrand, 1991), the right-hand side can be upper bounded as follows

2Eξ sup
j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·

m∑
i=1

ξi · σ(w⊤fj(xi))
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j∈[q], f∈F
w: ∥w∥=R

g

(
√
q ·

m∑
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ξi · w⊤fj(xi)

)

≤ 2Eξ sup
j∈[q], f∈F
w: ∥w∥=R

g

(
√
q · ∥w∥

∥∥∥∥∥
m∑
i=1

ξi · fj(xi)

∥∥∥∥∥
)

≤ 2Eξ sup
j∈[q], f∈F

g

(
√
qR

∥∥∥∥∥
m∑
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ξi · fj(xi)

∥∥∥∥∥
)
.

Proposition B.2. Let G be a neural network architecture of depth L and let ρ > 0. Let X = {xi}mi=1 be a set of samples.
Then,

RX(FG,ρ) ≤ ρ

m
·
(
1 +

√
2L log(2deg(G))

)
·

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)| ·
m∑
i=1

∥z0jL(xi)∥2,
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where the maximum is taken over j1, . . . , jL, such that, jL−l+1 ∈ pred(l, jL−l) for all l ∈ [L].

Proof. Due to the homogeneity of the ReLU function, each function fw ∈ FG,ρ can be rewritten as fŵ, where ŵL
1 := ρ

wL
1

∥wL
1 ∥2

and for all l < L and jl ∈ [dl], ŵl
jl
:=

wl
jl

maxj∈[dl]
∥wl

j∥F
. In particular, we have FG,ρ ⊂ F̂G,ρ := {fw | ∥wL

1 ∥2 ≤ ρ and ∀i <
L, jl ∈ [dl] : ∥wl

jl
∥F ≤ 1} since the ReLU function is homogeneous. For simplicity, we denote by fw̃ an arbitrary member

of F̃G,ρ and ŵl
jl

the weights of the jlth neuron of the lth layer. In addition, we denote vlj1(xi) = (zlj2(xi))j2∈pred(L,j1) and
zlj(xi) = σ(ŵl

jv
l−1
j (xi)) and we denote j0 = 1.

We apply Jensen’s inequality,

mR := mRX(F̂G,ρ) = Eξ

[
sup
ŵ

m∑
i=1

ξifŵ (xi)

]
≤ 1

λ
logEξ sup

ŵ
exp

(
λ

m∑
i=1

ξifŵ (xi)

)
,

where the supremum is taken over the weights ŵl
jl

(l ∈ [L], jl ∈ [dl]) that are described above. Since ∥ŵL
j0
∥2 ≤ ρ, we have

mR ≤ 1
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Next, we use Lemma 3.4,
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j1

· σ(vL−2
j1

(xi))

∥∥∥∥∥
2


≤ 1
λ
log

2Eξ sup
j1, ŵ
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ξi · vL−2
j1

(xi)

∥∥∥∥∥
2



= 1
λ
log

2Eξ sup
j1, ŵ

exp

λρ ·

√√√√|pred(L, j0)|
∑

j2∈pred(L−1,j1)

·

∥∥∥∥∥
m∑
i=1

ξi · zL−2
j2

(xi)

∥∥∥∥∥
2
 ,

where the supremum is taken over the parameters of fŵ and j1 ∈ pred(L, j0). By applying this process recursively L times,
we obtain the following inequality,

mR = Eξ

[
sup
ŵ

m∑
i=1

ξifŵ (xi)

]
≤ 1

λ
log

2LEξ sup
j1,...,jL

exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥
 , (9)
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where the supremum is taken over j1, . . . , jL, such that, jl+1 ∈ pred(l, jL−l). We notice that

Eξ sup
j1,...,jL

exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥


≤
∑

j1,...,jL

Eξ exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥


≤ deg(G)L · max
j1,...,jL

Eξ exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥
 .

(10)

Following the proof of Theorem 1 in (Golowich et al., 2017), by applying Jensen’s inequality and Theorem 6.2 in (Boucheron
et al., 2013) we obtain that for any α > 0,

Eξ exp

(
α

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥
)

≤ exp

α2∑m
i=1 ∥z

0
jL
(xi)∥2

2
+ α

√√√√ m∑
i=1

∥z0jL(xi)∥2

 . (11)

Hence, by combining equations 9-11 with α = λρ ·
√∏L

l=1 |pred(l, jL−l)|, we obtain that

mR = Eξ

[
sup
f∈F

m∑
i=1

ξif (xi)

]

≤ 1

λ
log

(2deg(G))L · max
j1,...,jL

Eξ exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥


=
1

λ
max

j1,...,jL
log

(2deg(G))L · Eξ exp

λρ ·

√√√√ L∏
l=1

|pred(l, jL−l)| ·

∥∥∥∥∥
m∑
i=1

ξi · z0jL(xi)

∥∥∥∥∥


≤ log(2deg(G))L

λ
+

λρ2 max
j1,...,jL

∏L
l=1 |pred(l, jL−l)| ·

∑m
i=1 ∥z0jL(xi)∥2

2

+ ρ

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)| ·
m∑
i=1

∥z0jL(xi)∥2

The choice λ =

√
2 log(2deg(G))L

ρ2 maxj1,...,jL

∏L
l=1 |pred(l,jL−l)|·

∑m
i=1 ∥z0

jL
(xi)∥2 , yields the desired inequality.

Theorem B.3. Let P be a distribution over Rc0d0 × {±1}. Let S = {(xi, yi)}mi=1 be a dataset of i.i.d. samples selected
from P . Then, with probability at least 1− δ over the selection of S, for any fw ∈ FG,ρ that perfectly fits the data (for all
i ∈ [m] : fw(xi) = yi), we have

errP (fw) ≤ (ρ(w) + 1)

m

(
1 +

√
2L log(2deg(G))

)
·

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)|
m∑
i=1

∥z0jL(xi)∥2 + 3

√
log(2(ρ(w) + 2)2/δ)

2m

where the maximum is taken over j1, . . . , jL, such that, jL−l+1 ∈ pred(l, jL−l) for all l ∈ [L].

Proof. Let t ∈ N ∪ {0} and Gt = FG,ρ. By Lemma 2.2, with probability at least 1− δ
t(t+1) , for any function fw ∈ Gt that

perfectly fits the training data, we have

errP (fw) ≤ 2RX(Gt) + 3

√
log(2(t+ 1)2/δ)

2m
. (12)



Norm-based Generalization Bounds for Compositionally Sparse Neural Networks

By Proposition 3.1, we have

RX(Gt) ≤ t ·
(
1 +

√
2L log(2deg(G))

)
·

√√√√ max
j1,...,jL

L∏
l=1

|pred(l, jL−l)| ·
m∑
i=1

∥z0jL(xi)∥2 (13)

because of the union bound over all t ∈ N, equation 3 holds uniformly for all t ∈ N and fw ∈ Gt with probability at least
1− δ. For each fw with norm ρ(w) we then apply the bound with t = ⌈ρ(w)⌉ since fw ∈ Gt, and obtain,

errP (fw) ≤
t
(
1 +

√
2L log(2deg(G))

)√
max

j1,...,jL

∏L
l=1 |pred(l, jL−l)|

∑m
i=1 ∥z0jL(xi)∥2

m

+ 3

√
log(2(t+ 1)2/δ)

2m

≤
(ρ(w) + 1)

(
1 +

√
2L log(2deg(G))

)√
max

j1,...,jL

∏L
l=1 |pred(l, jL−l)|

∑m
i=1 ∥z0jL(xi)∥2

m

+ 3

√
log(2(ρ(w) + 2)2/δ)

2m
,

which proves the desired bound.


