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Abstract

Neural network classifiers are known to be highly vulnerable to adversarial perturbations in their inputs.
Under the hypothesis that adversarial examples lie outside of the sub-manifold of natural images, previous
work has investigated the impact of principal components in data on adversarial robustness. In this paper we
show that there exists a very simple defense mechanism in the case where adversarial images are separable
in a previously defined (k, p) metric. This defense is very successful against the popular Carlini-Wagner
attack, but less so against some other common attacks like FGSM. It is interesting to note that the defense is
still successful for relatively large perturbations.

1 Introduction
While deep neural networks have been hugely successful in recent years in various domains, often achieving
super-human performance, they are known to be very sensitive to small changes in inputs [1]. Human-
imperceptible perturbations to images or audio [2] can force these systems to misbehave arbitrarily badly,
ranging from changing classification predictions [3], to no longer seeing pedestrians on the road from
application of a sticker to a street sign [4]. Many defenses have been proposed, with the most popular one
being adversarial training, but even that fails when it is exposed to perturbations not seen in training.

Given that the existence of such adversarial perturbations seems to be guaranteed [5] in the standard
framework we use for training, it is natural to ask what their origin is, and why the human brain seems to
avoid it1. One popular hypothesis claims that adversarial images lie orthogonal to the manifold of “natural
images”, and that the decision boundaries learned by ReLU networks are highly sensitive in the directions off
that manifold [7]. A natural question is how such a manifold can be defined. In [7] the authors attempt to
build a local linear approximation of it by using auto-encoders. In this paper, we explore whether variants of
the Principal Component Analysis (PCA) can be used to define such a manifold. Previous work has shown
that the distributions of principal components of natural and adversarial images are different [8]. Is it then
possible to use this information to define a sort of projection onto the subspace of principal components that
are more likely associated with clean images?

In [9] a variation of PCA was considered, in which principal components can be extracted per image,
rather than for the whole dataset. There, a (k, p) metric was defined that measures when the top logit p
switches as principal components k are reduced. Preliminary experiments in [9] suggested that the (k, p)
points of some attacks are separable from those of natural images, and allow for a highly reliable detection. In
this paper we further investigate those claims and test a wider range of attacks. While the original paper was
very sparse on the details of the experimental setting, we find that indeed the very popular Carlini-Wagner
attack [10] can be successfully separated from clean images on ImageNet according to the (k, p) metric. By
investigating the pattern of prediction changes as the number of principal components is reduced, we find
that for an attack that can be detected, the correct label can be extracted with high success. We propose thus

1There is the caveat that time-limited humans are slightly susceptible to such perturbations [6].
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a simple architecture that avoids the CW attack. We find however, that some other commonly used attacks,
such as PGD or FGSM are not so easily separable and the defense is less successful. We discuss the possible
roots for this simple defense and find that these results suggest a deeper look into the logits of adversarial
images. Very interestingly, we show that after detecting the adversarial image with the (k, p) metric, taking
the first flipped prediction is a significantly stronger defense than just taking the second highest logit.

2 Related Work
Principal Component Analysis has been previously used to study adversarial examples. Besides the work of
[9] that we mainly base our paper on, [8] has observed that the principal component distributions of natural
and adversarial images are different – adversarial images seem to have higher weight in the large principal
components. [11] has tried using PCA as a preprocessing step, forcing a deep network to only use a small
subset of principal components (around k = 20 for MNIST), giving an increase in robustness against FGSM
attacks. In [12] PCA was used as a filter in the hidden convolutional layers, but the results were not very
promising.

Detection of adversarial examples has been demonstrated by [13], where they trained a neural network
to distinguish adversarial samples from natural ones. [14] has shown that the Bayesian uncertainty estimates
allow for detection too. However, such detection mechanisms can often be bypassed [15].

The most popular approach towards building adversarially robust models relies on training on adversarial
examples [16, 17]. In [18] a connection to differential privacy was shown. For a good overview of defenses
against adversarial attacks, see [19]. A recent defense relevant to this paper was explored in [20], where the
defender relies purely on analyzing logits.

3 Principal components and robustness
Row-PCA With large datasets, it becomes computationally very difficult to compute the traditional PCA,
where we consider each image as a data point. Instead, [9] proposed to consider each h× w × d image (an
image with h rows, w columns and d channels) as a matrix X ∈h×(wd), and perform PCA with truncation
level k on this matrix instead.

X = UΣW⊤

Xk = XWkW
⊤
k ,

whereWk ∈(wd)×k. Here, we say that Xk = (X).

The (k, p) point metric [9] proposed a newmetric, called the (k, p) point, that they claimed allows to detect
adversarial samples from clean ones. The (k, p) point can be computed given an image X ∈h×wd and a
classifier N :h×wd→C , that maps images to a C-dimensional vector of logits for each class, where C is the
number of classes. It is defined by removing principal components from the image, until the top predicted
class changes.

In their paper, [9] claimed that the Carlini-Wagner, Deepfool and JSMA attacks were highly separable
from clean images in this (k, p) metric. They claim that a linear classifier could distinguish clean images
from adversarial ones with 94.81% success rate. However, the experimental details of the paper lack any
description on the hyperparameters used for the attacks. We repeated this experiment and found that the
CW attack is indeed highly separable in this metric from natural images, this is less so for other common
attacks, see Table 1. We trained both a linear classifier (logistic regression) and a 3-layer MLP and plot the
decision boundaries for logistic regression in Figure 1.
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Algorithm 1: Computing the (k, p)-point, given an image X ∈h×wd and neural network N . (Repro-
duced from [9])

Input: Image X ∈h×wd and classifier N .
Output: The (k, p) point of X with respect to the classifier N .
Set n← min(wd, h).
Compute dominant class c∗ ← argmaxN(X).
for k = n to 1 do

Compute Xk ← (X).
Compute the classifier’s prediction c← argmaxN(Xk).
if c ̸= c∗ then

Set k∗ ← k.
Set p∗ ← N(Xk)[c].
return (k∗, p∗).

Train accuracy Test accuracy Train accuracy Test accuracy
0.03 64.1% 69.5% 66.9% 72.0%
0.1 64.6% 64.0% 66.6% 70.5%
0.5 79.5% 81.0% 80.0% 84.0%
0.01 68.0% 79.5% 70.0% 82.5%
0.05 57.5% 58.5% 62.5% 77.0%
0.01 72.4% 83.5% 75.9% 86.0%
0.1 72.6% 84.5% 76.6% 85.0%

Carlini-Wagner 96.5% 99.0% 96.5% 99.0%

Attack ϵ
Logistic regression 3-layer MLP

FGSM

PGD

Deepfool

Table 1: Detecting adversarial examples on ResNet-18 through the (k, p) point: classification accuracy with
logistic regression as well as a 3-layer MLP.

4 Experimental methods
For our experiments, we use ImageNet10 [21], a subset of the ImageNet dataset [22] with 10 classes and 50
images from each class, for a total of 500 images. We crop these images to the center 224× 224 pixels as a
pre-processing step. Note that we still perform full 1000-way classification on ImageNet.

We consider pre-trainedmodels of the ResNet-18 [23] andVGG-11 [24] architectures. For the classification
of the (k, p) points, we consider both logistic regression and also a multi-layer perceptron classifier with three
layers (30× 20× 10) and optimized with the LBFGS algorithm. We trained the classifier on 400 samples and
tested on 100.

We study several attacks, including Fast Gradient Sign Method (FGSM) [3], L∞ Projected Gradient
Descent (PGD) [16], Deepfool [25] and Carlini-Wagner L2 [26] attacks. When appropriate, we consider a
range of hyperparameters (listed in Tables 1, 2). We use implementations of adversarial attacks from the
Adversarial Robustness Toolbox [27]. For the PGD attacks, we further set the step size to be ϵ/12 and the
number of steps to be 80. We runmost of the attacks on the ResNet-18model, and only run the Carlini-Wagner
attack on VGG-11 due to resource constraints.
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Logistic regression 3-layer MLP
0.03 28.1% 24.8% 29.0% 6.4%
0.1 11.1% 2.7% 5.8% 2.8%
0.5 1.6% 1.4% 1.6% 1.0%
0.01 55.5% 64.0% 60.8% 10.2%
0.05 37.6% 48.6% 48.0% 0.6%
0.01 46.8% 50.1% 48.4% 8.8%
0.1 41.9% 45.6% 44.2% 6.6%

Carlini-Wagner 100% 100% 100% 96.4%

Attack ϵ Defense success rate Conditional defense success Baseline (2nd best logit)

FGSM

PGD

Deepfool

Table 2: Defense success rates for various attacks on ResNet-18. The conditional defense success columns
give the success of the defense on images that have been detected according to their (k, p) point. The baseline
defense column shows the success of the simple defense in which the prediction is switched to the second
highest logit for the whole image. This baseline is surprisingly effective for the CW attack, but in all cases
our proposed defense outperforms it.

5 Defense from detection
In this section, we propose a simple defense against adversarial attacks. The defense works in two steps:
first, we use a previously trained classifier to detect whether an image is adversarial or not according to the
(k, p)metric [9]. Then, in case we detect an adversarial image, we apply our defense as follows. The main
idea is to compute the row-PCA of images for values of k, starting from the largest possible value and going
downwards. The defense then outputs the neural network’s prediction on the row-PCA reconstructed image
for the largest value of k for which the prediction does not match the prediction on the original (adversarial)
image – this is the first value of principal component k for which the predicted class changes.

Algorithm 2: Proposed defense strategy against adversarial attacks, given an adversarial image
X ∈h×wd and neural network N .

Input: Image X ∈h×wd and classifier N .
Output: The (k, p) point of X with respect to the classifier N .
Set n← min(wd, h).
Compute dominant class c∗ ← argmaxN(X).
for k = n to 1 do

Compute Xk ← (X).
Compute the classifier’s prediction c← argmaxN(Xk).
if c ̸= c∗ then

return c.
return c∗.

Naively, there is no clear reason that this defense should be very successful. After all, the prediction we
flip to after removing principal components on an adversarial sample does not a priori have to be correlated
with the correct label, unless we have managed to project the image to the submanifold of natural images.

Carlini-Wagner Results We observe that this proposed defense strategy is very effective against the Carlini-
Wagner attack, widely considered to be a very strong attack with minimal perturbations. We summarize our
results in Table 2.

Why is this defense so surprisingly successful here? To understand this, we plotted the ten highest
predicted class logits as we remove principal components from the image, see Fig. 2. By inspecting the
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(a) Fast Gradient Sign Method ϵ = 0.03 (b) Fast Gradient Sign Method ϵ = 0.1 (c) Fast Gradient Sign Method ϵ = 0.5

(d) Projected Gradient Descent ϵ = 0.01 (e) Projected Gradient Descent ϵ = 0.05 (f) Carlini-Wagner attack

(g) DeepFool attack ϵ = 0.01 (h) DeepFool attack ϵ = 0.1

Figure 1: Detection of adversarial images from different attacks by using a linear classifier (logistic regression)
on the (k, p) points of images. A pre-trained ResNet-18 model was used for these plots.

corresponding logit curves for natural and adversarial pairs, we find that for the CW attack, the label we flip
to at the (k, p) point is the correct label for every single image in our dataset. Note that this is not necessarily
the same as the second highest logit in the full image. As a baseline, we consider the defense of flipping to
the second logit of the full image. We find that this baseline defense is actually successful on 96.4% samples,
see Table 2. While all the results in Tables 1 and 2 are for the ResNet-18 model, we also tested this defense
strategy against the Carlini-Wagner attack on a pre-trained VGG-11 architecture and summarize our results
here. For detection based on classification in the (k, p)-space, both logistic regression achieved and the 3-layer
MLP achieved 94.2% train accuracy and 98.5% test accuracy. The success rate of the proposed defense was
83.4% overall. The success rate did not change significantly conditioned on detection with logistic regression
(84.0%) or theMLP (83.9%). Finally, our proposed defense does better than the naive baseline of choosing the
class with second highest logit, which achieves 71.6% success rate against the attack. See the Supplementary
Material for more plots.

We suspect that the reasonwhy this defenseworks sowell for theCarlini-Wagner attacks can be understood
from the design of the attack. The CW attack tries to find the minimum perturbation to change the prediction
of the neural network, and in the most common implementation does so by optimizing on the change of
prediction from the true class to the target label. This would be compatible with the observation that most of
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Figure 2: Logits of the top predictions of the network for a clean and adversarial images, as the number of
principal components k gets reduced. Notice that the Carlini-Wagner attack mostly reduces the highest logit
and promotes the second one to be just above the true label one. This is very different from the behavior for
other attacks. In particular, FGSM leads to changes in many of the logits. This plot shows result for a single
image of a great white shark, but the behavior is representative of the general behavior for all images, see
Supplementary Material for more examples.

the time the correct class has the second-highest logit value for the adversarial image (but not all of the time).

Other attacks We saw previously that the attacks other than the Carlini-Wagner are less separable. Similarly,
we find that our defense is less successful here too. Again, we consider the baseline of a defense in which we
simply flip the highest and second highest logits of an adversarial image (assuming that we have previously
detected adversarial noise somehow, perhaps via the (k, p) metric). As we can see in Table 2, our proposed
defense vastly outperforms this simple baseline. We report both the success of the defense on all adversarial
images, as well as the success conditioned on previous detection via the (k, p)metric. For small perturbations,
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both the PGD and Deepfool attacks can be successfully repelled more than half of the time. Surprisingly, the
very simple FGSM attack bypasses this proposed defense the most. Inspecting the pattern in which the top
prediction changes as we reduce the number of principal components k in Fig. 2, we can see that there is a lot
more impact on all the logits in FGSM compared to the other attacks.

6 Discussion & Conclusions
We found that the results in [9] were highly optimistic, but important details on the experimental paradigm
were missing. Repeating their experiment, we discovered that indeed some attacks, like the CW attack, are
highly separable in the (k, p) metric, while other common attacks are more difficult to separate. Nonetheless,
results in Table 1 suggest that we can have a high success rate in detection even for PGD attacks.

This motivated us to define the defense algorithm based on the (k, p) point of an image. In our experiments
we have noticed that often the prediction we flip to at the (k, p) point is the correct label (for CW attacks this
is universally true). From inspecting the CW attack logits, a simpler defense scheme seemingly presents
itself – one could simply take the second highest logit given a detection. We show in Table 2 that while this
is minimally weaker for CW attacks (success rate of 96.4% as opposed to 100%), our proposed defense is
significantly stronger for other attacks. For Deepfool, we get jumps from 8.8% up to 50.1% and for PGD a
jump from 10.2% up to 64% for small perturbations. It is thus clear that our defense is significantly stronger
than would be expected from just flipping logits. It is of note that for this defense, we did not need to restrict
ourselves to a subset of classes in ImageNet - unlike adversarial training, this defense seems to be agnostic to
the total number of classes.

While we suspect that this mechanism can be bypassed by an adversary with the knowledge of this
defense, it is nonetheless interesting and surprising that such a simple algorithm using a variation of PCA
can be so successful. We motivated the approach taken in this paper by an attempt to define the manifold
of natural images. It would be very interesting to understand what the manifold defined by our projection
exactly is – hopefully an extension of this work could demonstrate that such a manifold is more closely
aligned with human robustness. The rates of detection and successful defense we found here motivate a
closer look at the distribution of principal components in natural and adversarial images and how those
interact with the predicted logits in classification problems. Our proposed defense is very simplistic in
choosing the classification based on the second decision we flip to at the (k, p) point, but the results here are
suggestive that it might be possible to learn the correct class label from the pattern of changes as k is reduced.
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A Detection of Carlini-Wagner attack with VGG-11 model

Figure 3: Linear classification of (k, p) points for Carlini-Wagner attack on pre-trained VGG-11 model.
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B Top few logits for different number of principal components k
B.1 FGSM attack on ResNet-18 model

(a) Logits for a sample image of a great white shark

(b) Logits for a sample image of a tree frog

(c) Logits for a sample image of a boa constrictor

Figure 4: Logits of top few classes as the number of principal components k changes, for ResNet-18 model on
clean images (left) and adversarial images using the FGSM attack(right) with ϵ = 0.03.
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B.2 PGD attack on ResNet-18 model

(a) Logits for a sample image of a great white shark

(b) Logits for a sample image of a tree frog

(c) Logits for a sample image of a boa constrictor

Figure 5: Logits of top few classes as the number of principal components k changes, for ResNet-18 model on
clean images (left) and adversarial images using the PGD attack(right) with ϵ = 0.01.
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B.3 DeepFool attack on ResNet-18 model

(a) Logits for a sample image of a great white shark

(b) Logits for a sample image of a tree frog

(c) Logits for a sample image of a boa constrictor

Figure 6: Logits of top few classes as the number of principal components k changes, for ResNet-18 model on
clean images (left) and adversarial images using the DeepFool attack(right) with ϵ = 0.01.
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B.4 Carlini-Wagner attack on ResNet-18 model

(a) Logits for a sample image of a great white shark

(b) Logits for a sample image of a tree frog

(c) Logits for a sample image of a boa constrictor

Figure 7: Logits of top few classes as the number of principal components k changes, for ResNet-18 model on
clean images (left) and adversarial images using the Carlini-Wagner attack(right).
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B.5 Carlini-Wagner attack on VGG-11 model

(a) Logits for a sample image of a great white shark

(b) Logits for a sample image of a tree frog

(c) Logits for a sample image of a boa constrictor

Figure 8: Logits of top few classes as the number of principal components k changes, for VGG-11 model on
clean images (left) and adversarial images using the Carlini-Wagner attack(right).
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