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Abstract

Left-turn movements pose significant safety hazards and reduce the operational efficiency of
signalized intersections. One effective strategy to mitigate these issues is to restrict conflicting left-
turns at strategic locations. However, determining the optimal locations for such restrictions in
large urban networks is challenging due to the complexity of traffic dynamics and the large
solution space. This paper presents a two-stage methodology to optimize left-turn restriction
decisions in urban networks, utilizing a bi-level optimization framework combined with a binary
logit model. The bi-level framework employs the Population Based Incremental Learning (PBIL)
algorithm at the upper level and AIMSUN micro-simulation platform at the lower level to
determine near-optimal left-turn restriction locations. The best solutions from PBIL serve as the
dependent variable in a binary logit model that explains the traffic parameters influencing these
decisions and predicts the propensity of intersections likely to benefit from left-turn restrictions in
unknown scenarios. When applied to the Pittsburgh traffic network, the PBIL algorithm
demonstrated up to a 15% reduction in travel time under peak demand without significantly
increasing trip lengths. The logit model, trained on known demand scenarios, indicates that
intersections with higher values of left-turning green-ratio, flow-ratio, and protected green-ratio
are less likely to benefit from left-turn restrictions. Furthermore, the model's predictions for
unknown demand levels can identify locations of left-turn restriction that are comparable to the
PBIL in terms of travel time improvements. This framework provides a data-driven approach for
transportation agencies to determine optimal left-turn restriction locations, balancing operational
efficiency and network performance.

Keywords: Left-turn restriction, optimal location, optimization, heuristics, population based
incremental learning, binary logit model
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INTRODUCTION

Left-turning movements at intersections conflict with the through and right-turning movements
from the opposite direction, creating significant challenges for signal operations and intersection
safety. At signalized intersections, conflicting left-turn movements are typically accommodated
either via permitted or protected left-turn signal phases. When served using permitted phasing,
left-turning vehicles must wait for gaps in oncoming traffic, which contributes to increased delay
and increases the risk of angle crashes (/). Furthermore, the storage of queued vehicles on
dedicated left-turn lanes has the potential to spill-back and impede the flow of other movements
(2). By contrast, the use of protected left-turn phases eliminates conflicts but reduces the green
time available for other movements, lowering the overall throughput of the intersection (3, 4).
Researchers have also proposed numerous alternative intersection designs to more safely and
efficiently accommodate left-turning traffic (5—/2). However, these treatments are expensive and
cannot always be accommodated in dense urban networks due to the large spatial footprints
required.

An alternative strategy to mitigate issues arising from conflicting left-turns is to restrict
their movements at signalized intersections, specifically in dense urban street networks. Studies
have shown that prohibiting left-turns in this setting can not only improve the capacity and safety
of signalized intersections, but also increase the trip completion rates in a transportation network
(13-16). Despite the operational and safety benefits of restricting left-turns, decision-making at
the microscopic level has its challenges. Drivers may be required to travel additional distances,
such as making three right turns to achieve the equivalent of one left-turn, which can increase
travel time and inconvenience. Additionally, banning left-turns can divert traffic to other routes,
potentially leading to increased congestion in areas that were previously less affected. Therefore,
identifying the most optimal locations to restrict left-turns in a network is critical.

Determining the optimal locations for treatments in a transportation network (i.e., at which
locations to restrict left-turn movements) is classified as an NP-hard optimization problem (/7).
Additionally, restricting left-turn movements at one intersection alters the traffic flows at its
neighboring intersections, hence, these treatment decisions are interdependent. Some studies have
used simple analytical traffic models to analyze the effect of implementing left-turn restrictions;
however, these are unable to capture traffic dynamics such as re-routing and queue spillback (78—
22). To overcome this issue, researchers have also proposed using agent-based simulation
techniques that enable dynamic traffic assignment to capture the true effect of these treatments
(12, 23). However, the complexity of optimal location problems escalates significantly with the
increase in the number of treatments or potential locations; e.g., for each traffic pattern and level
of demand, the decision to either restrict left-turns or not in a network with N number of
intersections has 2V possible combinations that need to be analyzed to determine the globally
optimal solution. To address this challenge, heuristics such as evolutionary algorithms provide a
computationally efficient means of determining near-optimal solutions of problems with extremely
large solution spaces (24—26). However, the drawback of these black-box algorithms is the lack of
interpretability; they provide solutions without insights into the underlying reasons behind those
solutions. This opacity makes it challenging for transportation agencies to understand which
specific factors are driving the decision to restrict left-turns at particular intersections.

In light of the gaps in existing literature, this study proposes a two-stage methodology to
optimize left-turn restriction decision in urban networks using a bi-level optimization framework,
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and a binary logit regression model to identify the traffic parameters that influence these decisions.
The bi-level optimization framework uses the population based incremental learning (PBIL)
algorithm at the upper level and AIMSUN micro-simulation platform at the lower-level to identify
near-optimal locations in a network where implementing left-turn movement restrictions result in
improved travel times. The identified solutions are then used to train a binary logit regression
model, which seeks to relate these decisions (i.e., if left-turns are banned at a particular location in
the optimal solution) to traffic flow and signal timing information. The results provide greater
transparency and should allow decision-makers to determine the key factors influencing left-turn
restriction decisions and predict optimal locations for unknown scenarios. The proposed method
was applied on a real network of downtown Pittsburgh, PA. The results reveal that left-turn
restriction configurations generated by PBIL can achieve up to nearly 15% improvement in travel
time under peak conditions without significantly increasing individual trip lengths. Moreover, the
logit model, trained using the best PBIL configurations of known demand scenarios suggests that
intersections with a higher average left-turning green-ratio, sum of left-turning flow-ratio and sum
of left-turning protected green-ratio are less likely to benefit from restricting left-turns. The trained
model was applied on two different test-demand settings to generate propensity scores that indicate
each intersection’s potential at reducing travel time if left-turns are banned. Selecting intersections
with higher propensity scores for left-turn restrictions results in significant travel time
improvements, whereas restricting left-turns at intersections with lower scores increases travel
time. Overall, the framework provides a data-driven guideline to identify critical features
transportation engineers and planners should consider when deciding whether or not to ban left-
turns at a given intersection.

The remainder of this paper is as follows. The following section introduces the proposed
two-stage optimization methodology. This is followed by the simulation setup used to test the
proposed methodology. Next, the results of the bi-level optimization as well as the binary logit
model are compared. The final section highlights the findings and suggests directions for future
work.

METHOD

This section describes the two-stage methodology that is proposed in this paper. This includes the
bi-level optimization framework that generates near-optimal configurations as a starting point for
known demand scenarios and the binary logit model that is applied to predict and justify the
optimal location of implementing left-turn restrictions for unknown scenarios in a signalized urban
traffic network. The outline of the methodology is shown in Figure 1.
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Figure 1. Methodology of left-turn restriction prediction model

Bi-Level optimization framework

A bi-level optimization framework operates by dividing the optimization problem into two
hierarchical levels: the upper level identifies decision variables, such as the configuration of traffic
treatments to optimize overall network performance; and, the lower level evaluates the
effectiveness of these configurations using detailed simulations or analytical models. This iterative
process continues, with the upper level refining its decisions based on feedback from the lower
level, until an optimal or near-optimal solution is reached.

Lower level: AIMSUN to evaluate effectiveness of specific lefi-turn restriction configuration

Since the optimization problem of identifying the optimal locations to restrict left-turns does not
have an exact solution, each configuration generated by the upper level is evaluated at the lower
level. While existing studies have used static models to simulate the effect of transportation
treatments on a network such as Stochastic User Equilibrium (SUE) functions, they do not capture
traffic dynamics when implementing transportation treatment solutions (79, 21, 22). Other studies
have employed dynamic models such as the Link Transmission Model or micro-simulation
software such as AIMSUN, VISSIM or SUMO (27-31) to better models traffic dynamics and
provide a detailed and realistic assessment of the impact of different treatment strategies. For this
study, AIMSUN was selected in the lower level for its ability to capture queue formation, spillback,
re-routing and ease of programming. For each generated configuration, the conflicting left-turn
movements of selected intersection were identified and removed. Note, left-turn movements on
one-way streets that do not conflict with through or right-turn movements from the opposite
direction were not removed. Next, any dedicated left-turn lanes were modified to serve the through
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movements. Finally, the signal timing was adjusted without altering the cycle length by re-
allocating green time for protected left-turn phases toward the through-right movement in the same
direction. Therefore, the total duration of green time allocated to serving the movements in either
the north-south or east-west direction remained unchanged.

Upper level: PBIL to identify potential left-turn restriction configurations

The upper level of a bi-level optimization framework employs heuristic methods (e.g., an
evolutionary algorithm) to generate random configurations of a treatment and continues to update
until it converges toward an optimal solution. However, most genetic algorithms do not capture
the interdependency between solutions that exist in case of transportation network treatment
problems. To address this, the Population Based Incremental Learning (PBIL) algorithm is
employed which is an evolutionary algorithm that combines elements of genetic algorithms with
learning processes and considers solution dependencies (32). PBIL has been successfully applied
in network level transportation treatment problems (24-26, 33—35). Key parameter definitions of
the PBIL algorithm and values used in this study are summarized in Table 1.
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Table 1. Key parameters of the PBIL algorithm

Parameter Symbol Description Value
Generation g Number of times the algorithm will iterate and 20
Size generate a new set of configurations
Population P Number of generated LT restriction configurations in 20
Size each generation
Candidate (64 Number of intersections that are candidates for LT 39
Size restriction
Probability » =(G,€) Two-dimensional vector where each element pg;
Vector denotes the probability of implementing LT restriction
at intersection i in generation g
Population P =(G,P,C) Three-dimensional vector where each element Py, ; is
Vector [0,1] that indicates whether LT 1is restricted at
intersection I in configuration p of generation g
Result R =(G,P) Two-dimensional vector where each element 7,
Vector contains the fitness of the objective function after
evaluating the LT restriction configuration p in
generation g
Positive LR* Rate at which probabilities of intersections present in 0.1
Learning the best configuration, B; of generation g are
Rate increased
Negative LR~ Rate at which probabilities of intersections in the worst  0.075
Learning configuration, W of generation g are decreased
Rate
Mutation A Rate at which probabilities are randomly mutated 0.05
Rate
Mutation m Probability that a given intersection will undergo 0.02
Probability mutation

The PBIL algorithm is initialized by generating a population of configurations containing

locations to implement left-turn restriction using an initial probability vector, p,. Each candidate
intersection was assigned an initial probability p,; of 0.5 to allow unbiased selection of any
intersection in the first generation. This allows exploration of the entire solution space in the initial
stage of the algorithm.

Each configuration is passed into the lower level where its performance is simulated in
AIMSUN, and the fitness of each configuration is determined based on the total travel time
resulting from the implementation of the left-turn restriction at the selected intersections. Using
the fitness score, the best and the worst configuration of generation g is identified and the
probability vector of generation g + 1 is updated through positive learning, negative learning, and
a mutation operation. Essentially, the PBIL algorithm learns from and exploits superior solutions
while moving away from the inferior ones. The objective of the positive learning operations is to
increase the probabilities of selecting the intersections present in the best solutions:
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Pgr1i = Pgi X (1 - LR*) + LR* x Bg; Vi. (D)

On the other hand, the negative learning operation decreases the probabilities of the
intersections present only in the worst solution, so they have a lower likelihood of being selected
in the next generation:

Pg+1i = Pgi X 1 —LR™)+ LR X By; Vi )

Note, however, that probabilities of intersections present in both the best and worst
solutions are not altered.

The mutation operation mutates the probabilities of randomly selected intersections by the
mutation rate using the formula given in (3) to increase the exploration within the solution space:

Pgi1i = Pgi X A —=A4p) + 4 Vist.Mg; =1 (3)

The algorithm finally terminates if the algorithm converges according to a predefined
threshold (e.g., the fitness of the generated solutions no longer improves) or if the maximum
number of generations has been reached; the speed of convergence can be changed by adjusting
the learning rates. Since the objective of the bi-level optimization step of this study is to
approximate a near-optimal solution, the latter termination criterion was selected. The output of
the algorithm is the left-turn restricted network configuration that corresponds to the lowest
observed travel time.

Binary Logit prediction model

While the bi-level optimization framework effectively generates optimal configurations for left-
turn restriction locations in a traffic network, a significant drawback is its lack of interpretability.
The framework achieves optimal solutions by simulating numerous random configurations until a
near-optimal configuration is identified. However, this process does not provide insights into the
underlying factors that drive the selection of specific intersections for left-turn restrictions. As a
result, decision-makers are left with optimal solutions that lack the necessary explanatory context,
making it difficult to justify and understand the decisions made. To address this limitation, the
optimal configuration generated by the bi-level optimization framework is utilized as an input to
a binary logit model where it is treated as the dependent variable, and various traffic data and
parameters related to left-turn movements at intersections serve as the independent variables. By
training the model with the correct parameters, it learns which factors are most significant in
explaining the selection of left-turn restrictions at intersections.

Model inputs

The dependent variable in the binary logit model is the selection of left-turn restrictions at a
particular intersection. This binary variable encoded as 1 or 0 represents the presence or absence
of a left-turn restriction at each intersection of the network as determined by the best configuration
output from the bi-level optimization framework. To understand why a particular intersection
benefits from left-turn restriction, a variety of traffic flow and signal timing parameters from
training demand scenarios are extracted and used as predictor variables to train the binary logit
model. This includes intersection level data such as the cycle length and the total intersection
throughput from turning movement counts. Additionally, for each conflicting left-turn movement
at an intersection, the following parameters were extracted:



— O 003 NV kW~

—_
\]

—_— —
AW

15
16
17

18
19
20
21

22

23
24
25
26
27
28
29
30
31
32
33
34

Duration of left-turn phase

Green ratio of left-turn phase

Duration of protected left-turn phase
Green ratio of protected left-turn phase
Left-turn volume

Left-turn flow ratio

Since an intersection may accommodate multiple conflicting left-turn movements, the
parameters were aggregated for each intersection by taking the sum, mean, minimum and the
maximum of the parameters from all conflicting left-turn movements. The final variables included
in the model were the total number of trips generated, and the total travel time of each simulated
demand to allow the model to differentiate between different demand scenarios.

Model formulation

The probability function under the binary logit formulation for predicting the propensity of an
intersection receiving a left-turn restriction can be expressed as:

ePXi

1+eBXy

P(LT;|X;) = E(y;) = 4)

where LT; denotes the presence of a left-turn restriction at intersection i; X; is the vector of
predictor variables for intersection i; and, [ is the vector of corresponding coefficients to be
estimated. The coefficients are estimated by maximizing the log-likelihood function:

log L(LT) = ¥iL;log P(LT;|X;). )

The estimated coefficients § describe the relationship between each traffic parameter and
the likelihood of a left-turn restriction being applied to an intersection. Positive coefficients
indicate that higher values of the parameter increase the likelihood of a left-turn restriction, while
negative coefficients suggest the opposite.

SIMULATION SETUP

The proposed methodology was tested on the traffic network of Downtown Pittsburgh, PA that
consists of peripheral collectors (e.g., Fort Duquesne Blvd, Liberty Ave, Blvd of the Allies, Fort
Pitt Blvd running in the east-west direction and Grant St. in the north-south direction) and local
streets in the central region forming a triangular grid. The turning movement counts at each
intersection from Synchro were used to calibrate an Origin-Destination (OD) matrix with 58 origin
and destination nodes that accurately represents the distribution of trips throughout the network in
an evening peak scenario. The total number of trips in the calibrated peak demand scenario
(referred to here as “D-1007) averaged 21,150 across multiple random seeds. Additionally, three
lower demand scenarios, (referred to in this study as “D-94”, “D-87” and, “D-80"") were simulated
with an average of 19,800, 18,400 and, 17,000 trips generated across multiple random seeds. The
binary logit model was trained two times to predict the propensity of restricting left-turns for D-
94 and D-87 respectively. In each case, one demand level was reserved as the testing dataset and
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the model was trained using the outcomes of the other three training demands. This allowed the
testing of the binary logit on unseen demand patterns within the network. Note that D-100 and D-
80 were not used for testing as they represent the upper/lower bound of the demand levels
considered.

The signal timing plan was imported from an optimized PM Peak Synchro plan, which
includes cycle lengths, phase splits, and offsets of each signalized intersection. The simulated
network consists of a total of 76 signalized intersections of which 39 intersections were selected
as candidates to implement left-turn restrictions on due to their centrality in the network and the
potential impact of the restriction decisions on overall congestion reduction (Figure 2). Of the
intersections not selected, 7 had no conflicting left-turn movements with the through or right-turn
movements from the opposite direction and 30 intersections were located at the periphery of the
network or connected to major O-D nodes. Restricting left-turning movements at these peripheral
intersections may significantly increase the traveled distance and so were also excluded from left-

turn restriction considerations.
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Figure 2. Map of simulated Downtown Pittsburgh

RESULTS

This section describes the outcome of implementing left-turn restriction in the network based on
the solutions generated from the PBIL algorithm as well as the training of the binary logit model
that is later used to determine the parameters influencing the decision of restricting left-turns.
Finally, the predictive performance of the model is investigated on unknown scenarios.

Impact of left-turn restriction at individual intersections

To demonstrate the variability in performance of restricting left-turns at individual intersections,
Figure 3 illustrates the percent change in the total travel time when left-turns were restricted at
each intersection for all four demand levels. First, it is evident that the peak demand scenario
experiences a larger variability in travel times with a maximum improvement (reduction) of nearly
9% to an increase in travel time of approximately 20% over the base scenario. As demand
decreases (D-94, D-87, D-80), this variability in travel time diminishes suggesting that the impact
of left-turn restrictions is influenced significantly by traffic volume.
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restriction at individual intersections

Optimal left-turn restriction solutions using PBIL

PBIL convergence

As a heuristic method, the PBIL cannot guarantee an optimal solution. Instead, the goal is to
provide a configuration that significantly improves performance (i.e., travel time) without having
to test all possible configurations. Note that there are 23° = 549,755,813,888 possible
configurations to be tested in the Pittsburgh network. However, the PBIL simulates only 400
configurations (20 configurations in each of the 20 generations of the algorithm) to obtain well-
performing solutions that will serve as input for the binary logit model.

The blue, orange, green and red line plots in Figure 4 illustrate the convergence trends of
the PBIL algorithm for each of the demands in terms of the percent improvement in total travel
time over the base network. It is evident that better solutions are discovered as the algorithm
progresses as all demand levels show a decline in travel time. Moreover, most scenarios
demonstrate significant improvements early in the iterations and stabilize quickly. Despite the
significant improvement in travel time, the models do not appear to have fully converged.
Nonetheless, the best-performing solutions comprising the locations of intersections to restrict left-
turns obtained from the PBIL are identified and used to train the logit model.
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Locations of left-turn restrictions

The locations left-turn restrictions present in the top five configurations generated by the PBIL are
shown in Figure 5 for each of the demand levels. The intensity of the markers at each intersection
indicates how many times that intersection appears in the best configurations for that demand. Due
to the inherent randomness of the PBIL and the interdependence of the solutions, the best
configurations do not always contain the same set of intersections. However, significant overlap
can be seen across all demands, with some intersections selected multiple times at all demand
levels to receive a left-turn restriction. At D-100 (Figure 5a), there is lower variability, with a few
intersections repeatedly selected, most of these are concentrated in the central grid region. In
contrast, the best solutions for lower demand levels (Figure 5b-d) have more intersections where
left-turns are restricted. These intersections are not limited to the central region, rather intersections
on arterials like Liberty Avenue and Grant Street benefit more from prohibiting left-turns.
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Figure 5. Locations of left-turn restriction decisions from top 5 configurations generated using PBIL: (a) D-
100; (b) D-94; (c) D-87; (d) D-80.

Impact on travel time distributions

The objective function of the PBIL algorithm was to determine the set of intersections where
restricting left-turns would minimize the total travel time in the network. Figure 6 shows the
distribution of the probability density function of the travel time of individual trips for the base
scenario (in black) and the best configuration of the PBIL for all four demand levels. The results
reveal that the PBIL algorithm significantly improves not only the total travel times but also the
individual trip durations. For each scenario, the distribution of travel times in the base simulation
is skewed to the right whereas the PBIL best configurations have taller peaks and more uniformly
distributed. Hence, a higher percentage of vehicles experience shorter trip durations as a result of
the left-turn restrictions.
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Figure 6. Probability density function of trip durations: (a) D-100; (b) D-94; (c) D-87; (d) D-80.

Impact on traveled distance distribution

Intuitively, the restriction of left-turns in a traffic network is expected to result in increased travel
distances as vehicles may need to make additional turns to reach their destinations. However, the
best solutions generated by the PBIL algorithm demonstrates a negligible increase in the total
traveled distances over the base simulation which is evident from the distribution of individual trip
lengths (Figure 7). Considerable overlap can be seen between the base scenario and the PBIL best
configurations as the increase in the total distance traveled ranges between only 0.4% to 0.8%
across the different demand levels. This is due to driver behavior and the tendency to reroute under
congested environments either using navigation information or from personal experiences.
AIMSUN’s dynamic traffic assignment settings mimic this rerouting behavior of drivers and
vehicles adjust their paths based on real-time traffic conditions. Under the base scenario when the
network is more congested, the shortest available paths may not be the most optimal; hence,
vehicles re-route and travel additional distances to reach their destination. However, restricting
left-turns and allocating green time to serve the through-right movement phases reduce the lost
time and increase the intersection throughput. As a result, more efficient paths may be available
that are not significantly higher than that of the base scenario.
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10000

Training and predictive performance of Binary Logit model

Model training

While a total of four different demand scenarios were simulated in this study, the binary logit
models were trained using signal timing information, traffic flow data and the locations of the
intersections to implement left-turn restriction from any three of the known demands, while the
remaining demand was held out to test the logit model’s performance. Of the 28 parameters
available for inclusion in the logit model, three were identified that best influence the likelihood
of restricting left-turns: average green ratio for left-turn phases, sum of flow ratio for left-turn
movements, and sum of green ratio for protected left-turn phases. These key parameters were
selected through a combination of recursive feature selection method and applying engineering
judgement. Table 2 shows the two models that were developed for D-94 and, D-87 respectively
using known data from their complementary set of demands. Note that the coefficients of all three
parameters are negative, which suggests that intersection with higher values of these parameters
were less likely to have left-turns restricted in the best-performing configuration. All three are
associated with higher left-turn volumes, which reasonably suggests that intersections with the
highest left-turn activity are most likely to experience negative impacts of left-turn restrictions.
Intersections with protected left-turn phases are particularly less likely to have left-turns restricted.
The correlation matrix in Figure 8 shows that neither of the selected variables are highly correlated.
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Table 2. Binary logit model parameters for left-turn restriction estimations

D-100, D-100,

Training demands D-87, D-94,
D-80 D-80
Test Demand D-94 D-87
Predictor Variables B o B o
Constant 2.59 0.69 2.78 0.71
Average green ratio of left-turn phases -3.61 1.31 -3.88 1.34
Sum of flow ratio of left-turn movements -8.23 1.55 -8.80 1.57
Sum of green ratio of protected left-turn phase  -1.82 1.00 -1.79 1.00
Goodness of fit
Number of observations 390 390 390 390
Log-likelihood value -240.21 -237.73  -235.96 -239.33
Pseudo R-squared 0.087 0.091 0.099 0.085
Green ratio mean - 1 I_ 08

-06

1 0.31

-04
- I-OZ

Green ratio mean Flow ratio sum Protected green ratio sum

Flow ratio sum

Protected green ratio sum -

Figure 8. Correlation matrix of selected predictor variables

Performance evaluation of prediction model

To assess the effectiveness of the trained binary logit model, a propensity score indicating the
likelihood of having a left-turn restriction was computed for each intersection using the average
green ratio of left-turn phases, the sum of the flow ratio of left-turn movements, and the sum of
the green ratio of protected left-turn phases from their respective base simulations into the model.
These propensity scores were then used to rank each intersection's eligibility for implementing
left-turn restrictions; i.e., to identify those intersections for which it may be more beneficial to
restrict left-turns to reduce travel times. For each of the D-87 and D-94 demand scenarios,
intersections were sequentially selected for left-turn restrictions in a descending order of
propensity scores (i.e., starting with the highest propensity score and adding the next highest) and
the total travel time was computed using AIMSUN. The orange and green solid line plots in Figure
9 illustrates the performance of these configurations for a given number of intersections with left-
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turns restricted. The best solution obtained from the PBIL algorithm are also shown using dashed
horizontal lines for each demand scenario.

The results shown in Figure 9 reveal that selecting intersections for left-turn restrictions
using the trained logit model provides remarkably good results that are comparable to—and
sometimes surpass—that obtained from the PBIL algorithm applied directly to those demand
scenarios. For example, the PBIL algorithm applied to scenario D-87 was able to find a solution
that restricts left-turns at 17 intersections and results in an improvement in travel time by 8.4%.
However, an improvement of 8.47% was achieved when left-turns were restricted at the 11
intersections with the highest propensity scores, and despite fluctuations, a maximum
improvement of 9.98% was achieved when left-turns were prohibited at the top 18 intersections.
Similarly, the best configuration generated using the logit model for scenario D-94 comprises 17
intersections and results in similar improvements as the best solution from PBIL. Beyond this
configuration, however, the total travel time in the network begins to increase as more intersections

are added.
SHAS (A
3

f ¥\ D-94 Logit: descending PS

/ ll‘ D-94 PBIL: best solution
| I‘ +— D-87 Logit: descending PS

-6 * l,‘ ﬁg D-87 PBIL: best solution
’I \
- ! Vi e o

A

0 5 10 15 20
Number of selected intersections

Figure 9. Effect of sequentially implementing left-turn restrictions at intersections by descending order of
propensity scores

% change in total travel time

The proposed logit model can also help identify which intersections to not implement left-
turn restrictions. Figure 10 presents the results of sequentially restricting left-turns in ascending
order of propensity scores (i.e., starting by restricting left-turns at the worst potential location
corresponding to the lowest propensity score and sequentially adding additional intersections). The
intersections being added are those with a higher average green-ratio, sum of flow-ratio and sum
of protected green-ratio of conflicting left-turning traffic. As left-turns are restricted at more of
these suboptimal intersections, there is a noticeable increase in travel time. Beyond 12
intersections, scenario D-94 experiences such heavy congestion that the simulated network
gridlocks. This highlights the model's ability to accurately rank intersections based on their
suitability for left-turn restrictions
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Figure 10. Effect of sequentially implementing left-turn restrictions at intersections by ascending order of
propensity scores

To further understand the impact of restricting left-turns based on propensity scores, Figure
11 shows the distribution of individual trip durations and trip lengths for scenario D-87. The result
of the base simulation without left-turn restrictions is shown in black, while the performance of
best configuration predicted by the logit model with the top 18 intersections is denoted in green,
and the configuration comprising 5 intersections with the least propensity scores is shown in red.
The results indicate that the logit model's best configuration significantly reduces the individual
travel times compared to the base scenario. The distribution for the best configuration is narrower,
meaning a higher percentage of vehicles experience shorter trip durations. In contrast, the bottom
5 configuration results in a distribution similar to the base scenario but more skewed to the right.
However, the trip lengths do not differ significantly from the base scenario for any of the
configurations, indicating that re-routing is minimal despite the left-turn restrictions. This suggests
that drivers can seek out efficient travel paths even with restricted left-turns.

0.0030 M [ Base 0.00025 1 Base
’ [ Logit best config [ Logit best config
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0.0025 [ Logit bottom 5 config 0.00020 g [’}
»0:0020 20.00015
g E
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0.00005
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0.0000 : ‘ ! I | | 0.00000
0 250 500 750 1000 1250 1500 1750 2000 0 2000 4000 6000 8000 10000 12000
Travel Time (sec) Trip length (ft)
(a) (b)

Figure 11. Probability density function of (a) trip durations; (b) trip lengths

The locations of the top 18 selected intersections and the bottom 5 intersections of the logit
model for D-87 are shown on a map in Figure 12 using green and red markers respectively where
the intensity of the markers indicate their propensity scores, i.e., a darker color indicates a higher
propensity to receive left-turn restriction and vice versa. Compared to Figure 5c that demonstrated
the top locations to implement left-turn restrictions using PBIL, the binary-logit model selects
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fewer intersections along Liberty Avenue. However, both figures show a concentration of
intersections in the central grid region and typically comprise a series of 2-3 adjacent intersections
in the north-south or east-west direction. This is likely because these intersections experience
similar levels of left-turning demand and are programmed with similar signal-timing parameters.

Logit best config
e . Logit bottom 5

Figure 12. Locations of left-turn restrictions in best configuration of binary logit model, and the configuration
comprising bottom 5 intersections of the binary logit model for D-87.

Robustness of prediction model for practical implementation

Although the propensity scores of intersections present a guide for agencies in selecting
intersections to restrict left-turns on, some intersections may have unobserved characteristics that
are not reflected in the model, for which turn restrictions may not be applicable to those
intersections. Further, agencies might have other priorities for determining where to restrict left-
turn movements. Thus, this section demonstrates the performance of restricting left-turns at a
random number of intersections selected from those with the highest (lowest) propensity scores
obtained from the logit model using D-87 as an example. Specifically, random subsets of
intersections picked multiple times from the top 15, top 20, bottom 15 and bottom 20 propensity
scores. The percent change in travel time over the base scenario for configurations comprising left-
turn restrictions at 5 and 10 intersections are shown in Figure 13a-b, respectively, where the blue
and red lines show configurations picked from the top and the lower end, respectively. The shaded
area around each line indicates the variability of one standard error across 10 random
configurations. The findings suggest that configurations generated from the top 15 and top 20 yield
consistent improvements with low variability and higher improvements are possible by restricting
left-turns at 10 intersections as opposed to 5. As expected, random configurations generated from
intersections with the least propensity scores generally lead to congestion in parts of the network
and result in an increase in total travel time and have a higher variability. Therefore, the prediction
model remains robust for practical implementation by agencies, ensuring significant
improvements while accounting for the potential exclusion of certain intersections due to practical
considerations.
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Figure 13. Effect of randomly implementing left-turn restrictions at intersections from top and bottom
subsets by propensity scores

CONCLUSION

This paper presents a data-driven methodology to identify the contributing factors behind
restricting left-turns in an urban network to improve traffic flow and mitigate congestion in real
urban settings. The two-stage methodology consists of a bi-level optimization framework that is
used to randomly sample the solution space and identify near-optimal locations to prohibit left-
turns with the objective of reducing total travel time. These near-optimal locations are then used
to train a binary logit model where traffic flow and signal timing variables pertaining to left-turning
movements at each intersection are used to determine which parameters influence left-turn
restriction decisions.

The results show that the implementation of left-turn restrictions at individual intersections
has mixed effects, as some intersections experience improved mobility while prohibiting left-turns
indiscriminately may result in increased congestion. However, the PBIL efficiently identifies left-
turn restriction configurations that significantly reduce travel time across all demand levels without
increasing trip distances. Moreover, when these solutions were used to train a binary logit model,
it was found that intersections with longer left-turn phases or higher left-turning flows have a lower
likelihood of being selected for restriction. The trained model was then used to make predictions
on unknown scenarios, where travel time in the network significantly improved as left-turns were
sequentially restricted at intersections based on the propensity scores from the binary logit model.
The best configuration generated from the data-driven model performed at a similar level or better
than the best solution obtained using the PBIL.

The model was further validated by simulating intersections with the lowest propensity
scores, which resulted in an increase in travel time. Therefore, the model’s interpretability and
predictive accuracy ensure it can be readily used by agencies to make informed and practical
decisions for transportation improvement treatments in large urban networks.
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