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Abstract 1 

Left-turn movements pose significant safety hazards and reduce the operational efficiency of 2 
signalized intersections. One effective strategy to mitigate these issues is to restrict conflicting left-3 
turns at strategic locations. However, determining the optimal locations for such restrictions in 4 
large urban networks is challenging due to the complexity of traffic dynamics and the large 5 
solution space. This paper presents a two-stage methodology to optimize left-turn restriction 6 
decisions in urban networks, utilizing a bi-level optimization framework combined with a binary 7 
logit model. The bi-level framework employs the Population Based Incremental Learning (PBIL) 8 
algorithm at the upper level and AIMSUN micro-simulation platform at the lower level to 9 
determine near-optimal left-turn restriction locations. The best solutions from PBIL serve as the 10 
dependent variable in a binary logit model that explains the traffic parameters influencing these 11 
decisions and predicts the propensity of intersections likely to benefit from left-turn restrictions in 12 
unknown scenarios. When applied to the Pittsburgh traffic network, the PBIL algorithm 13 
demonstrated up to a 15% reduction in travel time under peak demand without significantly 14 
increasing trip lengths. The logit model, trained on known demand scenarios, indicates that 15 
intersections with higher values of left-turning green-ratio, flow-ratio, and protected green-ratio 16 
are less likely to benefit from left-turn restrictions. Furthermore, the model's predictions for 17 
unknown demand levels can identify locations of left-turn restriction that are comparable to the 18 
PBIL in terms of travel time improvements. This framework provides a data-driven approach for 19 
transportation agencies to determine optimal left-turn restriction locations, balancing operational 20 
efficiency and network performance. 21 
 22 
Keywords: Left-turn restriction, optimal location, optimization, heuristics, population based 23 
incremental learning, binary logit model   24 
  25 
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INTRODUCTION 1 
Left-turning movements at intersections conflict with the through and right-turning movements 2 
from the opposite direction, creating significant challenges for signal operations and intersection 3 
safety. At signalized intersections, conflicting left-turn movements are typically accommodated 4 
either via permitted or protected left-turn signal phases. When served using permitted phasing, 5 
left-turning vehicles must wait for gaps in oncoming traffic, which contributes to increased delay 6 
and increases the risk of angle crashes (1). Furthermore, the storage of queued vehicles on 7 
dedicated left-turn lanes has the potential to spill-back and impede the flow of other movements 8 
(2). By contrast, the use of protected left-turn phases eliminates conflicts but reduces the green 9 
time available for other movements, lowering the overall throughput of the intersection (3, 4). 10 
Researchers have also proposed numerous alternative intersection designs to more safely and 11 
efficiently accommodate left-turning traffic (5–12). However, these treatments are expensive and 12 
cannot always be accommodated in dense urban networks due to the large spatial footprints 13 
required.  14 

An alternative strategy to mitigate issues arising from conflicting left-turns is to restrict 15 
their movements at signalized intersections, specifically in dense urban street networks. Studies 16 
have shown that prohibiting left-turns in this setting can not only improve the capacity and safety 17 
of signalized intersections, but also increase the trip completion rates in a transportation network 18 
(13–16). Despite the operational and safety benefits of restricting left-turns, decision-making at 19 
the microscopic level has its challenges. Drivers may be required to travel additional distances, 20 
such as making three right turns to achieve the equivalent of one left-turn, which can increase 21 
travel time and inconvenience. Additionally, banning left-turns can divert traffic to other routes, 22 
potentially leading to increased congestion in areas that were previously less affected. Therefore, 23 
identifying the most optimal locations to restrict left-turns in a network is critical.  24 

Determining the optimal locations for treatments in a transportation network (i.e., at which 25 
locations to restrict left-turn movements) is classified as an NP-hard optimization problem (17). 26 
Additionally, restricting left-turn movements at one intersection alters the traffic flows at its 27 
neighboring intersections, hence, these treatment decisions are interdependent. Some studies have 28 
used simple analytical traffic models to analyze the effect of implementing left-turn restrictions; 29 
however, these are unable to capture traffic dynamics such as re-routing and queue spillback (18–30 
22). To overcome this issue, researchers have also proposed using agent-based simulation 31 
techniques that enable dynamic traffic assignment to capture the true effect of these treatments 32 
(12, 23). However, the complexity of optimal location problems escalates significantly with the 33 
increase in the number of treatments or potential locations; e.g., for each traffic pattern and level 34 
of demand, the decision to either restrict left-turns or not in a network with 𝑁𝑁 number of 35 
intersections has 2𝑁𝑁 possible combinations that need to be analyzed to determine the globally 36 
optimal solution. To address this challenge, heuristics such as evolutionary algorithms provide a 37 
computationally efficient means of determining near-optimal solutions of problems with extremely 38 
large solution spaces (24–26). However, the drawback of these black-box algorithms is the lack of 39 
interpretability; they provide solutions without insights into the underlying reasons behind those 40 
solutions. This opacity makes it challenging for transportation agencies to understand which 41 
specific factors are driving the decision to restrict left-turns at particular intersections. 42 

In light of the gaps in existing literature, this study proposes a two-stage methodology to 43 
optimize left-turn restriction decision in urban networks using a bi-level optimization framework, 44 
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and a binary logit regression model to identify the traffic parameters that influence these decisions. 1 
The bi-level optimization framework uses the population based incremental learning (PBIL) 2 
algorithm at the upper level and AIMSUN micro-simulation platform at the lower-level to identify 3 
near-optimal locations in a network where implementing left-turn movement restrictions result in 4 
improved travel times. The identified solutions are then used to train a binary logit regression 5 
model, which seeks to relate these decisions (i.e., if left-turns are banned at a particular location in 6 
the optimal solution) to traffic flow and signal timing information. The results provide greater 7 
transparency and should allow decision-makers to determine the key factors influencing left-turn 8 
restriction decisions and predict optimal locations for unknown scenarios. The proposed method 9 
was applied on a real network of downtown Pittsburgh, PA. The results reveal that left-turn 10 
restriction configurations generated by PBIL can achieve up to nearly 15% improvement in travel 11 
time under peak conditions without significantly increasing individual trip lengths. Moreover, the 12 
logit model, trained using the best PBIL configurations of known demand scenarios suggests that 13 
intersections with a higher average left-turning green-ratio, sum of left-turning flow-ratio and sum 14 
of left-turning protected green-ratio are less likely to benefit from restricting left-turns. The trained 15 
model was applied on two different test-demand settings to generate propensity scores that indicate 16 
each intersection’s potential at reducing travel time if left-turns are banned.  Selecting intersections 17 
with higher propensity scores for left-turn restrictions results in significant travel time 18 
improvements, whereas restricting left-turns at intersections with lower scores increases travel 19 
time. Overall, the framework provides a data-driven guideline to identify critical features 20 
transportation engineers and planners should consider when deciding whether or not to ban left-21 
turns at a given intersection. 22 

The remainder of this paper is as follows. The following section introduces the proposed 23 
two-stage optimization methodology. This is followed by the simulation setup used to test the 24 
proposed methodology. Next, the results of the bi-level optimization as well as the binary logit 25 
model are compared. The final section highlights the findings and suggests directions for future 26 
work. 27 
 28 

METHOD 29 
This section describes the two-stage methodology that is proposed in this paper. This includes the 30 
bi-level optimization framework that generates near-optimal configurations as a starting point for 31 
known demand scenarios and the binary logit model that is applied to predict and justify the 32 
optimal location of implementing left-turn restrictions for unknown scenarios in a signalized urban 33 
traffic network. The outline of the methodology is shown in Figure 1.  34 
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 1 

Figure 1. Methodology of left-turn restriction prediction model 2 

Bi-Level optimization framework 3 
A bi-level optimization framework operates by dividing the optimization problem into two 4 
hierarchical levels: the upper level identifies decision variables, such as the configuration of traffic 5 
treatments to optimize overall network performance; and, the lower level evaluates the 6 
effectiveness of these configurations using detailed simulations or analytical models. This iterative 7 
process continues, with the upper level refining its decisions based on feedback from the lower 8 
level, until an optimal or near-optimal solution is reached. 9 

Lower level: AIMSUN to evaluate effectiveness of specific left-turn restriction configuration 10 
Since the optimization problem of identifying the optimal locations to restrict left-turns does not 11 
have an exact solution, each configuration generated by the upper level is evaluated at the lower 12 
level. While existing studies have used static models to simulate the effect of transportation 13 
treatments on a network such as Stochastic User Equilibrium (SUE) functions, they do not capture 14 
traffic dynamics when implementing transportation treatment solutions (19, 21, 22). Other studies 15 
have employed dynamic models such as the Link Transmission Model or micro-simulation 16 
software such as AIMSUN, VISSIM or SUMO (27–31) to better models traffic dynamics and 17 
provide a detailed and realistic assessment of the impact of different treatment strategies. For this 18 
study, AIMSUN was selected in the lower level for its ability to capture queue formation, spillback, 19 
re-routing and ease of programming. For each generated configuration, the conflicting left-turn 20 
movements of selected intersection were identified and removed. Note, left-turn movements on 21 
one-way streets that do not conflict with through or right-turn movements from the opposite 22 
direction were not removed. Next, any dedicated left-turn lanes were modified to serve the through 23 
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movements. Finally, the signal timing was adjusted without altering the cycle length by re-1 
allocating green time for protected left-turn phases toward the through-right movement in the same 2 
direction. Therefore, the total duration of green time allocated to serving the movements in either 3 
the north-south or east-west direction remained unchanged.  4 

Upper level: PBIL to identify potential left-turn restriction configurations 5 
The upper level of a bi-level optimization framework employs heuristic methods (e.g., an 6 
evolutionary algorithm) to generate random configurations of a treatment and continues to update 7 
until it converges toward an optimal solution. However, most genetic algorithms do not capture 8 
the interdependency between solutions that exist in case of transportation network treatment 9 
problems. To address this, the Population Based Incremental Learning (PBIL) algorithm is 10 
employed which is an evolutionary algorithm that combines elements of genetic algorithms with 11 
learning processes and considers solution dependencies (32). PBIL has been successfully applied 12 
in network level transportation treatment problems (24–26, 33–35). Key parameter definitions of 13 
the PBIL algorithm and values used in this study are summarized in Table 1.  14 
  15 
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Table 1. Key parameters of the PBIL algorithm 1 

Parameter Symbol Description Value 
Generation 
Size 

𝒢𝒢 Number of times the algorithm will iterate and 
generate a new set of configurations 

20 

Population 
Size 

𝒫𝒫 Number of generated LT restriction configurations in 
each generation 

20 

Candidate 
Size 

𝒞𝒞 Number of intersections that are candidates for LT 
restriction 

39 

Probability 
Vector 

𝓅𝓅 = (𝒢𝒢,𝒞𝒞) Two-dimensional vector where each element 𝓅𝓅𝑔𝑔,𝑖𝑖 
denotes the probability of implementing LT restriction 
at intersection 𝑖𝑖 in generation 𝑔𝑔 

 

Population 
Vector 

𝑃𝑃 = (𝒢𝒢,𝒫𝒫,𝒞𝒞) Three-dimensional vector where each element 𝑃𝑃𝑔𝑔,𝑝𝑝,𝑖𝑖 is 
[0,1] that indicates whether LT is restricted at 
intersection 𝑖𝑖 in configuration 𝑝𝑝 of generation 𝑔𝑔 

 

Result 
Vector 

𝑅𝑅 = (𝒢𝒢,𝒫𝒫) Two-dimensional vector where each element 𝑟𝑟𝑔𝑔,𝑝𝑝 
contains the fitness of the objective function after 
evaluating the LT restriction configuration 𝑝𝑝 in 
generation 𝑔𝑔 

 

Positive 
Learning 
Rate 

𝐿𝐿𝑅𝑅+ Rate at which probabilities of intersections present in 
the best configuration, 𝐵𝐵𝑔𝑔 of generation 𝑔𝑔 are 
increased 

0.1 

Negative 
Learning 
Rate 

𝐿𝐿𝑅𝑅− Rate at which probabilities of intersections in the worst 
configuration, 𝑊𝑊𝑔𝑔 of generation 𝑔𝑔 are decreased 

0.075 

Mutation 
Rate 

Δ𝑚𝑚 Rate at which probabilities are randomly mutated 0.05 

Mutation 
Probability 

𝑚𝑚 Probability that a given intersection will undergo 
mutation 

0.02 

 2 
The PBIL algorithm is initialized by generating a population of configurations containing 3 

locations to implement left-turn restriction using an initial probability vector, 𝓅𝓅0. Each candidate 4 
intersection was assigned an initial probability 𝓅𝓅0,𝑖𝑖 of 0.5 to allow unbiased selection of any 5 
intersection in the first generation. This allows exploration of the entire solution space in the initial 6 
stage of the algorithm.  7 

Each configuration is passed into the lower level where its performance is simulated in 8 
AIMSUN, and the fitness of each configuration is determined based on the total travel time 9 
resulting from the implementation of the left-turn restriction at the selected intersections. Using 10 
the fitness score, the best and the worst configuration of generation 𝑔𝑔 is identified and the 11 
probability vector of generation 𝑔𝑔 + 1 is updated through positive learning, negative learning, and 12 
a mutation operation. Essentially, the PBIL algorithm learns from and exploits superior solutions 13 
while moving away from the inferior ones. The objective of the positive learning operations is to 14 
increase the probabilities of selecting the intersections present in the best solutions: 15 
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𝓅𝓅𝑔𝑔+1,𝑖𝑖 = 𝓅𝓅𝑔𝑔,𝑖𝑖 × (1 − 𝐿𝐿𝑅𝑅+) + 𝐿𝐿𝑅𝑅+ × 𝐵𝐵𝑔𝑔;      ∀𝑖𝑖.        (1) 1 

On the other hand, the negative learning operation decreases the probabilities of the 2 
intersections present only in the worst solution, so they have a lower likelihood of being selected 3 
in the next generation:  4 

𝓅𝓅𝑔𝑔+1,𝑖𝑖 = 𝓅𝓅𝑔𝑔,𝑖𝑖 × (1 − 𝐿𝐿𝑅𝑅−) + 𝐿𝐿𝑅𝑅− × 𝐵𝐵𝑔𝑔;      ∀𝑖𝑖     (2) 5 

Note, however, that probabilities of intersections present in both the best and worst 6 
solutions are not altered. 7 

The mutation operation mutates the probabilities of randomly selected intersections by the 8 
mutation rate using the formula given in (3) to increase the exploration within the solution space: 9 

𝓅𝓅𝑔𝑔+1,𝑖𝑖 = 𝓅𝓅𝑔𝑔,𝑖𝑖 × (1 − 𝛥𝛥𝑚𝑚) + 𝛥𝛥𝑚𝑚;      ∀𝑖𝑖  𝑠𝑠. 𝑡𝑡.𝑀𝑀𝑔𝑔,𝑖𝑖 = 1     (3) 10 

The algorithm finally terminates if the algorithm converges according to a predefined 11 
threshold (e.g., the fitness of the generated solutions no longer improves) or if the maximum 12 
number of generations has been reached; the speed of convergence can be changed by adjusting 13 
the learning rates. Since the objective of the bi-level optimization step of this study is to 14 
approximate a near-optimal solution, the latter termination criterion was selected. The output of 15 
the algorithm is the left-turn restricted network configuration that corresponds to the lowest 16 
observed travel time.  17 

Binary Logit prediction model 18 
While the bi-level optimization framework effectively generates optimal configurations for left-19 
turn restriction locations in a traffic network, a significant drawback is its lack of interpretability. 20 
The framework achieves optimal solutions by simulating numerous random configurations until a 21 
near-optimal configuration is identified. However, this process does not provide insights into the 22 
underlying factors that drive the selection of specific intersections for left-turn restrictions. As a 23 
result, decision-makers are left with optimal solutions that lack the necessary explanatory context, 24 
making it difficult to justify and understand the decisions made. To address this limitation, the 25 
optimal configuration generated by the bi-level optimization framework is utilized as an input to 26 
a binary logit model where it is treated as the dependent variable, and various traffic data and 27 
parameters related to left-turn movements at intersections serve as the independent variables. By 28 
training the model with the correct parameters, it learns which factors are most significant in 29 
explaining the selection of left-turn restrictions at intersections.  30 

Model inputs 31 
The dependent variable in the binary logit model is the selection of left-turn restrictions at a 32 
particular intersection. This binary variable encoded as 1 or 0 represents the presence or absence 33 
of a left-turn restriction at each intersection of the network as determined by the best configuration 34 
output from the bi-level optimization framework. To understand why a particular intersection 35 
benefits from left-turn restriction, a variety of traffic flow and signal timing parameters from 36 
training demand scenarios are extracted and used as predictor variables to train the binary logit 37 
model. This includes intersection level data such as the cycle length and the total intersection 38 
throughput from turning movement counts. Additionally, for each conflicting left-turn movement 39 
at an intersection, the following parameters were extracted: 40 
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• Duration of left-turn phase 1 
• Green ratio of left-turn phase 2 
• Duration of protected left-turn phase 3 
• Green ratio of protected left-turn phase 4 
• Left-turn volume 5 
• Left-turn flow ratio 6 

Since an intersection may accommodate multiple conflicting left-turn movements, the 7 
parameters were aggregated for each intersection by taking the sum, mean, minimum and the 8 
maximum of the parameters from all conflicting left-turn movements. The final variables included 9 
in the model were the total number of trips generated, and the total travel time of each simulated 10 
demand to allow the model to differentiate between different demand scenarios.  11 

Model formulation 12 

The probability function under the binary logit formulation for predicting the propensity of an 13 
intersection receiving a left-turn restriction can be expressed as: 14 

𝑃𝑃(𝐿𝐿𝐿𝐿𝑖𝑖|𝑋𝑋𝑖𝑖) = 𝐸𝐸(𝑦𝑦𝑖𝑖) =  𝑒𝑒𝛽𝛽𝑋𝑋𝑖𝑖

1+𝑒𝑒𝛽𝛽𝑋𝑋𝑖𝑖
, (4) 

where 𝐿𝐿𝐿𝐿𝑖𝑖 denotes the presence of a left-turn restriction at intersection 𝑖𝑖; 𝑋𝑋𝑖𝑖 is the vector of 15 
predictor variables for intersection 𝑖𝑖; and, 𝛽𝛽 is the vector of corresponding coefficients to be 16 
estimated. The coefficients are estimated by maximizing the log-likelihood function: 17 

log 𝐿𝐿(𝐿𝐿𝐿𝐿) = ∑ log𝑃𝑃(𝐿𝐿𝑇𝑇𝑖𝑖|𝑋𝑋𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . (5) 

The estimated coefficients 𝛽𝛽 describe the relationship between each traffic parameter and 18 
the likelihood of a left-turn restriction being applied to an intersection. Positive coefficients 19 
indicate that higher values of the parameter increase the likelihood of a left-turn restriction, while 20 
negative coefficients suggest the opposite.   21 

SIMULATION SETUP 22 
The proposed methodology was tested on the traffic network of Downtown Pittsburgh, PA that 23 
consists of peripheral collectors (e.g., Fort Duquesne Blvd, Liberty Ave, Blvd of the Allies, Fort 24 
Pitt Blvd running in the east-west direction and Grant St. in the north-south direction) and local 25 
streets in the central region forming a triangular grid. The turning movement counts at each 26 
intersection from Synchro were used to calibrate an Origin-Destination (OD) matrix with 58 origin 27 
and destination nodes that accurately represents the distribution of trips throughout the network in 28 
an evening peak scenario. The total number of trips in the calibrated peak demand scenario 29 
(referred to here as “D-100”) averaged 21,150 across multiple random seeds. Additionally, three 30 
lower demand scenarios, (referred to in this study as “D-94”, “D-87” and, “D-80”) were simulated 31 
with an average of 19,800, 18,400 and, 17,000 trips generated across multiple random seeds. The 32 
binary logit model was trained two times to predict the propensity of restricting left-turns for D-33 
94 and D-87 respectively. In each case, one demand level was reserved as the testing dataset and 34 
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the model was trained using the outcomes of the other three training demands. This allowed the 1 
testing of the binary logit on unseen demand patterns within the network. Note that D-100 and D-2 
80 were not used for testing as they represent the upper/lower bound of the demand levels 3 
considered. 4 

The signal timing plan was imported from an optimized PM Peak Synchro plan, which 5 
includes cycle lengths, phase splits, and offsets of each signalized intersection. The simulated 6 
network consists of a total of 76 signalized intersections of which 39 intersections were selected 7 
as candidates to implement left-turn restrictions on due to their centrality in the network and the 8 
potential impact of the restriction decisions on overall congestion reduction (Figure 2). Of the 9 
intersections not selected, 7 had no conflicting left-turn movements with the through or right-turn 10 
movements from the opposite direction and 30 intersections were located at the periphery of the 11 
network or connected to major O-D nodes. Restricting left-turning movements at these peripheral 12 
intersections may significantly increase the traveled distance and so were also excluded from left-13 
turn restriction considerations.  14 

 15 

Figure 2. Map of simulated Downtown Pittsburgh 16 

RESULTS 17 
This section describes the outcome of implementing left-turn restriction in the network based on 18 
the solutions generated from the PBIL algorithm as well as the training of the binary logit model 19 
that is later used to determine the parameters influencing the decision of restricting left-turns. 20 
Finally, the predictive performance of the model is investigated on unknown scenarios.  21 

Impact of left-turn restriction at individual intersections 22 
To demonstrate the variability in performance of restricting left-turns at individual intersections, 23 
Figure 3 illustrates the percent change in the total travel time when left-turns were restricted at 24 
each intersection for all four demand levels. First, it is evident that the peak demand scenario 25 
experiences a larger variability in travel times with a maximum improvement (reduction) of nearly 26 
9% to an increase in travel time of approximately 20% over the base scenario. As demand 27 
decreases (D-94, D-87, D-80), this variability in travel time diminishes suggesting that the impact 28 
of left-turn restrictions is influenced significantly by traffic volume.  29 
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 1 

Figure 3. Percent change in total travel time over base demand due to the implementation of left-turn 2 
restriction at individual intersections 3 

Optimal left-turn restriction solutions using PBIL 4 

PBIL convergence 5 

As a heuristic method, the PBIL cannot guarantee an optimal solution. Instead, the goal is to 6 
provide a configuration that significantly improves performance (i.e., travel time) without having 7 
to test all possible configurations. Note that there are 239 = 549,755,813,888 possible 8 
configurations to be tested in the Pittsburgh network. However, the PBIL simulates only 400 9 
configurations (20 configurations in each of the 20 generations of the algorithm) to obtain well-10 
performing solutions that will serve as input for the binary logit model.  11 

The blue, orange, green and red line plots in Figure 4 illustrate the convergence trends of 12 
the PBIL algorithm for each of the demands in terms of the percent improvement in total travel 13 
time over the base network. It is evident that better solutions are discovered as the algorithm 14 
progresses as all demand levels show a decline in travel time. Moreover, most scenarios 15 
demonstrate significant improvements early in the iterations and stabilize quickly. Despite the 16 
significant improvement in travel time, the models do not appear to have fully converged. 17 
Nonetheless, the best-performing solutions comprising the locations of intersections to restrict left-18 
turns obtained from the PBIL are identified and used to train the logit model.  19 

 20 
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 1 

Figure 4. Convergence of PBIL for each demand level  2 

Locations of left-turn restrictions 3 
The locations left-turn restrictions present in the top five configurations generated by the PBIL are 4 
shown in Figure 5 for each of the demand levels. The intensity of the markers at each intersection 5 
indicates how many times that intersection appears in the best configurations for that demand. Due 6 
to the inherent randomness of the PBIL and the interdependence of the solutions, the best 7 
configurations do not always contain the same set of intersections. However, significant overlap 8 
can be seen across all demands, with some intersections selected multiple times at all demand 9 
levels to receive a left-turn restriction. At D-100 (Figure 5a), there is lower variability, with a few 10 
intersections repeatedly selected, most of these are concentrated in the central grid region. In 11 
contrast, the best solutions for lower demand levels (Figure 5b-d) have more intersections where 12 
left-turns are restricted. These intersections are not limited to the central region, rather intersections 13 
on arterials like Liberty Avenue and Grant Street benefit more from prohibiting left-turns.  14 

 15 
 16 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Locations of left-turn restriction decisions from top 5 configurations generated using PBIL: (a) D-1 
100; (b) D-94; (c) D-87; (d) D-80. 2 

Impact on travel time distributions 3 
The objective function of the PBIL algorithm was to determine the set of intersections where 4 
restricting left-turns would minimize the total travel time in the network. Figure 6 shows the 5 
distribution of the probability density function of the travel time of individual trips for the base 6 
scenario (in black) and the best configuration of the PBIL for all four demand levels. The results 7 
reveal that the PBIL algorithm significantly improves not only the total travel times but also the 8 
individual trip durations. For each scenario, the distribution of travel times in the base simulation 9 
is skewed to the right whereas the PBIL best configurations have taller peaks and more uniformly 10 
distributed. Hence, a higher percentage of vehicles experience shorter trip durations as a result of 11 
the left-turn restrictions. 12 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Probability density function of trip durations: (a) D-100; (b) D-94; (c) D-87; (d) D-80. 1 

Impact on traveled distance distribution  2 
Intuitively, the restriction of left-turns in a traffic network is expected to result in increased travel 3 
distances as vehicles may need to make additional turns to reach their destinations. However, the 4 
best solutions generated by the PBIL algorithm demonstrates a negligible increase in the total 5 
traveled distances over the base simulation which is evident from the distribution of individual trip 6 
lengths (Figure 7). Considerable overlap can be seen between the base scenario and the PBIL best 7 
configurations as the increase in the total distance traveled ranges between only 0.4% to 0.8% 8 
across the different demand levels. This is due to driver behavior and the tendency to reroute under 9 
congested environments either using navigation information or from personal experiences. 10 
AIMSUN’s dynamic traffic assignment settings mimic this rerouting behavior of drivers and 11 
vehicles adjust their paths based on real-time traffic conditions. Under the base scenario when the 12 
network is more congested, the shortest available paths may not be the most optimal; hence, 13 
vehicles re-route and travel additional distances to reach their destination. However, restricting 14 
left-turns and allocating green time to serve the through-right movement phases reduce the lost 15 
time and increase the intersection throughput. As a result, more efficient paths may be available 16 
that are not significantly higher than that of the base scenario. 17 
 18 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Probability density function of trip lengths: (a) D-100; (b) D-94; (c) D-87; (d) D-80. 1 

Training and predictive performance of Binary Logit model 2 

Model training 3 
While a total of four different demand scenarios were simulated in this study, the binary logit 4 
models were trained using signal timing information, traffic flow data and the locations of the 5 
intersections to implement left-turn restriction from any three of the known demands, while the 6 
remaining demand was held out to test the logit model’s performance. Of the 28 parameters 7 
available for inclusion in the logit model, three were identified that best influence the likelihood 8 
of restricting left-turns: average green ratio for left-turn phases, sum of flow ratio for left-turn 9 
movements, and sum of green ratio for protected left-turn phases. These key parameters were 10 
selected through a combination of recursive feature selection method and applying engineering 11 
judgement. Table 2 shows the two models that were developed for D-94 and, D-87 respectively 12 
using known data from their complementary set of demands. Note that the coefficients of all three 13 
parameters are negative, which suggests that intersection with higher values of these parameters 14 
were less likely to have left-turns restricted in the best-performing configuration. All three are 15 
associated with higher left-turn volumes, which reasonably suggests that intersections with the 16 
highest left-turn activity are most likely to experience negative impacts of left-turn restrictions. 17 
Intersections with protected left-turn phases are particularly less likely to have left-turns restricted. 18 
The correlation matrix in Figure 8 shows that neither of the selected variables are highly correlated.   19 
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Table 2. Binary logit model parameters for left-turn restriction estimations 1 

Training demands 
D-100,  
D-87,  
D-80 

D-100,  
D-94,  
D-80 

Test Demand D-94 D-87 

Predictor Variables 𝛽𝛽 𝜎𝜎 𝛽𝛽 𝜎𝜎 

Constant 2.59 0.69 2.78 0.71 
Average green ratio of left-turn phases - 3.61 1.31 - 3.88 1.34 
Sum of flow ratio of left-turn movements -8.23 1.55 -8.80 1.57 
Sum of green ratio of protected left-turn phase -1.82 1.00 -1.79 1.00 

Goodness of fit 

Number of observations 390 390 390 390 
Log-likelihood value -240.21 -237.73 -235.96 -239.33 
Pseudo R-squared 0.087 0.091 0.099 0.085 

  2 

 3 

Figure 8. Correlation matrix of selected predictor variables 4 

 5 

Performance evaluation of prediction model 6 
To assess the effectiveness of the trained binary logit model, a propensity score indicating the 7 
likelihood of having a left-turn restriction was computed for each intersection using the average 8 
green ratio of left-turn phases, the sum of the flow ratio of left-turn movements, and the sum of 9 
the green ratio of protected left-turn phases from their respective base simulations into the model. 10 
These propensity scores were then used to rank each intersection's eligibility for implementing 11 
left-turn restrictions; i.e., to identify those intersections for which it may be more beneficial to 12 
restrict left-turns to reduce travel times. For each of the D-87 and D-94 demand scenarios, 13 
intersections were sequentially selected for left-turn restrictions in a descending order of 14 
propensity scores (i.e., starting with the highest propensity score and adding the next highest) and 15 
the total travel time was computed using AIMSUN. The orange and green solid line plots in Figure 16 
9 illustrates the performance of these configurations for a given number of intersections with left-17 
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turns restricted. The best solution obtained from the PBIL algorithm are also shown using dashed 1 
horizontal lines for each demand scenario.  2 
 The results shown in Figure 9 reveal that selecting intersections for left-turn restrictions 3 
using the trained logit model provides remarkably good results that are comparable to—and 4 
sometimes surpass—that obtained from the PBIL algorithm applied directly to those demand 5 
scenarios. For example, the PBIL algorithm applied to scenario D-87 was able to find a solution 6 
that restricts left-turns at 17 intersections and results in an improvement in travel time by 8.4%. 7 
However, an improvement of 8.47% was achieved when left-turns were restricted at the 11 8 
intersections with the highest propensity scores, and despite fluctuations, a maximum 9 
improvement of 9.98% was achieved when left-turns were prohibited at the top 18 intersections. 10 
Similarly, the best configuration generated using the logit model for scenario D-94 comprises 17 11 
intersections and results in similar improvements as the best solution from PBIL. Beyond this 12 
configuration, however, the total travel time in the network begins to increase as more intersections 13 
are added.  14 

   15 
Figure 9. Effect of sequentially implementing left-turn restrictions at intersections by descending order of 16 

propensity scores 17 

The proposed logit model can also help identify which intersections to not implement left-18 
turn restrictions. Figure 10 presents the results of sequentially restricting left-turns in ascending 19 
order of propensity scores (i.e., starting by restricting left-turns at the worst potential location 20 
corresponding to the lowest propensity score and sequentially adding additional intersections). The 21 
intersections being added are those with a higher average green-ratio, sum of flow-ratio and sum 22 
of protected green-ratio of conflicting left-turning traffic. As left-turns are restricted at more of 23 
these suboptimal intersections, there is a noticeable increase in travel time. Beyond 12 24 
intersections, scenario D-94 experiences such heavy congestion that the simulated network 25 
gridlocks. This highlights the model's ability to accurately rank intersections based on their 26 
suitability for left-turn restrictions 27 

 28 
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  1 

Figure 10. Effect of sequentially implementing left-turn restrictions at intersections by ascending order of 2 
propensity scores 3 

To further understand the impact of restricting left-turns based on propensity scores, Figure 4 
11  shows the distribution of individual trip durations and trip lengths for scenario D-87. The result 5 
of the base simulation without left-turn restrictions is shown in black, while the performance of 6 
best configuration predicted by the logit model with the top 18 intersections is denoted in green, 7 
and the configuration comprising 5 intersections with the least propensity scores is shown in red. 8 
The results indicate that the logit model's best configuration significantly reduces the individual 9 
travel times compared to the base scenario. The distribution for the best configuration is narrower, 10 
meaning a higher percentage of vehicles experience shorter trip durations. In contrast, the bottom 11 
5 configuration results in a distribution similar to the base scenario but more skewed to the right. 12 
However, the trip lengths do not differ significantly from the base scenario for any of the 13 
configurations, indicating that re-routing is minimal despite the left-turn restrictions. This suggests 14 
that drivers can seek out efficient travel paths even with restricted left-turns. 15 

 16 

 
(a) 

 
(b) 

Figure 11. Probability density function of (a) trip durations; (b) trip lengths 17 

The locations of the top 18 selected intersections and the bottom 5 intersections of the logit 18 
model for D-87 are shown on a map in Figure 12 using green and red markers respectively where 19 
the intensity of the markers indicate their propensity scores, i.e., a darker color indicates a higher 20 
propensity to receive left-turn restriction and vice versa. Compared to Figure 5c that demonstrated 21 
the top locations to implement left-turn restrictions using PBIL, the binary-logit model selects 22 
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fewer intersections along Liberty Avenue. However, both figures show a concentration of 1 
intersections in the central grid region and typically comprise a series of 2-3 adjacent intersections 2 
in the north-south or east-west direction. This is likely because these intersections experience 3 
similar levels of left-turning demand and are programmed with similar signal-timing parameters.  4 

 5 

 6 

 7 
Figure 12. Locations of left-turn restrictions in best configuration of binary logit model, and the configuration 8 

comprising bottom 5 intersections of the binary logit model for D-87.  9 

Robustness of prediction model for practical implementation 10 
Although the propensity scores of intersections present a guide for agencies in selecting 11 
intersections to restrict left-turns on, some intersections may have unobserved characteristics that 12 
are not reflected in the model, for which turn restrictions may not be applicable to those 13 
intersections. Further, agencies might have other priorities for determining where to restrict left-14 
turn movements. Thus, this section demonstrates the performance of restricting left-turns at a 15 
random number of intersections selected from those with the highest (lowest) propensity scores 16 
obtained from the logit model using D-87 as an example. Specifically, random subsets of 17 
intersections picked multiple times from the top 15, top 20, bottom 15 and bottom 20 propensity 18 
scores. The percent change in travel time over the base scenario for configurations comprising left-19 
turn restrictions at 5 and 10 intersections are shown in Figure 13a-b, respectively, where the blue 20 
and red lines show configurations picked from the top and the lower end, respectively. The shaded 21 
area around each line indicates the variability of one standard error across 10 random 22 
configurations. The findings suggest that configurations generated from the top 15 and top 20 yield 23 
consistent improvements with low variability and higher improvements are possible by restricting 24 
left-turns at 10 intersections as opposed to 5. As expected, random configurations generated from 25 
intersections with the least propensity scores generally lead to congestion in parts of the network 26 
and result in an increase in total travel time and have a higher variability. Therefore, the prediction 27 
model remains robust for practical implementation by agencies, ensuring significant 28 
improvements while accounting for the potential exclusion of certain intersections due to practical 29 
considerations. 30 
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(a) 

 
(b) 

Figure 13. Effect of randomly implementing left-turn restrictions at intersections from top and bottom 1 
subsets by propensity scores 2 

CONCLUSION 3 
This paper presents a data-driven methodology to identify the contributing factors behind 4 
restricting left-turns in an urban network to improve traffic flow and mitigate congestion in real 5 
urban settings. The two-stage methodology consists of a bi-level optimization framework that is 6 
used to randomly sample the solution space and identify near-optimal locations to prohibit left-7 
turns with the objective of reducing total travel time. These near-optimal locations are then used 8 
to train a binary logit model where traffic flow and signal timing variables pertaining to left-turning 9 
movements at each intersection are used to determine which parameters influence left-turn 10 
restriction decisions. 11 

The results show that the implementation of left-turn restrictions at individual intersections 12 
has mixed effects, as some intersections experience improved mobility while prohibiting left-turns 13 
indiscriminately may result in increased congestion. However, the PBIL efficiently identifies left-14 
turn restriction configurations that significantly reduce travel time across all demand levels without 15 
increasing trip distances. Moreover, when these solutions were used to train a binary logit model, 16 
it was found that intersections with longer left-turn phases or higher left-turning flows have a lower 17 
likelihood of being selected for restriction. The trained model was then used to make predictions 18 
on unknown scenarios, where travel time in the network significantly improved as left-turns were 19 
sequentially restricted at intersections based on the propensity scores from the binary logit model. 20 
The best configuration generated from the data-driven model performed at a similar level or better 21 
than the best solution obtained using the PBIL. 22 

The model was further validated by simulating intersections with the lowest propensity 23 
scores, which resulted in an increase in travel time. Therefore, the model’s interpretability and 24 
predictive accuracy ensure it can be readily used by agencies to make informed and practical 25 
decisions for transportation improvement treatments in large urban networks. 26 
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