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ABSTRACT

Deep reinforcement learning (DRL) has been shown as an effective paradigm to help solve local signal
control or network-wide perimeter metering control problems individually. However, to improve the
benefits of DRL applied to urban traffic control, a joint framework that considers both levels is needed as
they often have complementary objectives. Early endeavors in such frameworks require the exchange of
information between the levels to coordinate the control objectives, demanding increased communication
infrastructure. To alleviate such requirements, this work presents a joint framework that features two levels
of independent controllers, where both levels are managed by unique reinforcement learning agents that
share common goals of throughput maximization. Extensive simulation experiments are conducted to
demonstrate the effectiveness of the proposed framework, as well as the robustness of the learned agents
against measurement noise of regional accumulation and identification errors of vehicle counts. Further,
the framework has been shown capable of learning effectively under a partial local signal control
configuration, which highlights its potential practical applicability. The framework holds promise for city-
level traffic management driven by reinforcement learning that does not require the need for, often
inaccurate, traffic models.

Keywords: Macroscopic fundamental diagram; perimeter control; traffic signal control; multi-scale RL
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INTRODUCTION

Perimeter control, built upon aggregate traffic dynamics modeling with network Macroscopic Fundamental
Diagrams (MFDs), has been shown effective in congestion mitigation and throughput maximization for
urban networks comprised of a single or multiple homogeneous regions. Over the years, various extensions
to perimeter control have been investigated, including for example robust control (/, 2) and integration with
route guidance or ramp metering (3—5). Numerous approaches have been proposed for perimeter control;
these include proportional-integral (PI) type feedback controller (6, 7), linear quadratic regulator (8, 9), and
the model predictive control (MPC) method (3, 70, 11). Recent years have also witnessed an increasing
trend of data-driven methods such as model free adaptive control and reinforcement learning (/2—18).

Despite the notable research findings, however, concerns may still arise regarding the practical
implementation of perimeter control in urban networks, since the MFD-based dynamics modeling (whence
perimeter control is defined) relies on traffic homogeneity. Inevitably, local pockets of congestion are likely
to form in dense urban traffic networks (/9-22), resulting in traffic heterogeneity, which diminishes the
effectiveness of perimeter control. To this end, an integrated framework that regulates both the inter-
regional exchange flows (viz., perimeter control) and intra-regional traffic signals is needed, wherein the
upper-level perimeter control helps maintain regional accumulations around the critical levels while the
lower-level signal control combats local congestion to improve traffic homogeneity.

Early endeavors in such integrated control frameworks include (23—25), where the lower-level
seeks to reduce traffic inhomogeneity at a local scale, facilitating more effective application of perimeter
control schemes at the upper level. However, these works require the exchange of information between the
levels to coordinate the control objectives, which creates a demand for increased communication
infrastructure and may impede its real-world applicability (particularly in dense urban areas). In addition,
these works build upon the MPC scheme to formulate the control problems, necessitating accurate modeling
of system dynamics that is often intractable in real life. In this regard, note the MPC-based multi-scale
perimeter control method in (26) also faces high communication requirements with a centralized control
paradigm, and the lower-level only considers delay minimization at the perimeter intersections.

To alleviate the modeling inaccuracies and computational costs associated with MPC-based
schemes, as well as the requirements for communication infrastructure, hierarchical control frameworks
that feature two levels of independent controllers are receiving increasing research interests recently. In
(27), a volume-based approach and a modified SCATS strategy are used for local signal control, in
combination with a PI type feedback perimeter controller for single-region networks. In (28), the Pl-type
regulator is used with the max pressure (MP) signal controller (29), where the green times at the perimeter
and intra-regional intersections are obtained by solving a set of optimization programs. In contrast, (30)
solves the upper-level perimeter control problem with reinforcement learning (RL) and adopts an acyclic
max pressure signal controller (37) at the lower level. Both levels control the green times directly without
solving optimization problems, which is more computationally convenient in real applications.

Following these research efforts, this work studies the joint perimeter and signal control problem
in urban networks, where both levels are controlled by reinforcement learning agents. While RL has been
applied to signal control problems extensively and is also gaining momentum in perimeter control
applications, its effectiveness hasn’t been investigated for the joint control problem. This work thus extends
the frameworks in (/8, 30) to consider RL for lower-level signal control. A multi-scale multi-agent training
paradigm is presented to realize joint control with RL, and the effectiveness is evaluated using simulated
single- and two-region networks. The results show the presented approach is highly comparable (and often
times superior) to a baseline comprised of established perimeter controllers and the MP policy (31).

The remainder of the paper is structured as follows. The next section explains the methodology
adopted in this work. Extensive experiment results are then provided on a single- and two-region network.
Finally, conclusions and future work directions are outlined in the last section.



—

0 N W E-NOS I O]

11
12
13
14
15
16
17
18
19
20

21

22

23
24
25
26
27
28
29

30

31
32
33
34
35
36
37
38
39

40
41

Zhou and Gayah 3

METHODOLOGY

This section explains the joint control framework. The baseline traffic signal and perimeter controllers are
first introduced, followed by algorithmic designs of the upper-level and lower-level RL agents. Lastly, the
multi-scale training paradigm is presented.

Max Pressure (MP) Controller

This section introduces the Max Pressure (MP) controller in (3/) along with a few modifications in (2§).
Note, MP is a decentralized signal controller that operates on each intersection, thus the explanations are
presented regarding an individual intersection. Also, decentralization renders the MP policy scalable to any
urban networks, without requiring any new infrastructure or communication with existing controllers.

Define a roadway segment between two adjacent intersections as a link and a pair of links (I, m)
as a movement. Note, only movements that are controllable by traffic signals are considered (uncontrolled
movements such as channelized right turns are omitted from the discussion here). A phase refers to a set of
movements that can be served together in the same signal duration. Define x(l, m) as the metric to obtain
pressure calculations for the MP controller, which amounts to the number of vehicles of movement (I, m)
since the point queue model is used to express traffic flows on a link in (37). Let x(1,-) qx be the maximum
number of vehicles (i.e., storage capacity) of link [, C(l,m) be the mean value of saturation flow for
movement (I, m), and (I, m) be the turn ratio from link [ to m. Further, denote as S; the movements
served by phase j and Out; the downstream links of link I. Adopting these terminologies, the max pressure
control principle works as follows.

First, the weight of a movement is calculated as per (similar to (28)):

wlm) = 22— N pm ) &

(l )max )max

The second term of Eq. (1) can be viewed as the average (normalized) number of vehicles weighted by turn
ratios at the downstream link. If the link m is an exit, this term will be O since there are no further
downstream links. As such, the weight of a movement indicates the difference between the (normalized)
upstream and downstream number of vehicles. Normalization using the storage capacity is intended to
consider link length, as the same number of vehicles may indicate different levels of congestion at links
with different lengths. Then, the pressure for each phase is the sum of movement weight times the
corresponding saturation flow and computed as:

neouty,

p(S;) = 2 cm) - w(l,m). )
(Lm)es;

Intuitively, the pressure of a phase indicates its potential of traffic production at the intersection.
To see this, notice that large movement weight means the upstream link has more vehicles than the
downstream link; that is, there is a large number of vehicles to discharge from the upstream and enough
space in the downstream to receive these vehicles. Further, the pressure accounts for the likelihood of
serving these vehicles by multiplying the movement weight with the saturation flow. Therefore, high
pressure is associated with a larger number of vehicles to serve (i.e., larger movement weight) and greater
ability to serve vehicles (i.e., saturation flow). Jointly, the pressure measures the potential of traffic
production by each phase at the intersection. Following this logic, the MP controller activates the phase

with the highest pressure at each time step, shown as:

S*= argmjaxp(Sj). 3)

The selected phase is implemented in the traffic environment for a time step, until the next decision is made.
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Several modifications are also proposed to ensure real-world applicability. First, the weight of a
movement (Eq. (1)) is truncated to be non-negative. Negative weights arise when the (average) number of
vehicles at the downstream link is larger than that at the upstream; activating these movements will worsen
the imbalanced vehicle presence at the intersection and not contribute to traffic production. Second, the MP
control law is executed every time step, contrary to the cycle-based design in (28). Denote as At the time
step length. When the signal phase changes across consecutive time steps, a transition interval is needed

assumed to be k = 3s). As such, the pressure of a phase (Eq. (2)) is adjusted by a factor of ALK f the
( p p q j y "

phase is different from the currently active one; see also (32) for this adjustment. Third, to account for
practical applications of the MP controller, each signal phase will be activated at least once during a
perimeter control interval (to be specified shortly) and therefore have a minimum green time of At — k (s).

Further, note that calculating the movement weights requires the turn ratio 5 (m, n) which denotes
the ratio of vehicle traveling from link m to its downstream link n. In a dynamically congested network,
the turn ratio cannot be assumed known a priori. For this reason, a dynamic turn ratio update schedule is
presented in (28) while a fixed turn ratio is adopted in (32). Note, though the MP controller is used for
lower-level signal control in (30), the information on how the turn ratios are determined is not disclosed. In
this work, a simple procedure is devised to estimate the turn ratios for each link. Specifically, in regular
intervals of 3 minutes, 50 vehicles (or all vehicles if fewer than 50) are randomly sampled from each link
to determine their turning maneuvers. The ratios of turning among these vehicles then provide an estimated
turn ratio for the link which is used as constants during the 3-minute intervals. As will be shown in the
simulation results, this simple and intuitive estimation procedure renders the MP extremely effective at
alleviating local congestion. Also, this procedure is computationally cheap, compared to the update
schedule in (28). Moreover, estimating the turn ratio is not the focal point in this work, and this procedure
is kept the same among all MP implementations to establish fair comparisons. Other estimation procedures
that may improve the MP performance further are left as future work directions.

Baseline Perimeter Controllers

In this work, single- and two-region networks are simulated. Hence, the Bang-Bang (BB) policy (33) and
improved greedy control (I-GC) policy (/8) are adopted as comparative baselines for perimeter control.
These policies are implemented at regular intervals of AT (which denotes the perimeter control interval).
Other than these, a baseline that simulates the status quo, i.e., no control (NC) policy, will also be used.

The Bang-Bang policy builds upon the notion of MFD-based modeling and alternates its control
action by comparing the regional accumulation to the critical value that is associated with maximum traffic
production. Specifically, the BB policy chooses the maximum green time for all inbound movements if the
regional accumulation is smaller than the critical value and the minimum value otherwise. The BB policy
presents a simple and effective way to mitigate urban congestion for single-region networks, and it is real
life implementable since it does not require full knowledge of the network dynamics. Though the critical
accumulation information is needed, it can still reap sufficient control benefits with estimation inaccuracies.

The I-GC policy extends conventional greedy control to consider three levels of congestion for
each region and directly adjusts the inter-regional green times. By introducing a buffer between minimum
and maximum green times, the I-GC policy can effectively mitigate regional congestion and significant
cordon queues in the event of a region being congested. Concretely, for each region, the I-GC policy selects
the maximum green time (g;,4,) for inbound movements if the region operates in free flow (i.e., regional
accumulation smaller than the critical value); a smaller (close to minimum, denoted as g,,;4) green time
value is chosen if the region is moderately congested whereas the minimum value (g.,,;,,) is taken if the
region is severely congested. The cutoff points that determine the congestion levels are determined from
the regional MFD plots, while the candidate green time values are design parameters.
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Algorithmic Designs of RL Agents

The joint perimeter and signal control problem is formulated as a Markov decision process, where the
environment represents the simulated single- or two-region networks. At regular intervals of AT, an upper-
level agent (dubbed U-RL) takes information from the simulation environment and selects perimeter control
actions that determine the green times at perimeter intersections. The actions will then be implemented in
the environment for the whole interval, and at the end of the interval, it receives a reward back from the
environment as an assessment of the action just taken. Similarly, for each intra-regional intersection, a
unique lower-level agent (dubbed L-RL) selects actions every At < AT to set the signal timings.

In this work, the information taken by the U-RL includes aggregated regional speed(s) and flow(s),
accumulation(s), and standard deviation(s) of lane-level vehicle counts. In single-region networks, the U-
RL selects among {0,0.2,---,0.8,1.0} as the ratio of green times allocated to entering vehicles during the
control interval at perimeter intersections. Intuitively, a larger value means longer green times and thus
potentially an increased number of vehicles into the region. To account for practical implementations, the
green times are truncated to be between the minimum and maximum values. In two-region networks, the
U-RL adopts the same action space as defined for the I-GC (Viz, {gmin, Imid> Imax} X {Gmin» Gmid> Gmax})-
which directly specifies the green times for each travel direction at the perimeter intersections. The reward
for the U-RL is the traveled distance of all vehicles to encourage higher traffic throughput.

The Double DQN algorithm (34), as well as the distributed learning architecture (35), are utilized
to train the U-RL agent. In addition, to consider the possibly delayed impacts of perimeter control, multi-
step return is adopted (similar to (30)) and the (upper-level) learning targets Y are computed as:

5-1
v = Z(V”)"rr"+k+1 +")°Q <S¥+a,arg max Q(sr.5 u’; 67°); BUQ_)- ©
k=0 u

where § specifies the number of look-ahead steps (the original single-step return is a special case of Eq. (4)
with § = 1), s¥,uy, ¥ respectively represent the state, action, and reward at time step T, yU is the
discount factor that decays the perceived value of future rewards, Q(:,:;8Y?) and Q(:,:;8Y?")
respectively denote the Q- and target neural networks parameterized by 8Y9 and Y9~

In a similar fashion, the L-RL agent takes local information around an intersection and selects
which phase to activate at regular intervals of At. The parameter sharing technique is used to accommodate
the (often) large number of intra-regional intersections in urban networks. Specifically, each intersection is
controlled by its own reinforcement learning agent, and all these agents share the neural network structure
as well as model weights. They receive individualized information at each intersection and select
individualized actions as well as obtain individualized rewards. Here, the input information to the L-RL
includes the average number of vehicle (weighted by turn ratios) of the four downstream approaches, the
upstream vehicle counts grouped by phases (e.g., northbound/southbound left), the current phase, and the
regional accumulation(s). Note, the downstream vehicle count is averaged by turn ratios to be similar to the
information used by the MP policy, while the upstream vehicle counts indicate the congestion situation that
informs where a high potential of traffic production may be reaped. The regional accumulation provides
global information about how the region is operating, and it is found this information is beneficial to L-
RL’s performance. The action specifies which phase to choose from for each intersection, and the reward
is the number of discharged vehicles to encourage higher traffic production. The L-RL is also trained with
the Double DQN algorithm, but without multi-step return. The (lower-level) learning targets Y are:

V= by +74Q (s, arg max Q(shy, u';01); 0407, ©)
u

where the variables are defined similarly to Eq. (4), but with superscript L to denote lower-level.
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A Multi-Scale Training Paradigm

To jointly train both the U-RL for upper-level perimeter control and L-RL for lower-level traffic signal
control, a multi-scale reinforcement learning approach is adopted; see Algorithm 1. Note that the term
“multi-scale” refers to both multi-timescale (with action intervals of AT and At) and multi-spatial scale
(with perimeter control acting at a regional scale while traffic signal control at an intersection scale). The
so-constructed joint control agent is denoted as MS-RL that stands for Multi-Scale RL.

As with the convention of value-based deep reinforcement learning methods, both the U-RL and
L-RL adopt artificial neural networks to approximate the action value function, and for clarity they are

respectively parameterized by B?tgr and Bft%r (where iter is short for iteration). The resulting Q networks

can thus be denoted by Q(:,:; Bzgr) and Q(:,:; Bfthr). Target networks and replay buffers are utilized to
improve learning performances, following (36) as well as prior adaptations of deep-RL for perimeter control
(14, 30, 37). In particular, target networks help provide relatively static learning targets while the use of
replay buffer helps reduce the correlation between training samples. The distributed learning architecture
(35) is used by the agents such that they can interact with multiple instantiations of the simulation
environment concurrently to expand the variety of samples they jointly encounter. Each instantiation is
termed a generator (i.e., experience generator) in Algorithm 1. With such architecture, both the L-RL and
U-RL agents are updated only once per training iteration. However, such updates can utilize all transitions
collected during the iteration which improves the convergence for the agents. To further increase the
variability of training samples, the agents perform proactive exploration of the environment with the
epsilon-greedy (e-greedy) strategy. To wit, the agents take a greedy action (with respect to the Q-values)
with probability 1 — € and a random action otherwise.

A few further remarks are provided here regarding the interactions between the agents and the
environment. First, the perimeter control interval AT is assumed an integer multiple of the signal control
interval At. After the U-RL agent selects an action, it is executed in the environment for a duration of AT
During this time, the L-RL agent interacts with the environment in intervals of At. In this way, a state-
action-reward transition is obtained every At for L-RL but every AT for U-RL. Second, notice the
parameter sharing technique is used for the L-RL agent, thus a group of transitions will be collected every
At. The group size is dependent on the number of intersections controlled by the L-RL agent. For the same
reason, a vector of states sk is collected for L-RL during environment reset (Line 6) or step (Line 13),
whereas in comparison a single state is collected for U-RL (Lines 6 and 17). Third, in Algorithm 1, a
represents a local agent that acts for a single intersection while n is the number of controlled intra-regional
intersections (hence n local agents). The local actions ut? taken by the local agents are jointly executed in
the environment, which leads to a lower-level environment step (for duration At, see Line 13) that yields a
vector of lower-level states st and a vector of lower-level rewards r%. The joint transitions are then split
and stored in the replay buffer for updating the L-RL parameters. Finally, following the popular independent
learning paradigm, the two agents interact with the environment simultaneously (but at different time and
spatial scales) and are trained separately, thus reliving the need for increasing communication infrastructure.
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Algorithm 1. Multi-Scale RL controller for joint perimeter and signal control (MS-RL).

1:

SANRAN ol

10:
11:

12:
13:
14:
15:
16:

17:
18:
19:
20:

21:
22:
23:

24
25:

26:
27:

Randomly initialize U-RL network Gg “ and shared L-RL network G(L)Q

Initialize target networks 85°~ = 67 ¢,05°" = 95°

Initailize replay buffer DY, DL with buffer size BY, BL and sample size bY, b for U-RL and L-RL
Specify the number of training iterations / and experience genetaors G

for iter =1to I do
Compute the decayed €, e” values for exploration
for generator = 1 to G do // concurrent interactions with the environment
Load the U-RL and shared L-RL networks GiUtgr = ngtgr—l' B{Ttgr = Gfthr_l
s¥, sk « Environment.Reset()

for T = 1to Nr do // upper-level perimeter control

u_; = argmax Q(s¥_,,u; 02, ) with probability 1 — eV
u

a random action with proability €Y
Implement u¥_, into environment // for duration AT

fort = 1to N, do //lower-level signal control

uk®, = argmax Q(st%, u; 052 ) with probability 1 — e*
u

a random action with proability e*
L — La \n
ui_y = {uf}a=1
(rk, sb) « Environment.Step(st_,, ut_;) // for duration At
el L 2L oLy La . Lla ..la .L
Split (S¢_1, Uz_q1, 7%, S¢) into {s7%, ugly, e, sp 3oy
Store {sf%;, uk?,, k%, st*}_ into the replay buffer DX
end for

(rf,s¥) « Environment.Step(s¥_;, u¥_;)
Store (s¥_;,u¥_4, 7, s¥) into replay buffer DUV
end for
end for

if the number of stored transitions exceeds the buffer sizes BY, BL then
Remove outdated transitions

end if
Training samples « a batch of b¥ (b') transitions randomly drawn from DY (D)
Periodically load target networks ngtgr_ = ngtgr—l' B{Ttg; = B{Tt%r_l and construct learning

targets as per Eq. (4) and (5)
GiUtgr, B{Ttgr « Update the network parameters towards the learning targets
end for

JOINT CONTROL FOR SINGLE-REGION NETWORKS

This section presents the experiment details of the joint perimeter and signal control framework applied on
a single-region network. Several joint control methods are utilized for comparison. In particular, the BB
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policy is combined with the MP controller (3/) to benchmark the upper-bound performances, while a non-
adaptive fixed time (FT) signal plan is used with the no control (NC) policy at the upper level for the lower-
bound performances. Two other baselines are also included for comparison: NC+MP and BB+FT.

Single-Region Network Setup

The single-region network is simulated in SUMO (38); see Fig. 1 which shows the protected region (shaded
in blue) and the layouts of the intra-regional and perimeter intersections. Each link in the network has a
length of 500m and each vehicle is 5m long. The free flow speed of each lane is set to 50 km/h while the
saturation flow is 1800 veh/h/lane.

= 5 S T
0 4 —
— 3 ) —— e—
0 2 9
| 2 | 3 | 4 I 5 | 6 Perimeter control intersection

Signal control intersection

Protected region

Fig. 1. The simulated single-region urban network.

The simulation step is set to 1s. All intersections in the network are signalized, and the perimeter
intersections adopt a shared cycle length of 90s (i.e., AT = 90s). Using default signal plans created by
SUMO, strong demands were assumed initially to congest the network and to obtain the MFD plot; the
critical accumulation for the network was determined to be 3000 veh. The minimum and maximum green
times are respectively 5s and 87s. The BB policy alternates the green times between these two values
depending on if the region is congested or not (by comparing the accumulation to the critical value). The
U-RL sets the green times at the perimeter intersections by choosing the ratio of green time during a signal
cycle, with minimum and maximum green times as constraints. In contrast, the NC policy mimics the status
quo (no perimeter control) and uses the maximum green time throughout the simulation. The intra-regional
intersections are either controlled by the MP policy or the L-RL agent or adopt a fixed-time (FT) signal
plan. The FT plan, MP, and L-RL policies all share the same set of phases to make sure the simulation
results are comparable, but their sequence order and duration may differ. No offset is assumed as it is
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inconsequential to the network-level performances in grid networks (39). The signal control interval is set
to At = 10s for the MP policy or L-RL (hence N; = 9), but the FT plan assumes cycle length of 90s.

Origins are even distributed across the entire network, whereas the destinations are only placed
inside the protected region. A strong directional demand is assumed from outside of the region; see Fig. 2.
This demand is adopted to simulate scenarios where perimeter control is the most helpful, i.e., to protect
destination-loaded regions from over-saturation. The strong demand lasts for 90 minutes as followed by a
recovery period of 30 minutes. The total simulation time is 2 hours and thus Ny = 80. Each of the total
demands (e.g., from outside to inside of the region) is evenly assigned to all associated origin-destination
pairs. In microsimulation, the traffic and vehicle behaviors will exhibit variability (e.g., the exact times
when vehicles are inserted into the network, the initial routes of the vehicles, and/or the vehicle speeds)
during each simulation instance, depending on the random number generation process. For this reason,
multiple random seeds were used to enhance simulation realism. The simulated vehicles are initially routed
using the stochastic C-logit route choice model (40), and a subset of the vehicles (60%) were assumed to
be able to adaptively reroute themselves based on prevailing traffic to mimic more realistic driving patterns.
This adaptive rerouting has been shown helpful to network-wide operational performances (20, 217), and in
this work it happens at regular intervals of 3 minutes.

1e3

12

10

Traffuc demands (veh/h)
(=)

—— OQutside-Inside
01 Inside-Inside

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

Fig. 2. Traffic demands profile.

Experiment Results

The objective of the joint control framework is to maximize network throughput, as indicated by the
cumulative trip completion (CTC). The proposed MS-RL scheme is a learning-based method, and its
effectiveness can be evaluated using learning curves that express the evolution of CTC over training
iterations; see Fig. 3. The baseline methods have constant CTCs as they do not iteratively update their
policies, and the bands reflect the randomness in the simulation. As can be observed, the proposed MS-RL
scheme can effectively learn to realize performances directly comparable to the BB+MP policy. This is
notable since the BB controller is a proven method for single-region perimeter control whereas the MP
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policy is an effective decentralized signal controller with proven ability of throughput maximization. Note,
though, both the U-RL and L-RL agents in the MS-RL scheme start their learning processes entirely from
scratch, with completely random exploration of the environment, so the performances are inferior initially
(only slightly better than NC+FT) and improve as the agents learn.

led
2.21
LA AN A M
2.0 V‘VV'U W 1 v
18]
—— MS-RL
161 —— NC+FT
o —— NC+MP
“ 14 —— BB4FT
BB+MP
1.2
/
1.0
0.8
0 25 50 75 100 125 150

Training iterations (-)

Fig. 3. Learning curve of the MS-RL scheme for single-region networks.

Fig. 4 presents the cumulative count curves by the MS-RL scheme and baseline methods, where
“Exit” indicates the cumulative number of exited vehicle (i.e., cumulative trip completion) and “Entry” the
cumulative number of vehicles that either are generated within the region from traffic demands or arrive
from outside of the region. The vehicle generation from traffic demands is identical across methods, as the
demands are the same and those trips are not metered, while the vehicle arrival is influenced by the control
policy. As Fig. 4 shows, without perimeter control (NC at the upper level), using the MP policy at the lower
level yields much higher cumulative vehicle entry and trip completion than FT, which shows the MP policy
is much more effective at reducing traffic congestion than FT. However, the overall trip completion
obtained by MP alone is rather modest as it cannot handle oversaturated conditions well, a situation that
can be remedied by using BB policy at the upper level. The BB policy acts upon the regional congestion
level and limits vehicle arrival from outside of the region as the region gets congested. The delayed vehicle
arrival thus mitigates congestion within the region, which allows for a higher trip completion and more
vehicle arrival later on. Yet, such effects cannot be realized by the BB policy alone (i.e., BB+FT), and the
combination of BB policy at the upper level and MP at the lower level leads to the highest cumulative
vehicle entry and trip completion among the baseline methods. Comparisons between the curves by BB+MP
and MS-RL imply a great extent of similarity, suggesting the competitiveness of the proposed scheme. The
areas between the cumulative entry and exit curves represent the total travel times of all vehicles throughout
the simulation. From this, one could conclude the MS-RL scheme realizes the smallest total travel time
among all control methods. In a similar fashion, the differences between the cumulative count curves
indicate the regional accumulation, and one could see the MS-RL scheme has the steadiest accumulation.
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Fig. 4. Cumulative count curves.

To evaluate the learning robustness of the proposed MS-RL scheme, several types of environment
uncertainties are considered and infused in the simulation process during each of the training iterations. The
uncertainties include measurement noise of the regional accumulation, where the accumulation information
perceived by the MS-RL (in its upper- and lower-level state designs) is assumed inaccurate, and such
inaccuracy follows a mean-zero normal distribution:

d(t) = d(t) + N(0,0?) (6)

where d(t) is the perceived accumulation, d(t) is the accurate accumulation, and ¢ is the standard
deviation of the normal distribution used to denote the level of measurement noise. The uncertainties also
involve identification errors of vehicle count on each lane, which are also in the form of a mean-zero normal
distribution and are intended to simulate widespread count discrepancies that happen on each lane of the
network. Note that such errors impact vehicle counts not only to a large spatial extent (the whole network)
but also at an extremely high frequency (every 10s at which the L-RL agent utilizes the vehicle count
information). Hence, the magnitude of the errors is much smaller than measurement noise.

Fig. 5 provides the learning curves for the MS-RL scheme when there are both measurement noise
of accumulation and identification errors of vehicle count in the environment. The noise and error are added
independently to the respective measurements (accumulation and lane-level vehicle counts), and in Fig. 5
their combinations are indicated in the subplot titles. As shown in the figure, the MS-RL scheme can still
realize remarkable control benefits that are comparable to BB+MP, though the learning performances start
to deteriorate with higher identification errors. This is even more notable given that the L-RL receives
inaccurate accumulation and vehicle counts every At = 10s in the case of combined uncertainties.
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Fig. 5. Learning curves against combined measurement noise and identification errors.

JOINT CONTROL FOR TWO-REGION NETWORKS

In this section, the MS-RL scheme is applied for joint perimeter and signal control on a two-region network.
The improved greedy control (I-GC) policy is combined with the MP policy or FT signal plan as baselines.

Two-Region Urban Network Setup

The simulation setup of the two-region network follows that detailed in (/8). In particular, the network has
a larger periphery region R; encompassing a smaller city center R, (see Fig. 6), and the two regions are
connected via two-directional linking roads where perimeter control can be implemented and queued
vehicles can be temporarily stored. Initial simulations are run with strong demands to obtain the MFD plots
as well as proper values for the I-GC policy parameters (for example the cutoff points used to categorize
the congestion levels). The results suggest the trip completion rate peaks at accumulations around 5000
(region 1) and 1500 (region 2) respectively, and region 1(2) is classified as severely congestion if its
accumulation is larger than 8000(2000) veh. Moreover, following the same line of reasoning in (/8), the
green times are setto gmin = 0S, gmia = 108, gmax = 87s at the perimeter intersections. The I-GC policy,
as well as the U-RL agent, selects among combinations of {g.in, Imia» Gmax} X {Gmin» Gmid» Gmax} t0
determine the green times allocated to vehicles in each direction of travel. For the two-region network,
origins and destinations are uniformly distributed inside each region, with inter-regional traffic demands
for both directions; see Fig. 7 where traffic demands last for 60 minutes followed by a recovery period of
30 minutes. The total simulation time is 90 minutes hence Ny = 60.
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Experiment Results

The learning curve of the MS-RL scheme is provided in Fig. 8, together with the CTC values of the baseline
methods. Similar observations and conclusions can be drawn as in Fig. 3. However, the two-region network
has significantly more intra-regional intersections and a higher degree of interdependencies between them;
thus, the learning curve is more fluctuant compared to the single-region counterpart.

led
1.8
A a h A’hVA'AVAUAVMVVUva\VIJ
IV
1.6
—— MS-RL
—— NC+FT
o 151 —— NC+MP
“ —— LGC+FT
141 ‘,‘ -GC+MP
1.31
121
111
0 20 40 60 80 100

Training iterations (-)

Fig. 8. Learning curve of the MS-RL scheme for two-region networks.

The learning robustness of the MS-RL scheme against combined measurement noise of regional
accumulation and identification errors of vehicle counts is also examined here (see Fig. 9). Note, in this set
of experiments, the levels of noise and errors are comparatively smaller than in single-region control to
account for increased network size (and number of signal control intersections). As shown, despite a lot
noisier learning curves (due to more intersections that are prone to identification errors and more
accumulation values that are inaccurate), the MS-RL can still compete with (or outperform) the I-GC+MP.
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Fig. 9. Learning curves against combined measurement noise and identification errors.

Finally, a test is conducted where a partial implementation of the MP policy or the L-RL agent at
the lower level is considered, i.e., only a subset of intersections are controlled by MP or L-RL, as similar
to (28). Here, the ratio of local intersections managed by MP or L-RL is altered from 10% to 90%, while
0% and 100% respectively denotes FT and MP or L-RL. For each control ratio, 10 random configurations
are generated which indicate the random subsets of local intersections to be managed by MP or L-RL. The
baseline methods are applied to each configuration under each control ratio and the overall performances
are expressed using boxplots (excluding FT methods that are not affected by different MP or L-RL control
ratios); see Fig. 10. The learning curves of the MS-RL scheme under different L-RL control ratios are
shown in Fig. 11, where the one with 100% L-RL ratio (subplot (f), which is the same as Fig. 8) is also
included for perspective. As shown, irrespective of the control ratio, the MS-RL can always learn to
compete with the [-GC+MP. Critically, the results show that, in practice one only needs to control a subset
of the local intersections (e.g., 50%) using the MP policy or L-RL. In this way, notable control benefits can
still be obtained, while enjoying a much lower data collection and computation cost as well as infrastructure
requirement. These observations thus emphasize the practical applicability of the MS-RL scheme.
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Fig. 10. Performances of the baseline methods under each MP control ratio.
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Fig. 11. Learning curves for each L-RL control ratio.
CONCLUDING REMARKS

This paper presents a multi-scale deep reinforcement learning approach for the joint perimeter and signal
control problem in urban networks. Using established techniques like parameter sharing and independent
learning, the method exhibits excellent control effectiveness and learning robustness. Specifically, the
method has been shown effective at regulating traffic and mitigating congestion in simulated single- and
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two-region networks. It can also readily conduct learning in the presence of environment uncertainties like
measurement noise of regional accumulation and identification errors of vehicle counts. Further, to alleviate
the data and computation requirements associated with full-scale local signal control in larger urban
networks, the method has been shown capable of learning under a partial control configuration at the local
intersections. In all cases, the method can compete with and often times outperform a baseline with the max
pressure policy at the lower level and established perimeter controllers at the upper level. This joint control
framework holds promise for efficient city-level traffic management and contributes ultimately to emerging
intelligent transportation systems, with a learning-based design (not built upon heuristic rules) and
comprehensive (featuring perimeter and signal control) yet fully implementable policies. Extensions to this
work should consider examining the effectiveness of the MS-RL scheme in multi-region networks.
Comparisons to methods with networked reinforcement learning agents should also be a research priority.
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