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ABSTRACT 1 

Deep reinforcement learning (DRL) has been shown as an effective paradigm to help solve local signal 2 
control or network-wide perimeter metering control problems individually. However, to improve the 3 
benefits of DRL applied to urban traffic control, a joint framework that considers both levels is needed as 4 
they often have complementary objectives. Early endeavors in such frameworks require the exchange of 5 
information between the levels to coordinate the control objectives, demanding increased communication 6 
infrastructure. To alleviate such requirements, this work presents a joint framework that features two levels 7 
of independent controllers, where both levels are managed by unique reinforcement learning agents that 8 
share common goals of throughput maximization. Extensive simulation experiments are conducted to 9 
demonstrate the effectiveness of the proposed framework, as well as the robustness of the learned agents 10 
against measurement noise of regional accumulation and identification errors of vehicle counts. Further, 11 
the framework has been shown capable of learning effectively under a partial local signal control 12 
configuration, which highlights its potential practical applicability. The framework holds promise for city-13 
level traffic management driven by reinforcement learning that does not require the need for, often 14 
inaccurate, traffic models.   15 

Keywords: Macroscopic fundamental diagram; perimeter control; traffic signal control; multi-scale RL 16 
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INTRODUCTION 1 

Perimeter control, built upon aggregate traffic dynamics modeling with network Macroscopic Fundamental 2 
Diagrams (MFDs), has been shown effective in congestion mitigation and throughput maximization for 3 
urban networks comprised of a single or multiple homogeneous regions. Over the years, various extensions 4 
to perimeter control have been investigated, including for example robust control (1, 2) and integration with 5 
route guidance or ramp metering (3–5). Numerous approaches have been proposed for perimeter control; 6 
these include proportional-integral (PI) type feedback controller (6, 7), linear quadratic regulator (8, 9), and 7 
the model predictive control (MPC) method (3, 10, 11). Recent years have also witnessed an increasing 8 
trend of data-driven methods such as model free adaptive control and reinforcement learning (12–18).  9 

Despite the notable research findings, however, concerns may still arise regarding the practical 10 
implementation of perimeter control in urban networks, since the MFD-based dynamics modeling (whence 11 
perimeter control is defined) relies on traffic homogeneity. Inevitably, local pockets of congestion are likely 12 
to form in dense urban traffic networks (19–22), resulting in traffic heterogeneity, which diminishes the 13 
effectiveness of perimeter control. To this end, an integrated framework that regulates both the inter-14 
regional exchange flows (viz., perimeter control) and intra-regional traffic signals is needed, wherein the 15 
upper-level perimeter control helps maintain regional accumulations around the critical levels while the 16 
lower-level signal control combats local congestion to improve traffic homogeneity.  17 

Early endeavors in such integrated control frameworks include (23–25), where the lower-level 18 
seeks to reduce traffic inhomogeneity at a local scale, facilitating more effective application of perimeter 19 
control schemes at the upper level. However, these works require the exchange of information between the 20 
levels to coordinate the control objectives, which creates a demand for increased communication 21 
infrastructure and may impede its real-world applicability (particularly in dense urban areas). In addition, 22 
these works build upon the MPC scheme to formulate the control problems, necessitating accurate modeling 23 
of system dynamics that is often intractable in real life. In this regard, note the MPC-based multi-scale 24 
perimeter control method in (26) also faces high communication requirements with a centralized control 25 
paradigm, and the lower-level only considers delay minimization at the perimeter intersections.   26 

To alleviate the modeling inaccuracies and computational costs associated with MPC-based 27 
schemes, as well as the requirements for communication infrastructure, hierarchical control frameworks 28 
that feature two levels of independent controllers are receiving increasing research interests recently. In 29 
(27), a volume-based approach and a modified SCATS strategy are used for local signal control, in 30 
combination with a PI type feedback perimeter controller for single-region networks. In (28), the PI-type 31 
regulator is used with the max pressure (MP) signal controller (29), where the green times at the perimeter 32 
and intra-regional intersections are obtained by solving a set of optimization programs. In contrast, (30) 33 
solves the upper-level perimeter control problem with reinforcement learning (RL) and adopts an acyclic 34 
max pressure signal controller (31) at the lower level. Both levels control the green times directly without 35 
solving optimization problems, which is more computationally convenient in real applications. 36 

Following these research efforts, this work studies the joint perimeter and signal control problem 37 
in urban networks, where both levels are controlled by reinforcement learning agents. While RL has been 38 
applied to signal control problems extensively and is also gaining momentum in perimeter control 39 
applications, its effectiveness hasn’t been investigated for the joint control problem. This work thus extends 40 
the frameworks in (18, 30) to consider RL for lower-level signal control. A multi-scale multi-agent training 41 
paradigm is presented to realize joint control with RL, and the effectiveness is evaluated using simulated 42 
single- and two-region networks. The results show the presented approach is highly comparable (and often 43 
times superior) to a baseline comprised of established perimeter controllers and the MP policy (31). 44 

The remainder of the paper is structured as follows. The next section explains the methodology 45 
adopted in this work. Extensive experiment results are then provided on a single- and two-region network. 46 
Finally, conclusions and future work directions are outlined in the last section. 47 
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METHODOLOGY 1 

This section explains the joint control framework. The baseline traffic signal and perimeter controllers are 2 
first introduced, followed by algorithmic designs of the upper-level and lower-level RL agents. Lastly, the 3 
multi-scale training paradigm is presented. 4 

 5 
Max Pressure (MP) Controller 6 
This section introduces the Max Pressure (MP) controller in (31) along with a few modifications in (28). 7 
Note, MP is a decentralized signal controller that operates on each intersection, thus the explanations are 8 
presented regarding an individual intersection. Also, decentralization renders the MP policy scalable to any 9 
urban networks, without requiring any new infrastructure or communication with existing controllers.  10 

 Define a roadway segment between two adjacent intersections as a link and a pair of links (𝑙𝑙,𝑚𝑚) 11 
as a movement. Note, only movements that are controllable by traffic signals are considered (uncontrolled 12 
movements such as channelized right turns are omitted from the discussion here). A phase refers to a set of 13 
movements that can be served together in the same signal duration. Define 𝑥𝑥(𝑙𝑙,𝑚𝑚) as the metric to obtain 14 
pressure calculations for the MP controller, which amounts to the number of vehicles of movement (𝑙𝑙,𝑚𝑚) 15 
since the point queue model is used to express traffic flows on a link in (31). Let 𝑥𝑥(𝑙𝑙,⋅)𝑚𝑚𝑚𝑚𝑚𝑚 be the maximum 16 
number of vehicles (i.e., storage capacity) of link 𝑙𝑙 , 𝐶𝐶(𝑙𝑙,𝑚𝑚) be the mean value of saturation flow for 17 
movement (𝑙𝑙,𝑚𝑚), and 𝛽𝛽(𝑙𝑙,𝑚𝑚) be the turn ratio from link 𝑙𝑙 to 𝑚𝑚. Further, denote as 𝑆𝑆𝑗𝑗  the movements 18 
served by phase 𝑗𝑗 and 𝑂𝑂𝑂𝑂𝑡𝑡𝑙𝑙 the downstream links of link 𝑙𝑙. Adopting these terminologies, the max pressure 19 
control principle works as follows. 20 

First, the weight of a movement is calculated as per (similar to (28)): 21 

𝑤𝑤(𝑙𝑙,𝑚𝑚) =
𝑥𝑥(𝑙𝑙,𝑚𝑚)
𝑥𝑥(𝑙𝑙,⋅)𝑚𝑚𝑚𝑚𝑚𝑚

− � 𝛽𝛽(𝑚𝑚,𝑛𝑛) ⋅
𝑥𝑥(𝑚𝑚,𝑛𝑛)
𝑥𝑥(𝑚𝑚,⋅)𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛∈𝑂𝑂𝑂𝑂𝑡𝑡𝑚𝑚

. (1) 22 

The second term of Eq. (1) can be viewed as the average (normalized) number of vehicles weighted by turn 23 
ratios at the downstream link. If the link 𝑚𝑚 is an exit, this term will be 0 since there are no further 24 
downstream links. As such, the weight of a movement indicates the difference between the (normalized) 25 
upstream and downstream number of vehicles. Normalization using the storage capacity is intended to 26 
consider link length, as the same number of vehicles may indicate different levels of congestion at links 27 
with different lengths. Then, the pressure for each phase is the sum of movement weight times the 28 
corresponding saturation flow and computed as: 29 

𝑝𝑝�𝑆𝑆𝑗𝑗� = � 𝐶𝐶(𝑙𝑙,𝑚𝑚) ⋅ 𝑤𝑤(𝑙𝑙,𝑚𝑚)
(𝑙𝑙,𝑚𝑚)∈𝑆𝑆𝑗𝑗

. (2) 30 

Intuitively, the pressure of a phase indicates its potential of traffic production at the intersection. 31 
To see this, notice that large movement weight means the upstream link has more vehicles than the 32 
downstream link; that is, there is a large number of vehicles to discharge from the upstream and enough 33 
space in the downstream to receive these vehicles. Further, the pressure accounts for the likelihood of 34 
serving these vehicles by multiplying the movement weight with the saturation flow. Therefore, high 35 
pressure is associated with a larger number of vehicles to serve (i.e., larger movement weight) and greater 36 
ability to serve vehicles (i.e., saturation flow). Jointly, the pressure measures the potential of traffic 37 
production by each phase at the intersection. Following this logic, the MP controller activates the phase 38 
with the highest pressure at each time step, shown as: 39 

𝑆𝑆∗ = arg max
𝑗𝑗

𝑝𝑝�𝑆𝑆𝑗𝑗� . (3) 40 

The selected phase is implemented in the traffic environment for a time step, until the next decision is made. 41 
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Several modifications are also proposed to ensure real-world applicability. First, the weight of a 1 
movement (Eq. (1)) is truncated to be non-negative. Negative weights arise when the (average) number of 2 
vehicles at the downstream link is larger than that at the upstream; activating these movements will worsen 3 
the imbalanced vehicle presence at the intersection and not contribute to traffic production. Second, the MP 4 
control law is executed every time step, contrary to the cycle-based design in (28). Denote as Δ𝑡𝑡 the time 5 
step length. When the signal phase changes across consecutive time steps, a transition interval is needed 6 
(assumed to be 𝜅𝜅 = 3s). As such, the pressure of a phase (Eq. (2)) is adjusted by a factor of Δ𝑡𝑡−𝜅𝜅

Δ𝑡𝑡
 if the 7 

phase is different from the currently active one; see also (32) for this adjustment. Third, to account for 8 
practical applications of the MP controller, each signal phase will be activated at least once during a 9 
perimeter control interval (to be specified shortly) and therefore have a minimum green time of Δ𝑡𝑡 − 𝜅𝜅 (s). 10 

Further, note that calculating the movement weights requires the turn ratio 𝛽𝛽(𝑚𝑚,𝑛𝑛) which denotes 11 
the ratio of vehicle traveling from link 𝑚𝑚 to its downstream link 𝑛𝑛. In a dynamically congested network, 12 
the turn ratio cannot be assumed known a priori. For this reason, a dynamic turn ratio update schedule is 13 
presented in (28) while a fixed turn ratio is adopted in (32). Note, though the MP controller is used for 14 
lower-level signal control in (30), the information on how the turn ratios are determined is not disclosed. In 15 
this work, a simple procedure is devised to estimate the turn ratios for each link. Specifically, in regular 16 
intervals of 3 minutes, 50 vehicles (or all vehicles if fewer than 50) are randomly sampled from each link 17 
to determine their turning maneuvers. The ratios of turning among these vehicles then provide an estimated 18 
turn ratio for the link which is used as constants during the 3-minute intervals. As will be shown in the 19 
simulation results, this simple and intuitive estimation procedure renders the MP extremely effective at 20 
alleviating local congestion. Also, this procedure is computationally cheap, compared to the update 21 
schedule in (28). Moreover, estimating the turn ratio is not the focal point in this work, and this procedure 22 
is kept the same among all MP implementations to establish fair comparisons. Other estimation procedures 23 
that may improve the MP performance further are left as future work directions.  24 

 25 
Baseline Perimeter Controllers 26 
In this work, single- and two-region networks are simulated. Hence, the Bang-Bang (BB) policy (33) and 27 
improved greedy control (I-GC) policy (18) are adopted as comparative baselines for perimeter control. 28 
These policies are implemented at regular intervals of Δ𝑇𝑇 (which denotes the perimeter control interval). 29 
Other than these, a baseline that simulates the status quo, i.e., no control (NC) policy, will also be used. 30 

 The Bang-Bang policy builds upon the notion of MFD-based modeling and alternates its control 31 
action by comparing the regional accumulation to the critical value that is associated with maximum traffic 32 
production. Specifically, the BB policy chooses the maximum green time for all inbound movements if the 33 
regional accumulation is smaller than the critical value and the minimum value otherwise. The BB policy 34 
presents a simple and effective way to mitigate urban congestion for single-region networks, and it is real 35 
life implementable since it does not require full knowledge of the network dynamics. Though the critical 36 
accumulation information is needed, it can still reap sufficient control benefits with estimation inaccuracies. 37 

The I-GC policy extends conventional greedy control to consider three levels of congestion for 38 
each region and directly adjusts the inter-regional green times. By introducing a buffer between minimum 39 
and maximum green times, the I-GC policy can effectively mitigate regional congestion and significant 40 
cordon queues in the event of a region being congested. Concretely, for each region, the I-GC policy selects 41 
the maximum green time (𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚) for inbound movements if the region operates in free flow (i.e., regional 42 
accumulation smaller than the critical value); a smaller (close to minimum, denoted as 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚) green time 43 
value is chosen if the region is moderately congested whereas the minimum value (𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚) is taken if the 44 
region is severely congested. The cutoff points that determine the congestion levels are determined from 45 
the regional MFD plots, while the candidate green time values are design parameters. 46 
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Algorithmic Designs of RL Agents 1 
The joint perimeter and signal control problem is formulated as a Markov decision process, where the 2 
environment represents the simulated single- or two-region networks. At regular intervals of Δ𝑇𝑇, an upper-3 
level agent (dubbed U-RL) takes information from the simulation environment and selects perimeter control 4 
actions that determine the green times at perimeter intersections. The actions will then be implemented in 5 
the environment for the whole interval, and at the end of the interval, it receives a reward back from the 6 
environment as an assessment of the action just taken. Similarly, for each intra-regional intersection, a 7 
unique lower-level agent (dubbed L-RL) selects actions every Δ𝑡𝑡 ≤ Δ𝑇𝑇 to set the signal timings. 8 

In this work, the information taken by the U-RL includes aggregated regional speed(s) and flow(s), 9 
accumulation(s), and standard deviation(s) of lane-level vehicle counts. In single-region networks, the U-10 
RL selects among {0,0.2,⋯ ,0.8,1.0} as the ratio of green times allocated to entering vehicles during the 11 
control interval at perimeter intersections. Intuitively, a larger value means longer green times and thus 12 
potentially an increased number of vehicles into the region. To account for practical implementations, the 13 
green times are truncated to be between the minimum and maximum values. In two-region networks, the 14 
U-RL adopts the same action space as defined for the I-GC (viz, {𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚} × {𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚}), 15 
which directly specifies the green times for each travel direction at the perimeter intersections. The reward 16 
for the U-RL is the traveled distance of all vehicles to encourage higher traffic throughput. 17 

The Double DQN algorithm (34), as well as the distributed learning architecture (35), are utilized 18 
to train the U-RL agent. In addition, to consider the possibly delayed impacts of perimeter control, multi-19 
step return is adopted (similar to (30)) and the (upper-level) learning targets 𝑌𝑌𝑇𝑇𝑈𝑈 are computed as: 20 

𝑌𝑌𝑇𝑇𝑈𝑈 = �(𝛾𝛾𝑈𝑈)𝑘𝑘𝑟𝑟𝑇𝑇+𝑘𝑘+1𝑈𝑈
𝛿𝛿−1

𝑘𝑘=0

+ (𝛾𝛾𝑈𝑈)𝛿𝛿𝑄𝑄 �𝑠𝑠𝑇𝑇+𝛿𝛿
𝑈𝑈 , arg max

𝑢𝑢′
𝑄𝑄�𝑠𝑠𝑇𝑇+𝛿𝛿

𝑈𝑈 ,𝑢𝑢′;𝜽𝜽𝑈𝑈𝑈𝑈� ;𝜽𝜽𝑈𝑈𝑈𝑈−� . (4) 21 

where 𝛿𝛿 specifies the number of look-ahead steps (the original single-step return is a special case of Eq. (4) 22 
with 𝛿𝛿 = 1), 𝑠𝑠𝑇𝑇𝑈𝑈 ,𝑢𝑢𝑇𝑇 , 𝑟𝑟𝑇𝑇𝑈𝑈  respectively represent the state, action, and reward at time step 𝑇𝑇 , 𝛾𝛾𝑈𝑈  is the 23 
discount factor that decays the perceived value of future rewards, 𝑄𝑄(: , : ;𝜽𝜽𝑈𝑈𝑈𝑈)  and 𝑄𝑄(: , : ;𝜽𝜽𝑈𝑈𝑈𝑈−) 24 
respectively denote the Q- and target neural networks parameterized by 𝜽𝜽𝑈𝑈𝑈𝑈 and 𝜽𝜽𝑈𝑈𝑈𝑈−.  25 

 In a similar fashion, the L-RL agent takes local information around an intersection and selects 26 
which phase to activate at regular intervals of Δ𝑡𝑡. The parameter sharing technique is used to accommodate 27 
the (often) large number of intra-regional intersections in urban networks. Specifically, each intersection is 28 
controlled by its own reinforcement learning agent, and all these agents share the neural network structure 29 
as well as model weights. They receive individualized information at each intersection and select 30 
individualized actions as well as obtain individualized rewards. Here, the input information to the L-RL 31 
includes the average number of vehicle (weighted by turn ratios) of the four downstream approaches, the 32 
upstream vehicle counts grouped by phases (e.g., northbound/southbound left), the current phase, and the 33 
regional accumulation(s). Note, the downstream vehicle count is averaged by turn ratios to be similar to the 34 
information used by the MP policy, while the upstream vehicle counts indicate the congestion situation that 35 
informs where a high potential of traffic production may be reaped. The regional accumulation provides 36 
global information about how the region is operating, and it is found this information is beneficial to L-37 
RL’s performance. The action specifies which phase to choose from for each intersection, and the reward 38 
is the number of discharged vehicles to encourage higher traffic production. The L-RL is also trained with 39 
the Double DQN algorithm, but without multi-step return. The (lower-level) learning targets 𝑌𝑌𝑡𝑡𝐿𝐿 are: 40 

𝑌𝑌𝑡𝑡𝐿𝐿 = 𝑟𝑟𝑡𝑡+1𝐿𝐿 + 𝛾𝛾𝐿𝐿𝑄𝑄 �𝑠𝑠𝑡𝑡+1𝐿𝐿 , arg max
𝑢𝑢′

𝑄𝑄(𝑠𝑠𝑡𝑡+1𝐿𝐿 ,𝑢𝑢′;𝜽𝜽𝐿𝐿𝐿𝐿) ;𝜽𝜽𝐿𝐿𝐿𝐿−� . (5) 41 

where the variables are defined similarly to Eq. (4), but with superscript L to denote lower-level. 42 
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A Multi-Scale Training Paradigm 1 
To jointly train both the U-RL for upper-level perimeter control and L-RL for lower-level traffic signal 2 
control, a multi-scale reinforcement learning approach is adopted; see Algorithm 1. Note that the term 3 
“multi-scale” refers to both multi-timescale (with action intervals of Δ𝑇𝑇 and Δ𝑡𝑡) and multi-spatial scale 4 
(with perimeter control acting at a regional scale while traffic signal control at an intersection scale). The 5 
so-constructed joint control agent is denoted as MS-RL that stands for Multi-Scale RL. 6 

 As with the convention of value-based deep reinforcement learning methods, both the U-RL and 7 
L-RL adopt artificial neural networks to approximate the action value function, and for clarity they are 8 
respectively parameterized by 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑈𝑈𝑈𝑈  and 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿  (where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is short for iteration). The resulting Q networks 9 

can thus be denoted by 𝑄𝑄(: , : ;𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑈𝑈𝑈𝑈 ) and 𝑄𝑄(: , : ;𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 ). Target networks and replay buffers are utilized to 10 
improve learning performances, following (36) as well as prior adaptations of deep-RL for perimeter control 11 
(14, 30, 37). In particular, target networks help provide relatively static learning targets while the use of 12 
replay buffer helps reduce the correlation between training samples. The distributed learning architecture 13 
(35) is used by the agents such that they can interact with multiple instantiations of the simulation 14 
environment concurrently to expand the variety of samples they jointly encounter. Each instantiation is 15 
termed a generator (i.e., experience generator) in Algorithm 1. With such architecture, both the L-RL and 16 
U-RL agents are updated only once per training iteration. However, such updates can utilize all transitions 17 
collected during the iteration which improves the convergence for the agents. To further increase the 18 
variability of training samples, the agents perform proactive exploration of the environment with the 19 
epsilon-greedy (𝜖𝜖-greedy) strategy. To wit, the agents take a greedy action (with respect to the Q-values) 20 
with probability 1 − 𝜖𝜖 and a random action otherwise.  21 

 A few further remarks are provided here regarding the interactions between the agents and the 22 
environment. First, the perimeter control interval Δ𝑇𝑇 is assumed an integer multiple of the signal control 23 
interval Δ𝑡𝑡. After the U-RL agent selects an action, it is executed in the environment for a duration of Δ𝑇𝑇. 24 
During this time, the L-RL agent interacts with the environment in intervals of Δ𝑡𝑡. In this way, a state-25 
action-reward transition is obtained every Δ𝑡𝑡  for L-RL but every Δ𝑇𝑇  for U-RL. Second, notice the 26 
parameter sharing technique is used for the L-RL agent, thus a group of transitions will be collected every 27 
Δ𝑡𝑡. The group size is dependent on the number of intersections controlled by the L-RL agent. For the same 28 
reason, a vector of states 𝒔𝒔𝑡𝑡𝐿𝐿 is collected for L-RL during environment reset (Line 6) or step (Line 13), 29 
whereas in comparison a single state is collected for U-RL (Lines 6 and 17). Third, in Algorithm 1, 𝑎𝑎 30 
represents a local agent that acts for a single intersection while 𝑛𝑛 is the number of controlled intra-regional 31 
intersections (hence 𝑛𝑛 local agents). The local actions 𝑢𝑢𝑡𝑡𝐿𝐿𝐿𝐿 taken by the local agents are jointly executed in 32 
the environment, which leads to a lower-level environment step (for duration Δ𝑡𝑡, see Line 13) that yields a 33 
vector of lower-level states 𝒔𝒔𝑡𝑡𝐿𝐿 and a vector of lower-level rewards 𝒓𝒓𝑡𝑡𝐿𝐿. The joint transitions are then split 34 
and stored in the replay buffer for updating the L-RL parameters. Finally, following the popular independent 35 
learning paradigm, the two agents interact with the environment simultaneously (but at different time and 36 
spatial scales) and are trained separately, thus reliving the need for increasing communication infrastructure.  37 

 38 
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 1 
Algorithm 1. Multi-Scale RL controller for joint perimeter and signal control (MS-RL). 2 
1: Randomly initialize U-RL network 𝜽𝜽0

𝑈𝑈𝑈𝑈 and shared L-RL network 𝜽𝜽0
𝐿𝐿𝐿𝐿  3 

Initialize target networks 𝜽𝜽0
𝑈𝑈𝑈𝑈− = 𝜽𝜽0

𝑈𝑈𝑈𝑈 ,𝜽𝜽0
𝐿𝐿𝐿𝐿− = 𝜽𝜽0

𝐿𝐿𝐿𝐿 4 
Initailize replay buffer 𝐷𝐷𝑈𝑈,𝐷𝐷𝐿𝐿 with buffer size 𝐵𝐵𝑈𝑈,𝐵𝐵𝐿𝐿 and sample size 𝑏𝑏𝑈𝑈,𝑏𝑏𝐿𝐿 for U-RL and L-RL 5 
Specify the number of training iterations I and experience genetaors 𝐺𝐺  6 
 7 

2: for iter = 1 to 𝐼𝐼 do 8 
3:  Compute the decayed 𝜖𝜖𝑈𝑈, 𝜖𝜖𝐿𝐿 values for exploration 9 
4:  for generator = 1 to 𝐺𝐺 do    // concurrent interactions with the environment 10 
5:   Load the U-RL and shared L-RL networks 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑈𝑈𝑈𝑈 = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑈𝑈𝑈𝑈 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝐿𝐿𝐿𝐿  11 

6:   𝑠𝑠0𝑈𝑈, 𝒔𝒔0𝐿𝐿 ← Environment.Reset() 12 
 13 
7:   for 𝑇𝑇 = 1 to 𝑁𝑁𝑇𝑇 do    // upper-level perimeter control 14 
8:    𝑢𝑢𝑇𝑇−1𝑈𝑈 = arg max

𝑢𝑢
𝑄𝑄(𝑠𝑠𝑇𝑇−1𝑈𝑈 ,𝑢𝑢;𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑈𝑈𝑈𝑈 ) with probability 1 − 𝜖𝜖𝑈𝑈 15 
     a random action with proability 𝜖𝜖𝑈𝑈 16 
9:    Implement 𝑢𝑢𝑇𝑇−1𝑈𝑈  into environment    // for duration Δ𝑇𝑇 17 
 18 
10:    for 𝑡𝑡 = 1 to 𝑁𝑁𝑡𝑡 do    // lower-level signal control 19 
11:     𝑢𝑢𝑡𝑡−1𝐿𝐿𝐿𝐿 = arg max

𝑢𝑢
𝑄𝑄(𝑠𝑠𝑡𝑡−1𝐿𝐿𝐿𝐿 ,𝑢𝑢;𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿 ) with probability 1 − 𝜖𝜖𝐿𝐿 20 
      a random action with proability 𝜖𝜖𝐿𝐿 21 
12:     𝒖𝒖𝑡𝑡−1𝐿𝐿 = {𝑢𝑢𝑡𝑡−1𝐿𝐿𝐿𝐿 }𝑎𝑎=1𝑛𝑛  22 
13:     (𝒓𝒓𝑡𝑡𝐿𝐿 , 𝒔𝒔𝑡𝑡𝐿𝐿) ← Environment.Step(𝒔𝒔𝑡𝑡−1𝐿𝐿 ,𝒖𝒖𝑡𝑡−1𝐿𝐿 )    // for duration Δ𝑡𝑡 23 
14:     Split (𝒔𝒔𝑡𝑡−1𝐿𝐿 ,𝒖𝒖𝑡𝑡−1𝐿𝐿 ,𝒓𝒓𝑡𝑡𝐿𝐿 , 𝒔𝒔𝑡𝑡𝐿𝐿) into {𝑠𝑠𝑡𝑡−1𝐿𝐿𝐿𝐿 ,𝑢𝑢𝑡𝑡−1𝐿𝐿𝐿𝐿 , 𝑟𝑟𝑡𝑡𝐿𝐿𝐿𝐿, 𝑠𝑠𝑡𝑡𝐿𝐿𝐿𝐿}𝑎𝑎=1𝑛𝑛  24 
15:     Store {𝑠𝑠𝑡𝑡−1𝐿𝐿𝐿𝐿 ,𝑢𝑢𝑡𝑡−1𝐿𝐿𝐿𝐿 , 𝑟𝑟𝑡𝑡𝐿𝐿𝐿𝐿, 𝑠𝑠𝑡𝑡𝐿𝐿𝐿𝐿}𝑎𝑎=1𝑛𝑛  into the replay buffer 𝐷𝐷𝐿𝐿 25 
16:    end for 26 
 27 
17:    (𝑟𝑟𝑇𝑇𝑈𝑈, 𝑠𝑠𝑇𝑇𝑈𝑈) ← Environment.Step(𝑠𝑠𝑇𝑇−1𝑈𝑈 ,𝑢𝑢𝑇𝑇−1𝑈𝑈 ) 28 
18:    Store (𝑠𝑠𝑇𝑇−1𝑈𝑈 ,𝑢𝑢𝑇𝑇−1𝑈𝑈 , 𝑟𝑟𝑇𝑇𝑈𝑈, 𝑠𝑠𝑇𝑇𝑈𝑈) into replay buffer 𝐷𝐷𝑈𝑈 29 
19:   end for 30 
20:  end for 31 
 32 
21:  if the number of stored transitions exceeds the buffer sizes 𝐵𝐵𝑈𝑈,𝐵𝐵𝐿𝐿 then 33 
22:   Remove outdated transitions 34 
23:  end if 35 
 36 
24:  Training samples ← a batch of 𝑏𝑏𝑈𝑈(𝑏𝑏𝐿𝐿) transitions randomly drawn from 𝐷𝐷𝑈𝑈(𝐷𝐷𝐿𝐿) 37 
25: Periodically load target networks 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑈𝑈𝑈𝑈− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝑈𝑈𝑈𝑈 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿− = 𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1
𝐿𝐿𝐿𝐿  and construct learning 38 

targets as per Eq. (4) and (5) 39 
26:  𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑈𝑈𝑈𝑈 ,𝜽𝜽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿 ← Update the network parameters towards the learning targets   40 

27: end for 41 
 42 
 43 
JOINT CONTROL FOR SINGLE-REGION NETWORKS 44 

This section presents the experiment details of the joint perimeter and signal control framework applied on 45 
a single-region network. Several joint control methods are utilized for comparison. In particular, the BB 46 
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policy is combined with the MP controller (31) to benchmark the upper-bound performances, while a non-1 
adaptive fixed time (FT) signal plan is used with the no control (NC) policy at the upper level for the lower-2 
bound performances. Two other baselines are also included for comparison: NC+MP and BB+FT. 3 

 4 
Single-Region Network Setup 5 
The single-region network is simulated in SUMO (38); see Fig. 1 which shows the protected region (shaded 6 
in blue) and the layouts of the intra-regional and perimeter intersections. Each link in the network has a 7 
length of 500m and each vehicle is 5m long. The free flow speed of each lane is set to 50 km/h while the 8 
saturation flow is 1800 veh/h/lane. 9 

 10 

 11 
Fig. 1. The simulated single-region urban network. 12 

 13 
The simulation step is set to 1s. All intersections in the network are signalized, and the perimeter 14 

intersections adopt a shared cycle length of 90s (i.e., Δ𝑇𝑇 = 90s). Using default signal plans created by 15 
SUMO, strong demands were assumed initially to congest the network and to obtain the MFD plot; the 16 
critical accumulation for the network was determined to be 3000 veh. The minimum and maximum green 17 
times are respectively 5s and 87s. The BB policy alternates the green times between these two values 18 
depending on if the region is congested or not (by comparing the accumulation to the critical value). The 19 
U-RL sets the green times at the perimeter intersections by choosing the ratio of green time during a signal 20 
cycle, with minimum and maximum green times as constraints. In contrast, the NC policy mimics the status 21 
quo (no perimeter control) and uses the maximum green time throughout the simulation. The intra-regional 22 
intersections are either controlled by the MP policy or the L-RL agent or adopt a fixed-time (FT) signal 23 
plan. The FT plan, MP, and L-RL policies all share the same set of phases to make sure the simulation 24 
results are comparable, but their sequence order and duration may differ. No offset is assumed as it is 25 
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inconsequential to the network-level performances in grid networks (39). The signal control interval is set 1 
to Δ𝑡𝑡 = 10s for the MP policy or L-RL (hence 𝑁𝑁𝑡𝑡 = 9), but the FT plan assumes cycle length of 90s. 2 

Origins are even distributed across the entire network, whereas the destinations are only placed 3 
inside the protected region. A strong directional demand is assumed from outside of the region; see Fig. 2. 4 
This demand is adopted to simulate scenarios where perimeter control is the most helpful, i.e., to protect 5 
destination-loaded regions from over-saturation. The strong demand lasts for 90 minutes as followed by a 6 
recovery period of 30 minutes. The total simulation time is 2 hours and thus 𝑁𝑁𝑇𝑇 = 80. Each of the total 7 
demands (e.g., from outside to inside of the region) is evenly assigned to all associated origin-destination 8 
pairs. In microsimulation, the traffic and vehicle behaviors will exhibit variability (e.g., the exact times 9 
when vehicles are inserted into the network, the initial routes of the vehicles, and/or the vehicle speeds) 10 
during each simulation instance, depending on the random number generation process. For this reason, 11 
multiple random seeds were used to enhance simulation realism. The simulated vehicles are initially routed 12 
using the stochastic C-logit route choice model (40), and a subset of the vehicles (60%) were assumed to 13 
be able to adaptively reroute themselves based on prevailing traffic to mimic more realistic driving patterns. 14 
This adaptive rerouting has been shown helpful to network-wide operational performances (20, 21), and in 15 
this work it happens at regular intervals of 3 minutes. 16 

 17 

 18 
Fig. 2. Traffic demands profile. 19 

 20 
Experiment Results 21 
The objective of the joint control framework is to maximize network throughput, as indicated by the 22 
cumulative trip completion (CTC). The proposed MS-RL scheme is a learning-based method, and its 23 
effectiveness can be evaluated using learning curves that express the evolution of CTC over training 24 
iterations; see Fig. 3. The baseline methods have constant CTCs as they do not iteratively update their 25 
policies, and the bands reflect the randomness in the simulation. As can be observed, the proposed MS-RL 26 
scheme can effectively learn to realize performances directly comparable to the BB+MP policy. This is 27 
notable since the BB controller is a proven method for single-region perimeter control whereas the MP 28 
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policy is an effective decentralized signal controller with proven ability of throughput maximization. Note, 1 
though, both the U-RL and L-RL agents in the MS-RL scheme start their learning processes entirely from 2 
scratch, with completely random exploration of the environment, so the performances are inferior initially 3 
(only slightly better than NC+FT) and improve as the agents learn. 4 

 5 

 6 
Fig. 3. Learning curve of the MS-RL scheme for single-region networks. 7 

 8 
Fig. 4 presents the cumulative count curves by the MS-RL scheme and baseline methods, where 9 

“Exit” indicates the cumulative number of exited vehicle (i.e., cumulative trip completion) and “Entry” the 10 
cumulative number of vehicles that either are generated within the region from traffic demands or arrive 11 
from outside of the region. The vehicle generation from traffic demands is identical across methods, as the 12 
demands are the same and those trips are not metered, while the vehicle arrival is influenced by the control 13 
policy. As Fig. 4 shows, without perimeter control (NC at the upper level), using the MP policy at the lower 14 
level yields much higher cumulative vehicle entry and trip completion than FT, which shows the MP policy 15 
is much more effective at reducing traffic congestion than FT. However, the overall trip completion 16 
obtained by MP alone is rather modest as it cannot handle oversaturated conditions well, a situation that 17 
can be remedied by using BB policy at the upper level. The BB policy acts upon the regional congestion 18 
level and limits vehicle arrival from outside of the region as the region gets congested. The delayed vehicle 19 
arrival thus mitigates congestion within the region, which allows for a higher trip completion and more 20 
vehicle arrival later on. Yet, such effects cannot be realized by the BB policy alone (i.e., BB+FT), and the 21 
combination of BB policy at the upper level and MP at the lower level leads to the highest cumulative 22 
vehicle entry and trip completion among the baseline methods. Comparisons between the curves by BB+MP 23 
and MS-RL imply a great extent of similarity, suggesting the competitiveness of the proposed scheme. The 24 
areas between the cumulative entry and exit curves represent the total travel times of all vehicles throughout 25 
the simulation. From this, one could conclude the MS-RL scheme realizes the smallest total travel time 26 
among all control methods. In a similar fashion, the differences between the cumulative count curves 27 
indicate the regional accumulation, and one could see the MS-RL scheme has the steadiest accumulation. 28 
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 1 

 2 
Fig. 4. Cumulative count curves. 3 

 4 
To evaluate the learning robustness of the proposed MS-RL scheme, several types of environment 5 

uncertainties are considered and infused in the simulation process during each of the training iterations. The 6 
uncertainties include measurement noise of the regional accumulation, where the accumulation information 7 
perceived by the MS-RL (in its upper- and lower-level state designs) is assumed inaccurate, and such 8 
inaccuracy follows a mean-zero normal distribution:  9 

𝑑̃𝑑(𝑡𝑡) = 𝑑𝑑(𝑡𝑡) + ℕ(0,𝜎𝜎2) (6) 10 

where 𝑑̃𝑑(𝑡𝑡)  is the perceived accumulation, 𝑑𝑑(𝑡𝑡)  is the accurate accumulation, and 𝜎𝜎  is the standard 11 
deviation of the normal distribution used to denote the level of measurement noise. The uncertainties also 12 
involve identification errors of vehicle count on each lane, which are also in the form of a mean-zero normal 13 
distribution and are intended to simulate widespread count discrepancies that happen on each lane of the 14 
network. Note that such errors impact vehicle counts not only to a large spatial extent (the whole network) 15 
but also at an extremely high frequency (every 10s at which the L-RL agent utilizes the vehicle count 16 
information). Hence, the magnitude of the errors is much smaller than measurement noise.  17 

 Fig. 5 provides the learning curves for the MS-RL scheme when there are both measurement noise 18 
of accumulation and identification errors of vehicle count in the environment. The noise and error are added 19 
independently to the respective measurements (accumulation and lane-level vehicle counts), and in Fig. 5 20 
their combinations are indicated in the subplot titles. As shown in the figure, the MS-RL scheme can still 21 
realize remarkable control benefits that are comparable to BB+MP, though the learning performances start 22 
to deteriorate with higher identification errors. This is even more notable given that the L-RL receives 23 
inaccurate accumulation and vehicle counts every Δ𝑡𝑡 = 10s in the case of combined uncertainties. 24 

 25 
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 1 
Fig. 5. Learning curves against combined measurement noise and identification errors. 2 

 3 
JOINT CONTROL FOR TWO-REGION NETWORKS 4 

In this section, the MS-RL scheme is applied for joint perimeter and signal control on a two-region network. 5 
The improved greedy control (I-GC) policy is combined with the MP policy or FT signal plan as baselines. 6 

 7 
Two-Region Urban Network Setup 8 
The simulation setup of the two-region network follows that detailed in (18). In particular, the network has 9 
a larger periphery region 𝑅𝑅1 encompassing a smaller city center 𝑅𝑅2 (see Fig. 6), and the two regions are 10 
connected via two-directional linking roads where perimeter control can be implemented and queued 11 
vehicles can be temporarily stored. Initial simulations are run with strong demands to obtain the MFD plots 12 
as well as proper values for the I-GC policy parameters (for example the cutoff points used to categorize 13 
the congestion levels). The results suggest the trip completion rate peaks at accumulations around 5000 14 
(region 1) and 1500 (region 2) respectively, and region 1(2) is classified as severely congestion if its 15 
accumulation is larger than 8000(2000) veh. Moreover, following the same line of reasoning in (18), the 16 
green times are set to 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 0𝑠𝑠,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 10𝑠𝑠,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 87𝑠𝑠 at the perimeter intersections. The I-GC policy, 17 
as well as the U-RL agent, selects among combinations of {𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚} × {𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚} to 18 
determine the green times allocated to vehicles in each direction of travel. For the two-region network, 19 
origins and destinations are uniformly distributed inside each region, with inter-regional traffic demands 20 
for both directions; see Fig. 7 where traffic demands last for 60 minutes followed by a recovery period of 21 
30 minutes. The total simulation time is 90 minutes hence 𝑁𝑁𝑇𝑇 = 60.  22 
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 1 
Fig. 6. The simulated two-region urban network. 2 

 3 

 4 
Fig. 7. Demand profiles for two-region networks. 5 

 6 
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Experiment Results 1 
The learning curve of the MS-RL scheme is provided in Fig. 8, together with the CTC values of the baseline 2 
methods. Similar observations and conclusions can be drawn as in Fig. 3. However, the two-region network 3 
has significantly more intra-regional intersections and a higher degree of interdependencies between them; 4 
thus, the learning curve is more fluctuant compared to the single-region counterpart. 5 

 6 

 7 
Fig. 8. Learning curve of the MS-RL scheme for two-region networks. 8 

 9 
The learning robustness of the MS-RL scheme against combined measurement noise of regional 10 

accumulation and identification errors of vehicle counts is also examined here (see Fig. 9). Note, in this set 11 
of experiments, the levels of noise and errors are comparatively smaller than in single-region control to 12 
account for increased network size (and number of signal control intersections). As shown, despite a lot 13 
noisier learning curves (due to more intersections that are prone to identification errors and more 14 
accumulation values that are inaccurate), the MS-RL can still compete with (or outperform) the I-GC+MP. 15 

 16 
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 1 
Fig. 9. Learning curves against combined measurement noise and identification errors. 2 

 3 
Finally, a test is conducted where a partial implementation of the MP policy or the L-RL agent at 4 

the lower level is considered, i.e., only a subset of intersections are controlled by MP or L-RL, as similar 5 
to (28). Here, the ratio of local intersections managed by MP or L-RL is altered from 10% to 90%, while 6 
0% and 100% respectively denotes FT and MP or L-RL. For each control ratio, 10 random configurations 7 
are generated which indicate the random subsets of local intersections to be managed by MP or L-RL. The 8 
baseline methods are applied to each configuration under each control ratio and the overall performances 9 
are expressed using boxplots (excluding FT methods that are not affected by different MP or L-RL control 10 
ratios); see Fig. 10. The learning curves of the MS-RL scheme under different L-RL control ratios are 11 
shown in Fig. 11, where the one with 100% L-RL ratio (subplot (f), which is the same as Fig. 8) is also 12 
included for perspective. As shown, irrespective of the control ratio, the MS-RL can always learn to 13 
compete with the I-GC+MP. Critically, the results show that, in practice one only needs to control a subset 14 
of the local intersections (e.g., 50%) using the MP policy or L-RL. In this way, notable control benefits can 15 
still be obtained, while enjoying a much lower data collection and computation cost as well as infrastructure 16 
requirement. These observations thus emphasize the practical applicability of the MS-RL scheme. 17 

 18 
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 1 
Fig. 10. Performances of the baseline methods under each MP control ratio. 2 

 3 

 4 
Fig. 11. Learning curves for each L-RL control ratio. 5 

 6 
CONCLUDING REMARKS 7 

This paper presents a multi-scale deep reinforcement learning approach for the joint perimeter and signal 8 
control problem in urban networks. Using established techniques like parameter sharing and independent 9 
learning, the method exhibits excellent control effectiveness and learning robustness. Specifically, the 10 
method has been shown effective at regulating traffic and mitigating congestion in simulated single- and 11 
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two-region networks. It can also readily conduct learning in the presence of environment uncertainties like 1 
measurement noise of regional accumulation and identification errors of vehicle counts. Further, to alleviate 2 
the data and computation requirements associated with full-scale local signal control in larger urban 3 
networks, the method has been shown capable of learning under a partial control configuration at the local 4 
intersections. In all cases, the method can compete with and often times outperform a baseline with the max 5 
pressure policy at the lower level and established perimeter controllers at the upper level. This joint control 6 
framework holds promise for efficient city-level traffic management and contributes ultimately to emerging 7 
intelligent transportation systems, with a learning-based design (not built upon heuristic rules) and 8 
comprehensive (featuring perimeter and signal control) yet fully implementable policies. Extensions to this 9 
work should consider examining the effectiveness of the MS-RL scheme in multi-region networks. 10 
Comparisons to methods with networked reinforcement learning agents should also be a research priority. 11 
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