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Abstract

We propose VecKM, a local point cloud geom-
etry encoder that is descriptive and efficient to
compute. VecKM leverages a unique approach by
vectorizing a kernel mixture to represent the local
point cloud. Such representation’s descriptiveness
is supported by two theorems that validate its abil-
ity to reconstruct and preserve the similarity of
the local shape. Unlike existing encoders down-
sampling the local point cloud, VecKM constructs
the local geometry encoding using all neighbor-
ing points, producing a more descriptive encod-
ing. Moreover, VecKM is efficient to compute
and scalable to large point cloud inputs: VecKM
reduces the memory cost from (n2 + nKd) to
(nd + np); and reduces the major runtime cost
from computing nK MLPs to n MLPs, where
n is the size of the point cloud, K is the neigh-
borhood size, d is the encoding dimension, and
p is a marginal factor. The efficiency is due to
VecKM’s unique factorizable property that elimi-
nates the need of explicitly grouping points into
neighbors. In the normal estimation task, VecKM
demonstrates not only 100x faster inference speed
but also highest accuracy and strongest robustness.
In classification and segmentation tasks, integrat-
ing VecKM as a preprocessing module achieves
consistently better performance than the PointNet,
PointNet++, and point transformer baselines, and
runs consistently faster by up to 10 times.

1. Introduction
The ubiquity and low cost of 3D sensors have drawn in-
creased interest in the usage of three-dimensional point
clouds for tasks such as autonomous driving (Sen et al.,
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Figure 1. Our VecKM encoding is descriptive, robust to noise, and
efficient in runtime and memory cost. Upper Left: Raw VecKM
encodings, without any training, already capture rich geometric fea-
tures such as orientations and shapes. Lower Left: Under varying
levels of noise, VecKM encodings remain highly consistent. Up-
per Right: Existing encoders face memory costs of (n2 + nKd),
while VecKM costs only (nd+ np) memory. Existing encoders
compute nK MLPs, whereas VecKM only computes n MLPs.
Lower Right: VecKM is 10x∼100x faster than existing encoders
in wall-clock time and scalable to large point cloud inputs.

2023), robotics (Zampogiannis et al., 2019), and remote
sensing (Lu et al., 2020; Chen et al., 2022).

In point cloud analysis, encoding local geometry is a funda-
mental step. In both low-level tasks such as feature match-
ing and normal estimation, and high-level tasks such as
classification, segmentation, and detection, encoding local
geometry is usually required before passing the point cloud
into any deep network. Much effort has been placed into
the design of local geometry encoders, which can be loosely
divided into two categories: hand-crafted features and learn-
able encoders. Hand-crafted features (Han et al., 2023)
are manually defined features based on domain expertise,
and learnable encoders require computationally expensive
processing through trainable structures such as multi-layer
perceptrons (MLP) (Qi et al., 2017a; Ma et al., 2022) or
convolutions (Li et al., 2018; Thomas et al., 2019).
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These local geometry encoders follow a similar pipeline.
They first group the input point cloud into neighborhoods
and then process each neighborhood individually. As il-
lustrated in Figure 1 (upper right), the pipeline involves
computing the mutual distance between points. Then for
each point, a number of K points are sampled from its neigh-
borhood, and MLP or convolution are used to transform the
sampled neighborhood. In this pipeline, grouping the point
cloud into neighborhoods requires n2 time and space, and
the MLP-based architectures, in particular, requires a se-
quence of MLPs to transform nK vectors and reaches an
intermediate stage of (n,K, d). The pipeline results in bot-
tlenecks in both computation and memory. Consequently,
they usually resort to downsampling the local point clouds
(i.e. reducing K), which can lead to inadequate representa-
tion of the local point cloud.

In this work, we address the computation and memory bottle-
necks faced by the existing encoders, reducing the memory
cost from (n2 + nKd) to (nd+ np) and only computing n
MLPs. Besides, our representation is constructed from all
the neighboring points without downsampling, and hence is
more descriptive. Our approach is inspired by Frady et al.
(2022); Yuan et al. (2023), which converts continuous func-
tions into fixed-length vectors. Building on this concept, we
introduce VecKM, which conceptualizes local point clouds
as kernel mixtures (a form of continuous function) and vec-
torizes them. Under this formulation, we prove the local
geometry encoding is reconstructive and isometric to the
local point cloud, which guarantees the descriptiveness of
the representation. One essential advantage of VecKM is its
factorizable property, which eliminates the need of explicitly
grouping the neighborhoods and reuses many computations.

The VecKM encodings can subsequently be passed to deep
cloud point models, such as PointNet++ (Qi et al., 2017b)
and transformers (Vaswani et al., 2017). VecKM’s light
representation and ease of computation significantly speed
up the inference, while still achieving on-par or improved
performance than other networks in classification and seg-
mentation tasks. Our contributions are summarized below:

• We present VecKM, a local geometry encoder that is de-
scriptive and efficient. VecKM costs only nd+np memory
and computes only n MLPs. This is achieved through a
novel approach of vectorizing kernel mixtures, coupled
with its unique factorizability. VecKM is the only existing
local geometry encoder that costs linear time and space.

• Unlike existing encoders downsampling the local point
cloud, VecKM constructs the local geometry encoding us-
ing all neighboring points, and hence is more descriptive.

• We evaluate our VecKM on multiple point cloud tasks. In
normal estimation, VecKM is > 100x faster and achieves
> 16% lower error than other widely-used learnable en-
coders and demonstrates the strongest robustness against

different types of data corruption. In classification and
segmentation tasks, integrating VecKM as a preprocessing
module achieves consistently better performance than the
PointNet, PointNet++, and point transformer baselines,
and runs consistently faster by up to 10 times.

2. Related Work
2.1. Local Geometry Encoder

The initial processing of raw point cloud data, an unordered
collection of points, typically begins with the extraction of
local geometric features. This step is essential before any
further processing can occur. Existing methods for encoding
local geometry can generally be categorized into two groups:
hand-crafted features and learning-based encoders. All the
encoders require grouping point clouds into neighborhoods.

Hand-Crafted Features are manually defined features that
describe the local geometry. Domain expertise of the point
cloud dataset and the task of interest are usually needed for
constructing those features. We refer the reader to Han et al.
(2023) for a comprehensive survey of hand-crafted features.

Histogram-based features represent a significant category
within hand-crafted features, which transform the local point
cloud into specific coordinate systems such as Cartesian
(Prakhya et al., 2017), polar (Ge, 2016), star-shaped (Steder
et al., 2010). Then the coordinate system is quantized, and
the local point cloud is binned accordingly. The resulting
feature is formed by concatenating the histograms. While
these features induce minimal information loss, the resolu-
tion of the point cloud affects the quality of such features.

Statistics-based features form another category within hand-
crafted features, which construct statistical descriptors from
geometric parameters. Examples include eigenvalues (Van-
dapel et al., 2004), covariance (Fehr et al., 2012), normal
orientation distribution (Triebel et al., 2006), angles be-
tween normals (Rusu et al., 2008), local umbrella shapes
(Ran et al., 2022). These types of features can include rich
geometric features and easily achieve rotation invariance.
But they tend to be lossy and are often not robust to noise
and variations in density.

Learning-Based Encoders transform the raw local point
clouds into fixed-length vectors through trainable networks.
These encoders can be broadly categorized into MLP-based
encoders and convolution-based encoders.

MLP-based encoders use MLPs to transform the local point
cloud and use max-pooling to cast the point cloud into a
fixed-length vector. These operations can be performed
repeatedly to retrieve deep point cloud features (Qi et al.,
2017b). Examples of MLP-based encoders include PointNet
(Qi et al., 2017a), CurveNet (Xiang et al., 2021), PointMLP
(Ma et al., 2022). MLP-based encoders are usually faster
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to compute than convolution-based ones. But they require
computing an intermediate step of (n,K, d) to perform the
max-pooling operation. So they induce high memory cost
when the input size n and the neighborhood size K is large.

Convolution-based encoders use point or edge convolu-
tion to transform the local point cloud into a fixed-length
vector. Examples include KPConv (Thomas et al., 2019),
PointCNN (Li et al., 2018), PointConv (Wu et al., 2019),
SpiderCNN (Xu et al., 2018). Convolution-based encoders
are more expensive to compute, but they do not encounter
the memory bottleneck faced by MLP-based encoders.

VecKM is both a hand-crafted feature and a learning-based
encoder. It not only captures the geometric features, but
also faithfully encodes the point distribution. This duality
allows VecKM to leverage the strengths of both approaches.

2.2. Point Cloud Architectures

We describe two major families of architectures for process-
ing point clouds: PointNet++ and transformers. VecKM, as
to be shown later, is compatible with both architectures.

PointNet++ (Qi et al., 2017b) utilizes hierarchical neural
layers to capture fine geometric details at multiple scales.
Within each layer, PointNets are utilized to transform the
features. Many works have been done to improve the archi-
tecture. Examples include using different learning-based
local geometry encoders, as introduced in Section 2.1, and
improving the neighborhood grouping strategies (Xiang
et al., 2021; Yan et al., 2020). PointNet++ and its derivatives
tend to be faster than but less accurate than transformers.

Transformers. Given their success on a wide variety of
vision tasks, along with their tolerance to permutations,
many transformer-based models have been proposed for 3D
point cloud processing. Models such as PCT (Guo et al.,
2021), 3CROSSNet (Han et al., 2022), and Point-BERT (Yu
et al., 2022) apply transformer blocks to individual points
to extract global information. Other models such as Point
Transformer (PT) (Zhao et al., 2021), Pointformer (Pan
et al., 2021), and the Stratified Transformer (Lai et al., 2022)
process local patches to extract local feature information.
However, transformer-based models can suffer from compu-
tational and memory bottlenecks (Han et al., 2023) as the
attention map increases in size.

3. Methodology
3.1. Problem Definition and Main Theorems

Problem Definition. Let the input point cloud be X =
{xk}nk=1. Denote the centerized neighbor of the point xk as
N(xk) := {xj − xk : ||xj − xk|| < r}. The output is the
set of dense local geometric features G = {gk}nk=1, where
gk = E

(
N(xk)

)
∈ Cd. We look for an encoder E that

maps the local point cloud into a fixed-length vector, which

“captures the underlying shape” sampled by the point cloud.

To better formalize the heuristic expression of “capturing
the underlying shape”, we think of the local shape around
the point xk as a distribution function fk : R3 → R+,
where fk(x) gives the probability density that a point x is
on the local shape. We then think of the centerized local
point cloud N(xk) as random samples from the distribu-
tion function fk. We expect the local point cloud encoding
E
(
N(xk)

)
∈ Cd to represent the distribution function fk.

For a good representation, we consider two natural proper-
ties: 1. the distribution function can be reconstructed from
the encoding; 2. the correlation of the distribution functions
is preserved by the similarity of the encodings.

Pointwise Local Geometry Encoding. Under the problem
definition, we present the formula for encoding the local
geometry around a single point. Unless specified otherwise,
all input points xj are assumed to be three-dimensional.

Theorem 1 (Pointwise Local Geometry Encoding). Denote
the neighbors of the point x0 as N(x0) := {xk − x0}nk=1.
The local geometry encoding of x0 is computed as

EA

(
N(x0)

)
=

1

n

n∑
k=1

exp
(
i(xk − x0)A3×d

)
(1)

where i is the imaginary unit and A ∈ R3×d is a fixed ran-
dom matrix where each element follows the normal distribu-
tion N (0, α2). As to be shown in Section 3.2, EA

(
N(x0)

)
is fundamentally vectorizing a kernel mixture about N(x0),
so we name the encoding VecKM. Next, we present two
propositions that claim VecKM encoding produces a good
representation of the local shape:

Proposition 1 (Reconstruction). WLOG, let f be the dis-
tribution function characterizing the local shape of 0, X =
{xk}nk=1 be the random samples drawn from the distribution
function f , and gn = 1

n

∑n
k=1 exp

(
ixkA

)
be the VecKM

encoding given by Eqn. (1). A ∈ R3×d is a fixed matrix
whose entries are drawn from N (0, α2). Then at all points
x where f(x) is continuous, as n→∞ and α2 → 0,

⟨gn, exp(ixA)⟩ → f(x)

where ⟨·, ·⟩ denotes the inner product between two complex
vectors. The proposition states that under a suitable selec-
tion of the parameter α2, the distribution function f can be
approximately reconstructed from the VecKM encoding gn.

Proposition 2 (Similarity Preservation). Let f1, f2 be two
distribution functions characterizing two local shapes and
X1, X2 be the random samples from the two distribution
functions. g1, g2 are the VecKM encodings given by Eqn.
(1) with X1, X2 as inputs. A is a fixed matrix whose entries
are drawn from N (0, α2). Then the function similarity is
preserved by the VecKM encodings: as n→∞ and α2 → 0,

⟨g1,g2⟩ → ⟨f1, f2⟩ =
∫
R3

f(x)g(x)dx
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where ⟨·, ·⟩ denotes the inner product between two complex
vectors. The proposition states that under a suitable selec-
tion of the parameter α2, the correlation of functions (i.e.
shapes) is approximately preserved by the VecKM encoding.

In brief, Theorem 1 presents the formula for encoding the
local geometry around a single point. Proposition 1, 2 assert
that VecKM well represents the underlying local geome-
try. In Section 3.2, we will explain the mechanism behind
Theorem 1 and prove Proposition 1, 2 in detail.

Dense Local Geometry Encoder With Eqn. (1), we can
already compute the local geometry encoding for each point
individually by grouping their neighborhoods. However,
VecKM has a unique factorizable property that enables us
to reuse computations and eliminate the intermediate step:

Theorem 2 (Dense Local Geometry Encoding). Denoting
the input point cloud as a matrix Xn×3 = [x1;x2; · · · ;xn],
the dense local geometry encoding Gn×d is computed by

An×d = exp(iXn×3A3×d)

Bn×p = exp(iXn×3B3×p)

Gn×d = normalize
(
(B × BH ×A) ./A

) (2)

where A and B are two random fixed matrix whose entries
are drawn from N (0, α2) and N (0, β2). × denotes the ma-
trix multiplication, and ./ denotes the elementwise division.
As to be explained in Section 3.3, computing the dense lo-
cal geometry encoding using Eqn. (2) has almost the same
effect as computing the pointwise local geometry encoding
using Eqn. (1). However, Eqn. (2) only takes Θ(npd) time
and (np+ nd) space to compute, where p, to be shown, is
a marginal factor. The computation graph is visualized in
Figure 1 (upper right).

Structure of Proof. In Section 3.2, we explain the mecha-
nism behind Theorem 1 and prove our assertion that VecKM
produces a good representation of the local geometry. In
Section 3.3, we explain why Eqn. (2) has almost the same
effect as Eqn. (1) and the mechanism behind Theorem 2.
In Section 3.4, we introduce how to incorporate VecKM
encodings into deep point cloud architectures.

3.2. Pointwise Local Geometry Encoder

In this section, we introduce why VecKM (Eqn. 1) produces
a good representation of the local geometry. The key idea, as
illustrated in Figure 2, is that (i) VecKM vectorizes a Gaus-
sian kernel mixture associated with the local point cloud,
where (ii) the associated kernel mixture can approximate
the local shape distribution function. Therefore, VecKM
effectively represents the local shape. We will separately
validate assertion (i) and (ii).

(i) VecKM vectorizes a kernel mixture. We first present a
lemma stating that VecKM embodies a Gaussian kernel G:

sample

reconstructive
isometric

compute

reconstruction from 

Point Cloud

Gaussian Kernel Mixture

Shape Distribution Function

VecKM Encoding

compute by Eqn.(1)approximate

Figure 2. Theoretical outline of VecKM illustrated by 2d shapes.
A point cloud, sampled from a shape distribution function, is
associated with a Gaussian kernel mixture and a corresponding
VecKM encoding, where the VecKM encoding is proved to be
reconstructive and isometric to the Gaussian kernel mixture. Since
the Gaussian kernel mixture can approximate the shape function,
the VecKM encoding yields a good representation of the shape.

Lemma 1 (VecKM embodies a Gaussian kernel). Let x,y ∈
R3, A ∈ R3×d. All elements in A are drawn from normal
distribution N (0, α2). Then as d→∞,

1

d
⟨eixA, eiyA⟩ → Gα(x,y) := exp

(
− α2||x− y||2

2

)
Lemma 1 is a corollary from the Bochner’s theorem
(Bochner, 2005; Rahimi & Recht, 2007). We provide a
detailed proof in Appendix A. Importantly, the Gaussian ker-
nel G is approximated by the inner product of finite-length
vectors eixA and eiyA. This approximation is important in
vectorizing the kernel mixture and ensures the reconstruc-
tive and isometric properties in Proposition 1, 2, as detailed
in the subsequent two lemmas. Unless otherwise specified,
all entries in A are drawn from N (0, α2) and G means Gα.
The proofs are borrowed from Frady et al. (2022).
Lemma 2 (Reconstruction). Let g = 1

n

∑n
k=1 exp(ixkA)

be the VecKM encoding, where all entries in A ∈ R3×d

are drawn from N (0, α2). f̂(x) = 1
n

∑n
k=1 Gα(x,xk)

be the associated Gaussian kernel mixture. Then
⟨exp(ixA),g⟩ → f̂(x) as d→∞.

The lemma is derived from the linearity of the inner product:

⟨exp(ixA),g⟩ = 1

n

n∑
k=1

⟨exp(ixA), exp(ixkA)⟩

→ 1

n

n∑
k=1

G(x,xk) = f̂(x)

The lemma states that the Gaussian kernel mixture can be
approximately reconstructed from the VecKM encoding g,
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which theoretically shows that VecKM is equivalent to the
Gaussian kernel mixture when d is large.

Lemma 3 (Similarity Preservation). Let g1, g2 be two
VecKM encodings and f1, f2 be their associated Gaussian
kernel mixtures. Then ⟨g1,g2⟩ → ⟨f1, f2⟩ as d→∞.

The lemma states that the VecKM encoding preserves the
similarity/correlation between kernel mixtures, which fur-
ther verifies that the encoding is not only equivalent but also
isometric to the Gaussian kernel mixture. The lemma is
derived from the linearity of integration:

⟨f1, f2⟩ =
∫
x∈R3

( 1

n

n∑
p=1

G(x,xp)
)( 1

m

m∑
q=1

G(x,x′
q)
)
dx

=
1

mn

∑
p,q

∫
x∈R3

G(x,xp)G(x,x′
q)dx

=
1

mn

∑
p,q

G(xp,x
′
q)← ⟨g1,g2⟩

Lemma 1-3 complete the argument that the VecKM encod-
ing is equivalent and isometric to the kernel mixture when d
is large. In practice, the selection of d is independent of the
size of the point cloud. d as small as 256 yields good encod-
ing in many scenarios, for example, in our experiments.

Figure 3. Visualization of Gaus-
sian kernel G and its approxima-
tion with Lemma 1.

(ii) The Gaussian kernel
mixture associated with
the point cloud approxi-
mates the shape function.
This is derived from the
one-class support vector
machine (SVM). The input
to the one-class SVM is
a collection of points and
a user-defined kernel func-
tion, where the Gaussian
(a.k.a. radial basis function) kernel is a common choice.
The output of the one-class SVM is a kernel mixture which
estimates the distribution of the input point set. Schölkopf
et al. (1999) proves that with an appropriately chosen param-
eter α2 (defined in Lemma 1), a Gaussian kernel mixture
can approximate the distribution function. This validates the
assertion that the kernel mixtures associated with VecKM
can approximate the shape distribution function. Coupled
with Lemma 2, 3, we prove Proposition 1, 2, which reveal
that VecKM effectively represents the local geometry.

3.3. Dense Local Geometry Encoder

In the previous section, we explained why Eqn. 1 well
represents the underlying local shape. In this section, we
introduce the unique factorizable property that enables effi-
cient computation of the dense local geometry encoding.

The geometry encoding in Eqn. (1) can be factorized into:

EA

(
N(x0)

)
=

1

n

n∑
k=1

exp
(
i(xk − x0)A3×d

)
=

1

n

[ n∑
k=1

exp(ixkA)
]
./ exp(ix0A)

Under this observation, we can write the dense local geome-
try encoding in terms of matrix computation:

An×d = exp(iXn×3A3×d)

Gn×d = [Jn×nAn×d] ./An×d

(3)

Jn×n is the adjacency matrix of the point cloud Xn×3,
where J[j, k] = 1 if ||xj − xk|| < r and 0 otherwise.
Under this formulation, we still require n2 time and space
to compute the adjacency matrix J and (n2d) FLOPs to
compute G. But one important idea can be applied to speed
up the computation: Instead of adopting a sharp threshold r
to define the adjacency relation, we employ an exponential
decay function to establish this relationship:

Ĵ[j, k] = exp(−β2||xj − xk||2/2)

where Ĵ[j, k] decays from 1 to 0 as ||xj − xk|| increases
and the parameter β controls the speed of decaying. As
comparison, J[j, k] drops sharply from 1 to 0 when ||xj −
xk|| reaches > r. The parameter β in Ĵ has the same
functionality as the parameter r in J, which is controlling
the receptive field of the local neighbors. Arguably, J and Ĵ
behave similarly and it is natural to substitute J with Ĵ in
Eqn. (3). The motivation of this substitution is that Ĵ can
be factorized into a matrix multiplication:

Bn×p = exp(iXn×3B3×p)

Ĵn×n ← B × BH as p→∞

where all entries in B ∈ R3×p follow N (0, β2). Such
approximation is, again, guaranteed by Lemma 1. With
such approximation, Eqn. (3) can be rewritten as

Gn×d = [Ĵn×nAn×d] ./An×d

≈ [Bn×p × (BH ×A)p×d] ./An×d

By computing BH×A first, the computation cost is reduced
to Θ(npd). A large point cloud size usually requires a
larger p to reduce the noise, but the value p is much smaller
than n. For a point cloud with size 100k, p = 4096 is
sufficient. A large p improves the quality of the encoding,
but does not increase the size of the encoding, and hence
does not increase the cost of subsequent processings. Such
approximation-and-factorization trick is inspired from Peng
et al. (2021), which accelerates the attention computation in
transformers. This concludes the proof of Theorem 2.
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Effect of α and β. We perform a qualitative analysis of the
effect of the parameters α and β in Theorem 2. In short,
α controls the level of details and β controls the receptive
field of the local neighbor. As illustrated in Figure 8, when
α is larger, more high-frequency details are preserved in
the encoding, and meanwhile the local geometry encodings
tends to be dissimilar to each other. A larger α is usually
preferred in tasks that require refined local geometry, such
as normal estimation. A smaller α is usually preferred in
high-level tasks, such as classification and segmentation.
For β selection, we provide a table in Appendix D, which
shows a matching between the neighborhood radius and the
corresponding β value. More quantitative analysis will be
presented in Section 5.

Effect of d and p. The parameters d and p control the
quality of the encoding. Higher values lead to better quality
of encoding. Figure 9 provides the qualitative analysis.

Uniqueness of VecKM. VecKM cannot be established with-
out two important properties: 1. VecKM embodies a kernel
function (Lemma 1); 2. VecKM is factorizable. Importantly,
the family of exponential functions is the only family of
functions that has the factorizability property with respect
to multiplication and division: f(x− y) = f(x)/f(y). But
if we use the real exponential functions, the computation is
not numerically stable, and meanwhile, the inner product
between the constructed vectors will not induce a kernel,
i.e. Lemma 1 will not hold. Therefore, VecKM is the only
choice to enable both properties, i.e. both being factorizable
and inducing a kernel function. Therefore, we conjecture
that VecKM may be the only possible linear local geometry
encoder. Fortunately, we are blessed with the advantages
offered by complex vectors, which provide the necessary
descriptiveness and efficiency for VecKM.

3.4. VecKM in Point Cloud Deep Learning

VecKM can seamlessly be integrated into widely-used deep
point cloud architectures, including PointNet (Qi et al.,
2017a), PointNet++ (Qi et al., 2017b), and transformers
(Guo et al., 2021; Zhao et al., 2021). Typically, these ar-
chitectures compute the dense local geometry in the first
layer, often utilizing mini-PointNet or sequences of KP-
Convs (Thomas et al., 2019). To use VecKM in those ar-
chitectures, we simply replace the dense local geometry
modules with our VecKM encodings.

Note that VecKM produces complex vector outputs. To
effectively utilize this in subsequent layers, we employ a
series of complex linear layers and complex ReLU layers
(Trabelsi et al., 2017) to process the encodings. Finally, we
cast the complex vectors into real vectors by calculating the
squared norm of the complex vectors, thereby making the
output compatible with standard architecture requirements.
Figure 4 presents several examples of integrating VecKM

Pointwise MLP
Local Feature

PointNet Transformer
Local Feature Local Feature

Linear

BatchNorm

ReLU

Output 

Linear

BatchNorm

ReLU

Max(dim=0)

Output 

Attention

Linear

Norm

Output 

VecKM

ComplexLinear(d, d)

ComplexReLU()

ComplexLinear(d, d)

real^2 + imag^2

Local Feature 

Input Point Cloud 

Figure 4. VecKM can be seamlessly integrated into deep point
cloud architectures, improving both accuracy and efficiency.

into deep point cloud architectures, which are capable of
solving many tasks involving point cloud inputs. Appendix
B gives the elegant implementation of VecKM in PyTorch.

4. Experiments
We present extensive experiments to evaluate our VecKM
encoding. In Section 4.1, we present quantitative and quali-
tative analyses on the effectiveness, efficiency, robustness,
and scalability of the proposed VecKM encoding by solving
the low-level task of normal estimation. In Section 4.2-4.4,
we demonstrate the effectiveness and efficiency when in-
corporating VecKM into deep point cloud architectures to
solve high-level tasks. Depending on the input point cloud
size, we use different implementations (either Eqn. (2) or
Eqn. (3)) of VecKM to yield the better efficiency.

4.1. Normal Estimation on PCPNet Dataset

We compare our VecKM against other local geometry en-
coders in four dimensions: accuracy, computational cost,
memory cost, and robustness to noise. We select local point
cloud normal estimation as our evaluation task because of
its inherent challenges. This task requires the geometry en-
coders to adequately understand the local geometry. More-
over, it presents significant challenges in terms of memory
and time complexity, given the large number of points in the
input and the large number of neighboring points that need
to be considered. As to be shown, VecKM outperforms
other encoders in all four dimensions by large margins.

Dataset and Metrics. We use PCPNet (Guerrero et al.,
2018) as the evaluation dataset. PCPNet includes 8 shapes
in the training set and 19 shapes in the test set. Each shape is
sampled with 100,000 points and their ground-truth normals
are derived from the original meshes. PCPNet provides two
types of data corruption for testing: (1) point perturbations:
adding Gaussian noise to the point coordinates. (2) point
density variation: resampling the point cloud under two
scenarios, where gradient simulates the effects of varying
distances from a sensor and strips simulates the occlusion
effect. We use the root mean squared angle error (RMSE)
in degrees as the evaluation metrics.
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Table 1. Normal estimation RMSE on the PCPNet dataset.
Perturbations Density Variation AverageNone Low Med High Gradient Stripe

KPConv, #kp=16 22.68 23.09 25.21 29.05 34.40 25.61 26.67
KPConv, #kp=32 22.74 22.21 24.08 28.25 32.24 24.94 25.74
KPConv, #kp=64 22.09 22.12 23.90 28.45 28.60 24.05 24.86

DGCNN, #nbr=32 24.08 24.04 25.19 28.24 27.12 27.55 26.03
DGCNN, #nbr=64 23.21 25.34 25.66 26.01 28.86 28.20 26.21
DGCNN, #nbr=128 18.46 18.71 20.38 25.62 23.01 21.29 21.24

PointNet, #nbr=300 14.98 16.30 20.19 26.83 23.68 19.00 20.17
PointNet, #nbr=500 16.10 16.54 21.38 26.93 26.06 18.89 20.99
PointNet, #nbr=700 15.59 16.25 20.99 26.21 24.66 17.87 20.27

VecKM (Ours) 13.59 13.99 18.04 22.21 18.98 17.20 17.34

Compared Encoders. We compare our VecKM against
several widely-used local geometry encoders: PointNet (Qi
et al., 2017a), KPConv (Thomas et al., 2019) and DGCNN
(Wang et al., 2019). PointNet. The input point cloud is first
grouped into the shape of (n,K, 3) and transformed into
the shape of (n,K, d) by multi-layer perceptrons. Finally, a
maxpooling operation shapes the data into (n, d). K is the
number of neighboring points, which we attempt different
values. KPConv. KPConv convolutes the local neighbors
through a set of kernel points and transforms the convoluted
features through a fully-connected layer. KPConv has a
tunable parameter: the number of kernel points, which we
attempt different values. DGCNN models the neighboring
points as dynamic graphs and performs edge convolution
to aggregate the local feature. We adopt the architecture
in the original paper, which consists of five layers of edge
convolution. DGCNN has a tunable parameter: the number
of neighbors being convoluted, which we attempt different
values. VecKM (Ours): We adopt a multi-scale of α = 60
and β = [10, 20]. Since the size of the point cloud is large,
we implement VecKM by Eqn. (2). We set d as 256 and
p as 4096. We ensure the number of neighboring points
considered by each encoder to be within 500∼1000, which
is sufficient to estimate the local normals. After encoding the
local geometry, three layers of neural network are applied
to predict the normals.

Training Details. Each model is trained with a batch size of
200 for a total of 200 epochs. We use the Adam optimizer,
setting the learning rate at 10−3. For data augmentation,
Gaussian noise is added to the input point cloud. The input
point cloud and their normals are randomly rotated.

As shown in Table 1, VecKM achieves > 16% lower er-
rors than all the compared encoders and performs the
best under all data corruption settings. This reveals that
VecKM effectively captures the local geometry and is more
robust to input perturbation and density variation. The ef-
fectiveness of VecKM can be attributed to its reconstructive
and isometric properties, and its noise robustness is derived
from the robustness inherent in the kernel mixture. Figure 5
visualizes the explanation, which shows that even under cor-
ruptions, VecKM can still reconstruct local shapes and the

no noise
sim. = 1.0

med noise
sim. = 0.92

stripe
sim. = 0.85

gradient
sim. = 0.89

Figure 5. VecKM’s robustness to data corruptions. VecKM can
reconstruct the local shape under corrupted inputs. The VecKM
encodings remain highly similar under data corruptions.

VecKM encodings are consistent. In the case of the stripe
corruption setting, while the reconstruction may appear less
accurate, the downstream neural network compensates for
this discrepancy. This is evidenced by the relatively stable
RMSE of the stripe setting in Table 1, indicating that the
overall impact on performance is not substantial.

As shown in Figure 6, VecKM is > 100x faster than all
the compared encoders and is scalable to large point
cloud inputs. Even when the input size is as large as 100k,
VecKM only takes 150 ms to run. For memory cost, Point-
Net and DGCNN easily incur memory outrage when the
neighbor size K is large because they require an interme-
diate step of (n,K, d) to compute the encoding. KPConv
can be memory efficient through careful parallel program-
ming, but existing implementations are not scalable to the
settings we experiment with. VecKM, however, thanks to
its unique factorizable property, only costs less than 8GB
memory even with pure PyTorch implementation.

R
un

tim
e 

(m
s)

Input Point Cloud Size

Figure 6. Runtime of local geometry encoders under different input
point cloud size and neighbor size. All models are tested on an
RTXA-5000 with 24 GB memory. Dash lines mean the memory
is not sufficient to process all the points in one batch and has to
process the points batches by batches.

4.2. Classification on ModelNet40 Dataset

We evaluate our VecKM on 3D object classification using
the ModelNet40 dataset (Wu et al., 2015). We compare clas-
sification accuracy and inference time with the baselines.

Training Details. We use the same training setting for all
the methods. We use the official split with 9,843 objects for
training and 2,468 for testing. Each point cloud is uniformly
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sampled to 1,024 points. During training, random transla-
tion in [−0.2, 0.2], and random scaling in [0.67, 1.50] are
applied. We set the batch size to 32 and train the models for
250 epochs. We use the Adam optimizer, setting the initial
learning rate as 0.001, with a cosine annealing scheduler.
All models are trained and tested on an RTXA-5000.

Baselines. For our experiments, we select three widely-
used point cloud architectures: PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b) and the Point Cloud Trans-
former (PCT) (Guo et al., 2021). We integrate VecKM
encoding into these architectures as outlined in Sec. 3.4,
which involves adding or replacing the original local geom-
etry encoding modules with VecKM with α = 30, β = 6
and d = 256. Since the size of the point cloud is small, we
implement VecKM by Eqn. (3). We also compare VecKM-
based architectures with the another light-weight network
PointMLP (Ma et al., 2022).

Specifically, for PointNet, since it does not have a local ge-
ometry encoding module, we add the VecKM module before
the PointNet, which means the PointNet receives the geom-
etry encoding as input instead of the raw point coordinates.
Since we add (denoted by→) VecKM as an additional mod-
ule, the runtime is going to be longer. For PointNet++, we
replace (denoted by ⇋) the first set abstraction layer with
our VecKM encoding and leave the rest unchanged. For
PCT, we replace the initial input embedding module with
the VecKM while retaining the transformer modules. For
PointNet++ and PCT, since we replace the dense local ge-
ometry encoding module with the more efficient VecKM,
the runtime is expected to decrease.

As demonstrated in Table 2, architectures based on
VecKM consistently outperform their baseline counter-
parts in accuracy while also benefiting from significantly
reduced runtime. When VecKM is integrated with Point-
Net++ and PCT, not only is performance enhanced, but the
speed of operation is also faster compared to the baselines.
When comparing VecKM → PN against PointNet, there
is a notable improvement in accuracy by 2.1% and 2.6%,
with only a minimal increase in runtime. This is signifi-
cant since the VecKM→ PN architecture exhibits superior
performance compared to both PointNet++ and PCT, and
meanwhile operating 7.18x and 9.5x faster, respectively.
Compared with PointMLP, VecKM-based architectures are
even more efficient, achieving on-par accuracies.

4.3. Part Segmentation on ShapeNet Dataset

We evaluate our VecKM on 3D object part segmentation.
Our experiment utilizes the ShapeNet (Chang et al., 2015)
dataset. Similar to the classification experiment, we com-
pare the IoU and inference time with PointNet, Point-
Net++, PCT, and PointMLP. The baselines and their VecKM
counter-parts are obtained like the classification experiment

Table 2. Classification performance on the ModelNet40 dataset.
VecKM → PN means adding VecKM as a preprocessing module to
PointNet, so the runtime is expected to be longer than the PointNet
baseline. VecKM ⇋ PN++/PCT means replacing the original
dense local geometry encoding in the original architectures with
VecKM. Since VecKM is more efficient, the runtime is reduced.

Instance
Accuracy

Avg. Class
Accuracy

Inference Time (ms)
(1 batch) # parameters

PointMLP 93.2% 90.1% 325.85 13.2M

PointNet 90.8% 87.1% 3.04 1.61M
VecKM→ PN 92.9% 89.7% 14.32 9.06M
Difference ↑ 2.1% ↑ 2.6% not comparable +7.61M

PointNet++ 92.7% 89.4% 117.13 1.48M
VecKM ⇋ PN++ 93.0% 89.7% 65.78 3.94M
Difference ↑ 0.3% ↑ 0.3% 78% faster +2.46M

PCT 92.9% 89.8% 149.72 2.88M
VecKM ⇋ PCT 93.1% 90.6% 21.44 5.07M
Difference ↑ 0.2% ↑ 0.8% 5.98x faster +2.19M

Table 3. Part segmentation performance on the ShapeNet dataset.
Similar to the classification, → means adding VecKM as a prepro-
cessing module, so the runtime is expected to be longer. ⇋ means
replacing the dense local geometry encoding module with VecKM.
Since VecKM is more efficient, the runtime is reduced.

Instance
mIoU

Avg. Class
mIoU

Inference Time (ms)
(1 batch) # parameters

PointMLP 85.1% 82.1% 240.39 16.76M

PointNet 83.1% 77.6% 15.1 8.34M
VecKM→ PN 84.9% 81.8% 40.8 1.29M
Difference ↑ 1.8% ↑ 4.2% not comparable +7.05M

PointNet++ 85.0% 81.9% 130.8 1.41M
VecKM ⇋ PN++ 85.3% 82.0% 65.9 1.50M
Difference ↑ 0.3% ↑ 0.1% 98% faster +0.09M

PCT 85.7% 82.6% 145.2 1.63M
VecKM ⇋ PCT 85.8% 82.6% 46.6 1.71M
Difference ↑ 0.1% 0.0% 2.11x faster +0.08M

in Section 4.2. The parameters of VecKM are selected as
α = 30, β = 9 and d = 256. Since the size of the point
cloud is small, we implement VecKM by Eqn. (3).

Training Details. We use the same training setting for all
the methods. We use the official split with 14,006 3D mod-
els for training and 2,874 for testing. Each point cloud is
uniformly sampled to 2,048 points. During training, random
translation in [−0.2, 0.2], and random scaling in [0.67, 1.50]
are applied. We set the batch size to 16 and train the model
for 250 epochs. We use the Adam optimizer, setting the ini-
tial learning rate as 0.001, with a cosine annealing scheduler.
All models are trained and tested on an RTXA-5000.

As demonstrated in Table 3, similar to the classfication
experiment, architectures based on VecKM consistently out-
perform their baseline counter-parts in accuracy while also
benefiting from significantly reduced runtime.

4.4. Semantic Segmentation on S3DIS Dataset

We evaluate our VecKM on 3D semantic segmentation. We
use the S3DIS dataset (Armeni et al., 2017), which is an in-
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Table 4. Semantic segmentation performance on the S3DIS dataset.
Similar to the classification experiment, → means adding VecKM
as a preprocessing module. Since PointNet++ downsamples the
point cloud at the first layer while VecKM → PN++ does not, their
inference time is not comparable. ⇋ means replacing the origi-
nal dense local geometry encoding module with VecKM. Since
VecKM is more efficient, the runtime is reduced.

Instance
mIoU

Avg. Class
mIoU

Overall
Accuracy

Inference Time (ms)
(per scene) #parameters

PointNet++ 64.05 71.52 87.92 96 0.968M
VecKM→ PN++ 67.48 73.53 89.33 391 1.11M
Difference ↑ 3.43 ↑ 2.01 ↑ 1.41 not comparable +0.142M

Point Transformer 69.29 75.66 90.36 559 7.77M
VecKM ⇋ PT 69.53 75.84 90.39 447 7.93M
Difference ↑ 0.24 ↑ 0.18 ↑ 0.03 20% faster +0.16M

door scene dataset. It contains 6 areas and 271 rooms. Each
point in this dataset is classified into one of 13 categories.
Each scene contains around 10,000∼100,000 points. We
use the same training setting as Zhao et al. (2021).

Baselines. We select PointNet++ and Point Transformer
(Zhao et al., 2021) as the baselines. For PointNet++, in its
first layer, PointNet++ first downsamples the point cloud
by 1/4 and for each sampled point, 32 neighboring points
are sampled and transformed by a PointNet. The VecKM
→ PN++ counter-part is obtained by adding the dense local
geometry encoder before the first layer. Consequently, the
PointNet in the first layer will transform the local geometry
encoding instead of the raw 3d coordinates. Because of
the downsampling operation in PointNet++, its inference
time is much shorter. Therefore, PN++ and VecKM →
PN++ are not comparable in terms of inference time. For
Point Transformer, its first layer is a dense local geometry
encoder with PointNet. We replace the dense local geometry
encoder with our VecKM encoding to obtain the PT ⇋
VecKM architecture. In both architectures, since the size
of the point cloud is large, we implement VecKM by Eqn.
(2). We set α = 30, β = 9, d = 256, p = 2048, and we use
a sequence of two complex linear layers to transform the
local geometry encoding from C256 to C64.

As shown in Table 4, VecKM improves PointNet++ base-
line significantly. This is because the downsampling of the
point cloud induces information loss in the PointNet++ base-
line, while the dense VecKM encoding effectively bridges
the gap. On the other hand, VecKM improves the infer-
ence speed of point transformer, which is expected given
the efficiency of VecKM especially on large point cloud
input. Regarding why VecKM ⇋ PT does not yield bet-
ter accuracy, it is possibly because the heavy-weight point
transformer architecture already adequately reasons on the
geometry. Unlike PointNet++, the local geometry encoding
is not a bottleneck for point transformer. Since the subse-
quent processing costs the majority of the running time, the
acceleration is not as significant as the previous experiments.

Table 5. Ablation study on the selection of the parameters α and β
in Theorem 2, in the context of ModelNet40 classification experi-
ment. Numbers greater than 92.5% are bolded.

α = 20 α = 25 α = 30 α = 35

β = 4 91.73% 91.94% 91.73% 91.77%
β = 6 92.59% 92.14% 92.87% 92.50%
β = 9 92.18% 92.71% 92.95% 92.50%
β = 12 92.10% 92.54% 92.59% 92.38%

5. Ablation Studies
In Section 3.3, we qualitatively analyze the effect of the
parameters α and β in Theorem 2. In this section, we
quantitatively analyze the effect of the parameters in the
context of the ModelNet40 classification experiment, with
the VecKM→ PN architecture. For α selection, when the
input point cloud is normalized within a unit ball, setting α
in the range of (20, 35) yields good performance. As shown
in Table 5, appropriate selections of α and β are important
to yield a good performance on the downstream tasks.

Figure 7. Average RMSE of
normal estimation trained with
different numbers of layers.

We study how many
fully-connected layers are
needed for transforming
the VecKM encoding, in
the context of normal
estimation tasks. As shown
in Figure 7, two layers
are sufficient for stably
satisfactory performance,
highlighting the inherent
descriptiveness of VecKM encoding.

Notice that the selection of the α parameter varies across
different tasks. In classification, where refined local geome-
try is less critical, a smaller α is used to abstract away finer
details. For normal estimation tasks, where accurate local
shape representation is crucial, a larger α is employed to re-
tain essential details. These findings demonstrate VecKM’s
adaptability in meeting the diverse requirements of various
tasks, adjusting to the specific level of detail needed.

6. Conclusion
VecKM, our novel local point cloud encoder, stands out for
its efficiency and noise robustness. VecKM vectorizes a
kernel mixture associated with the local point cloud, pro-
viding a solid theoretical foundation for its descriptiveness
and robustness. Thanks to its special formulation, VecKM
is the only existing local geometry encoder that costs linear
time and space. Through extensive experiments, VecKM
has demonstrated significant improvements in speed and
accuracy across a variety of point cloud processing tasks.
VecKM has many potential applications due to its notable
features. Its efficiency facilitates faster inference, ideal for
time-critical tasks like event data processing.
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Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proof of Lemma 1
Lemma 1 (VecKM embodies a Gaussian kernel). Let x,y ∈ R3, A ∈ R3×d. All elements in A are drawn from normal
distribution N (0, α2). Then as d→∞,

1

d
⟨eixA, eiyA⟩ → Gα(x,y) := exp

(
− α2||x− y||2

2

)
Proof. Let a ∈ R3 where a ∼ N (0, α2I3×3) be one column of the matrix A, we claim that E
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∞∑
k=0

(−1)k

(2k)!
· α2k||x− y||2k · (2k)!

k!2k

=
∞∑
k=0

(−1)k

k!2k
· α2k||x− y||2k

= exp
(
− α2||x− y||2

2

)
On the other hand, E

[
ℑ
(
eia·(x−y)

)]
= 0 because normal distribution is a symmetric distribution around 0:

E
[
ℑ
(
eia·(x−y)

)]
= E

[
sin

(
a · (x− y)

)]
= E

[ ∞∑
k=0

(−1)k
(
a · (x− y)

)2k+1

(2k + 1)!

]
=

∞∑
k=0

(−1)k

(2k + 1)!
E
[( 3∑

j=1

(xj − yj)aj
)2k+1

]
=

∞∑
k=0

(−1)k

(2k + 1)!
E
[(
α||x− y||Z

)2k+1
]

where Z ∈ N (0, 1)

= 0 because E(Z2k+1) = 0

Therefore, when we randomize d rows of such a vector, the inner product 1
d ⟨e

ixA, eiyA⟩ = 1
d

∑d
k=1 e

iak·(x−y) will
converge to Gα(x,y) thanks to the Law of Large Number and the Central Limit Theorem.
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B. PyTorch Implementation of VecKM

1 import torch
2 import torch.nn as nn
3 import numpy as np
4 from scipy.stats import norm
5

6 def strict_standard_normal(d):
7 # this function generate very similar outcomes as torch.randn(d)
8 # but the numbers are strictly standard normal, no randomness.
9 y = np.linspace(0, 1, d+2)

10 x = norm.ppf(y)[1:-1]
11 np.random.shuffle(x)
12 x = torch.tensor(x).float()
13 return x
14

15 class VecKM(nn.Module):
16 def __init__(self, d=256, alpha=6, beta=1.8, p=4096):
17 super().__init__()
18 self.alpha, self.beta, self.d, self.p = alpha, beta, d, p
19 self.sqrt_d = d ** 0.5
20

21 self.A = torch.stack(
22 [strict_standard_normal(d) for _ in range(3)],
23 dim=0
24 ) * alpha
25 self.A = nn.Parameter(self.A, False) # Real(3, d)
26

27 self.B = torch.stack(
28 [strict_standard_normal(p) for _ in range(3)],
29 dim=0
30 ) * beta
31 self.B = nn.Parameter(self.B, False) # Real(3, d)
32

33 def forward(self, pts):
34 """ Compute the dense local geometry encodings of the given point cloud.
35 Args:
36 pts: (bs, n, 3) or (n, 3) tensor, the input point cloud.
37

38 Returns:
39 G: (bs, n, d) or (n, d) tensor. the dense local geometry encodings.
40 """
41 pA = pts @ self.A # Real(..., n, d)
42 pB = pts @ self.B # Real(..., n, p)
43 eA = torch.concatenate(
44 (torch.cos(pA), torch.sin(pA)), dim=-1) # Real(..., n, 2d)
45 eB = torch.concatenate(
46 (torch.cos(pB), torch.sin(pB)), dim=-1) # Real(..., n, 2p)
47 G = torch.matmul(
48 eB, # Real(..., n, 2p)
49 eB.transpose(-1,-2) @ eA # Real(..., 2p, 2d)
50 ) # Real(..., n, 2d)
51 G = torch.complex(
52 G[..., :self.d], G[..., self.d:]
53 ) / torch.complex(
54 eA[..., :self.d], eA[..., self.d:]
55 ) # Complex(..., n, d)
56 G = G / torch.norm(G, dim=-1, keepdim=True) * self.sqrt_d
57 return G
58

59 vkm = VecKM()
60 pts = torch.rand((10,1000,3))
61 print(vkm(pts).shape) # it will be Complex(10,1000,256)
62 pts = torch.rand((1000,3))
63 print(vkm(pts).shape) # it will be Complex(1000, 256)
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64 from complexPyTorch.complexLayers import ComplexLinear, ComplexReLU
65 # You may want to use apply two-layer feature transform to the encoding.
66 feat_trans = nn.Sequential(
67 ComplexLinear(256, 128),
68 ComplexReLU(),
69 ComplexLinear(128, 128)
70 )
71 G = feat_trans(vkm(pts))
72 G = G.real**2 + G.imag**2 # it will be Real(10, 1000, 128) or Real(1000, 128).
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C. Effect of Parameters α, β, d, p
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Figure 8. Effect of the parameters α and β in Theorem 2.

Both  and  controls the quality of encoding.
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Figure 9. Effect of the parameters d and p in Theorem 2.
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D. Guidance for Selecting the Parameter β

The statistics is obtained by r = minr{r : e−r2/2 < 0.1}. The beta and the radius have a relation of β1r1 = β2r2.

Table 6. Relation between the parameter β and the neighborhood radius.

beta 1 2 3 4 5 6 7 8 9 10
radius 1.800 0.900 0.600 0.450 0.360 0.300 0.257 0.225 0.200 0.180

beta 11 12 13 14 15 16 17 18 19 20
radius 0.163 0.150 0.138 0.129 0.120 0.113 0.106 0.100 0.095 0.090

beta 21 22 23 24 25 26 27 28 29 30
radius 0.086 0.082 0.078 0.075 0.072 0.069 0.067 0.065 0.062 0.060
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