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Assessments of historical contingency have advanced our understanding of

adaptive radiation and community ecology, but little attention has been given

to assessing the importance of historical contingency in population ecology. An

obstacle has been the unmet need to conceptualize historical contingencies for

populations in a manner that allows for their explanatory power to be assessed

and quantified so that it can be directly compared with the explanatory power of

statistical models representing other hypotheses or theory-based explanations.

Here we conceptualize historical contingencies as a series of random events

characterized by (1) significant legacy effects that are comparable in length to the

waiting time between such events, and (2) the disparate nature of individual

events in the series. From that conceptualization, we present a simple

quantitative framework for assessing the explanatory power of historical

contingencies in population ecology and apply it to an existing long-term

dataset on the predator-prey system in Isle Royale National Park. The

population-level phenomenon that we focused on was predation rate because

it is a synthesis of three basic elements in population ecology (predator

abundance, prey abundance and kill rate). We also compared the explanatory

power of models of the historical contingency hypothesis to a wide-range of

alternative, theory-based, statistical models used to assess underlying

mechanisms or forecast future dynamics. Models of the historical contingency

hypothesis explained over half of the interannual variation in predation rate and

performed similarly, or better than, the vast majority of alternative, theory-based,

models. Those findings highlight the potential value of reconsidering the way that

population ecologists traditionally attempt to explain phenomena. We also

discuss how this new conceptualization of the historical contingency

hypothesis can also be valuable for synthesizing several other important

ecological concepts of broad significance, especially reddened spectra, tipping

points, alternative stable states, and ecological surprises. If the historical

contingency hypothesis were found to be broadly applicable, then it would

likely explain why ecologists are conspicuously poor at forecasting

future dynamics.
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Introduction

The broad role of historical contingencies and laws of nature for

explaining natural phenomena has been debated, largely as a matter

of metaphysics, for millennia (Harrison, 2016). Laws of nature are

theory-based rules that predict the behavior of natural phenomena

under an idealized set of conditions, such as Galileo’s law of

constant acceleration or Kepler’s law of planetary motion. In

ecology, contemporary perspectives on laws of nature include

arguments for the existence of a few laws, such as species-area

curves and exponential growth (Turchin, 2001; Berryman, 2003;

Colyvan and Ginzburg, 2003). When natural phenomena do not

behave as predicted by a law, such exceptions are conventionally

taken as evidence that some idealized condition of the law has been

violated. It is widely appreciated that the ideal conditions required

by laws will rarely hold in the real-world, which led to the

development of less restrictive, law-like, theory-based

explanations – which are typically represented by statistical

models and are ubiquitous in ecology. The epistemic value of

these laws and theory-based explanations is that they guide the

search for explanations to apparent violations and serve as null

hypotheses to which real-world phenomena can be compared.

By contrast, natural phenomena can also be explained by

historical contingencies, whereby a phenomenon’s behavior is

fundamentally determined by the particular order and timing of

certain key events in the past. An archetypal example of a

historically contingent event for the natural sciences is when an

asteroid collided with Earth 66 million years ago and fundamentally

altered patterns of species diversity and vertebrate evolution. Law-

and theory-based explanations of nature differ importantly from

explanations based on historical contingencies inasmuch as the

former are typically expressed in mathematical terms which readily

allows for a quantitative evaluation of their explanatory power.

Moreover, while assessments of the importance of historically

contingencies are rare in ecology, substantial effort is spent

searching for regular patterns, or theory-based explanations that

might hint at laws of nature. The motivation for that substantial

effort is a belief that finding law-like explanations will improve the

accuracy of predictions or forecasting future dynamics.

Contemporary perspectives on historical contingency exist for a

few phenomenon in ecology and evolution, such as adaptive

radiation and the assembly of ecological communities (Losos,

1994, 2010; Fukami, 2015). In community ecology, a

conceptualization for historical contingency focuses on

contingency as an emergent property of ecosystems and how the

functional role of a species is frequently contingent on the biotic

and abiotic conditions of the ecosystem (Schoener, 1986; Simberloff,

2004; Schmitz, 2010). Another conceptualization states that

(Lawton, 1999): “Contingent means ‘only true under particular or

stated circumstances’. A contingent rule (or law) takes the form: if A

and B hold, then X will happen, but if C and D hold, then Y will be

the outcome. It follows that patterns will also be contingent and so

will theory. Some of the contingency may be ‘historical accident’ in its

broadest sense, from the impact of meteorites to the vagaries of

chance mutations…” That conceptualization seems to posit

historical contingencies as secondary variables or factors which

cause natural phenomena to deviate from the behavior predicted by

laws of nature, rather than being a process with significant

explanatory value in its own right. These conceptualizations have

likely contributed to a belief that historical contingencies cannot be

useful as general explanations because historically contingent events

and their effects are too specific to each case (Fukami, 2015;

Harrison, 2016). One response to that concern is that (Simberloff,

2004): “because communities are idiosyncratic, elucidating their

structure and workings should be aimed not at deducing general

laws but rather at amassing a catalog of case studies (Shrader-

Frechette and McCoy 1993). These case studies serve two main

purposes. [First] Individually, they can help to solve specific

environmental problems.... Second, as a group, case studies can

point to rough generalizations that can … advance both theory

and practice.” However, none of these conceptualizations of

historical contingency are expressed in a way that readily allows

for the explanatory power of historical contingencies to be assessed

and quantified.

The historical contingency hypothesis

In this study, we evaluate historical contingencies as a general

explanation for phenomenon in population ecology. We do so

through the development of a historical contingency hypothesis

(HCH) and a simple framework that allows for the explanatory

power of historical contingencies to be quantified and compared

to other kinds of scientific explanation, especially statistical

models associated with either the assessment of underlying

mechanisms or forecasting. We also highlight how the HCH

helps explain several basic phenomena in population ecology,

namely the commonness of ecological surprises (Doak et al., 2008)

and ecologists’ limited capacity for forecasting future dynamics

(Beckage et al., 2011; Yates et al., 2018).

The essence of the HCH for populations is that population-level

phenomena are well explained as being the result of a series of

historically contingent events. That is, a series of random events

characterized by (1) significant legacy effects that are comparable in

length to the waiting time between such events, and (2) the disparate

nature of individual events in the series. For example, one event

might be a novel disease, the next a severe weather event, and the

next a disturbance, such as a forest fire. The effect of each of these

events persist long after the events have occurred, and in this sense

the events have legacy effects (Moorhead et al., 1999; Cuddington,

2011). Populations are constantly exposed to all manner of random

events – most of which are insignificant. What distinguishes

historically contingent events from other random events is that

they have both important and long-lasting legacy effects.

Furthermore, although some events may be extreme, others may

be the coincidence of several common events that have synergistic

effects (Denny et al., 2009). Although a historically contingent event

would tend to be identified after its occurrence, that circumstance

does not make historically contingent events ad hoc or arbitrary

explanations. The explanations are not ad hoc or arbitrary to the
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extent that the event in question can reasonably be called a cause of

the dynamics that followed.

The HCH is also usefully understood as a synthesis of several

important concepts in population ecology. In particular, some

historically contingent events may be classified as tipping points

or ecological surprises that result in alternate stable states. Some

historically contingent events may also be classified as a large pulse

disturbance or a press disturbance whose effects last for some time

[sensu, Figure 1 of (Inamine et al., 2022)]. Others have shown those

concepts to be important (Bender et al., 1984; Beisner et al., 2003;

Doak et al., 2008; Holt, 2008; Scheffer et al., 2009; Selkoe et al.,

2015). However, the HCH goes beyond those concepts, in part, by

supposing that the events of the HCH occur frequently enough

within a single system to represent an essential explanation for that

system’s dynamics over longer periods of time. For example,

detection of a single tipping point or a single switch from one

stable state to another would seem insufficient to conclude that a

population’s dynamics are broadly characterized by the HCH. The

insufficiency would be associated with not knowing (1) how long

the population had been in its prior state or will be in its current

state or (2) enough about the diversity of events that cause switches

within a system. The greater the diversity of events in the series, the

more difficult it would be to predict the next event, because the next

event may be of a kind that hasn’t been previously observed.

The HCH is categorically distinct from conventional forms of

environmental stochasticity (Lindstrom et al., 1999). Traditional

models of environmental stochasticity focus on processes that occur

every year, whose influence in any given year could be extreme, nil,

or anywhere in between, and whose influence is characterized by the

phenomena’s variance, skew, and kurtosis. Environmental

stochasticity may be used to represent a single process, such as

precipitation, or it may represent the sum of many exogenous

FIGURE 1

The upper panel depicts abundances of wolves and moose in Isle Royale National Park (1959-2019), divided into four periods (I, II, III, IV) demarcated
by events A-E. The nature of each event is described in the Study System. The lower panel depicts cumulative variances (scaled to one) of time
series representing essential elements of predator-prey dynamics on Isle Royale.
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processes that occur every year and then registered as an adjustment

to, for example, some vital rate. Furthermore, legacy effects are not

of explicit interest of most models of environmental stochasticity.

By contrast, historical contingency involves relatively infrequent

events (e.g., occurring once every 1-2 decades or 3-4 generations)

with long-lasting legacy effects. As such, one wouldn’t expect a

population’s dynamics to be explained by the HCH if it had been

monitored for only a short time.

With the preceding conceptualization, we develop a pair of

quantifiable hypotheses which represent strong and weak

versions of the historical contingency hypothesis (HCH). The

strong HCH is that a population’s ecology is fundamentally driven

by historically contingent events. The strong HCH would be

supported if models that explicitly account for historically

contingent events explain a substantial portion of a phenomenon’s

past dynamics. The weak HCH is that historical contingencies have

an important modifying influence on a population’s ecology by

altering a population’s underlying ecological relationships. For

example, when a population is governed by the weak HCH one

expects the fit of a theory-based model of ecological relationship to be

improved by modifying it to explicitly account for historically

contingent events. An important distinction between the two

versions of the HCH is that the strong version assesses historical

contingencies as an essential basis of explanation in its own right. By

contrast, the weakHCH is more closely related – though not identical

– to earlier conceptualizations of historical contingencies, which

suggest that historical contingencies are secondary variables or

factors (e.g., Lawton, 1999).

The aim of this study is to assess the extent to which the HCH

can explain phenomena in population ecology. In doing so – we

note here and further explain below – how the standards for

assessing the explanatory power of a model depends on whether

the model’s purpose is to make a forecast, opposed to assessing

some particular mechanism. We fulfil the aim of this study by

evaluating the extent that HCH models explain the population

ecology of the wolf and moose system in Isle Royale National

Park using data collected over a 48-year period (1971-2018).

Specifically, we evaluate the extent that HCH models explain

predation rate, which is the portion of the prey population

killed by predation per unit time. We focus on predation rate

(PR) because it is a synthesis of the three most basic elements of a

predator-prey system, i.e., predator abundance, prey abundance,

and kill rate, which is the process that connects the abundance of

predator and prey. More specifically, predation rate (PR) is

calculated as per capita kill rate (KR), times predator abundance

(P), divided by prey abundance (N).

Reddened spectra

Ecological time series whose process variance tends to increase

with increasing periods of observation are said to have reddened

spectra (Ariño and Pimm, 1995). Reddened spectra are common

among populations that have been observed for long periods of time

(Inchausti and Halley, 2001, 2002) and the presence of reddened

spectra is associated with an increased difficulty of predicting future

dynamics, including the estimation of extinction risk (Lawton

1988). However, the processes that lead to ecological time series

exhibiting reddened spectra are not well-understood (Akc akaya
et al., 2003). Some have reasoned that reddened spectra may be the

result of populations experiencing a series of tipping points,

alternative stable states, and ecological surprises (Poole, 1978;

Ariño and Pimm, 1995). That reasoning is supported, in part, by

simulation studies which have shown shifts in stable states may be

preceded by punctuated increases in variance (Carpenter and

Brock, 2006). If reddened spectra are typically associated with

those processes, then it is at least plausible that the HCH is

broadly significant. In this paper, we provide a partial assessment

of these ideas by assessing whether the timing of historically

contingent events in the Isle Royale system correspond to the

emergence of reddened spectra.

Study system

Isle Royale (544 km2) is an archipelago located in Lake Superior,

North America (47°50′N, 89°00′W) approximately 24 km from the

mainland. Isle Royale is a National Park and a legally-designated

wilderness area and neither the wolves, moose, nor the forest, have

been harvested for almost a century. The wolf-moose system has

been influenced by a series of disparate random events over the last

50 years (denoted A through E in the upper panel of Figure 1).

Event (A) was the outbreak of a novel disease that occurred in the

early 1980s and impacted the wolf population. Specifically, canine

parvovirus was inadvertently brought to Isle Royale by humans

shortly after it evolved into existence in the late 1970s (Peterson

et al., 1998). That disease outbreak coincided with the highest

density of wolves ever observed and represents a time of intense

intraspecific competition for prey. Event (A) was followed by a

crash (~70% decline) in the wolf population (Figure 1, upper panel).

Event (B) occurred in 1996 and was the most severe winter ever

recorded in the Lake Superior region. The severity of that winter is

indicated by record-breaking temperatures and snow depths

(Peterson, 1996). For example, snow was the deepest ever

recorded on Isle Royale, being almost twice as deep as the mean

snow depth observed over the last 50 years, and deep snow persisted

until late April (Peterson, 1996). Deep snow restricts the ability of

ungulates to move around and find food and thereby has an

important negative impact on their nutritional condition and

body mass (Weladji et al., 2002). That severe winter coincided

with the highest density of moose ever observed on IRNP (~4.4

moose/km2) and represents intense intraspecific competition for

forage. The impact of event (B) was a ~60% decline in moose

abundance (Figure 1, upper panel).

Event (C) occurred in 1997, one year after the severe winter,

when a wolf emigrated from the mainland to the island by crossing

an ice bridge. (Ice bridges form only occasionally and wolves cannot

survive the 24 km swim to Isle Royale.) Event (C) changed a long-

held assumption that there was no gene flow into the island’s wolf

population, and no naturally occurring gene flow has been detected

since event (C). The immigrant wolf represented a genetic rescue

event, whose effects were so profound they are best described as a
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genomic sweep (Hedrick et al., 2014). That genomic sweep was

indicated by a rapid spread of the immigrants genes among the

population, such that within a decade, approximately 60% of the

genes in the wolf population’s had been inherited from the

immigrant [see Figure 2 in (Hedrick et al., 2014)]. That genomic

sweep was associated with important increases in the fitness of the

wolf population (Hoy et al., 2023), which had been suffering from

severe inbreeding depression just prior to the immigrant’s arrival

(Hedrick et al., 2014).

Event (D) is the reappearance of canine parvovirus between

2007-2009, after a 17-year (4 generation) absence which coincided

with the resumption of severe inbreeding depression and the end of

the benefits of the genetic rescue (Vucetich and Peterson, 2008;

Peterson and Vucetich, 2014). More precisely, the beneficial

influence of genetic rescue on the wolf’ population’s fitness waned

throughout the period 2008-2010, when the immigrant’s ancestry

began to decline (Hedrick et al., 2014). The resurgence of

inbreeding depression that followed event (D) resulted in the wolf

population collapsing to two wolves, a father-daughter pair that

were also half siblings (Hedrick et al., 2017). Unsurprisingly, these

highly inbred wolves never produced offspring that survived to

adulthood. As the wolf population headed towards extinction, the

moose population more than tripled and the concomitant increase

in moose browsing had a severe impact on forest vegetation in large

areas of Isle Royale (Hoy et al., 2019). Those circumstances led the

National Park Service (NPS) to translocate 19 wolves to Isle Royale

(from other populations in the Lake Superior region) between

autumn 2018 and autumn of 2019 to restore the wolf population

(Hoy et al., 2019). This anthropogenic intervention (event E) was

surprising, because traditional NPS policy, and the majority of the

decision-making process, pointed toward the NPS not intervening

(Vucetich, 2021).

These events (A-E) were not only unexpected, but they also had

important long-lasting legacies. Specifically, following event (A), the

first canine parvovirus outbreak, predator abundance remained low

for more than a decade whilst prey abundance rose exponentially

which triggered the first trophic cascade ever documented in a

terrestrial ecosystem (McLaren and Peterson, 1994). More precisely,

event (A) shifted control of prey population dynamics from a top-

down processes to abiotic processes for more than a decade

(Wilmers et al., 2006). The impact of events (B/C), the severe

winter/arrival of an immigrant wolf, was a greatly reduced prey

population and predator population with increased fitness, which

ushered in a decade-long period of strong top-down influences.

Event (D), the second disease outbreak coinciding with the

resurgence of inbreeding depression in the wolf population,

instigated a prolonged period of negligible top-down processes

and the start of another trophic cascade, represented by collapse

of the wolf population, exponential rise of the moose population,

and severe damage to forest vegetation (Hoy et al., 2019, 2023).

Although it is too soon to evaluate the long-term consequences of

event (E), the translocation of wolves, early signs indicate that it will

leave a significant legacy. For example, the wolf population rose

from 2 to 15 wolves between 2018-2019 and exhibited the highest

per capita kill rates ever observed in this system (Hoy et al., 2019).

Moreover, some of the translocated wolves were significantly larger

than the native Isle Royale wolves which can importantly affect

predator-prey dynamics (Emmerson and Raffaelli, 2004). These five

events represent historically contingent events as conceptualized in

the Introduction. They were all recognized as major events in the

chronology of wolves and moose upon being observed and long

before we formulated the HCH. In other words, these events were

not selected in an ad hoc manner for the purpose of building the

statistical model described below. Finally, these events divide the

chronology of wolves and moose of IRNP into four periods

of time (I to IV, see Figure 1, upper panel) that form the

basis for developing a quantitative model of the historical

contingency hypothesis.

Data & analysis

In this section, we describe the data used to perform our

analysis. Next, we describe and assess the statistical models we

built to represent the HCH. Then, we compare HCH models to

traditional theory-based models whose purpose is to explain

underlying mechanisms. Lastly, we also compare the HCH

models to alternative models whose purpose is to forecast

future dynamics.

Data

We assessed the HCH’s ability to explain predation rate, which

is the proportion of the moose population killed by wolves over a

FIGURE 2

Box-and-whisker plot for predation rate by wolves on moose in Isle
Royale National Park for each time period demarcated by the
historically contingent events described in the Study System and
depicted in Figure 1. More precisely, the cut-offs used for each time
period are the same as those used in Model 3 in Table 1. Thick black
lines represent the median values and grey boxes are
interquartile ranges.
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48-year period (1971-2018). The first year of the study period is

1971, because that is the first year that estimates of predation rate

are available (see below). The last year of the study period is 2018,

because that year marks the end of period IV, when wolves were

translocated to Isle Royale. (We did not extend the study period

beyond 2018 because insufficient time has passed to assess a fifth

time period.)

Predation rate is calculated as the per capita kill rate multiplied

by wolf abundance and divided by moose abundance (Vucetich

et al., 2011). The three elements of predation rate are estimated

independently in this study system each winter (Vucetich et al.,

2011). More precisely, wolf and moose abundance have been

estimated every year since 1959 and kill rate has been estimated

every year since 1971. Moose abundance (N) was estimated

annually using a random stratified sampling design and aerial

surveys conducted between late January and early February

(Peterson and Page, 1993). Wolf abundance (P) was estimated by

aerial census from a fixed-wing aircraft in winter (January early

March) using methods described in (Vucetich and Peterson, 2004).

The per capita kill rate (KR) is the number of moose killed per wolf

per time unit (Vucetich et al., 2011). Each winter we observed the

number of moose killed by wolves during a period of ∼44 days

(mid-January to early March) during aerial surveys in a fixed-wing

aircraft (Vucetich et al., 2011). The carcasses of wolf-killed moose

were detected by direct observation, by following wolf tracks left in

the snow, and by regularly searching areas which packs had visited.

We also detected wolf-killed moose while carrying out ground-

based field work.

To perform the analyses described below, we also make use of

data that include estimates of average pack size for the wolf

population (PS) and several weather variables. We calculated PS

as the average number of wolves in packs observed during aerial

surveys each winter between 1971-2018. The weather variables that

we assessed were mean temperature in winter (WT) and mean

North Atlantic Oscillation (NAO), which are indicators of winter

severity. We also considered mean temperature during the previous

summer (ST) because summer temperature is thought to influence

the nutritional condition and parasite burdens for moose – factors

that may make moose more vulnerable to predators (Hoy et al.,

2021, 2022). We obtained station-based measurements of the North

Atlantic Oscillation (NAO) index for each winter (January-March)

from the National Center for Atmospheric Research (Hurrell,

1995). We obtained estimates of the mean temperatures each

winter (January to March) and summer (July to September) from

a near-by weather station in northeastern Minnesota, located

approximately 40-60km from Isle Royale (Western Regional

Climate Center, 2016).

The strong HCH

To test the strongHCH, we built a model to quantify the portion

of variation in predation rate that can be explained only by

historically contingent events. Specifically, we used a model of

predation rate characterized by four intercepts (no slopes), where

each intercept represents a different time-period delineated by

historically contingent events (Figure 1, upper panel). The first

year of period I is 1971 (first year that estimates of predation rate are

available), the first year of period II is 1980 (occurrence of event A),

the first year of period III is 1997 (occurrence of event B/C). Period

III ends and period IV begins with both the reappearance of a

disease, the resurgence of severe inbreeding depression and the

waning benefits of genetic rescue and is not readily assigned to a

single year. As indicated in the Study System section, Period III ends

and period IV between 2008 to 2010. Consequently, we built three

models of historical contingency, each with a different year starting

period IV (i.e., 2009, 2010, and 2011). The last year of period IV is

2018 (occurrence of event E).

The three models of the strong HCH (with different years

starting period IV) explained between 53% and 59% (average of

56%) of the variance in predation rate (Table 1; Figure 2). In other

words, historically contingent events explain over half of the

variance in predation rate. R2 values of that size for time series of

population-level phenomena are generally considered to represent

ecologically significant explanations.

Models for comparison

An important aspect of assessing the HCH is to compare its

explanatory power to other forms of scientific explanation,

especially theory-based explanations by which we mean statistical

models motivated by ecological theories and hypotheses. In this

section we explain the merits and limitations of various models to

which the HCH model might be compared. Given our interest to

explain fluctuations in predation rate, Lotka-Volterra theory and

some of its elaborations are an appropriate place to begin. However,

before describing the various models that we built for comparison, it

is first necessary to discuss two preliminary issues.

Preliminary #1: statistical circularity
As a concept rising from predation theory, PR is defined as

KR×P/N. Distinct from its relationship to predation theory, PR is

also a statistical variable that we calculated as KR×P/N. This

circumstance can lead to a kind of circularity that is not

uncommon in efforts to assess theoretical expectation with

empirical observation (Ritson and Staley, 2021). Consider, for

example, fitting this statistical model to our data:

PR  = b0 + b1KR  + b2P  + b3(1=N) : (1)

That statistical model seems worth considering given is

similarity to the theoretical definition of PR. Yet, the assessment

of this model would offer little insight, because its explanatory

power rests largely on a circularity due to the structure of the

statistical model being so similar to how PR – the statistical variable

– was calculated.

This circularity is largely avoided if one had estimates of PR that

are statistically independent of N, P and KR, such as an estimate

based on observing the annual rate of predation among a reasonably

large sample of individually marked and tracked moose (i.e.

individuals fitted with GPS-collars). However, such data do not

exist for moose over the 48-year study period examined here.
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Furthermore, such data are not required to realize the main aim of

this study, which is to assess the explanatory power of the HCH, in

part, by comparing it to theory-based explanations. This circularity

is also avoided if, for example, one considers models of PR that

contain only one of these variables, N, P, or KR. We explain how

and why in Models Motivated to Assess Mechanism.

Preliminary #2: purpose affects assessment
The assessment of a model depends on the model’s purpose.

Two general purposes of a model are reflected by two schools of

thought in the philosophy of science, realism and anti-realism

(Craig, 1998). The salient features of these schools of thought are:

• Realism supposes that the purpose of a model is to assess an

underlying hypothesized mechanism. The idea is familiar to

practitioners of ecology: develop a prediction that rises

from the hypothesized mechanism and then see if the

prediction matches the data. The explanatory power of

the model depends on several considerations: (1) how well

the data fit the prediction, (2) how compelling the

hypothesized mechanism is, and (3) the extent to which

alternative mechanisms can result in the same prediction.

• Anti-realism supposes that explanatory power is largely (or

ent i re ly) due to a model ’ s abi l i ty to make a

parsimonious forecast.

Realism and anti-realism are often viewed as competing ideas,

in part, because models that are especially good for one purpose (say

assessing mechanism) are often not as good for the other purpose

(say forecasting). We do not suppose that either idea or purpose is

more important than the other. However, it is important to

recognize that an appropriate assessment of a model ’s

performance depends on its purpose. In the next two sections, we

develop a basis for assessing the HCH by comparison to models

whose purpose is primarily (1) to assess mechanism or (2) make a

parsimonious forecast. We also discuss how the second comparison

has value even though the purpose of the HCH is not to make

a forecast.

Models motivated to assess mechanisms
Here we consider models that are motivated by the assessment

of some underlying mechanism or basic pattern whose importance

is indicated by theory, such as the relationship between N and PR.

While PR is calculated from N, that relationship still has enough

degrees of freedom such that the empirical relationship may be

positive or negative, linear or non-linear, monotonic or non-

monotonic, strong or weak. No less important, a great deal of

meaning has long been attached to knowing the relationship

between N and PR (e.g., Holling 1959, Messier 1994, Kr ̌ivan
2008). The degree to which N and PR are positively related is the

degree to which predation has a stabilizing influence on prey

density. According to theory, as PR becomes independent of N or

increasingly negatively density dependent, then predation becomes

an increasingly destabilizing force.

(Note, within frequentist statistics, if a predictor variable and

response variable are not statistically independent, then p-values

associated with their covariance will be biased. Important as that

principle is, it does not undermine the reliable insight that can come

from assessing the relationship between N and PR in ways that are

not so reliant on the need for unbiased p-values.)

These circumstances about N and PR also apply to the

relationship between P and PR and the relationship between KR

and PR. That is, there are enough degrees of freedom in either

relationship to make their assessment worthwhile and these

relationships may be positive or negative, strong or weak, etc.

Furthermore, significant meaning has been given to knowing

TABLE 1 Performance of the strong historical contingency hypothesis models and alternative theory-based models built to understand mechanisms
underlying interannual variation in predation rate between 1971-2018.

Variable
Model
coefficients

Standard
error R2 R2adj DAIC

Strong-HCH-2009 0.53 0.5 7.04

Strong-HCH-2010 0.56 0.53 4.42

Strong-HCH-2011 0.59 0.57 0

P 0.003 0.0005 0.4 0.38 15.24

N 86.78 12.32 0.52 0.51 4.26

KR -0.05 0.02 0.08 0.06 35.37

N, NAO, N:NAO
89.45;
-0.03; 24.13 14.01; 0.02; 19.81 0.54 0.51

6.23

P, NAO, P:NAO
0.003;
-0.03; 0.001 0.001; 0.02; 0.001 0.43 0.39

16.46

P,PS 0.003; 0.001 0.002; 0.003 0.4 0.37 16.98

P is wolf abundance,N is moose abundance,KR is per capita kill rate, PS is pack size, andNAO is North Atlantic Oscillation. Models that includeNwere built by first transformingN to 1/N and then fitting a
linear model to the data. Doing so, accounted for the nonlinear relationship between PR and N (see Figure 3). The Akaike information criterion (AIC) for each model was calculated as: AIC = 2K – 2(log-
likelihood), where K is the number of parameters being estimated in the model. DAIC is the AIC for the model of interest minus the lowest AIC of all models being considered in each table.
The best performing model has a DAIC of 0 and is indicated in bold font.

Hoy et al. 10.3389/fevo.2024.1325248

Frontiers in Ecology and Evolution frontiersin.org07

https://doi.org/10.3389/fevo.2024.1325248
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


whether and how PR is related to P and KR. For example, the

relationship between PR and P is associated with understanding

whether and how predation rate is influenced by interference

competition among predators (Abrams, 1993). The relationship

between KR and PR is associated with, for example, questions about

whether “good years” for predators (high kill rate) tend to be bad

years for prey (high predation rate, Vucetich et al., 2011).

Based on those considerations about mechanism and process,

we compared the HCH model to univariate models that predict PR

from KR, P, and N (Table 1). Of those three models, only the model

with N performed comparably to the HCH models (e.g. the model

with N as a predictor explained 52% of the variation in PR,

Figure 3). Many other models can be built with the aim to better

understand the mechanisms and processes of predation. We

consider three such models. The first two models that we

considered are motivated by an interest to assess whether winter

severity, a key element of the abiotic environment, has an important

influence on PR. We used NAO as an indicator of winter severity,

because NAO, a measure of large-scale atmospheric processes, is

thought to be a better indicator of overall winter weather conditions

than locally measured, singular aspects of weather (i.e.,

winter temperature).

First, we built a model that predicts PR from N and NAO and

their interaction. That model represents the hypothesis that the

influence of N on PR may also depend on NAO because winter

severity may influence how vulnerable moose are to coursing

predators, such as wolves. The mechanism for such an influence

would be the adverse impact that winter severity tends to have on

the mobility or body condition of ungulates (Parker et al., 2009).

The second model that we built predicts PR from P and NAO and

their interaction. That model represents the hypothesis that the

influence of P on PR may also depend on NAO because winter

severity may influence a predators’ behavior or ability to detect,

encounter and pursue prey (Droghini and Boutin, 2018). Finally, we

built a model that predicts PR from P and pack size (PS). This

model is motivated by an interest to assess whether the predator

population’s social structure has an important influence on PR

(Hayes et al., 2000; MacNulty et al., 2012), while also accounting for

the influence of P.

The data from Isle Royale provide little or no support for the

hypotheses represented by those three models given that none of

them performed better than the simpler univariate models nested

within each of those three multivariate models. Specifically, the p-

values for likelihood ratio tests comparing each of the three models

to a nested univariate model (withN or P) were all greater than 0.26.

Moreover, the p-values for the coefficients associated with NAO, PS

and the interaction terms were all greater than 0.12. Additionally,

none of those models performed better than the HCH models in

terms of AIC. However, the level of support these three models offer

for their respective hypotheses does not depend on each of these

models having the highest R2 or lowest AIC. Although, many other

models could be assessed – each motivated by an interest to assess

some reasonably considered mechanism – doing so is likely to result

in data dredging, which greatly risks confusing “The best model”

with an overparameterized model with an inflated measure of

model fit and underestimated p-values.

Models motivated to explain via forecasting
In some scientific contexts, the capacity to explain phenomena

is judged by a model’s capacity to make an accurate forecast. An

appropriate method for forecasting is cross-validation, which is

valuable for avoiding models with inflated measures of model fit

and underestimated p-values. Cross-validation may be conducted

by any of several different methods. The most appropriate method

depends on the purpose and context of the analysis. In our case, the

data are relatively limited, compared to the number of potential

predictors (n = 48 years) and the purpose is to understand the

extent to which a model built over one period of time can predict

dynamics over a subsequent period of time. For these reasons, we

used the first 24 years of the study period (1971-1994) as the

training dataset and used the last 24 years of the study period (1995-

2018) as the testing dataset. To find a parsimonious model with the

test data, we used AIC and a forward-stepwise-selection procedure

with five candidate predictor variables (N, P, KR, PS, NAO). To

avoid statistical circularity (discussed above), we did not consider

any model that contained all three of the variables used to calculate

predation rate (N, P and KR). After finding the most parsimonious

model, we used the coefficients (slope and intercept) from that

model to generate predictions of predation rate for the test dataset.

Then we used R2 to judge how well that model predicted predation

rate for the test dataset (1995-2018).

The most parsimonious model identified for the training dataset

was a bivariate model with P and KR as predictors which explained

80% of the variation in PR between 1971-1994 (see filled circles in

Figure 4). However, that model was a poor predictor of predation

rate for the test dataset (1995-2018) as it explained only 13% of the

variance in PR (see open circles in Figure 4). A conclusion to draw

from this analysis is: while PR may be influenced by P and KR, they

FIGURE 3

Annual estimates of predation rate (PR) in relation to prey (moose)
abundance for the wolf-moose system in Isle Royale National Park.
The solid line in depicts fitted values from the univariate model
including N in Table 1. Specifically, the line represents PRpredicted =
b0 + b1(1/N). This model accounts for the non-linearity because
PRobserved is calculated as a function of 1/N. That is, PRobserved =
KR×P/N. See also Equation 1.
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do not – by themselves – represent a very satisfying explanation of

interannual fluctuation in PR, and they do not seem to be a better

explanation than the HCH models.

Models motivated to explain via hindcasting
Models designed to explain phenomena via forecasting demand

more data than is commonly available. That circumstance leads

many to search for explanations of ecological phenomena by

hindcasting, even though that approach routinely involves data

dredging, often through the use of automated procedures. Because

that approach is common, we also consider it as a basis for

generating models to compare with the HCH model.

For this assessment, we considered the same five variables that

we considered in the forecasting analysis (N, P, KR, PS, NAO), plus

two additional weather variables, i.e., average temperature in winter

(WT) and summer (ST). We considered winter temperature as an

alternative indicator of winter severity. We considered temperatures

during the previous summer (ST) because summer temperature is

thought to influence the nutritional condition and parasite burdens

for moose in winter, which may make moose more vulnerable to

predators (Hoy et al., 2021, 2022). The goal of this analysis was to

build many models to find the model with the highest R2 and lowest

AIC – but still avoid the circular model (including N, P, and KR).

We began by building each univariate model and each bivariate

model. Then we modified the best bivariate model (which included

N and P) by sequentially adding variables from the remaining set of

candidate variables to see if it improved model performance.

This procedure resulted in 32 models (Table 2). The best

univariate model included N (explaining 52% of the variance),

and the best bivariate model included N and P (explaining 72% of

the variance). The model with lowest AIC and highest R2 included

three variables, N, P and NAO; however, that model did not

perform substantially better than the best bivariate model (DAIC
= 0.65). Importantly, there is a high degree of statistical dependence

between the response and predictor variables contained in the best

hindcasting models because they contain two of the three variables

used to calculate PR (N and P). Of the models that did not contain a

high degree of statistical dependence, the best performing model

included two predictors,N and PS. That model explained 64% of the

variation in PR, which is slightly higher than the best HCH model

(which explains 59% of variance). We suspect that the good

performance of the model including N and PS is importantly

attributable to PS being very strongly correlated with P (r = 0.81),

as opposed to pack size being an important explanation of

interannual fluctuations in PR.

Ratio-dependent models
The preceding sections distinguished models on the basis of

their purpose –mechanistic assessment or parsimonious prediction.

Some models are not so simply categorized. An example of such is a

ratio-dependent model, which predicts KR from N/P or P/N. Ratio-

dependent models are not so simply categorized because

researchers disagree on the epistemic value of these models. Some

think this model is an especially parsimonious representation of an

important mechanism, i.e., the separate influence of N and P on KR

(Arditi and Ginzburg 1989). Others think ratio-dependent models

are an inappropriate bases of hypothesizing about the influence of N

and P on KR (Abrams and Ginzburg 2000). While those varying

judgments are important, our goal is not to evaluate either view.

Rather, we built a ratio-dependent model [PR = b0 + b1(N/P)] on
the grounds that PR is influenced by KR, which is in turn thought to

be influenced by N/P (Vucetich et al., 2001). In doing so, we are

favoring mechanistic assessment as a purpose for this model. This

model had an R2 = 0.28 and performed worse than the HCHmodels

in terms of DAIC. Specifically, the DAIC for this model compared to

the best model HCHmodel is 23.7. Note, we refrain from building a

model with the form, PR = f(P/N), on grounds that doing so would

be nearly circular, because PR is calculated as KR×(P/N).

BA

FIGURE 4

Results of cross-validation for a model forecasting predation rate (PR) as a function of: (A) wolf abundance and (B) the per capita kill rate. Filled
circles indicate the training dataset, i.e., data collected during the first 24 years of the study period (1971-1994). Open circles indicate the testing
dataset, i.e., data collected during the last 24 years of the study period (1995-2018). The solid line indicates predicted values of predation rate for the
testing dataset.
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The weak HCH

If historical contingencies have an important modifying

influence on population ecology, as posited by the weak HCH,

then better models of population-level phenomenon would

generally result from augmenting traditional theory-based

mechanistic models [e.g., PR = f(N)] with indicator variables that

delineate periods of time, defined by historically contingent events.

TABLE 2 Performance of models built to hindcast interannual variation in predation rate between 1971-2018.

Variable
Model
coefficients

Standard
error R2 R2adj DAIC

P 0.003 0.0005 0.40 0.38 35.72

N 86.78 12.32 0.52 0.51 24.74

KR -0.05 0.02 0.08 0.06 55.86

PS 0.01 0.002 0.29 0.28 43.12

NAO -0.03 0.01 0.10 0.08 54.71

WT -0.001 0.003 0.003 <0.001 59.72

ST 0.001 0.01 <0.001 <0.001 59.83

P, N 0.002; 71.45 0.0004; 9.87 0.72 0.71 0.65

P, KR 0.004; 0.02 0.0007; 0.02 0.41 0.38 36.77

P, PS 0.003; 0.001 0.002; 0.003 0.40 0.37 37.47

P, NAO 0.003; -0.003 0.001; 0.01 0.40 0.37 37.61

P, WT 0.003; 0.001 0.001; 0.003 0.40 0.37 37.46

P, ST 0.003; 0.001 0.001; 0.003 0.40 0.37 37.46

N, KR 89.37; 0.008 13.89; 0.02 0.52 0.50 26.56

N, PS 73.93; 0.01 11.31; 0.002 0.64 0.62 13.09

N, NAO 83.74; -0.01 13.28; 0.01 0.52 0.50 26.30

N, WT 89.35; -0.003 12.27; 0.002 0.54 0.52 24.34

N, ST 92.90; -0.01 12.49; 0.01 0.55 0.53 23.34

KR, PS 0.01; 0.01 0.03; 0.003 0.30 0.27 44.96

KR, NAO 0.04; -0.02 0.03; 0.01 0.14 0.10 54.61

KR, WT 0.05; -0.001 0.02; 0.003 0.08 0.04 57.75

KR, ST -0.05; 0.002 0.04; 0.01 0.08 0.04 57.79

PS, NAO 0.01; -0.004 0.003; 0.01 0.30 0.27 44.98

PS, WT 0.01; 0.001 0.002; 0.003 0.30 0.26 45.07

PS, ST 0.01; 0.01 0.002; 0.01 0.33 0.30 42.55

NAO, WT -0.03; -0.001 0.01; 0.003 0.10 0.06 56.64

NAO, ST -0.03; 0.004 0.01; 0.01 0.11 0.07 56.43

WT, ST -0.001; 0.003 0.004; 0.01 0.004 <0.001 61.64

P, N, PS
0.002;
71.76; -0.001

0.001;
10.06; 0.002 0.72 0.70 2.59

P, N, NAO 0.003; 75.78; 0.01
0.0004;
10.09; 0.01 0.74 0.72 0

P, N, WT
0.002;
72.82; -0.001

0.0004;
10.12; 0.002 0.72 0.70 2.13

P, N, ST
0.002;
72.31; -0.001

0.0004;
10.73; 0.01 0.72 0.70 2.60

P is wolf abundance, N is moose abundance, KR is per capita kill rate, PS is pack size, NAO is North Atlantic Oscillation between January and March, WT is average winter temperatures between
January and March, ST is average summer temperatures between July and September. Models that include N were built by first transforming N to 1/N.
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To test the weak HCH, we assessed whether the best univariate

[PR = f(N)] and bivariate model, PR = f(N, PS), were improved by

adding indicator variables demarking each historically contingent

time period. We used 2011 as the cut-off for time-period III (as we

did for Model 3 in Table 1).

The results of that analysis suggest that the two weak HCH

models performed better than the corresponding models which did

not account for historically contingent events (Table 3). Most

notably, the model including N and indicators of historically

contingent events explained substantially more variation in PR

than the univariate model just containing N (Table 3), and also

performed substantially better in terms of AIC (Table 3).

Reddened spectra

Lastly, we investigated the relationship between historical

contingencies and reddened spectra. Specifically, we assessed

whether four essential elements of predator-prey dynamics on Isle

Royale (N, P, KR and PR) showed signs of reddened spectra. We

followed Ariño and Pimm (1995) and assessed reddened spectra

with plots showing how the sample variance of each of the four

elements changes with the length of observation. Time series are

considered to exhibit reddened spectra if they show a continued

increase of interannual variation, with no evidence of reaching an

asymptote. We then observed how historically contingent events

coincided with temporal patterns in variance.

Several of the time-series showed signs of reddened spectra

insomuch as they did not reach an asymptote over the study period

(Figure 1, lower panel). Furthermore, each historically contingent

event (A-E) was immediately preceded by an abrupt increase in

variance in at least one of the four elements. For example, event (A)

was preceded by an abrupt increase in the variance of P; event (B)

was preceded by an abrupt increase in the variance of PR and N;

and event (D) was preceded by an abrupt increase in the variance

in KR.

Discussion

In summary, we developed a novel conceptualization of

historical contingencies and a simple approach for quantifying

the importance of historical contingencies for explaining elements

of population ecology. We applied those ideas to a case-study

(wolves and moose on Isle Royale) and found that the HCH

models were better than, or at least competitive with, all of the

alternative theory-based models that we assessed. We also found

evidence suggesting that there may be a relationship between

historical contingencies and reddened spectra. While broad claims

about the HCH cannot be satisfactorily evaluated with a single study

system, we provide the means for follow-up analyses because this

method can be applied to any population that has been studied in

reasonable detail over a long period of time [such as those

referenced in (Clutton-Brock and Sheldon, 2010)].

Several essential results situate the importance of historical

contingencies for explaining the predator-prey dynamics studied

here. First, models associated with the strong HCH explained over

half of the interannual variation in predation rate and out-

performed theory-based models designed to assess some of the

most important mechanisms in predation ecology (Table 1).

Second, models associated with the weak HCH, that account for

both historical contingencies and key ecological mechanisms,

explained substantially more variance than models which only

accounted for mechanisms (Table 3). While solid support for the

weak HCH is not surprising, the impressive performance of the

strong HCH model is remarkable. The impressive performance of

the HCH models does not diminish the value of models

representing ecological theory. rather, our results highlight the

importance of historical contingency, especially in relationship to

ecological theory. For emphasis, we are not supposing, nor should it

be supposed, that ecological theory and HCH are mutually

exclusive explanations.

When comparing the HCH models to alternative models, it is

important to consider the purpose of those alternative models and

the means by which they were obtained. In particular, a few models

in Table 2 had higher R2 and lower AIC values than the strong HCH

models. However, those models were found by data dredging which

is known to produce models that are overfit, resulting in inflated

values of R2 and deflated values of AIC. More importantly, there is a

high degree of statistical dependence between the response and

predictor variables contained in the alternative models with the

highest R2 and lowest AIC.

The strong HCH models also compare interestingly with the

cross-validated model, whose explicit purpose is to make a forecast.

First, although the HCH models seem as though they demand a

great deal of data, it is important to observe that cross-validation is

similarly demanding of data. Second, the cross-validated model

performed very well on the training data (R2 = 0.80), but very poorly

on the test data (R2 = 0.13). That disparity is likely because the

system experienced alternative stable states (see below). In other

words, the reason why the forecast was very poor is precisely for the

same reason that the HCH model performed so well.

HCH as synthesis

The HCH is also a framework for synthesizing several ecological

phenomena of broad significance. For example, we show

connections between historical contingencies and reddened

spectra (Figure 1). The broader significance of reddened spectra is

TABLE 3 Performance of models built to assess the weak historical
contingency hypothesis.

Variables R2 R2adj DAIC

N 0.52 0.51 26.67

N & weak-HCH-2011 0.76 0.73 0

N & PS 0.64 0.62 13.66

N & PS weak-
HCH-2011 0.76 0.73 0

N is moose abundance and PS is pack size. Models that include N were built by first
transforming N to 1/N.
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indicated by their influence on resilience and extinction risk

(Schwager et al., 2006; Ponciano et al., 2018) and their association

with ecological surprises (Ariño and Pimm, 1995).

The HCH also assimilates legacy effects, tipping points and

alternate stable state theory. For example, the historical periods we

observed are aptly characterized as alternate states, represented as

periods of strong top-down regulation (periods I and III) and

periods of weak regulation by predation (periods II and IV;

Figures 1, 2). Furthermore, simulations indicate that shifts

between stable states are likely to be preceded by periods of

increased variance (Carpenter and Brock, 2006). We provide rare

empirical evidence supporting the results of those simulations by

showing that periods defined, a priori, by historically-contingent

events were immediately preceded by an abrupt increase in variance

for some, but not all, elements of the system (Figure 1, lower panel).

These abrupt increases in variance may be linked to the waning

legacies of previous historically-contingent events. More

importantly, we observed at least three shifts over the five-decade

study period (i.e., after events A, B/C, D). That observation

advances understanding of alternate stable state theory by

providing a benchmark for understanding how frequently such

shifts may occur. At present, few systems have been studied in

sufficient detail and over long enough time periods to observe three

or more alternate stable states.

Several of the historically-contingent events that we observed

were the seemingly unlikely coincidence of multiple events.

Specifically, Event A is the coincidence of a novel disease and the

highest predator abundance ever observed in this system. Event B is

the coincidence of an extreme winter and the highest prey

abundance ever observed in this system and then event C (genetic

rescue in the wolf population) occurred only a year later. Therefore,

much that has occurred in this system is attributable to these

seemingly unlikely coincidences which consist of either

compounding or countervailing influences (for details, see

Supplementary Materials). That observation is consistent with

earlier work indicating that coincidences with compounding

influences can have important effects (Denny et al., 2009). That

observation also offers critical perspective to prior work indicating

that synergies tend to result in ecological surprises, but the

occurrence of synergies is rarer than is often supposed (Côté

et al., 2016). The rarity of synergies arises from its narrow (albeit

appropriate) definition, i.e., two or more events combining to result

in a super-additive effect (Brook et al., 2008). The coincidences that

we observed were impressively impactful without necessarily being

concerned with whether they were synergies with super-additive

effects. Furthermore, the observation of several seemingly unlikely

coincidences over six decades suggests a need to better judge

whether the coincidences were genuinely unlikely or only

seemingly so. The apparent discrepancy is resolved by noting the

disparate nature of the events involved (extreme winter, novel

disease, immigration events). Because ecosystems are composed

of such a vast array of biotic and abiotic influences, it is not

surprising to observe coincidences like those observed here with

some regularity. Therefore, one should expect seemingly unlikely

coincidences to occur periodically and that they may have an

important influence on population dynamics [see also (Paine

et al., 1998; Denny et al., 2009)].

HCH, forecasting, & surprises

Our results also suggest that the HCH is a valuable

explanation for why “ecological surprises” are so frequent (i.e.,

because of the disparate nature of coincidences that can have

important impacts) and their inordinate influence. In this way, the

HCH is similar to the Black Swan Theory of Events which was

developed to explain the behavior of financial markets (Taleb,

2010). More precisely, the Black Swan Theory aims to explain the

inordinate influence of events that cannot be reliably forecast from

historical patterns, as well as the psychological biases that limit

humans’ ability to appreciate the unpredictability and import of

such events. According to this theory, black swan events are rare,

unpredictable events with dramatic, and often catastrophic

impacts. Additionally, black swan events are explained only with

the benefit of hindsight, but in such a way that misleads financial

managers and stakeholders to believe and act as though such

events could have been forecast. A key difference between the

HCH and Black Swan Theory is that the latter is centered on

explaining the limits of human perception. However, the HCH

and Black Swan Theory both call for a richer acknowledgement

and appreciation of unpredictable events so that people do not

underestimate the vulnerability of systems.

A recent study concluded that black swan events are rare in

ecology (Anderson et al., 2017). However, that study conceptualized

black swan events as heavy-tailed process noise in time series of

population abundance without requiring that the cause of any

heavy-tailed process noise be known or identifiable. Heavy-tailed

process noise was detected in only 4% of the 609 time series

analyzed and it was less likely to be detected it in short times

series. The median length of the time series was relatively short (i.e.,

~26 years). The shortness of time series analyzed and the narrow

definition of black swan events used in that study may have resulted

in the frequency of black swan events in ecology being

underestimated. Moreover, detecting black swan events may

require more information than is contained in simple time series

data. Although the statistical patterns observed by (Anderson et al.,

2017) are important and valuable, they could lead to a

misunderstanding of how common important and unexpected

events are in ecology.

Future assessments

Broad claims about the HCH cannot be satisfactorily evaluated

with a single system. However, our method could be applied to any

population that has been studied over a long period of time and in

reasonable detail, such that understanding of the system transcends

simple time series data. While the prevalence of such data shouldn’t

be prejudged, it may prove to be rare. In that case, testing the HCH

would be greatly challenged by the paucity of data. The paucity of
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existing data to test a new hypothesis is independent from the

hypotheses’ value. Rather the basis for judging the value of any

hypothesis is: is the hypothesis plausibly true, and would

discovering the extent of its truth yield worthwhile knowledge? If

the answer to those questions is yes, and if the data needed to test

the hypothesis do not exist, then the traditional development in

science is to begin collecting such data. That such data collection

might be difficult or slow seems less pertinent. In this vein, an

ancillary value of this hypothesis may be, as detailed in (Vucetich

et al., 2020): (i) to provide more reason for ecologists to begin

prioritizing the development of long-term ecological research, and

(ii) to stimulate more discussion about how to most effectively

conduct long-term ecological research – because all approaches to

such research may not be equally effective.

At this early stage of considering the HCH, it is natural to ask,

what types of systems are mostly likely explained by the HCH? It

seems plausible that the HCH is likely to have explanatory power in

systems prone to exhibiting ecological surprises or alternative stable

states – perhaps because they are exposed to the kinds of

(exogenous) forces that are most likely to represent tipping

points. Systems that exhibit reddened spectra would also seem to

be prime candidates for being explained by the HCH. One would

not expect a population’s dynamics to be explained by the HCH if it

had only been monitored for a relatively short time (e.g. a decade or

3 generations) because not enough time is likely to have passed for

multiple historically contingent events to occur and have long-

lasting legacy effects.

We suppose that future assessments of the HCH would have

two elements, a model representing the HCH and at least one,

directly comparable, alternative model representing the most

appropriate ecological theory given the system being assessed. By

directly comparable, we mean that the response variable for both

models would be the same data (in our case, predation rate for a

specified period of time). The model representing HCH should be

built – we suppose – as we did here, by identifying events that had

important and long-lasting effects which divide time series into

segments and do so without cherry-picking events simply because

they minimize the models AIC. This description should be

accompanied by two caveats. First, the assessment of a hypothesis

– including the HCH – is always provisional. The conclusion that

HCH is (or is not) important can be revised by future testing, which

may involve more data or the discovery of different models to better

represent HCH. Second, we expect others may develop alternative

means of testing the HCH. These alternatives may even lead to

refinements in the hypothesis itself. That expectation is consistent

with the development of other ideas in population biology, such as

standards of evidence for genetic rescue (Hedrick et al., 2011) and

trophic cascades (Peterson et al., 2014).

Lastly, our case shows how legacy effects or the occurrence of

some events may not easily be defined by a single year, as was the

case for the end of period III and start of period IV (Figure 1;

Table 1). Nevertheless, the statistical framework presented here

favors identifying a precise year. In our case study, the R2 value of

the HCH models varies somewhat (0.53 to 0.59), depending on

when we suppose that period III ended and period IV began (2009,

2010, or 2011). However, the salient point is that the various values

of R2 for those three HCH models are all consistent with the

ultimate conclusion of the paper, i.e., the models representing the

HCH explain about half of the variation in PR and perform better

than, or are at least competitive with, all of the other models that we

assessed. Nevertheless, it is imaginable that other cases may require

a more complex statistical model to represent the HCH.

Conclusion

Overall, we found strong evidence supporting the HCH for this

case study and our results suggest that a large class of ecological

phenomena are synthesized by the HCH. In community ecology,

Losos (1994) concluded that: “only rarely will ecological forces be so

strong as to completely erase the vestiges of history”. Our work

suggests that the influence of historical contingency could be

equally as strong for population ecology. If the HCH were found

to be broadly applicable, it would explain one of the most basic

features of ecological science. That is, why ecologists can so

effectively explain population dynamics with hindcasts, but are

conspicuously poor at forecasting. The plausibility of the HCH

and the elements it synthesizes – reddened spectra, tipping points,

etc. – provide even more reason to be humble about our inherent

limitations to forecasting and to stop overestimating our ability to

control ecosystems.
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