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A historical contingency
hypothesis for
population ecology

Sarah R. Hoy*, Rolf O. Peterson and John A. Vucetich

College of Forest Resources and Environmental Science, Michigan Technological University,
Houghton, MI, United States

Assessments of historical contingency have advanced our understanding of
adaptive radiation and community ecology, but little attention has been given
to assessing the importance of historical contingency in population ecology. An
obstacle has been the unmet need to conceptualize historical contingencies for
populations in a manner that allows for their explanatory power to be assessed
and quantified so that it can be directly compared with the explanatory power of
statistical models representing other hypotheses or theory-based explanations.
Here we conceptualize historical contingencies as a series of random events
characterized by (1) significant legacy effects that are comparable in length to the
waiting time between such events, and (2) the disparate nature of individual
events in the series. From that conceptualization, we present a simple
quantitative framework for assessing the explanatory power of historical
contingencies in population ecology and apply it to an existing long-term
dataset on the predator-prey system in Isle Royale National Park. The
population-level phenomenon that we focused on was predation rate because
it is a synthesis of three basic elements in population ecology (predator
abundance, prey abundance and kill rate). We also compared the explanatory
power of models of the historical contingency hypothesis to a wide-range of
alternative, theory-based, statistical models used to assess underlying
mechanisms or forecast future dynamics. Models of the historical contingency
hypothesis explained over half of the interannual variation in predation rate and
performed similarly, or better than, the vast majority of alternative, theory-based,
models. Those findings highlight the potential value of reconsidering the way that
population ecologists traditionally attempt to explain phenomena. We also
discuss how this new conceptualization of the historical contingency
hypothesis can also be valuable for synthesizing several other important
ecological concepts of broad significance, especially reddened spectra, tipping
points, alternative stable states, and ecological surprises. If the historical
contingency hypothesis were found to be broadly applicable, then it would
likely explain why ecologists are conspicuously poor at forecasting
future dynamics.
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Introduction

The broad role of historical contingencies and laws of nature for
explaining natural phenomena has been debated, largely as a matter
of metaphysics, for millennia (Harrison, 2016). Laws of nature are
theory-based rules that predict the behavior of natural phenomena
under an idealized set of conditions, such as Galileo’s law of
constant acceleration or Kepler’s law of planetary motion. In
ecology, contemporary perspectives on laws of nature include
arguments for the existence of a few laws, such as species-area
curves and exponential growth (Turchin, 2001; Berryman, 2003;
Colyvan and Ginzburg, 2003). When natural phenomena do not
behave as predicted by a law, such exceptions are conventionally
taken as evidence that some idealized condition of the law has been
violated. It is widely appreciated that the ideal conditions required
by laws will rarely hold in the real-world, which led to the
development of less restrictive, law-like, theory-based
explanations — which are typically represented by statistical
models and are ubiquitous in ecology. The epistemic value of
these laws and theory-based explanations is that they guide the
search for explanations to apparent violations and serve as null
hypotheses to which real-world phenomena can be compared.

By contrast, natural phenomena can also be explained by
historical contingencies, whereby a phenomenon’s behavior is
fundamentally determined by the particular order and timing of
certain key events in the past. An archetypal example of a
historically contingent event for the natural sciences is when an
asteroid collided with Earth 66 million years ago and fundamentally
altered patterns of species diversity and vertebrate evolution. Law-
and theory-based explanations of nature differ importantly from
explanations based on historical contingencies inasmuch as the
former are typically expressed in mathematical terms which readily
allows for a quantitative evaluation of their explanatory power.
Moreover, while assessments of the importance of historically
contingencies are rare in ecology, substantial effort is spent
searching for regular patterns, or theory-based explanations that
might hint at laws of nature. The motivation for that substantial
effort is a belief that finding law-like explanations will improve the
accuracy of predictions or forecasting future dynamics.
Contemporary perspectives on historical contingency exist for a
few phenomenon in ecology and evolution, such as adaptive
radiation and the assembly of ecological communities (Losos,
1994, 2010; Fukami, 2015). In community ecology, a
conceptualization for historical contingency focuses on
contingency as an emergent property of ecosystems and how the
functional role of a species is frequently contingent on the biotic
and abiotic conditions of the ecosystem (Schoener, 1986; Simberloff,
2004; Schmitz, 2010). Another conceptualization states that
(Lawton, 1999): “Contingent means ‘only true under particular or
stated circumstances’. A contingent rule (or law) takes the form: if A
and B hold, then X will happen, but if C and D hold, then Y will be
the outcome. It follows that patterns will also be contingent and so
will theory. Some of the contingency may be ‘historical accident’ in its
broadest sense, from the impact of meteorites to the vagaries of
chance mutations...” That conceptualization seems to posit
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historical contingencies as secondary variables or factors which
cause natural phenomena to deviate from the behavior predicted by
laws of nature, rather than being a process with significant
explanatory value in its own right. These conceptualizations have
likely contributed to a belief that historical contingencies cannot be
useful as general explanations because historically contingent events
and their effects are too specific to each case (Fukami, 2015;
Harrison, 2016). One response to that concern is that (Simberloff,
2004): “because communities are idiosyncratic, elucidating their
structure and workings should be aimed not at deducing general
laws but rather at amassing a catalog of case studies (Shrader-
Frechette and McCoy 1993). These case studies serve two main
purposes. [First] Individually, they can help to solve specific
environmental problems.... Second, as a group, case studies can
point to rough generalizations that can ... advance both theory
and practice.” However, none of these conceptualizations of
historical contingency are expressed in a way that readily allows
for the explanatory power of historical contingencies to be assessed
and quantified.

The historical contingency hypothesis

In this study, we evaluate historical contingencies as a general
explanation for phenomenon in population ecology. We do so
through the development of a historical contingency hypothesis
(HCH) and a simple framework that allows for the explanatory
power of historical contingencies to be quantified and compared
to other kinds of scientific explanation, especially statistical
models associated with either the assessment of underlying
mechanisms or forecasting. We also highlight how the HCH
helps explain several basic phenomena in population ecology,
namely the commonness of ecological surprises (Doak et al., 2008)
and ecologists’ limited capacity for forecasting future dynamics
(Beckage et al., 2011; Yates et al., 2018).

The essence of the HCH for populations is that population-level
phenomena are well explained as being the result of a series of
historically contingent events. That is, a series of random events
characterized by (1) significant legacy effects that are comparable in
length to the waiting time between such events, and (2) the disparate
nature of individual events in the series. For example, one event
might be a novel disease, the next a severe weather event, and the
next a disturbance, such as a forest fire. The effect of each of these
events persist long after the events have occurred, and in this sense
the events have legacy effects (Moorhead et al., 1999; Cuddington,
2011). Populations are constantly exposed to all manner of random
events — most of which are insignificant. What distinguishes
historically contingent events from other random events is that
they have both important and long-lasting legacy effects.
Furthermore, although some events may be extreme, others may
be the coincidence of several common events that have synergistic
effects (Denny et al.,, 2009). Although a historically contingent event
would tend to be identified after its occurrence, that circumstance
does not make historically contingent events ad hoc or arbitrary
explanations. The explanations are not ad hoc or arbitrary to the
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extent that the event in question can reasonably be called a cause of
the dynamics that followed.

The HCH is also usefully understood as a synthesis of several
important concepts in population ecology. In particular, some
historically contingent events may be classified as tipping points
or ecological surprises that result in alternate stable states. Some
historically contingent events may also be classified as a large pulse
disturbance or a press disturbance whose effects last for some time
[sensu, Figure 1 of (Inamine et al., 2022)]. Others have shown those
concepts to be important (Bender et al., 1984; Beisner et al., 2003;
Doak et al., 2008; Holt, 2008; Scheffer et al., 2009; Selkoe et al.,
2015). However, the HCH goes beyond those concepts, in part, by
supposing that the events of the HCH occur frequently enough
within a single system to represent an essential explanation for that
system’s dynamics over longer periods of time. For example,
detection of a single tipping point or a single switch from one

10.3389/fevo.2024.1325248

stable state to another would seem insufficient to conclude that a
population’s dynamics are broadly characterized by the HCH. The
insufficiency would be associated with not knowing (1) how long
the population had been in its prior state or will be in its current
state or (2) enough about the diversity of events that cause switches
within a system. The greater the diversity of events in the series, the
more difficult it would be to predict the next event, because the next
event may be of a kind that hasn’t been previously observed.

The HCH is categorically distinct from conventional forms of
environmental stochasticity (Lindstrom et al., 1999). Traditional
models of environmental stochasticity focus on processes that occur
every year, whose influence in any given year could be extreme, nil,
or anywhere in between, and whose influence is characterized by the
phenomena’s variance, skew, and kurtosis. Environmental
stochasticity may be used to represent a single process, such as
precipitation, or it may represent the sum of many exogenous
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FIGURE 1
The upper panel depicts abundances of wolves and moose in Isle Royale National Park (1959-2019), divided into four periods (I, II, Ill, IV) demarcated

by events A-E. The nature of each event is described in the Study System. The lower panel depicts cumulative variances (scaled to one) of time
series representing essential elements of predator-prey dynamics on Isle Royale.
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processes that occur every year and then registered as an adjustment
to, for example, some vital rate. Furthermore, legacy effects are not
of explicit interest of most models of environmental stochasticity.
By contrast, historical contingency involves relatively infrequent
events (e.g., occurring once every 1-2 decades or 3-4 generations)
with long-lasting legacy effects. As such, one wouldn’t expect a
population’s dynamics to be explained by the HCH if it had been
monitored for only a short time.

With the preceding conceptualization, we develop a pair of
quantifiable hypotheses which represent strong and weak
versions of the historical contingency hypothesis (HCH). The
strong HCH is that a population’s ecology is fundamentally driven
by historically contingent events. The strong HCH would be
supported if models that explicitly account for historically
contingent events explain a substantial portion of a phenomenon’s
past dynamics. The weak HCH is that historical contingencies have
an important modifying influence on a population’s ecology by
altering a population’s underlying ecological relationships. For
example, when a population is governed by the weak HCH one
expects the fit of a theory-based model of ecological relationship to be
improved by modifying it to explicitly account for historically
contingent events. An important distinction between the two
versions of the HCH is that the strong version assesses historical
contingencies as an essential basis of explanation in its own right. By
contrast, the weak HCH is more closely related — though not identical
- to earlier conceptualizations of historical contingencies, which
suggest that historical contingencies are secondary variables or
factors (e.g., Lawton, 1999).

The aim of this study is to assess the extent to which the HCH
can explain phenomena in population ecology. In doing so — we
note here and further explain below - how the standards for
assessing the explanatory power of a model depends on whether
the model’s purpose is to make a forecast, opposed to assessing
some particular mechanism. We fulfil the aim of this study by
evaluating the extent that HCH models explain the population
ecology of the wolf and moose system in Isle Royale National
Park using data collected over a 48-year period (1971-2018).
Specifically, we evaluate the extent that HCH models explain
predation rate, which is the portion of the prey population
killed by predation per unit time. We focus on predation rate
(PR) because it is a synthesis of the three most basic elements of a
predator-prey system, i.e., predator abundance, prey abundance,
and kill rate, which is the process that connects the abundance of
predator and prey. More specifically, predation rate (PR) is
calculated as per capita kill rate (KR), times predator abundance
(P), divided by prey abundance (N).

Reddened spectra

Ecological time series whose process variance tends to increase
with increasing periods of observation are said to have reddened
spectra (Arino and Pimm, 1995). Reddened spectra are common
among populations that have been observed for long periods of time
(Inchausti and Halley, 2001, 2002) and the presence of reddened
spectra is associated with an increased difficulty of predicting future
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dynamics, including the estimation of extinction risk (Lawton
1988). However, the processes that lead to ecological time series
exhibiting reddened spectra are not well-understood (Akcakaya
etal, 2003). Some have reasoned that reddened spectra may be the
result of populations experiencing a series of tipping points,
alternative stable states, and ecological surprises (Poole, 1978;
Arino and Pimm, 1995). That reasoning is supported, in part, by
simulation studies which have shown shifts in stable states may be
preceded by punctuated increases in variance (Carpenter and
Brock, 2006). If reddened spectra are typically associated with
those processes, then it is at least plausible that the HCH is
broadly significant. In this paper, we provide a partial assessment
of these ideas by assessing whether the timing of historically
contingent events in the Isle Royale system correspond to the
emergence of reddened spectra.

Study system

Isle Royale (544 km?) is an archipelago located in Lake Superior,
North America (47°50'N, 89°00"W) approximately 24 km from the
mainland. Isle Royale is a National Park and a legally-designated
wilderness area and neither the wolves, moose, nor the forest, have
been harvested for almost a century. The wolf-moose system has
been influenced by a series of disparate random events over the last
50 years (denoted A through E in the upper panel of Figure 1).
Event (A) was the outbreak of a novel disease that occurred in the
early 1980s and impacted the wolf population. Specifically, canine
parvovirus was inadvertently brought to Isle Royale by humans
shortly after it evolved into existence in the late 1970s (Peterson
et al, 1998). That disease outbreak coincided with the highest
density of wolves ever observed and represents a time of intense
intraspecific competition for prey. Event (A) was followed by a
crash (~70% decline) in the wolf population (Figure 1, upper panel).

Event (B) occurred in 1996 and was the most severe winter ever
recorded in the Lake Superior region. The severity of that winter is
indicated by record-breaking temperatures and snow depths
(Peterson, 1996). For example, snow was the deepest ever
recorded on Isle Royale, being almost twice as deep as the mean
snow depth observed over the last 50 years, and deep snow persisted
until late April (Peterson, 1996). Deep snow restricts the ability of
ungulates to move around and find food and thereby has an
important negative impact on their nutritional condition and
body mass (Weladji et al., 2002). That severe winter coincided
with the highest density of moose ever observed on IRNP (~4.4
moose/km®) and represents intense intraspecific competition for
forage. The impact of event (B) was a ~60% decline in moose
abundance (Figure 1, upper panel).

Event (C) occurred in 1997, one year after the severe winter,
when a wolf emigrated from the mainland to the island by crossing
an ice bridge. (Ice bridges form only occasionally and wolves cannot
survive the 24 km swim to Isle Royale.) Event (C) changed a long-
held assumption that there was no gene flow into the island’s wolf
population, and no naturally occurring gene flow has been detected
since event (C). The immigrant wolf represented a genetic rescue
event, whose effects were so profound they are best described as a
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genomic sweep (Hedrick et al., 2014). That genomic sweep was
indicated by a rapid spread of the immigrants genes among the
population, such that within a decade, approximately 60% of the
genes in the wolf population’s had been inherited from the
immigrant [see Figure 2 in (Hedrick et al., 2014)]. That genomic
sweep was associated with important increases in the fitness of the
wolf population (Hoy et al., 2023), which had been suffering from
severe inbreeding depression just prior to the immigrant’s arrival
(Hedrick et al., 2014).

Event (D) is the reappearance of canine parvovirus between
2007-2009, after a 17-year (4 generation) absence which coincided
with the resumption of severe inbreeding depression and the end of
the benefits of the genetic rescue (Vucetich and Peterson, 2008;
Peterson and Vucetich, 2014). More precisely, the beneficial
influence of genetic rescue on the wolf’ population’s fitness waned
throughout the period 2008-2010, when the immigrant’s ancestry
began to decline (Hedrick et al., 2014). The resurgence of
inbreeding depression that followed event (D) resulted in the wolf
population collapsing to two wolves, a father-daughter pair that
were also half siblings (Hedrick et al., 2017). Unsurprisingly, these
highly inbred wolves never produced offspring that survived to
adulthood. As the wolf population headed towards extinction, the
moose population more than tripled and the concomitant increase
in moose browsing had a severe impact on forest vegetation in large
areas of Isle Royale (Hoy et al,, 2019). Those circumstances led the
National Park Service (NPS) to translocate 19 wolves to Isle Royale
(from other populations in the Lake Superior region) between
autumn 2018 and autumn of 2019 to restore the wolf population
(Hoy et al,, 2019). This anthropogenic intervention (event E) was
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Box-and-whisker plot for predation rate by wolves on moose in Isle
Royale National Park for each time period demarcated by the
historically contingent events described in the Study System and
depicted in Figure 1. More precisely, the cut-offs used for each time
period are the same as those used in Model 3 in Table 1. Thick black
lines represent the median values and grey boxes are

interquartile ranges.
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surprising, because traditional NPS policy, and the majority of the
decision-making process, pointed toward the NPS not intervening
(Vucetich, 2021).

These events (A-E) were not only unexpected, but they also had
important long-lasting legacies. Specifically, following event (A), the
first canine parvovirus outbreak, predator abundance remained low
for more than a decade whilst prey abundance rose exponentially
which triggered the first trophic cascade ever documented in a
terrestrial ecosystem (McLaren and Peterson, 1994). More precisely,
event (A) shifted control of prey population dynamics from a top-
down processes to abiotic processes for more than a decade
(Wilmers et al., 2006). The impact of events (B/C), the severe
winter/arrival of an immigrant wolf, was a greatly reduced prey
population and predator population with increased fitness, which
ushered in a decade-long period of strong top-down influences.
Event (D), the second disease outbreak coinciding with the
resurgence of inbreeding depression in the wolf population,
instigated a prolonged period of negligible top-down processes
and the start of another trophic cascade, represented by collapse
of the wolf population, exponential rise of the moose population,
and severe damage to forest vegetation (Hoy et al., 2019, 2023).
Although it is too soon to evaluate the long-term consequences of
event (E), the translocation of wolves, early signs indicate that it will
leave a significant legacy. For example, the wolf population rose
from 2 to 15 wolves between 2018-2019 and exhibited the highest
per capita kill rates ever observed in this system (Hoy et al., 2019).
Moreover, some of the translocated wolves were significantly larger
than the native Isle Royale wolves which can importantly affect
predator-prey dynamics (Emmerson and Raffaelli, 2004). These five
events represent historically contingent events as conceptualized in
the Introduction. They were all recognized as major events in the
chronology of wolves and moose upon being observed and long
before we formulated the HCH. In other words, these events were
not selected in an ad hoc manner for the purpose of building the
statistical model described below. Finally, these events divide the
chronology of wolves and moose of IRNP into four periods
of time (I to IV, see Figure 1, upper panel) that form the
basis for developing a quantitative model of the historical
contingency hypothesis.

Data & analysis

In this section, we describe the data used to perform our
analysis. Next, we describe and assess the statistical models we
built to represent the HCH. Then, we compare HCH models to
traditional theory-based models whose purpose is to explain
underlying mechanisms. Lastly, we also compare the HCH
models to alternative models whose purpose is to forecast
future dynamics.

Data

We assessed the HCH’s ability to explain predation rate, which
is the proportion of the moose population killed by wolves over a
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48-year period (1971-2018). The first year of the study period is
1971, because that is the first year that estimates of predation rate
are available (see below). The last year of the study period is 2018,
because that year marks the end of period IV, when wolves were
translocated to Isle Royale. (We did not extend the study period
beyond 2018 because insufficient time has passed to assess a fifth
time period.)

Predation rate is calculated as the per capita kill rate multiplied
by wolf abundance and divided by moose abundance (Vucetich
et al,, 2011). The three elements of predation rate are estimated
independently in this study system each winter (Vucetich et al,
2011). More precisely, wolf and moose abundance have been
estimated every year since 1959 and Kkill rate has been estimated
every year since 1971. Moose abundance (N) was estimated
annually using a random stratified sampling design and aerial
surveys conducted between late January and early February
(Peterson and Page, 1993). Wolf abundance (P) was estimated by
aerial census from a fixed-wing aircraft in winter (January early
March) using methods described in (Vucetich and Peterson, 2004).
The per capita kill rate (KR) is the number of moose killed per wolf
per time unit (Vucetich et al., 2011). Each winter we observed the
number of moose killed by wolves during a period of ~44 days
(mid-January to early March) during aerial surveys in a fixed-wing
aircraft (Vucetich et al.,, 2011). The carcasses of wolf-killed moose
were detected by direct observation, by following wolf tracks left in
the snow, and by regularly searching areas which packs had visited.
We also detected wolf-killed moose while carrying out ground-
based field work.

To perform the analyses described below, we also make use of
data that include estimates of average pack size for the wolf
population (PS) and several weather variables. We calculated PS
as the average number of wolves in packs observed during aerial
surveys each winter between 1971-2018. The weather variables that
we assessed were mean temperature in winter (WT) and mean
North Atlantic Oscillation (NAO), which are indicators of winter
severity. We also considered mean temperature during the previous
summer (ST) because summer temperature is thought to influence
the nutritional condition and parasite burdens for moose - factors
that may make moose more vulnerable to predators (Hoy et al,
2021, 2022). We obtained station-based measurements of the North
Atlantic Oscillation (NAO) index for each winter (January-March)
from the National Center for Atmospheric Research (Hurrell,
1995). We obtained estimates of the mean temperatures each
winter (January to March) and summer (July to September) from
a near-by weather station in northeastern Minnesota, located
approximately 40-60km from Isle Royale (Western Regional
Climate Center, 2016).

The strong HCH

To test the strong HCH, we built a model to quantify the portion
of variation in predation rate that can be explained only by
historically contingent events. Specifically, we used a model of
predation rate characterized by four intercepts (no slopes), where
each intercept represents a different time-period delineated by
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historically contingent events (Figure 1, upper panel). The first
year of period I'is 1971 (first year that estimates of predation rate are
available), the first year of period II is 1980 (occurrence of event A),
the first year of period III is 1997 (occurrence of event B/C). Period
II ends and period IV begins with both the reappearance of a
disease, the resurgence of severe inbreeding depression and the
waning benefits of genetic rescue and is not readily assigned to a
single year. As indicated in the Study System section, Period III ends
and period IV between 2008 to 2010. Consequently, we built three
models of historical contingency, each with a different year starting
period IV (i.e., 2009, 2010, and 2011). The last year of period IV is
2018 (occurrence of event E).

The three models of the strong HCH (with different years
starting period IV) explained between 53% and 59% (average of
56%) of the variance in predation rate (Table 1; Figure 2). In other
words, historically contingent events explain over half of the
variance in predation rate. R* values of that size for time series of
population-level phenomena are generally considered to represent
ecologically significant explanations.

Models for comparison

An important aspect of assessing the HCH is to compare its
explanatory power to other forms of scientific explanation,
especially theory-based explanations by which we mean statistical
models motivated by ecological theories and hypotheses. In this
section we explain the merits and limitations of various models to
which the HCH model might be compared. Given our interest to
explain fluctuations in predation rate, Lotka-Volterra theory and
some of its elaborations are an appropriate place to begin. However,
before describing the various models that we built for comparison, it
is first necessary to discuss two preliminary issues.

Preliminary #1: statistical circularity

As a concept rising from predation theory, PR is defined as
KRxP/N. Distinct from its relationship to predation theory, PR is
also a statistical variable that we calculated as KRxP/N. This
circumstance can lead to a kind of circularity that is not
uncommon in efforts to assess theoretical expectation with
empirical observation (Ritson and Staley, 2021). Consider, for
example, fitting this statistical model to our data:

PR =By + B KR +B,P +B5(1/N). (1)

That statistical model seems worth considering given is
similarity to the theoretical definition of PR. Yet, the assessment
of this model would offer little insight, because its explanatory
power rests largely on a circularity due to the structure of the
statistical model being so similar to how PR - the statistical variable
- was calculated.

This circularity is largely avoided if one had estimates of PR that
are statistically independent of N, P and KR, such as an estimate
based on observing the annual rate of predation among a reasonably
large sample of individually marked and tracked moose (i.e.
individuals fitted with GPS-collars). However, such data do not
exist for moose over the 48-year study period examined here.
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TABLE 1 Performance of the strong historical contingency hypothesis models and alternative theory-based models built to understand mechanisms
underlying interannual variation in predation rate between 1971-2018.

Model Standard
Variable coefficients error
Strong-HCH-2009 0.53 05 7.04
Strong-HCH-2010 0.56 053 442
Strong-HCH-2011 0.59 0.57 0
P 0.003 0.0005 0.4 038 15.24
N 86.78 12.32 0.52 051 426
KR -0.05 0.02 0.08 0.06 3537

89.45; 623
N, NAO, N:NAO -0.03; 24.13 14.01; 0.02; 19.81 0.54 051

0.003; 16.46
P, NAO, P:NAO -0.03; 0.001 0.001; 0.02; 0.001 043 039
P,PS 0.003; 0.001 0.002; 0.003 0.4 037 16.98

P is wolf abundance, N is moose abundance, KR is per capita kill rate, PS is pack size, and NAO is North Atlantic Oscillation. Models that include N were built by first transforming N to 1/N and then fitting a
linear model to the data. Doing so, accounted for the nonlinear relationship between PR and N (see Figure 3). The Akaike information criterion (AIC) for each model was calculated as: AIC = 2K - 2(log-
likelihood), where K is the number of parameters being estimated in the model. AAIC is the AIC for the model of interest minus the lowest AIC of all models being considered in each table.

The best performing model has a DAIC of 0 and is indicated in bold font.

Furthermore, such data are not required to realize the main aim of
this study, which is to assess the explanatory power of the HCH, in
part, by comparing it to theory-based explanations. This circularity
is also avoided if, for example, one considers models of PR that
contain only one of these variables, N, P, or KR. We explain how
and why in Models Motivated to Assess Mechanism.

Preliminary #2: purpose affects assessment

The assessment of a model depends on the model’s purpose.
Two general purposes of a model are reflected by two schools of
thought in the philosophy of science, realism and anti-realism
(Craig, 1998). The salient features of these schools of thought are:

o Realism supposes that the purpose of a model is to assess an
underlying hypothesized mechanism. The idea is familiar to
practitioners of ecology: develop a prediction that rises
from the hypothesized mechanism and then see if the
prediction matches the data. The explanatory power of
the model depends on several considerations: (1) how well
the data fit the prediction, (2) how compelling the
hypothesized mechanism is, and (3) the extent to which

alternative mechanisms can result in the same prediction.

o Anti-realism supposes that explanatory power is largely (or
entirely) due to a model’s ability to make a
parsimonious forecast.

Realism and anti-realism are often viewed as competing ideas,
in part, because models that are especially good for one purpose (say
assessing mechanism) are often not as good for the other purpose
(say forecasting). We do not suppose that either idea or purpose is
more important than the other. However, it is important to
recognize that an appropriate assessment of a model’s
performance depends on its purpose. In the next two sections, we
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develop a basis for assessing the HCH by comparison to models
whose purpose is primarily (1) to assess mechanism or (2) make a
parsimonious forecast. We also discuss how the second comparison
has value even though the purpose of the HCH is not to make
a forecast.

Models motivated to assess mechanisms

Here we consider models that are motivated by the assessment
of some underlying mechanism or basic pattern whose importance
is indicated by theory, such as the relationship between N and PR.
While PR is calculated from N, that relationship still has enough
degrees of freedom such that the empirical relationship may be
positive or negative, linear or non-linear, monotonic or non-
monotonic, strong or weak. No less important, a great deal of
meaning has long been attached to knowing the relationship
between N and PR (e.g., Holling 1959, Messier 1994, Krivan
2008). The degree to which N and PR are positively related is the
degree to which predation has a stabilizing influence on prey
density. According to theory, as PR becomes independent of N or
increasingly negatively density dependent, then predation becomes
an increasingly destabilizing force.

(Note, within frequentist statistics, if a predictor variable and
response variable are not statistically independent, then p-values
associated with their covariance will be biased. Important as that
principle is, it does not undermine the reliable insight that can come
from assessing the relationship between N and PR in ways that are
not so reliant on the need for unbiased p-values.)

These circumstances about N and PR also apply to the
relationship between P and PR and the relationship between KR
and PR. That is, there are enough degrees of freedom in either
relationship to make their assessment worthwhile and these
relationships may be positive or negative, strong or weak, etc.
Furthermore, significant meaning has been given to knowing
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whether and how PR is related to P and KR. For example, the
relationship between PR and P is associated with understanding
whether and how predation rate is influenced by interference
competition among predators (Abrams, 1993). The relationship
between KR and PR is associated with, for example, questions about
whether “good years” for predators (high kill rate) tend to be bad
years for prey (high predation rate, Vucetich et al., 2011).

Based on those considerations about mechanism and process,
we compared the HCH model to univariate models that predict PR
from KR, P, and N (Table 1). Of those three models, only the model
with N performed comparably to the HCH models (e.g. the model
with N as a predictor explained 52% of the variation in PR,
Figure 3). Many other models can be built with the aim to better
understand the mechanisms and processes of predation. We
consider three such models. The first two models that we
considered are motivated by an interest to assess whether winter
severity, a key element of the abiotic environment, has an important
influence on PR. We used NAO as an indicator of winter severity,
because NAO, a measure of large-scale atmospheric processes, is
thought to be a better indicator of overall winter weather conditions
than locally measured, singular aspects of weather (i.e.,
winter temperature).

First, we built a model that predicts PR from N and NAO and
their interaction. That model represents the hypothesis that the
influence of N on PR may also depend on NAO because winter
severity may influence how vulnerable moose are to coursing
predators, such as wolves. The mechanism for such an influence
would be the adverse impact that winter severity tends to have on
the mobility or body condition of ungulates (Parker et al., 2009).
The second model that we built predicts PR from P and NAO and
their interaction. That model represents the hypothesis that the
influence of P on PR may also depend on NAO because winter
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FIGURE 3

Annual estimates of predation rate (PR) in relation to prey (moose)
abundance for the wolf-moose system in Isle Royale National Park
The solid line in depicts fitted values from the univariate model
including N in Table 1. Specifically, the line represents PRy egicted =
Bo + Ba(1/N). This model accounts for the non-linearity because
PRopserveq is calculated as a function of 1/N. That is, PRopserved =
KRXP/N. See also Equation 1.
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severity may influence a predators’ behavior or ability to detect,
encounter and pursue prey (Droghini and Boutin, 2018). Finally, we
built a model that predicts PR from P and pack size (PS). This
model is motivated by an interest to assess whether the predator
population’s social structure has an important influence on PR
(Hayes et al., 2000; MacNulty et al., 2012), while also accounting for
the influence of P.

The data from Isle Royale provide little or no support for the
hypotheses represented by those three models given that none of
them performed better than the simpler univariate models nested
within each of those three multivariate models. Specifically, the p-
values for likelihood ratio tests comparing each of the three models
to a nested univariate model (with N or P) were all greater than 0.26.
Moreover, the p-values for the coefficients associated with NAO, PS
and the interaction terms were all greater than 0.12. Additionally,
none of those models performed better than the HCH models in
terms of AIC. However, the level of support these three models offer
for their respective hypotheses does not depend on each of these
models having the highest R* or lowest AIC. Although, many other
models could be assessed — each motivated by an interest to assess
some reasonably considered mechanism — doing so is likely to result
in data dredging, which greatly risks confusing “The best model”
with an overparameterized model with an inflated measure of
model fit and underestimated p-values.

Models motivated to explain via forecasting

In some scientific contexts, the capacity to explain phenomena
is judged by a model’s capacity to make an accurate forecast. An
appropriate method for forecasting is cross-validation, which is
valuable for avoiding models with inflated measures of model fit
and underestimated p-values. Cross-validation may be conducted
by any of several different methods. The most appropriate method
depends on the purpose and context of the analysis. In our case, the
data are relatively limited, compared to the number of potential
predictors (n = 48 years) and the purpose is to understand the
extent to which a model built over one period of time can predict
dynamics over a subsequent period of time. For these reasons, we
used the first 24 years of the study period (1971-1994) as the
training dataset and used the last 24 years of the study period (1995-
2018) as the testing dataset. To find a parsimonious model with the
test data, we used AIC and a forward-stepwise-selection procedure
with five candidate predictor variables (N, P, KR, PS, NAO). To
avoid statistical circularity (discussed above), we did not consider
any model that contained all three of the variables used to calculate
predation rate (N, P and KR). After finding the most parsimonious
model, we used the coefficients (slope and intercept) from that
model to generate predictions of predation rate for the test dataset.
Then we used R? to judge how well that model predicted predation
rate for the test dataset (1995-2018).

The most parsimonious model identified for the training dataset
was a bivariate model with P and KR as predictors which explained
80% of the variation in PR between 1971-1994 (see filled circles in
Figure 4). However, that model was a poor predictor of predation
rate for the test dataset (1995-2018) as it explained only 13% of the
variance in PR (see open circles in Figure 4). A conclusion to draw
from this analysis is: while PR may be influenced by P and KR, they
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Results of cross-validation for a model forecasting predation rate (PR) as a function of: (A) wolf abundance and (B) the per capita kill rate. Filled
circles indicate the training dataset, i.e., data collected during the first 24 years of the study period (1971-1994). Open circles indicate the testing
dataset, i.e., data collected during the last 24 years of the study period (1995-2018). The solid line indicates predicted values of predation rate for the

testing dataset.

do not - by themselves - represent a very satisfying explanation of
interannual fluctuation in PR, and they do not seem to be a better
explanation than the HCH models.

Models motivated to explain via hindcasting

Models designed to explain phenomena via forecasting demand
more data than is commonly available. That circumstance leads
many to search for explanations of ecological phenomena by
hindcasting, even though that approach routinely involves data
dredging, often through the use of automated procedures. Because
that approach is common, we also consider it as a basis for
generating models to compare with the HCH model.

For this assessment, we considered the same five variables that
we considered in the forecasting analysis (N, P, KR, PS, NAO), plus
two additional weather variables, i.e., average temperature in winter
(WT) and summer (ST). We considered winter temperature as an
alternative indicator of winter severity. We considered temperatures
during the previous summer (ST) because summer temperature is
thought to influence the nutritional condition and parasite burdens
for moose in winter, which may make moose more vulnerable to
predators (Hoy et al., 2021, 2022). The goal of this analysis was to
build many models to find the model with the highest R* and lowest
AIC - but still avoid the circular model (including N, P, and KR).
We began by building each univariate model and each bivariate
model. Then we modified the best bivariate model (which included
N and P) by sequentially adding variables from the remaining set of
candidate variables to see if it improved model performance.

This procedure resulted in 32 models (Table 2). The best
univariate model included N (explaining 52% of the variance),
and the best bivariate model included N and P (explaining 72% of
the variance). The model with lowest AIC and highest R included
three variables, N, P and NAQO; however, that model did not
perform substantially better than the best bivariate model (AAIC
= 0.65). Importantly, there is a high degree of statistical dependence
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between the response and predictor variables contained in the best
hindcasting models because they contain two of the three variables
used to calculate PR (N and P). Of the models that did not contain a
high degree of statistical dependence, the best performing model
included two predictors, N and PS. That model explained 64% of the
variation in PR, which is slightly higher than the best HCH model
(which explains 59% of variance). We suspect that the good
performance of the model including N and PS is importantly
attributable to PS being very strongly correlated with P (r = 0.81),
as opposed to pack size being an important explanation of
interannual fluctuations in PR.

Ratio-dependent models

The preceding sections distinguished models on the basis of
their purpose — mechanistic assessment or parsimonious prediction.
Some models are not so simply categorized. An example of such is a
ratio-dependent model, which predicts KR from N/P or P/N. Ratio-
dependent models are not so simply categorized because
researchers disagree on the epistemic value of these models. Some
think this model is an especially parsimonious representation of an
important mechanism, i.e., the separate influence of N and P on KR
(Arditi and Ginzburg 1989). Others think ratio-dependent models
are an inappropriate bases of hypothesizing about the influence of N
and P on KR (Abrams and Ginzburg 2000). While those varying
judgments are important, our goal is not to evaluate either view.
Rather, we built a ratio-dependent model [PR = f3, + ;(N/P)] on
the grounds that PR is influenced by KR, which is in turn thought to
be influenced by N/P (Vucetich et al., 2001). In doing so, we are
favoring mechanistic assessment as a purpose for this model. This
model had an R* = 0.28 and performed worse than the HCH models
in terms of AAIC. Specifically, the AAIC for this model compared to
the best model HCH model is 23.7. Note, we refrain from building a
model with the form, PR = f(P/N), on grounds that doing so would
be nearly circular, because PR is calculated as KRx(P/N).
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TABLE 2 Performance of models built to hindcast interannual variation in predation rate between 1971-2018.

Model Standard
Variable coefficients error
P 0.003 0.0005 0.40 0.38 35.72
N 86.78 12.32 0.52 051 24.74
KR -0.05 0.02 0.08 0.06 55.86
PS 0.01 0.002 0.29 0.28 43.12
NAO -0.03 0.01 0.10 0.08 5471
WT -0.001 0.003 0.003 <0.001 59.72
ST 0.001 0.01 <0.001 <0.001 59.83
P,N 0.002; 71.45 0.0004; 9.87 0.72 071 0.65
P, KR 0.004; 0.02 0.0007; 0.02 0.41 0.38 36.77
P, PS 0.003; 0.001 0.002; 0.003 0.40 037 37.47
P, NAO 0.003; -0.003 0.001; 0.01 0.40 037 37.61
P, WT 0.003; 0.001 0.001; 0.003 0.40 037 37.46
P, ST 0.003; 0.001 0.001; 0.003 0.40 037 37.46
N, KR 89.37; 0.008 13.89 0.02 0.52 0.50 2656
N, PS 73.93; 0.01 11.31; 0.002 0.64 0.62 13.09
N, NAO 83.74; -0.01 13.28; 0.01 0.52 0.50 26.30
N, WT 89.35; -0.003 12.27; 0.002 0.54 0.52 24.34
N, ST 92.90; -0.01 12.49; 0.01 0.55 0.53 2334
KR, PS 0.01; 0.01 0.03; 0.003 0.30 0.27 44.96
KR, NAO 0.04; -0.02 0.03; 0.01 0.14 0.10 54,61
KR, WT 0.05; -0.001 0.02; 0.003 0.08 0.04 57.75
KR, ST -0.05; 0.002 0.04; 0.01 0.08 0.04 57.79
PS, NAO 0.01; -0.004 0.003; 0.01 0.30 0.27 4498
PS, WT 0.01; 0.001 0.002; 0.003 0.30 0.26 45,07
PS, ST 0.01; 0.01 0.002; 0.01 0.33 0.30 4255
NAO, WT -0.03; -0.001 0.01; 0.003 0.10 0.06 56.64
NAO, ST -0.03; 0.004 0.015 0.01 0.11 0.07 56.43
WT, ST -0.001; 0.003 0.004; 0.01 0.004 <0.001 61.64
0.002; 0.001;
P, N, PS 71.76; -0.001 10.06; 0.002 0.72 0.70 2.59
0.0004;
P, N, NAO 0.003; 75.78; 0.01 10.09; 0.01 0.74 0.72 0
0.002; 0.0004;
P, N, WT 72.82; -0.001 10.12; 0.002 0.72 0.70 2.13
0.002; 0.0004;
P, N, ST 72.31; -0.001 10.73; 0.01 0.72 0.70 2.60

P is wolf abundance, N is moose abundance, KR is per capita kill rate, PS is pack size, NAO is North Atlantic Oscillation between January and March, WT is average winter temperatures between
January and March, ST is average summer temperatures between July and September. Models that include N were built by first transforming N to 1/N.

The weak HCH then better models of population-level phenomenon would
generally result from augmenting traditional theory-based
If historical contingencies have an important modifying ~ mechanistic models [e.g., PR = f{N)] with indicator variables that

influence on population ecology, as posited by the weak HCH, delineate periods of time, defined by historically contingent events.
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TABLE 3 Performance of models built to assess the weak historical
contingency hypothesis.

Variables R? R2adj AAIC

N 0.52 0.51 26.67
N & weak-HCH-2011 0.76 0.73 0
N & PS 0.64 0.62 13.66
N & PS weak-

HCH-2011 0.76 0.73 0

N is moose abundance and PS is pack size. Models that include N were built by first
transforming N to 1/N.

To test the weak HCH, we assessed whether the best univariate
[PR = fIN)] and bivariate model, PR = f(N, PS), were improved by
adding indicator variables demarking each historically contingent
time period. We used 2011 as the cut-off for time-period III (as we
did for Model 3 in Table 1).

The results of that analysis suggest that the two weak HCH
models performed better than the corresponding models which did
not account for historically contingent events (Table 3). Most
notably, the model including N and indicators of historically
contingent events explained substantially more variation in PR
than the univariate model just containing N (Table 3), and also
performed substantially better in terms of AIC (Table 3).

Reddened spectra

Lastly, we investigated the relationship between historical
contingencies and reddened spectra. Specifically, we assessed
whether four essential elements of predator-prey dynamics on Isle
Royale (N, P, KR and PR) showed signs of reddened spectra. We
followed Arino and Pimm (1995) and assessed reddened spectra
with plots showing how the sample variance of each of the four
elements changes with the length of observation. Time series are
considered to exhibit reddened spectra if they show a continued
increase of interannual variation, with no evidence of reaching an
asymptote. We then observed how historically contingent events
coincided with temporal patterns in variance.

Several of the time-series showed signs of reddened spectra
insomuch as they did not reach an asymptote over the study period
(Figure 1, lower panel). Furthermore, each historically contingent
event (A-E) was immediately preceded by an abrupt increase in
variance in at least one of the four elements. For example, event (A)
was preceded by an abrupt increase in the variance of P; event (B)
was preceded by an abrupt increase in the variance of PR and N;
and event (D) was preceded by an abrupt increase in the variance
in KR.

Discussion

In summary, we developed a novel conceptualization of
historical contingencies and a simple approach for quantifying
the importance of historical contingencies for explaining elements
of population ecology. We applied those ideas to a case-study

Frontiers in Ecology and Evolution

11

10.3389/fevo.2024.1325248

(wolves and moose on Isle Royale) and found that the HCH
models were better than, or at least competitive with, all of the
alternative theory-based models that we assessed. We also found
evidence suggesting that there may be a relationship between
historical contingencies and reddened spectra. While broad claims
about the HCH cannot be satisfactorily evaluated with a single study
system, we provide the means for follow-up analyses because this
method can be applied to any population that has been studied in
reasonable detail over a long period of time [such as those
referenced in (Clutton-Brock and Sheldon, 2010)].

Several essential results situate the importance of historical
contingencies for explaining the predator-prey dynamics studied
here. First, models associated with the strong HCH explained over
half of the interannual variation in predation rate and out-
performed theory-based models designed to assess some of the
most important mechanisms in predation ecology (Table 1).
Second, models associated with the weak HCH, that account for
both historical contingencies and key ecological mechanisms,
explained substantially more variance than models which only
accounted for mechanisms (Table 3). While solid support for the
weak HCH is not surprising, the impressive performance of the
strong HCH model is remarkable. The impressive performance of
the HCH models does not diminish the value of models
representing ecological theory. rather, our results highlight the
importance of historical contingency, especially in relationship to
ecological theory. For emphasis, we are not supposing, nor should it
be supposed, that ecological theory and HCH are mutually
exclusive explanations.

When comparing the HCH models to alternative models, it is
important to consider the purpose of those alternative models and
the means by which they were obtained. In particular, a few models
in Table 2 had higher R* and lower AIC values than the strong HCH
models. However, those models were found by data dredging which
is known to produce models that are overfit, resulting in inflated
values of R* and deflated values of AIC. More importantly, there is a
high degree of statistical dependence between the response and
predictor variables contained in the alternative models with the
highest R* and lowest AIC.

The strong HCH models also compare interestingly with the
cross-validated model, whose explicit purpose is to make a forecast.
First, although the HCH models seem as though they demand a
great deal of data, it is important to observe that cross-validation is
similarly demanding of data. Second, the cross-validated model
performed very well on the training data (R* = 0.80), but very poorly
on the test data (R*> = 0.13). That disparity is likely because the
system experienced alternative stable states (see below). In other
words, the reason why the forecast was very poor is precisely for the
same reason that the HCH model performed so well.

HCH as synthesis

The HCH is also a framework for synthesizing several ecological
phenomena of broad significance. For example, we show
connections between historical contingencies and reddened
spectra (Figure 1). The broader significance of reddened spectra is
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indicated by their influence on resilience and extinction risk
(Schwager et al., 2006; Ponciano et al., 2018) and their association
with ecological surprises (Arifio and Pimm, 1995).

The HCH also assimilates legacy effects, tipping points and
alternate stable state theory. For example, the historical periods we
observed are aptly characterized as alternate states, represented as
periods of strong top-down regulation (periods I and III) and
periods of weak regulation by predation (periods II and IV;
Figures 1, 2). Furthermore, simulations indicate that shifts
between stable states are likely to be preceded by periods of
increased variance (Carpenter and Brock, 2006). We provide rare
empirical evidence supporting the results of those simulations by
showing that periods defined, a priori, by historically-contingent
events were immediately preceded by an abrupt increase in variance
for some, but not all, elements of the system (Figure 1, lower panel).
These abrupt increases in variance may be linked to the waning
legacies of previous historically-contingent events. More
importantly, we observed at least three shifts over the five-decade
study period (i.e., after events A, B/C, D). That observation
advances understanding of alternate stable state theory by
providing a benchmark for understanding how frequently such
shifts may occur. At present, few systems have been studied in
sufficient detail and over long enough time periods to observe three
or more alternate stable states.

Several of the historically-contingent events that we observed
were the seemingly unlikely coincidence of multiple events.
Specifically, Event A is the coincidence of a novel disease and the
highest predator abundance ever observed in this system. Event B is
the coincidence of an extreme winter and the highest prey
abundance ever observed in this system and then event C (genetic
rescue in the wolf population) occurred only a year later. Therefore,
much that has occurred in this system is attributable to these
seemingly unlikely coincidences which consist of either
compounding or countervailing influences (for details, see
Supplementary Materials). That observation is consistent with
earlier work indicating that coincidences with compounding
influences can have important effects (Denny et al., 2009). That
observation also offers critical perspective to prior work indicating
that synergies tend to result in ecological surprises, but the
occurrence of synergies is rarer than is often supposed (Cote
et al,, 2016). The rarity of synergies arises from its narrow (albeit
appropriate) definition, i.e., two or more events combining to result
in a super-additive effect (Brook et al., 2008). The coincidences that
we observed were impressively impactful without necessarily being
concerned with whether they were synergies with super-additive
effects. Furthermore, the observation of several seemingly unlikely
coincidences over six decades suggests a need to better judge
whether the coincidences were genuinely unlikely or only
seemingly so. The apparent discrepancy is resolved by noting the
disparate nature of the events involved (extreme winter, novel
disease, immigration events). Because ecosystems are composed
of such a vast array of biotic and abiotic influences, it is not
surprising to observe coincidences like those observed here with
some regularity. Therefore, one should expect seemingly unlikely
coincidences to occur periodically and that they may have an
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important influence on population dynamics [see also (Paine
et al., 1998; Denny et al., 2009)].

HCH, forecasting, & surprises

Our results also suggest that the HCH is a valuable
explanation for why “ecological surprises” are so frequent (i.e.,
because of the disparate nature of coincidences that can have
important impacts) and their inordinate influence. In this way, the
HCH is similar to the Black Swan Theory of Events which was
developed to explain the behavior of financial markets (Taleb,
2010). More precisely, the Black Swan Theory aims to explain the
inordinate influence of events that cannot be reliably forecast from
historical patterns, as well as the psychological biases that limit
humans’ ability to appreciate the unpredictability and import of
such events. According to this theory, black swan events are rare,
unpredictable events with dramatic, and often catastrophic
impacts. Additionally, black swan events are explained only with
the benefit of hindsight, but in such a way that misleads financial
managers and stakeholders to believe and act as though such
events could have been forecast. A key difference between the
HCH and Black Swan Theory is that the latter is centered on
explaining the limits of human perception. However, the HCH
and Black Swan Theory both call for a richer acknowledgement
and appreciation of unpredictable events so that people do not
underestimate the vulnerability of systems.

A recent study concluded that black swan events are rare in
ecology (Anderson et al., 2017). However, that study conceptualized
black swan events as heavy-tailed process noise in time series of
population abundance without requiring that the cause of any
heavy-tailed process noise be known or identifiable. Heavy-tailed
process noise was detected in only 4% of the 609 time series
analyzed and it was less likely to be detected it in short times
series. The median length of the time series was relatively short (i.e.,
~26 years). The shortness of time series analyzed and the narrow
definition of black swan events used in that study may have resulted
in the frequency of black swan events in ecology being
underestimated. Moreover, detecting black swan events may
require more information than is contained in simple time series
data. Although the statistical patterns observed by (Anderson et al.,
2017) are important and valuable, they could lead to a
misunderstanding of how common important and unexpected
events are in ecology.

Future assessments

Broad claims about the HCH cannot be satisfactorily evaluated
with a single system. However, our method could be applied to any
population that has been studied over a long period of time and in
reasonable detail, such that understanding of the system transcends
simple time series data. While the prevalence of such data shouldn’t
be prejudged, it may prove to be rare. In that case, testing the HCH
would be greatly challenged by the paucity of data. The paucity of
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existing data to test a new hypothesis is independent from the
hypotheses’ value. Rather the basis for judging the value of any
hypothesis is: is the hypothesis plausibly true, and would
discovering the extent of its truth yield worthwhile knowledge? If
the answer to those questions is yes, and if the data needed to test
the hypothesis do not exist, then the traditional development in
science is to begin collecting such data. That such data collection
might be difficult or slow seems less pertinent. In this vein, an
ancillary value of this hypothesis may be, as detailed in (Vucetich
et al., 2020): (i) to provide more reason for ecologists to begin
prioritizing the development of long-term ecological research, and
(ii) to stimulate more discussion about how to most effectively
conduct long-term ecological research — because all approaches to
such research may not be equally effective.

At this early stage of considering the HCH, it is natural to ask,
what types of systems are mostly likely explained by the HCH? It
seems plausible that the HCH is likely to have explanatory power in
systems prone to exhibiting ecological surprises or alternative stable
states — perhaps because they are exposed to the kinds of
(exogenous) forces that are most likely to represent tipping
points. Systems that exhibit reddened spectra would also seem to
be prime candidates for being explained by the HCH. One would
not expect a population’s dynamics to be explained by the HCH if it
had only been monitored for a relatively short time (e.g. a decade or
3 generations) because not enough time is likely to have passed for
multiple historically contingent events to occur and have long-
lasting legacy effects.

We suppose that future assessments of the HCH would have
two elements, a model representing the HCH and at least one,
directly comparable, alternative model representing the most
appropriate ecological theory given the system being assessed. By
directly comparable, we mean that the response variable for both
models would be the same data (in our case, predation rate for a
specified period of time). The model representing HCH should be
built — we suppose - as we did here, by identifying events that had
important and long-lasting effects which divide time series into
segments and do so without cherry-picking events simply because
they minimize the models AIC. This description should be
accompanied by two caveats. First, the assessment of a hypothesis
- including the HCH - is always provisional. The conclusion that
HCH is (or is not) important can be revised by future testing, which
may involve more data or the discovery of different models to better
represent HCH. Second, we expect others may develop alternative
means of testing the HCH. These alternatives may even lead to
refinements in the hypothesis itself. That expectation is consistent
with the development of other ideas in population biology, such as
standards of evidence for genetic rescue (Hedrick et al., 2011) and
trophic cascades (Peterson et al., 2014).

Lastly, our case shows how legacy effects or the occurrence of
some events may not easily be defined by a single year, as was the
case for the end of period III and start of period IV (Figure 1;
Table 1). Nevertheless, the statistical framework presented here
favors identifying a precise year. In our case study, the R* value of
the HCH models varies somewhat (0.53 to 0.59), depending on
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when we suppose that period III ended and period IV began (2009,
2010, or 2011). However, the salient point is that the various values
of R for those three HCH models are all consistent with the
ultimate conclusion of the paper, i.e., the models representing the
HCH explain about half of the variation in PR and perform better
than, or are at least competitive with, all of the other models that we
assessed. Nevertheless, it is imaginable that other cases may require
a more complex statistical model to represent the HCH.

Conclusion

Overall, we found strong evidence supporting the HCH for this
case study and our results suggest that a large class of ecological
phenomena are synthesized by the HCH. In community ecology,
Losos (1994) concluded that: “only rarely will ecological forces be so
strong as to completely erase the vestiges of history”. Our work
suggests that the influence of historical contingency could be
equally as strong for population ecology. If the HCH were found
to be broadly applicable, it would explain one of the most basic
features of ecological science. That is, why ecologists can so
effectively explain population dynamics with hindcasts, but are
conspicuously poor at forecasting. The plausibility of the HCH
and the elements it synthesizes — reddened spectra, tipping points,
etc. - provide even more reason to be humble about our inherent
limitations to forecasting and to stop overestimating our ability to
control ecosystems.
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