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Abstract—As the metaverse grows with the advances of new
technologies, a number of researchers have raised the concern
on the privacy of motion data in virtual reality (VR). It is
becoming clear that motion data can reveal essential information
of people, such as user identification. However, the fundamental
problems about what types of motion data, how to process, and
on what ranges of VR applications are still underexplored. This
work summarizes the work of motion data privacy on these
aspects from both the fields of VR and data privacy. Our results
demonstrate that researchers from both fields have recognized the
importance of the problem, while there are differences due to the
focused problems. A variety of VR studies have been used for user
identification, and the results are affected by the application types
and ranges of involved actions. We also review the biometrics
work from related fields including the behaviors of keystrokes
and waist as well as data of skeleton, face and fingerprint. At the
end, we discuss our findings and suggest future work to protect
the privacy of motion data.

Index Terms—Privacy, user identification, authentication, mo-
tion, virtual reality, VR

I. INTRODUCTION

The interactions between real people and virtual metaverse
rely on the tracking of human motions. Nowadays, all the
virtual reality (VR) devices as well as other mobile devices
such as smart phones or watches can measure motions at
key joints and apply the tracking data to support various
interactions. In metaverse, such interactions support users to
achieve many actions that we do in the real-life, such as point
and walk; and equip users with “super powers” actions like
a superhero, such as fly and distant grabbing. They are must-
have components of a metaverse.

However, recent work has shown that a variety of private
user information can be inferred with the motion data. SoK [1]
has provided a comprehensive taxonomy of data attributes,
protections, and adversaries in VR, and covered all the layers
from software to users, hardware of devices, and network
sources. The work pointed out that there are more defensive
works than the attacks, but the defensive solutions are far from
satisfactory yet. From the angle of the metaverse applications
and the underlying technologies, data privacy issues have
also been reviewed based on the state-of-the-art solutions in-
cluding federated learning, differential privacy, homomorphic
encryption, and zero-knowledge proofs for different privacy
problems [2].

Studies from related fields have also shown that various
behavioral patterns can be used for user identification. One
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example on the large scale is the user behaviors from online
services, such as call data records, web browsing histories,
and GPS trajectories. Basic statistics of the behavioral patterns
like histograms can be used to identify a large portion of
users, and therefore serve as unique patterns for users like
fingerprints [3]. An example on the small scale is the patterns
from just hand movements. The hand patterns with two
tasks of 3D pointing and gaming have been used to predict
continuous hand trajectory in VR with a regressive model [4].
The results showed high prediction accuracy for the immediate
continuous trajectory (from 100ms to 300ms) across all the
users and activities, and the trained model could be applied
to new users and new activities. In addition, the hand motions
recorded from both cameras and VR controllers could be used
to detect the keys users entered on a virtual keyboard [5].

This work reviews the privacy leakage of motion data in
VR, given the fast growth of metaverse. Specifically we focus
on the motion data in VR which only captures the motions of
head and two hands, and occasionally enriched with additional
data such as gaze or system context information. Our work
summarizes the immediate needs of motion data privacy in
VR, and the complexity of various factors that may affect the
results of user identification. We also discuss the scope of
research topics around the core problem of user identification
and show the potential of additional privacy issues with the
motion data.

The contributions of this work are:

« identify and collect the related work on the topic of user
identification with motion data collected with VR devices.

o categorize the research works with the types of VR
studies, data engineering, methods of identification, and
conclusions.

o review the literature from related fields that use behav-
iors as biometrics, including skeleton, keystroke motion,
fingerprint, wrist and face.

« discuss the problems based on the literature reviews and
suggest important factors for the future works.

The following of this paper is organized as follows. We
first summarize the related work that are selected for this
review and categorize the work from several aspects of data
collections, methods, and conclusions. In Section III, we
review the behavior privacy problems from several related
fields to demonstrate the various works on human behaviors.



We discuss the problems and suggest future works in Section
IV, and conclude the paper in Section V.

II. REVIEW OF MOTION DATA FOR USER IDENTIFICATION

We summarize the literature on privacy of motion data in
Table I, specifically user identification and authentication. For
the data collection, “standard motion” represents the 6DOF
motion data, including position (3D) and rotation (3D) of head
and two hands, that can be collected with majority VR devices.
We review the literature from the following aspects, motion
data, VR studies, data processing and feature engineering,
classification techniques and results.

A. Survey Methodology

We first used the following keywords to search on the IEEE
Xplore and ACM digital libraries.

« privacy, person identification, user identification, authen-
tication

« motion data, skeleton, joint

o virtual reality, VR

We further read through the papers and removed the papers
that are not directly related to the review topic. The rest of
this section summarizes the remaining 18 papers as the core
corp, and we review additional work from related fields in the
Section III.

B. Motion Data in VR

To clarify the scope of the topic, motion data privacy in VR,
we specify the types of data that are generally collected in VR
studies. In majority VR devices, the head and the two hands
are monitored with Inertial Measurement Units (IMUs) which
combine three types of sensors; an accelerometer, a gyroscope
and a magnetometer. The telemetry data is streamed into the
storage of the head-mounted displays (HMDs) in real-time.
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Fig. 1. VR devices collect the motion data that corresponds to the 6 DOF in
a 3D space on the three joints, head and two hands.

Specifically, each of the three joints is treated as a rigid
body, which means that its shape does not transform over
time and its motion can be represented with a solid point.
At each joint, multiple 3D metrics can be measured, such as
the position and rotation for all the information of 6 DOF.

There are also alternate representations of the 6 DOF
motions. Gaming engines such as Unity3D and UnReal pro-
vide several additional attributes from the basic position and
rotation information. Among these, quaternions are used to
represent rotations. A quaternion is a four-tuple of real num-
bers x,y,z,w, which is a mathematically convenient alternative
to the euler angle representation. Up to now, it is still not
clear which representation of the rotation is the best for
classification models, therefore we include all works that use
any of these representations.

Eye tracking data is also available at some devices, such
as Quest Pro and Fove. These devices can be much more
expensive than the commercial-level VR HMDs. Therefore
this review tries to focus on the general VR devices that collect
the 6 DOF motion data on the three joints covering head and
hands and ignore the work that only uses gaze data.

C. VR Studies

While the privacy of motion data has been well-accepted
as an important problem from all related fields of privacy,
security and VR, all the research works picked one or two
specific VR studies to explore this problem. For example, the
game “Beat Saber” has been used in two research groups and
several publications in Table L.

We summarize the choices of VR studies and the rationales
based on the popularity of the application types. The rationales
behind the choices of the VR studies were often explicitly
provided in the works, as it is an important factor of the
validity and potential impact of the results. The statistics of the
study types is shown in Table II, where each study is put under
one study type. Due to the overlapping features of some VR
studies, such as a bowling game app belonging to both game
and sport types, this table may be adjusted if we add these
applications to all related types.

1) Game Type: The game type is the most popular choice,
since games are still the dominant applications of VR and
AR. A rich set of motion data can be collected via game
type applications, and generally they require users to perform
various tasks by combining all available interaction channels,
especially flexible transitions among different buttons and
thumbsticks on the VR controllers.

Among all the games, the games with rhythm and well-
defined actions are often selected. The top choice is the
game “Beat Saber”, which has been continuously used by
two research groups [6], [7], [24]. The “Beat Saber” has been
used to generate the BOXRR-23 dataset which contains 4.7
million motion records from 105,000 Users [26]. Previously,
the same group of researchers demonstrated that a large
number of real VR users (N=55,541) can be uniquely and
reliably identified [7] from this game. In addition, around 50
personal attributes were obtained from the users of the game
“Beat Saber”, and the results showed that over 40 attributes
could be accurately and consistently inferred from VR motion
data alone using simple machine learning models [6].

A different data collection method was also deployed with-
out the collaboration with the game companies or related



TABLE I
A SUMMARY OF USER IDENTIFICATION WORK IN VR

[ ID [ VR Study [ Data Collection | Classification Methods | Conclusions
[6] Game “Beat Saber” 1,006 users | Standard motion RFE, CNN, LSTM, and | 40 attributes can be identified with accuracy
Transformer over 58%.

[7] Game “Beat Saber”, 55,541 Standard motion LightGBM 55,000+ users identified with 94.33% accuracy
users from 100 seconds of motion.

[8] Game “Half-Life: Alyx”, 71 | Standard motion + gaze | CNN and GRU A mean accuracy of 95% for user identification
users data + physiological within 2 minutes when trained on the first

data from a subset of session and tested on the second.
31 users
[9] Talking with Hands, 34 users Body, finger, and audio | RF, Multilayer | The model with the combination of a long-short
data Perceptron, Fully | term memory architecture and body-relative
Recurrent Neural | data correctly identifies any of the 34 subjects
Network, LSTM, GRU with an accuracy of 100% within 150 seconds.

[10] Searching balls for 25 times, 23 | Standard motion Logistic Regression and | The accuracy is around 93% for user authenti-
users SVM cation.

[11] A driver dataset with 40 users, | Head motion Naive Bayes, PART, | PART and LMT classifiers achieved 99% of
and 48 users watching five Logistic functions, | accuracy in providing continuous authentication
groups of 18 spherical videos Multilayer Perceptron, | to the user in VR.

LMT

[12] Observation of 360-degree VR | Standard motion KNN, RF, and GBM The system identifies 95% of users correctly
video, 511 users when trained on less than 5 min of tracking data

per person.

[13] The VR learning study — train- | Standard motion KNN, RF, and GBM Personally identify users at accuracy as high as
ing the participant how to trou- 90.83%.
bleshoot a surgical robot, 60
users

[14] An AR everyday application | Standard motion + gaze | Logistic ~ Regression, | Users identified up to 97% F1-score in VR and
(34 participants) and VR robot | data Ridge Classifier, | 80% in AR. Gender and Age inference reached
teleoperation (35 participants) Decision Tree, and RF up to 82 and 90% F1-score.

[15] Picking virtual objects on a | Standard motion + in- | CNN The highest identification accuracy was 90.92%.
plan, 12 users teraction data

[16] VR ball-throwing task, 41 users | Standard motion Siamese neural | Identification results ranging from 87.82% to

networks 98.53%.

[17] 41-subject dataset [16], [18], | Standard motion Siamese network with | The results vary over short, median and long
and the 33-subject dataset [19] FCN timescales, ranging from no statistically signif-
— ball throwing 10 times on two icant relationship to optimal performance for
separate sessions per system. short and long enrollment/input separations by

using training sets from users providing long-
timescale data.

[20] An ecologically valid VR train- | Standard motion KNN, RF, GBM GBM performed the best with an average accu-
ing application, 61 users racy of 90.83% from the same session, and the

average accuracy of all models were reduced by
over 50%.

[21] Controlled tasks require physi- | Standard motion Decision Trees, | User identification’s accuracy was 98.6%. Pen-

cal movements, 15 users Discriminant Analysis, | etration testing with 12 attackers resulted in
SVM, Logistic | confidence values ;j50%, although physically
Regression, kNN, | similar attackers had higher confidence values.
Naive  Bayes, and
Ensemble Classification

[22] Two VR study, bowling and | Standard motion LSTM, RNN An identification accuracy was up to 90% across
archery, 16 users sessions recorded on different days.

[23] Stimulus following study which | Head orientation + gaze | Encoder 100% accuracy on user identification
moved a sphere on two elliptical
paths, 12 users

[24] game “Beat Saber”, 15 users Standard motion RF Overall 86% accuracy for a cross-validated

single-session and 71% for a two-session eval-
uation.

[25] VR sports and exercises, 24 | Standard motion FCN and Inception 90.91% identification accuracy after one week.
users

otes: Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), Long-Short Term Memory (LSTM), k-Nearest-Neighbors (KNN), Random
Forests (RF), Gradient Boosting Machines (GBM), Support Vector Machine (SVM), Logistic Model Tree (LMT).

organizations. The data was collected over a period of eight
weeks [24], and recorded with a third-party application. The
app detected the start and end of a song in Beat Saber and
transferred the recorded buffer to the server at the researchers’
lab via the HTTP POST request. The transmitted data also

included the name of the played song, its difficulty and
modifier, the acquired user’s score per frame, a timestamp, and
a user-specific ID token [24]. The users were encouraged to
play multiple times and suggested a specific song at different
difficulty levels in the solo game mode. The total data records



TABLE 11
SUMMARY OF VR STUDIES AND CONCLUSIONS

Study # of Pa- Selected Result

Type pers

Game 4 50,000+ users identified with 94.33% accuracy
from 100 seconds of motion.

Sport 6 Identification results ranging from 87.82% to

98.53%.

The model with the combination of a LSTM
architecture and body-relative data correctly
identifies any of the 34 subjects with an ac-
curacy of 100% within 150 seconds.

GBM performed the best with an average
accuracy of 90.83% from the same session,
and the average accuracy of all models were
reduced by over 50% from two sessions.

Routine | 6

Training | 2

were 375 times during 119 sessions.

Other games have also been used, such as the game “Half-
Life: Alyx”. The HTC Vive Pro was used to record 71 users
of this game for 45 minutes across two separate sessions [8].
The dataset included motion and eye-tracking data, along
with physiological data from a subset of 31 users. The game
contained navigation for players to walk around or teleport to
another location, grabbing of virtual objects with either hand,
and interaction methods including “gravity gloves” for remote
grabbing and snatch for combat. Overall, the interaction meth-
ods often required hand motions and button clicks jointly.

2) Sport Type: Related to the game type, the applications
of sport type have often been used, including bowling, ball-
throwing tasks, archery, rock climbing, and other types of
exercises. Similarly, the popularity of such types among VR
applications may play an important role in the selection. VR
applications have attracted much attention for sport athletes
and rehabilitation of injured or senior people.

For example, a VR study investigated the temporal changes
in VR behavior over short, medium, and long timescales. They
used the 41-subject dataset [16], [18], which deployed on the
HTC Vive, HTC Vive Cosmos, and Oculus Quest; and the 33-
subject dataset [19] of a single VR system. The same task, a
user throwing a ball at a virtual target 10 times on two separate
sessions per system, was used in both datasets. A VR study
with a set of typical tasks emphasized joint movements of
the head, eyes, arms, wrist, torso and legs, such as grabbing,
rotating and dropping [21]. Another study focused on task-
driven scenarios and used Oculus Quest [22]. In the bowling
task study, users were asked to hit as many pins as possible.
In the archery task, users were placed in a forest and asked to
shoot an arrow at the bull’s eye.

Recently, a study investigated how different types of kinetic
signatures influenced user identification in VR [25]. As an
example VR exercise app, the game “OhShape” was selected
for attractive features similar to “Beat Saber”. It required users
to adjust their shape to fit through the approaching walls
and collect coins and offered four difficulty levels. For VR
sport, several games were selected for capturing different types
of kinetic movements, such as “Premium Bowling”, “Indoor
Rock Climbing VR” and “PowerBeatsVR”. The key motions

such as the throwing motion or when the rocks were hit were
captured with the assistance of voice or visual prompts.

3) Routine Type: We categorize several studies in the
routine type, as the rationales for choosing these studies are
often similar — these actions are commonly used in various
VR applications and therefore possess a higher possibility
of leaking user identification information. Such applications
include talking with hands, observation of 360-degree videos,
and controlled tasks with physical movements.

The publicly available dataset “Talking with Hands” [27]
used skeleton tracking, finger and audio data collections.
Two main tasks were included to create this dataset: free
conversation around a given topic and video retelling. The
free conversation topics were chosen from a comprehensive
set originally designed for casual conversations in English
classes, and the video retelling asked users to watch a 5S-minute
video and then told the story to another user, during which
conversations were allowed. The duration of the data ranged
from 7 to 20 minutes.

Watching 360-degree videos in VR is also a common appli-
cation. A dataset was collected by asking users to watch 360-
degree videos, each lasts for 20s and randomly selected from
a set of 80 videos, and answer questionnaires in VR [12]. In
addition, the two user studies, an AR everyday application and
VR robot teleoperation, included eleven generic actions (e.g.,
walking, searching, pointing) with different mental loads [14].
To replace the standard authentication method with password,
a ball searching method asked users to look for a ball in
the 3D space, and once found continued to search for a new
location [10]. An VR study of interacting with virtual objects
was performed [15].

4) Training Type: The training applications are becoming
popular in VR, since VR is especially suitable for creating
realistic environments that are hard or expensive to obtain in
real-life education. The users of the training apps, such as
students or trainees who are juniors, may be not aware of
the privacy leakage as the general population. From the result
aspect, the actions in the training apps are more likely to be
similar, and could be used for user identification with higher
accuracy degrees.

For example, a study trained participants how to trou-
bleshoot a surgical robot [13]. The VR learning study used
the HTC Vive and the SteamVR tutorial to train users how
to use the Vive. The authors suggested that the VR learning
study required lots of motion, and the results indicated that
the personal identifiability of user tracking data was likely
dependent upon the nature of the underlying VR experience.

Also, an ecologically valid VR training application [20]
was performed using the Vive HMD. The study contained a
variety of tasks, such as check error message, insert wrench,
and use port clutch, which used interactions of walk, look,
select, position, rotation or a combined interaction.

D. Data Processing and Feature Engineering

Since the datasets used in these studies are collected with
user behaviors in real-life and real-time, the motion data has



to be processed before we can send it to classification models.
The process of motion data generally goes through three
stages, choices of data representations, data processing and
feature engineering and classification models.

1) Data Representations: Just focusing on the motion data,
the 6DOF data features can be represented in different ways.
So far, all these representations have been used by works listed
in table I. Since majority works used world space or did not
clarify the space information, we ignore the space category
from this summary and focus on the different representations.
It is clear that the attributes of position, rotation, and quater-
nion are the most commonly used. They can still be processed
into different features in the following steps.

2) Data Processing: The motion data is often further
processed and concatenated as features as the inputs of the
classification methods. We summarize several processing op-
erations that are often performed for motion data: absolute or
difference data values, normalization, statistical measurements
for enrichment, time sequences, and additional records.

a) Absolute or difference values: The absolute values
are the records of motion data, and the difference values
can measure the changes of records relative to a base value,
such as the records from the first time stamp. The absolute
values are useful to represent specific locations and status of a
motion, especially when they correspond to the virtual objects
in the environment. For example, in the “Beat Saber” game,
the textual information of the cubes that users interact with
motions used the absolute values of both cubes and motions
to match each other [7]. The relative positions in relation to
the beginning of each kinetic sample was also used, which
removed the bias from the starting and absolute positions [25].
The 21 feature vectors were further normalized and aligned the
lengths with zero padding.

b) Normalization: The ranges of attributes are different,
Euler angles are in [0, 360], quaternions in [-1, 1], and
positions can be any real numbers. Therefore, normalization
is often used to reduce the undesired weight effect on the
classification results. The normalization process can also affect
the results, e.g. two types of body normalization methods
were tested, arm length and height normalization [22]. Four
feature sets were then created with different combinations of
motion data and stages of the bowling and archery actions. The
choices depend on if it is desirable to apply these attributes,
and a study has shown that body normalization in general can
increase the identification rates for the Archery and bowling
motions [22].

c) Statistical Measurement for Enrichment: Majority
works collect statistical measurements from the motion data
and use them to enrich the features. For example, the 90
dimensional features came from three categories: direction of
head-movement, the magnitude of the head-movement, and
movement time which represented the time duration between
several head movements [11]. Specifically, they were calcu-
lated for each combination of summary statistic (maximum,
minimum, median, mean, and standard deviation), body part
(head, left hand, right hand), and dimension (X, y, z, yaw,

pitch, and roll) [12]. The data processing process divided data
into chunks and summarized the features inside each chunk.
The results demonstrated that GBM performed the worst
around 68.2% accuracy and random forest achieved the best
around 95.3% accuracy. Another approach used the principle
component analysis (PCA) to cut down the dimensionality
with limited sample sizes, and only features produced when
95% of the variance was retained [10].

d) Time sequences: For time sequences, there is often
a resampling process to convert all sequences to the same
length, and linear interpolation is used to calculate the value
of the resampled point based on the values of the left and
right nearest points in the original sequence [21]. The data
was further transformed with the PCA feature to reduce the
data dimensionality before training the models.

e) Additional Collections: When additional data collec-
tions are available, such as gaze [14] or psychological data, the
combined datasets need to be aligned on the time dimension.
For example, the data attributes were collected at different
speed, such as 80Hz for eye-tracking, 15Hz or 90Hz for
motions with HTC Vive Pro, and 1Hz for heart rate [8].
For motion data, the rotation and position of both hands and
the rotation of the head were concatenated as the features.
Also the differences of each attribute were used to replace the
absolute values, which still kept the 18 features. In [23], the
gaze records were processed and normalized with a confidence
value about the estimation of the correctness. The feature
vector contained 21 attributes with the output of the gaze
classifier and head orientation. The lengths of motion data
were matched to the gaze data with arithmetic mean function.
The features were further centered at the middle of the space
to fit into the interval of [0, 1] for both head and eye data,
and accumulated with a slicing window with 50% overlap.

3) Feature engineering: It is common that additional fea-
tures can be computed from the original data and added to the
features or used to replace the original processed motion data.
Therefore, the features can be in diverse formats depending
on the data collection methods and context information based
on single or third party apps.

The longest feature vector combined motion features and
context features [7]. The motion features from sequences
before and after a target event were concatenated with the
context features from the VR app. The motion features were
absolute values of positions and quaternion rotations, and the
statistical measures included min, max, mean, med, stdev for
these two attributes among the 3 joints. The context features
had 22 types including the position, orientation, type, and color
of the block, the angle, speed, location, and accuracy of the
cut, and the relative error of the cut in both space and time.

As another example, the motion data collection was stan-
dard, but the features combined attributes from both time and
frequency domains [10]. The time domain features summa-
rized statistical features, including range, interquartile range,
third moment, fourth moment, variance, absolute sum, root
mean square, mean, skewness, kurtosis, 25th percentile, and
75th percentile. The frequency domain features included spec-



tral flatness, spectral skewness, spectral kurtosis, spectral cen-
troid, spectral spread, spectral rolloff, spectral entropy, and
energy. There were also cross-stream features build on the
rotation and position data, including 1-norm, infinity norm,
frobenius norm, correlation YX, correlation ZX, correlation
ZY, average pitch, average roll, average yaw, standard devia-
tion patch, standard deviation roll, standard deviation yaw. The
motion data was first smoothed with a 10th order Butterworth
filter and a 5SHz cut-off frequency. The data was then split into
12-second windows with a 50% overlap in between. The time
and frequency domain features were computed inside each
window.

Another unique work generated two feature vectors, touch-
ing conditions with Pc, Dc, Sc, Dh and looking conditions with
Dh and Sh. Specifically, Ph Dh, Sh represented the position,
direction, speed vectors of the headset; Pc, Dc Sc represented
the position, direction, speed vectors of the controller [15].
The data from the starting and ending periods were removed
and only the central 20 seconds of the task were used. All the
data sequences were later resized to 1024-element using linear
interpolation.

E. Classification Techniques

Table I lists the time series classification models in the
literature. The following provides several examples of such
methods and their results.

It is common that several machine learning (ML) models
are used and the best results are selected for the conclusion of
a study. For example, several classification models [28] were
used [25]. The best user classification results for LSHDEX
(butterfly movements for the arms together with sidestep
movements) were obtained by Inception [29] with an accuracy
of 78.15%, and for LSHDSP (tennis hits) with FCN [30] at
90.91%. The conclusion was that user identification’s accuracy
was high from low static components of kinetic signatures,
and certain movement types elicited more individual behavior
than others. Another example used five classification methods
in the experiment [11], and the results showed that PART
and LMT classifiers achieved 99% of accuracy in providing
continuous authentication to the user in VR. Overall, all the
five methods achieved over 99% of accuracy for the video
watching dataset [31], and performed very differently for the
driving dataset [32] (78.3% — 99.6%). Also, in the stimulus
following study that used HTC Vive Pro [23], the actual clas-
sification was performed through a review on time series clas-
sification [28], including Time Convolutional Neural Network
(Time-CNN), Multi Layer Perceptron (MLP), Fully Convo-
lutional Neural Network (FCN), Residual Network (ResNet),
Encoder, Multi-scale Convolutional Neural Network (MCNN),
Time Le-Net (t-LeNet), Multi Channel Deep Convolutional
Neural Network (MCDCNN), Time Warping Invariant Echo
State Network (TWIESN) and InceptionTime (Inception). The
model Encoder [33] achieved the best results — 0.97 and 1.0
for the two stimulus scenarios.

The most complex architecture is designed for accommodat-
ing 55,541 users [7]. The model LightGBM was selected after

comparing 6 popular classical ML classification models, and
a multi-layer hierarchical approach was used to suit the large
number of users [7]. Three layers were chosen, each layer
contained N classifiers each trained on 1/N of the available
classes, and the following layer redistributed the classes from
the previous one. The overall classification results were finally
determined by taking the highest logarithmic sum of the class
probabilities outputs. The results demonstrated that a large
number of real VR users could be uniquely and reliably
identified [7]. Further, the researchers collected additional data
and published the BOXRR-23 dataset which contained 4.7
million motion records from 105,000 Users [26].

Another unique work is to compare motions collected with
different VR systems [16]. Based on the VR ball-throwing
dataset from [18] with 3 VR systems — an Oculus Quest, an
HTC Vive, and an HTC Vive Cosmos, the Siamese neural
network was used to learn a system-to-system distance metric
between motion data between VR systems. The Siamese neural
network has shown good results with other related topics
such as handwriting and EEG [16]. Specifically, a Siamese
neural network architecture with FCN limbs was used and the
identification results ranged from 87.82% to 98.53%.

III. BEHAVIOR PRIVACY FROM RELATED FIELDS

Related to motion data privacy in VR, face and fingerprint
have been widely used as biometrics. We review several fields
that also use 6DOF or 3DOF data at multiple key joints
for user identification or authentication. Most of these fields
can use cameras to collect data, such as skeletons, faces and
finger motions. The keystroke motions are often collected
with VR/AR devices, and can use cameras as well. The wrist
motions are collected with smart watches. We provide example
works for each related field.

A. Skeletons

Full body skeleton motion data captured by the Microsoft
Xbox Kinect v2 has been commonly studied for action recog-
nition, such as the NTU RGB+D dataset [34]. In [35], only
using extracted joint distance features from static skeletons
and dynamic gait parameters, they could achieve nearly per-
fect accuracy in identifying persons with only a few frames
with simple machine learning classifiers, including k-nearest
neighbor (kNN), decision tree, Gaussian Naive Bayesian, neu-
ral network with multiplayer perception (MLP), and support
vector machine. Another work [36] developed a multi-task
deep recurrent neural networks (RNN) to perform action
recognition and person identification together. Learning the
joint probability of the two could improve the action recog-
nition performance. Research in [37] exploited skeleton data
to infer personal attributes like gender of the users. Research
in [38] used shift Graph Convolutional Network (GCN) mod-
els to accurately classify individuals’ identification and gender.
Research in [39] used a Siamese network inspired model
for re-identifying individuals by correlating their skeleton
data from private domains with publicly available datasets.
These findings demonstrated high privacy risk in full body



motion data. Recently, several works have studied how to
anonymize skeleton data for privacy preservation. Research
in [38] created an adversarial training-based frame-by-frame
anonymization framework for skeleton action recognition. It
modified the skeleton data to confuse a personal ID classifier
and a gender classifier while maintaining the performance
of an action recognition model. Research in [39] suggested
motion retargeting for anonymization. They used deep motion
retargeting [40], [41] to get character-agnostic motion data.
The spatial structure of the skeleton was transformed, but the
essence of the motion pattern remained largely intact, ensuring
that the anonymized data was still valuable for downstream
applications.

B. Keystroke Motions

The problem of keystroke snooping has also raised increas-
ing interests [42]. The attack to recognize the user’s virtual
typing is not necessarily easy, and it is built on a sequence
of operations, including 3D keystroke position estimation, 3D
cursor position estimation, keyboard alignment, and finally
KNN classification. The results demonstrated that the attack
can recognize the user’s virtual typing with over 89.7%
accuracy. Similarly, the keyboard input from HoloLens has
been studied [43]. The data collection included motion data,
gaze, and system information. With 25 users and 750 inference
trials of passwords consisting of 4-8 lowercase English letters,
results achieved a top-5 accuracy of 93%.

An interesting work is to provide a 2D video of VR users
and allow an attacker to mimic the behaviors of victims for
password-based authentication [44]. The results demonstrated
that an attacker can match their 3D enrollment trajectories with
the motion trajectories extracted from the 2D video to defeat
behavior-based VR security. The results vary dramatically
across different conditions.

C. Finger Motions

The finger movements have also been used to identify
users [45]. The uni- and bimanual finger behavior from 16
users were gathered from the interaction with eight different
universal interface elements, such as buttons and sliders, in
VR (Quest 2) /AR (HoloLens2). The positions and rotational
Euler coordinates were recorded for a location, and each hand
contained 26 locations. The mean, min, max, and standard
deviation further aggregate values within each time window.
The Random Forest classifier achieved 95% accuracy of user
identification across sessions. The feature set, F10, consisted of
the head and all virtual bones of the index finger and thumb,
including the fingertip, while the head position.y played an
important role as it suggested the height of a user and it made
a difference in the classification process.

D. Wrist Motions

Related to motion data in VR, wrist-wearables such as
smartwatches and fitness bands have also been studied from
the privacy aspect. While efforts have shown that it is possible
to infer certain behaviors with a high success probability [46],

other works concluded that consumer-grade wrist-wearables
were difficult to inference handwriting due to unique and/or
inconsistent behaviors [47].

E. Faces

Facial features and expressions have been studied as a
biometric for avatar authentication [48]. A number of ap-
proaches have shown that face recognition can achieve an
accuracy from low 60% to near perfect results. Multimodal
biometric approaches are common nowadays, including forms
of multi-sensor, multi-algorithm, multi-instance, and multi-
model which often combine face data with fingerprint and
voice.

IV. DISCUSSIONS

We discuss several aspects of user privacy with motion data
in VR and suggest possible future work directions.

A. User Identification with VR Studies

The results of user identification from our reviews vary
dramatically. Just take the accuracy of classification models
as an example, the accuracy can be around 90% for only 20
users or 97% for over 55,000 users. The purpose of the table II
is for understanding the differences in the results. The game
and routine types generally achieved higher accuracy values
than the sport and training types. While the data collection and
classification methods may all affect the results, zooming into
the detailed data processing and feature engineering compo-
nents reveals that the choices of motions and combinations of
motions can be directly related to the classification results. The
studies in our sport and training types contain more diverse
motions without a fixed order, compared to the studies in the
game and sport types. For example, each song of the “Beat
Saber” contains a specific sequence of cubes and obstacles
at the exact same time stamps, and a bowling action can be
segmented to the prepare, throw and end stages. However,
training a user to complete tasks with combinations of different
interactions without clear sequences, or everyday exercises
that involve a set of actions may both create challenges for
the classification tasks. Therefore, we should expect different
accuracy values based on the detailed motions in each study.

B. Applications

On the positive aspect, motion data has been used for
authentication for VR systems. For example, Dice Palette sup-
ported 3D freehand interaction in user registration and login,
and thereby improving security by avoiding bystanders from
guessing gestures [49]. Also, FMHash (i.e., Finger Motion
Hash) generated a compact binary hash code from a piece of
in-air-handwriting of an ID string, and used hash searching to
achieve convenient sign-in and sign-up with in-air-handwriting
gesture ID on mobile and wearable systems [50].

From the current results, we suggest that certain VR ap-
plications should pay special attention to the privacy issue
when they satisfy two criteria: 1) highly repetitive or thythmic
actions are involved and 2) users are students or seniors



that need special attention to privacy protection. Therefore,
application fields such as education, training, and rehabilitation
should enforce privacy protection policy and adopt defensive
solutions.

C. Research Topics

Beyond the core problem of user identification, the latest
works have also shown that motion data can be used to explore
additional sensitive information. The VR sport and exercise
study [25] showed that motion data from different kinetic
actions could influence user identification results, and in
addition revealed the sport capability or even health condition
of users. The VR Game “Beat Saber” was used to show that
40 attributes from 1,006 users could be classified with good
accuracy degrees, including age, race, rich or poor, and even
the fabrics of the clothes that users wear while playing the
game [6]. In addition, a large-scale example with 55,541 users
has shown that the number of classes is not a problem in real-
life applications [7]. In summary, we expect three branches of
research directions for this field.

« New methods of data collection, engineering, classifica-
tion that can improve user identification across different
applications, devices, time, user, etc.

o New methods to explore sensitive information that can
be revealed by the motion data with the enrichment of
additional data collections.

« New methods to protect the privacy of users according to
the applications and user preferences.

V. CONCLUSIONS AND FUTURE WORK

This review summarizes the latest work on the privacy
of motion data in VR. We cover the 18 papers searched
from the ACM/IEEE digital libraries with several related
keywords and a number of biometrics works from related
fields. While the number of the literature is small, both the
fields of VR and data privacy have recognized the problem. In
addition, a variety of VR studies have been explored, covering
several types of applications. The privacy of motion data has
also expanded from the problem of user identification to the
recognition of more detailed human behaviors, across devices,
across time, and across users. It is also clear that we are
still at the early stage of this topic, and there are many open
problems from the aspects of study design, data collection,
data processing, feature engineering, classification models, and
defensive solutions for protecting the user’s privacy.
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