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Abstract—For future intelligent communication systems, ra-
diomap estimation (RME) is essential for acquiring panoramic
awareness of spectrum spatial distribution in wireless environ-
ments. Recently, deep learning-based RME methods have been
developed to reconstruct radiomaps from spectrum measure-
ments collected at distributed sensors. However, these methods
rely on gathering all input data at a central fusion center,
resulting in large communication overheads, high computation
costs, and privacy leakage concerns. To address these challenges,
this work proposes a FedRME approach that makes federated
learning applicable for distributed RME over a large-scale net-
work, accommodating geographically heterogeneous transmitter
locations and propagation environments. Specifically, we partition
the large area into smaller regions to reduce the model complexity
required for learning the radiomap in each region. Meanwhile,
we incorporate the landscape map as an auxiliary input to induce
a common learning model that adheres to the same propagation
physics across all these heterogeneous regions. In doing so,
fusion centers in all regions can collaborate through federated
learning to enhance the overall RME performance. Simulation
results indicate that our proposed method outperforms existing
benchmarks, particularly under limited data, achieving higher
learning accuracy with reduced model complexity and lower
computational cost.

Index Terms—Radiomap estimation, spectrum cartography,
cognitive radio, distributed learning, federated learning.

I. INTRODUCTION

Radiomap estimation (RME) plays as a tool for gaining
awareness of spectrum coverage and environment, which is
essential for dynamic spectrum access and intelligent spec-
trum management in next-generation wireless communication
systems [1]. RME aims at mapping the distribution of radio
signal strength or power in a given spatial domain, from
spectrum measurements collected at distributed sensors [2]-
[13]. Conventionally, RME is conducted through interpolation
algorithms like compressive sensing [2], kriging [3], dictionary
learning [4], matrix completion [5], and Bayesian models [6].
These methods fail to work effectively in real world, due to
their inability to capture the complex channel characteristic
of wireless networks [7]. Recently, data-driven deep learning
methods have been introduced to enhance the performance of
RME, especially in complex wireless environments [7]-[14].
These methods leverage the learning power of deep neural
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network (DNN) models from large volumes of training data, to
learn the characteristics of the radio propagation environments
and reconstruct the fine-resolution dense radiomaps from ob-
servations.

To the best of our knowledge, most existing learning-
based RME methods are applied in a centralized manner. It
inevitably requires all sensors distributed in the target area
to timely transmit spectrum measurements collected in their
locations to a central fusion center [7]-[12]. However, such
global data collection by a single fusion center is not realistic
for large-scale wireless scenarios. The large spatial region of
the target area prevents centralized learning methods from
practical implementation, due to their high communication and
computation costs. Because the central fusion center processes
all the data collected from (remote) sensors, it has to deal with
a very large input dimensionality corresponding to the entire
monitoring area, which hinges on a huge DNN model. On the
other hand, the scarcity of training data, as a common issue
in deep learning for wireless communications, triggers the
notorious overfitting problem in the centralized RME methods.
This is because the centralized RME has to train a large model
with high-dimensional inputs using limited training data.

To address the aforementioned challenges, we propose a dis-
tributed RME framework named FedRME based on federated
learning [15], with our contributions listed as follows. (i) For
RME over a large geographical area, we first partition the large
area into smaller regions, each served by a local fusion center.
While these fusion centers are collaborative, each individually
estimates the radiomap within its small region, allowing for the
use of a compact learning model. (ii) Given the heterogeneity
of these small regions due to varying transmitter locations
and propagation environments, we incorporate the landscape
map as an auxiliary input to induce a common learning
model for all regions. The underlying principle is that all
measurement data adhere to the same propagation physics,
even though the local models account for regional difference
in input. This consistency allows the use of a shared compact
model for local RME across all regions. We then design
federated learning solutions to enable distributed fusion centers
in different regions to collaborate, thereby enhancing learning
accuracy and overall RME performance. (iii) We evaluate the
proposed FedRME through experimental simulations, where
our FedRME outperforms the centralized benchmark and the



standalone method in terms of higher RME learning accuracy.

II. PROBLEM STATEMENT

This section formulates the problem of RME in which the
received signal strength across spatial and frequency domains
is estimated using spectrum measurements collected from
distributed sensors. We start with the signal model and then
formulate the RME problems under two scenarios: centralized
RME using a single global fusion center, and distributed RME
using multiple distributed local fusion centers.

A. Spatial distribution of received signal strength

Consider a large target area under monitoring, which, with-
out loss of generality, is assumed to be rectangular shape and
discretized into I x J uniformly spaced grids. Assume there
are S transmitters present, and let Y (f), s € [S] denote the
transmit power spectrum density (PSD) of the s-th transmitter
at a finite set of frequencies f € F = {fi,..., fn,}. Let
H,(i,j, f) represent the frequency response of the channel
between the s-th transmitter and the location at grid (¢, j). The
radiomap ¥ € RI*/>*Ns js formulated as the distribution of
the received PSD across all grids of the whole area:
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where v (7, j, f) denotes the noise. The objective for RME is
to calculate ¥ € R7*7*Ns an estimate of the received power
distribution on all grid p01nts across the target rectangle area.
The RME performance is measured by the root mean square
error (RMSE) between the ground truth and estimation:

W(i,j, f) = )H (i, )P + 0,5, ), (1)
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B. Radiomap estimation with centralized learning

RMSE = 2

For realistic RME scenarios where transmitter configura-
tions, including their locations and transmission PSDs, are un-
available, RME is conducted given measurements collected by
distributed sensors. Assuming there are N (/N < I.J) sensors
deployed in the target area, each collecting the PSD \il(xn, 1))
at its location x,,. In the centralized scenario, measurements
of all the N sensors in the target area are assembled in a
central fusion center. The task of the fusion center is to train
a deep learning model to generate ¥ based on centralized
measurements {(x,, ¥(x,, f)),n € [N], f € F}.

C. Radiomap estimation with distributed fusion centers

In realistic scenarios, considering various concerns in cen-
tralized RME, e.g., communication cost, computation com-
plexity, and privacy leakage, distributed fusion centers are
preferred since each of them interacts with a small group
of sensors nearby. Specifically, the whole area is evenly
partitioned into N, x NN, smaller patches, and each fusion
center-k, k € [N, N, ], is responsible to train a deep model for
estimating patch-% of the entire radiomap:

N I J
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where [; and Jj, are the starting row and the starting column of
patch-k, respectively. To improve the RME accuracy of each
distributed fusion center-k, we allow it to assemble sensor
measurements from a slightly larger region than N— X Ni
grids in patch-k. Finally, the complete estimation of the target
area, ¥, is formed by combining the outputs of different fusion

centers, as illustrated in Fig. 1.
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Fig. 1.

Radiomap estimation with distributed fusion centers.

III. FEDRME: DISTRIBUTED RADIOMAP ESTIMATION

In this section, we develop a novel federated learning
method for RME with distributed fusion centers. We start by
introducing the overall design of our federated learning sys-
tem. Then, we explain the convolutional autoencoder models
that are used for reconstructing distributed radiomaps. Further,
we describe the training scheme of our method.

A. Federated learning system for distributed RME

Due to heterogeneous building obstacles and transmitter de-
ployment, which are dominating factors for signal propagation,
the wireless environment varys among different patches of
the whole area. The learning tasks of different fusion centers,
based on their regional sensor data, is therefore heterogeneous.
To address this issue, we include local landscape maps to
the input, which contains core information about the building
obstacles. In this way, distributed fusion centers can learn
the impact of building obstacles under the same propagation
physics. Based on this fact, we leverage the federated learning
scheme to train a homogeneous deep model, by collaborative
and efficient deep learning at distributed fusion centers.

To estimate the radiomap of the entire area, we set up a
federated learning system that is composed of K = N,N,
distributed fusion centers. Assume fusion center-k collects
input measurements from a wider range of grids than patch-
k:([kfd IkJrN +d,J, — d : JkJrN +d) with
d < min{I, J}. Let set N;, denote the indices of sensors de-
ployed in this range. To embed important auxiliary information
including sensor locations and the propagation terrain, each
fusion center-k generates input sample U, by concatenating
the local incomplete radiomap W), the sensor location mask
My, and the landscape map M, [9]. The incomplete radiomap
W) contains sensor measurements {(X,, ¥(x,, f)),n € N}
assigned to their corresponding grids (i, j,)’s and zero values
otherwise. The sensor location mask My, € B/*7 is a binary



matrix that utilizes the value “1” to indicate the grids that
have sensor measurement assigned [16]-[18]. The landscape
map M), € B’*7 indicates the coverage of building obstacles
in patch-k, which is highly impactful to wireless propagation.
Given input sample W, the distributed fusion center trains a
deep learning model to generate ;.. To avoid the need for
external measurements outside the target area or zero-padding,
fusion centers working on the outermost circle of the area
generate their inputs by expanding the patch for 2d from their
edges to the inner side.

The local training dataset of the j-th fusion center contains
both the input measurement W, and the ground truth radiomap
of the corresponding expanded patch, e.g., W(I, —d : I +
~; +d, Jy—d: Ji+ 5+ d). In this way, distributed fusion
centers can collaboratlvely learn the common propagation
physics in the area, especially the impact of obstacles, and
apply it to local RME according to given landscape maps. For
estimating the whole target area, all fusion centers should crop
their outputs to the original size of §— X grlds and stitch
them together.

Meanwhile, by reducing the dimensionality of the radiomap
estimated by each model, the complexity of estimating one
patch by a distributed fusion center is significantly lower
than estimating the whole area in the centralized method. The
model complexity of distributed fusion centers can be reduced,
leading to compact model design at realistic fusion center
devices with limited hardware and computing resources.

B. Autoencoder model for distributed RME

We apply convolutional autoencoders for distributed fusion
centers to reconstruct their relevant patches of the target map.
The autoencoder deep neural network (DNN) is a concatena-
tion of an encoder and a decoder [19]. The encoder is supposed
to extract low-dimensional key information from the input,
which is regarded as the “code” or latent variable. For conven-
tional autoencoders, the decoder is supposed to reconstruct the
input variable given the “code”. For this purpose, autoencoders
can be trained in an unsupervised manner, where the original
input is also the label.

For radiomap estimation, the input variable U, contains
the incomplete radiomap as well as the sensor locations and
the landscape map. The first task of the encoder network is
to extract key information about the transmitters’ locations
and emission powers. The second task is to learn the key
features of the landscape map. Both types of information are
merged into the latent variable, which is the input to the
decoder. In this sense, if the distributed fusion center collects
data from enough distributed sensors, the incomplete radiomap
input can provide sufficient information about the transmitters.
Meanwhile, the code length of the latent variable should also
be large enough to deliver this information to the decoder.

Another important factor for accurate RME is the learning
capability of the encoder and decoder. We develop our autoen-
coder model as a fully convolutional structure. The learning
architectures of the encoder network are convolutional layers.
The rationale for utilizing convolutional filtering includes: (i)

it can significantly reduce the volume of model parameters
compared with fully connected layers, (ii) it is effective
in capturing 2-D structure in radiomaps, which reflects the
geographical distribution of signal strength, and (iii) it pos-
sesses the property of shift-invariance, which is suitable for
learning the propagation phenomenon. The dimensionality of
the feature map during the encoding process is reduced by
several average pooling layers. The encoder design is shown
in Fig. 2.
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Fig. 2. Autoencoder design for centralized radiomap estimation.

The architecture of the decoder network resembles that of
the encoder, which is also shown in Fig. 2. Specifically, the
convolutional layers are replaced by convolution transpose
layers, also known as ‘“deconvolutional” layers. Similarly,
the average pooling layers are replaced with up-sampling
layers with bilinear interpolation, which gradually increases
the dimensionality of feature maps until they match the input.

C. Federated learning scheme

The training scheme of our FedRME consists of two it-
erative stages: local training and parameter averaging. For
parameter averaging, we assign a central parameter server
to coordinate and aggregate local models among all fusion
centers. Details for training are explained as follows.

Local training: For the k-th fusion center, the parameters
of its autoencoder, denoted as W, are trained with its locally
available data Dj. Here, these local autoencoders are updated
to minimize the mean square error loss function between the
ground truth and the estimated radiomap of the corresponding
patch.

Parameter averaging: After the above local training phases
at fusion centers are periodically completed, the trained pa-
rameters of local autoencoder models, W, need to be ag-
gregated through parameter averaging and then broadcasted
to distributed fusion centers. Thus, the parameter averaging
between J fusion centers are conducted as:

1 K
=) Wk (4)

Our FedRME is implemented in Algorithm 1.



Algorithm 1 Federated training of distributed fusion centers.

1: Initialize W* k=1,...,K

2: for each round m =1,2,..., M do

3 for each user-k, k =1,..., K in parallel do
4 WF < Local training via ADAM OV*, Dy)
5 end for

6:  Parameter averaging via (4):

7: end for

IV. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the proposed FedRME compared with the
benchmarks of centralized learning and standalone learning.

A. Simulation setups

1) Wireless environment: The target area is a square with
a side length 48m and is discretized into a 48 x 48 grid. For
FedRME and standalone methods, the target area is partitioned
with N, = N, = 3, resulting 9 patches of radiomap with
dimension 16 x 16, each estimated by a distributed fusion
center. To analyze the most fundamental cartographic aspects,
we set F to the singleton 7 = {1400MHz} and bandwidth to
5SMHz. The training and testing data are generated using the
ray tracing algorithm provided by Remcom’s Wireless Insite
software in the “urban canyon” scenario [9]. This algorithm
is based on the shooting and bouncing ray method [20], with
the maximum number of reflections and diffractions set to
6 and 2, respectively. A binary mask indicating the position
of obstacles is used in the data as the landscape map. In
each ground truth radiomap, one transmitter with a height of
1.5m is deployed. The transmit power of each transmitter is
randomly chosen between 5 and 11 dBm. The noise v (3, j, f)
is randomly chosen between -180 and -170dBm/MHz. Based
on previous studies, the input measurements and the label for
the radiomap, i.e., ¥ and \il, are expressed in logarithmic unit
dBm [9].

2) Model configurations: As shown in Fig. 2, each type of
convolutional autoencoder in this paper has 3 modules in the
encoder and the decoder, respectively. Each module consists
of 3 convolutional or deconvolutional layers followed by an
average pooling or up-sampling layer. All convolutional or
deconvolutional layers in the modules share the same kernel
size of 3 x 3 and the stride of 1. The average pooling layers
in the encoder have the size of 2 X 2 and the stride of 2.
The up-sampling layers in the decoder share an up-sampling
factor of 2. For the centralized autoencoder whose input data
corresponds to all 48 x 48 grids of the whole area, we set the
number of neurons of the convolutional or deconvolutional
layers in all modules to 27 and set the code length of the
latent variable to 72. For the distributed autoencoders in the
FedRME and standalone learning, we set the expanding depth
d = 4 such that the input/output of distributed autoencoders
covers 24 x 24 grids. Considering the reduced complexity in
the distributed methods, we reduce the neuron numbers per

layer in their modules to 13 and set the code length of their
latent variables to 36.

3) DNN complexity: The autoencoder DNN for the cen-
tralized method has 100101 parameters which take up about
391KB. Each autoencoder for the distributed methods has
25481 parameters, which occupies only 100KB. By using the
proposed federated learning approach, the model complexity
of each fusion center is reduced by about 75%.

4) Training scheme: We use the ADAM [21] optimizer for
all methods with training batch size 32 and set the learning
rates for all methods to 1 x 10~%. To improve the stability
of federated learning, we apply gradient clipping to the dis-
tributed autoencoders such that the global norm of gradients
during local training is no larger than 1000. For the proposed
federated learning, the distributed fusion centers average their
autoencoder parameters once per local training epoch. The
standalone method is trained with local data, but without
model averaging. All methods are trained for sufficient epochs
until convergence. The learning capability of each method is
evaluated under two cases with different training data volumes.
In Case 1, there is a relatively large training dataset that
contains 20000 radiomaps. For Case 2, there are only 1000
radiomaps for training, which simulates the scenarios with data
scarcity. The number of sensors per map in the training data,
N, is uniformly and randomly selected between 1% and 20%
of the total number of grid points (N € [24,461]). In this
way, autoencoders can be trained to handle RME tasks with
varying numbers of sensors.

B. Results and discussions

We compare our proposed FedRME with the benchmarks
by evaluating their estimation accuracy and visualizing their
outputs. The estimation accuracy is measured by the RMSE
averaged over 1000 testing data.

1) Case 1-Sufficient training data: We train different meth-
ods in Case 1 and test the average RMSE of these methods
under a range of sensor numbers N € [70,500]. As shown
in Fig. 3, the proposed method performs nearly as good as
the centralized method except when N gets small, while
greatly outperforming the standalone learning. These results
demonstrate that the federated learning method has outstand-
ing learning capability compared with standalone learning.

—+— Centralized
\, —— Standalone
6.0 '\\ —=»—- FedRME

50 100 150 200 250 300 350 400 450
Number of sensors, N

Fig. 3. RMSE of different methods trained on a big dataset.



2) Case 2-Small training data: We train these methods
under Case 2 and test their average RMSE in the same range of
sensor numbers. As depicted in Fig. 4, the proposed FedRME
achieves the lowest estimation error under all sensor numbers
in the range. This indicates that our method is the most
effective in learning from insufficient data and is the most
robust against overfitting. The centralized method achieves
a better RMSE than the standalone method, this means the
large centralized autoencoder has high learning capability but
it is highly degraded by overfitting. The standalone method
achieves the worst performance, considering that it shares the
same local data and autoencoder design as our method, this
demonstrates the proposed federated learning method plays a
more impactful role than the compact DNN design itself.
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Fig. 4. RMSE of different methods trained on a small dataset.
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Fig. 5. Radiomaps estimated with different methods given 2 groups of sensor
numbers: {116, 461}, where white areas represent buildings.

We also visualize an example of the true radiomap, the
incomplete spectrum measurements with 2 groups of sensor
numbers N € {116,461}, and the corresponding outputs
generated by different methods in case 2. As shown in Fig. 5,
the proposed method makes the most accurate estimation of
the transmitter. By contrast, the centralized method fails to find
the transmitter, which may be the consequence of overfitting.
The standalone learning method shows the worst continuity
across adjacent patches and estimates too many sources, which
is a sign of inferior learning capability.

V. CONCLUSIONS

This paper develops a novel federated learning framework
with distributed fusion centers for radiomap estimation. By
leveraging federated learning, we enhance the learning ca-
pability of distributed compact autoencoders and improve
robustness against overfitting despite limited training data.

Simulation results verify that FedRME achieves a better trade-
off between estimating accuracy and computation efficiency.
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