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Abstract—For future intelligent communication systems, ra-
diomap estimation (RME) is essential for acquiring panoramic
awareness of spectrum spatial distribution in wireless environ-
ments. Recently, deep learning-based RME methods have been
developed to reconstruct radiomaps from spectrum measure-
ments collected at distributed sensors. However, these methods
rely on gathering all input data at a central fusion center,
resulting in large communication overheads, high computation
costs, and privacy leakage concerns. To address these challenges,
this work proposes a FedRME approach that makes federated
learning applicable for distributed RME over a large-scale net-
work, accommodating geographically heterogeneous transmitter
locations and propagation environments. Specifically, we partition
the large area into smaller regions to reduce the model complexity
required for learning the radiomap in each region. Meanwhile,
we incorporate the landscape map as an auxiliary input to induce
a common learning model that adheres to the same propagation
physics across all these heterogeneous regions. In doing so,
fusion centers in all regions can collaborate through federated
learning to enhance the overall RME performance. Simulation
results indicate that our proposed method outperforms existing
benchmarks, particularly under limited data, achieving higher
learning accuracy with reduced model complexity and lower
computational cost.

Index Terms—Radiomap estimation, spectrum cartography,
cognitive radio, distributed learning, federated learning.

I. INTRODUCTION

Radiomap estimation (RME) plays as a tool for gaining

awareness of spectrum coverage and environment, which is

essential for dynamic spectrum access and intelligent spec-

trum management in next-generation wireless communication

systems [1]. RME aims at mapping the distribution of radio

signal strength or power in a given spatial domain, from

spectrum measurements collected at distributed sensors [2]–

[13]. Conventionally, RME is conducted through interpolation

algorithms like compressive sensing [2], kriging [3], dictionary

learning [4], matrix completion [5], and Bayesian models [6].

These methods fail to work effectively in real world, due to

their inability to capture the complex channel characteristic

of wireless networks [7]. Recently, data-driven deep learning

methods have been introduced to enhance the performance of

RME, especially in complex wireless environments [7]–[14].

These methods leverage the learning power of deep neural
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network (DNN) models from large volumes of training data, to

learn the characteristics of the radio propagation environments

and reconstruct the fine-resolution dense radiomaps from ob-

servations.

To the best of our knowledge, most existing learning-

based RME methods are applied in a centralized manner. It

inevitably requires all sensors distributed in the target area

to timely transmit spectrum measurements collected in their

locations to a central fusion center [7]–[12]. However, such

global data collection by a single fusion center is not realistic

for large-scale wireless scenarios. The large spatial region of

the target area prevents centralized learning methods from

practical implementation, due to their high communication and

computation costs. Because the central fusion center processes

all the data collected from (remote) sensors, it has to deal with

a very large input dimensionality corresponding to the entire

monitoring area, which hinges on a huge DNN model. On the

other hand, the scarcity of training data, as a common issue

in deep learning for wireless communications, triggers the

notorious overfitting problem in the centralized RME methods.

This is because the centralized RME has to train a large model

with high-dimensional inputs using limited training data.

To address the aforementioned challenges, we propose a dis-

tributed RME framework named FedRME based on federated

learning [15], with our contributions listed as follows. (i) For

RME over a large geographical area, we first partition the large

area into smaller regions, each served by a local fusion center.

While these fusion centers are collaborative, each individually

estimates the radiomap within its small region, allowing for the

use of a compact learning model. (ii) Given the heterogeneity

of these small regions due to varying transmitter locations

and propagation environments, we incorporate the landscape

map as an auxiliary input to induce a common learning

model for all regions. The underlying principle is that all

measurement data adhere to the same propagation physics,

even though the local models account for regional difference

in input. This consistency allows the use of a shared compact

model for local RME across all regions. We then design

federated learning solutions to enable distributed fusion centers

in different regions to collaborate, thereby enhancing learning

accuracy and overall RME performance. (iii) We evaluate the

proposed FedRME through experimental simulations, where

our FedRME outperforms the centralized benchmark and the



standalone method in terms of higher RME learning accuracy.

II. PROBLEM STATEMENT

This section formulates the problem of RME in which the

received signal strength across spatial and frequency domains

is estimated using spectrum measurements collected from

distributed sensors. We start with the signal model and then

formulate the RME problems under two scenarios: centralized

RME using a single global fusion center, and distributed RME

using multiple distributed local fusion centers.

A. Spatial distribution of received signal strength

Consider a large target area under monitoring, which, with-

out loss of generality, is assumed to be rectangular shape and

discretized into I × J uniformly spaced grids. Assume there

are S transmitters present, and let Υs(f), s ∈ [S] denote the

transmit power spectrum density (PSD) of the s-th transmitter

at a finite set of frequencies f ∈ F = {f1, . . . , fNf
}. Let

Hs(i, j, f) represent the frequency response of the channel

between the s-th transmitter and the location at grid (i, j). The

radiomap Ψ ∈ R
I×J×Nf is formulated as the distribution of

the received PSD across all grids of the whole area:

Ψ(i, j, f) =

S
∑

s=1

Υs(f)|Hs(i, j, f)|
2 + υ(i, j, f), (1)

where υ(i, j, f) denotes the noise. The objective for RME is

to calculate Ψ̂ ∈ R
I×J×Nf , an estimate of the received power

distribution on all grid points across the target rectangle area.

The RME performance is measured by the root mean square

error (RMSE) between the ground truth and estimation:

RMSE =

√

E{||Ψ− Ψ̂||2F }

IJNf

(2)

B. Radiomap estimation with centralized learning

For realistic RME scenarios where transmitter configura-

tions, including their locations and transmission PSDs, are un-

available, RME is conducted given measurements collected by

distributed sensors. Assuming there are N (N ≪ IJ) sensors

deployed in the target area, each collecting the PSD Ψ̃(xn, f)
at its location xn. In the centralized scenario, measurements

of all the N sensors in the target area are assembled in a

central fusion center. The task of the fusion center is to train

a deep learning model to generate Ψ̂ based on centralized

measurements {(xn, Ψ̃(xn, f)), n ∈ [N ], f ∈ F}.

C. Radiomap estimation with distributed fusion centers

In realistic scenarios, considering various concerns in cen-

tralized RME, e.g., communication cost, computation com-

plexity, and privacy leakage, distributed fusion centers are

preferred since each of them interacts with a small group

of sensors nearby. Specifically, the whole area is evenly

partitioned into Nx × Ny smaller patches, and each fusion

center-k, k ∈ [NxNy], is responsible to train a deep model for

estimating patch-k of the entire radiomap:

Ψ̂k = Ψ̂(Ik : Ik +
I

Nx

, Jk : Jk +
J

Ny

, f), (3)

where Ik and Jk are the starting row and the starting column of

patch-k, respectively. To improve the RME accuracy of each

distributed fusion center-k, we allow it to assemble sensor

measurements from a slightly larger region than I
Nx

× J
Ny

grids in patch-k. Finally, the complete estimation of the target

area, Ψ̂, is formed by combining the outputs of different fusion

centers, as illustrated in Fig. 1.

Fig. 1. Radiomap estimation with distributed fusion centers.

III. FEDRME: DISTRIBUTED RADIOMAP ESTIMATION

In this section, we develop a novel federated learning

method for RME with distributed fusion centers. We start by

introducing the overall design of our federated learning sys-

tem. Then, we explain the convolutional autoencoder models

that are used for reconstructing distributed radiomaps. Further,

we describe the training scheme of our method.

A. Federated learning system for distributed RME

Due to heterogeneous building obstacles and transmitter de-

ployment, which are dominating factors for signal propagation,

the wireless environment varys among different patches of

the whole area. The learning tasks of different fusion centers,

based on their regional sensor data, is therefore heterogeneous.

To address this issue, we include local landscape maps to

the input, which contains core information about the building

obstacles. In this way, distributed fusion centers can learn

the impact of building obstacles under the same propagation

physics. Based on this fact, we leverage the federated learning

scheme to train a homogeneous deep model, by collaborative

and efficient deep learning at distributed fusion centers.

To estimate the radiomap of the entire area, we set up a

federated learning system that is composed of K = NxNy

distributed fusion centers. Assume fusion center-k collects

input measurements from a wider range of grids than patch-

k: (Ik − d : Ik + I
Nx

+ d, Jk − d : Jk + J
Ny

+ d), with

d ≪ min{I, J}. Let set Nk denote the indices of sensors de-

ployed in this range. To embed important auxiliary information

including sensor locations and the propagation terrain, each

fusion center-k generates input sample Ψ̆k by concatenating

the local incomplete radiomap Ψ
′
k, the sensor location mask

Mk, and the landscape map M
′
k [9]. The incomplete radiomap

Ψ
′
k contains sensor measurements {(xn, Ψ̃(xn, f)), n ∈ Nk}

assigned to their corresponding grids (in, jn)’s and zero values

otherwise. The sensor location mask Mk ∈ B
I×J is a binary



matrix that utilizes the value “1” to indicate the grids that

have sensor measurement assigned [16]–[18]. The landscape

map M
′
k ∈ B

I×J indicates the coverage of building obstacles

in patch-k, which is highly impactful to wireless propagation.

Given input sample Ψ̆k, the distributed fusion center trains a

deep learning model to generate Ψ̂k. To avoid the need for

external measurements outside the target area or zero-padding,

fusion centers working on the outermost circle of the area

generate their inputs by expanding the patch for 2d from their

edges to the inner side.

The local training dataset of the j-th fusion center contains

both the input measurement Ψ̆k and the ground truth radiomap

of the corresponding expanded patch, e.g., Ψ(Ik − d : Ik +
I
Nx

+ d, Jk − d : Jk +
J
Ny

+ d). In this way, distributed fusion

centers can collaboratively learn the common propagation

physics in the area, especially the impact of obstacles, and

apply it to local RME according to given landscape maps. For

estimating the whole target area, all fusion centers should crop

their outputs to the original size of I
Nx

× J
Ny

grids and stitch

them together.

Meanwhile, by reducing the dimensionality of the radiomap

estimated by each model, the complexity of estimating one

patch by a distributed fusion center is significantly lower

than estimating the whole area in the centralized method. The

model complexity of distributed fusion centers can be reduced,

leading to compact model design at realistic fusion center

devices with limited hardware and computing resources.

B. Autoencoder model for distributed RME

We apply convolutional autoencoders for distributed fusion

centers to reconstruct their relevant patches of the target map.

The autoencoder deep neural network (DNN) is a concatena-

tion of an encoder and a decoder [19]. The encoder is supposed

to extract low-dimensional key information from the input,

which is regarded as the “code” or latent variable. For conven-

tional autoencoders, the decoder is supposed to reconstruct the

input variable given the “code”. For this purpose, autoencoders

can be trained in an unsupervised manner, where the original

input is also the label.

For radiomap estimation, the input variable Ψ̆k contains

the incomplete radiomap as well as the sensor locations and

the landscape map. The first task of the encoder network is

to extract key information about the transmitters’ locations

and emission powers. The second task is to learn the key

features of the landscape map. Both types of information are

merged into the latent variable, which is the input to the

decoder. In this sense, if the distributed fusion center collects

data from enough distributed sensors, the incomplete radiomap

input can provide sufficient information about the transmitters.

Meanwhile, the code length of the latent variable should also

be large enough to deliver this information to the decoder.

Another important factor for accurate RME is the learning

capability of the encoder and decoder. We develop our autoen-

coder model as a fully convolutional structure. The learning

architectures of the encoder network are convolutional layers.

The rationale for utilizing convolutional filtering includes: (i)

it can significantly reduce the volume of model parameters

compared with fully connected layers, (ii) it is effective

in capturing 2-D structure in radiomaps, which reflects the

geographical distribution of signal strength, and (iii) it pos-

sesses the property of shift-invariance, which is suitable for

learning the propagation phenomenon. The dimensionality of

the feature map during the encoding process is reduced by

several average pooling layers. The encoder design is shown

in Fig. 2.

3x ConvTrans2d(27,1,3x3,1)

Up-sampling (2x2)

ConvTrans2d(1,1,3x3,1)

Up-sampling (2x2)

Up-sampling (2x2)

3x ConvTrans2d(27,1,3x3,1)

3x ConvTrans2d(27,1,3x3,1)3x Conv2d(27,1,3x3,1)

Input: 

Average Pool (2x2)

3x Conv2d(27,1,3x3,1)

Average Pool (2x2)

3x Conv2d(27,1,3x3,1)

Average Pool (2x2)

Conv2d(1,1,3x3,1)

Latent variable (code)

E
n

c
o
d

e
r
 D

e
c
o
d

e
r
 

Output: 
k k

Fig. 2. Autoencoder design for centralized radiomap estimation.

The architecture of the decoder network resembles that of

the encoder, which is also shown in Fig. 2. Specifically, the

convolutional layers are replaced by convolution transpose

layers, also known as “deconvolutional” layers. Similarly,

the average pooling layers are replaced with up-sampling

layers with bilinear interpolation, which gradually increases

the dimensionality of feature maps until they match the input.

C. Federated learning scheme

The training scheme of our FedRME consists of two it-

erative stages: local training and parameter averaging. For

parameter averaging, we assign a central parameter server

to coordinate and aggregate local models among all fusion

centers. Details for training are explained as follows.

Local training: For the k-th fusion center, the parameters

of its autoencoder, denoted as W k, are trained with its locally

available data Dk. Here, these local autoencoders are updated

to minimize the mean square error loss function between the

ground truth and the estimated radiomap of the corresponding

patch.

Parameter averaging: After the above local training phases

at fusion centers are periodically completed, the trained pa-

rameters of local autoencoder models, W k, need to be ag-

gregated through parameter averaging and then broadcasted

to distributed fusion centers. Thus, the parameter averaging

between J fusion centers are conducted as:

W =
1

K

K
∑

k=1

Wk. (4)

Our FedRME is implemented in Algorithm 1.



Algorithm 1 Federated training of distributed fusion centers.

1: Initialize Wk, k = 1, . . . ,K
2: for each round m = 1, 2, . . . ,M do

3: for each user-k, k = 1, . . . ,K in parallel do

4: Wk ← Local training via ADAM (Wk,Dk)

5: end for

6: Parameter averaging via (4):

7: end for

IV. SIMULATION RESULTS

In this section, we present the simulation results to evaluate

the performance of the proposed FedRME compared with the

benchmarks of centralized learning and standalone learning.

A. Simulation setups

1) Wireless environment: The target area is a square with

a side length 48m and is discretized into a 48× 48 grid. For

FedRME and standalone methods, the target area is partitioned

with Nx = Ny = 3, resulting 9 patches of radiomap with

dimension 16 × 16, each estimated by a distributed fusion

center. To analyze the most fundamental cartographic aspects,

we set F to the singleton F = {1400MHz} and bandwidth to

5MHz. The training and testing data are generated using the

ray tracing algorithm provided by Remcom’s Wireless Insite

software in the “urban canyon” scenario [9]. This algorithm

is based on the shooting and bouncing ray method [20], with

the maximum number of reflections and diffractions set to

6 and 2, respectively. A binary mask indicating the position

of obstacles is used in the data as the landscape map. In

each ground truth radiomap, one transmitter with a height of

1.5m is deployed. The transmit power of each transmitter is

randomly chosen between 5 and 11 dBm. The noise υ(i, j, f)
is randomly chosen between -180 and -170dBm/MHz. Based

on previous studies, the input measurements and the label for

the radiomap, i.e., Ψ̃ and Ψ̂, are expressed in logarithmic unit

dBm [9].

2) Model configurations: As shown in Fig. 2, each type of

convolutional autoencoder in this paper has 3 modules in the

encoder and the decoder, respectively. Each module consists

of 3 convolutional or deconvolutional layers followed by an

average pooling or up-sampling layer. All convolutional or

deconvolutional layers in the modules share the same kernel

size of 3 × 3 and the stride of 1. The average pooling layers

in the encoder have the size of 2 × 2 and the stride of 2.

The up-sampling layers in the decoder share an up-sampling

factor of 2. For the centralized autoencoder whose input data

corresponds to all 48× 48 grids of the whole area, we set the

number of neurons of the convolutional or deconvolutional

layers in all modules to 27 and set the code length of the

latent variable to 72. For the distributed autoencoders in the

FedRME and standalone learning, we set the expanding depth

d = 4 such that the input/output of distributed autoencoders

covers 24 × 24 grids. Considering the reduced complexity in

the distributed methods, we reduce the neuron numbers per

layer in their modules to 13 and set the code length of their

latent variables to 36.

3) DNN complexity: The autoencoder DNN for the cen-

tralized method has 100101 parameters which take up about

391KB. Each autoencoder for the distributed methods has

25481 parameters, which occupies only 100KB. By using the

proposed federated learning approach, the model complexity

of each fusion center is reduced by about 75%.

4) Training scheme: We use the ADAM [21] optimizer for

all methods with training batch size 32 and set the learning

rates for all methods to 1 × 10−4. To improve the stability

of federated learning, we apply gradient clipping to the dis-

tributed autoencoders such that the global norm of gradients

during local training is no larger than 1000. For the proposed

federated learning, the distributed fusion centers average their

autoencoder parameters once per local training epoch. The

standalone method is trained with local data, but without

model averaging. All methods are trained for sufficient epochs

until convergence. The learning capability of each method is

evaluated under two cases with different training data volumes.

In Case 1, there is a relatively large training dataset that

contains 20000 radiomaps. For Case 2, there are only 1000

radiomaps for training, which simulates the scenarios with data

scarcity. The number of sensors per map in the training data,

N , is uniformly and randomly selected between 1% and 20%

of the total number of grid points (N ∈ [24, 461]). In this

way, autoencoders can be trained to handle RME tasks with

varying numbers of sensors.

B. Results and discussions

We compare our proposed FedRME with the benchmarks

by evaluating their estimation accuracy and visualizing their

outputs. The estimation accuracy is measured by the RMSE

averaged over 1000 testing data.

1) Case 1-Sufficient training data: We train different meth-

ods in Case 1 and test the average RMSE of these methods

under a range of sensor numbers N ∈ [70, 500]. As shown

in Fig. 3, the proposed method performs nearly as good as

the centralized method except when N gets small, while

greatly outperforming the standalone learning. These results

demonstrate that the federated learning method has outstand-

ing learning capability compared with standalone learning.

Fig. 3. RMSE of different methods trained on a big dataset.



2) Case 2-Small training data: We train these methods

under Case 2 and test their average RMSE in the same range of

sensor numbers. As depicted in Fig. 4, the proposed FedRME

achieves the lowest estimation error under all sensor numbers

in the range. This indicates that our method is the most

effective in learning from insufficient data and is the most

robust against overfitting. The centralized method achieves

a better RMSE than the standalone method, this means the

large centralized autoencoder has high learning capability but

it is highly degraded by overfitting. The standalone method

achieves the worst performance, considering that it shares the

same local data and autoencoder design as our method, this

demonstrates the proposed federated learning method plays a

more impactful role than the compact DNN design itself.

Fig. 4. RMSE of different methods trained on a small dataset.

Fig. 5. Radiomaps estimated with different methods given 2 groups of sensor
numbers: {116, 461}, where white areas represent buildings.

We also visualize an example of the true radiomap, the

incomplete spectrum measurements with 2 groups of sensor

numbers N ∈ {116, 461}, and the corresponding outputs

generated by different methods in case 2. As shown in Fig. 5,

the proposed method makes the most accurate estimation of

the transmitter. By contrast, the centralized method fails to find

the transmitter, which may be the consequence of overfitting.

The standalone learning method shows the worst continuity

across adjacent patches and estimates too many sources, which

is a sign of inferior learning capability.

V. CONCLUSIONS

This paper develops a novel federated learning framework

with distributed fusion centers for radiomap estimation. By

leveraging federated learning, we enhance the learning ca-

pability of distributed compact autoencoders and improve

robustness against overfitting despite limited training data.

Simulation results verify that FedRME achieves a better trade-

off between estimating accuracy and computation efficiency.
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