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Abstract—With the rapid development of machine learning
technologies, data-driven spectrum prediction enables intelligent
dynamic spectrum access to alleviate the bottleneck of spectrum
resource scarcity and congestion. However, spectrum predic-
tion still faces some key challenges, including how to exploit
the implicit but crucial multi-band correlations in wideband
spectrum data, and how to capture the temporal dynamics
across different bands. Due to the ignorance of such crucial
features inherent from spectrum occupancy patterns, existing
learning-based spectrum prediction methods unfortunately suffer
from inaccurate prediction performance. To fill this gap, this
paper develops a novel model of graph convolutional regression
neural network (GCRNN), by introducing efficient graph struc-
ture learning (GSL-GCRNN) for dynamic multi-band spectrum
prediction. The proposed GSL-GCRNN model is designed to
adaptively learn both the multi-band and temporal correlations
in dynamic wideband spectrum scenarios. Empowered by the
graph structure estimator, graph convolutional networks are
fueled to effectively extract the correlations in the frequency
domain, followed by gated recurrent unit networks to further
extract the temporal correlations of each band. It is worth noting
that the graph structure estimator further enables to learn the
multi-band correlations across different time periods on-the-fly,
enhancing the accuracy of wideband spectrum prediction in
dynamic environments. Simulation results verify that our GSL-
GCRNN approach outperforms the benchmark methods.

Index Terms—Spectrum prediction, cognitive radio, graph
structure learning, graph convolutional network, gated recurrent
unit.

I. INTRODUCTION

With the rapid development of wireless communications, an
increasing number of spectrum resources are being allocated
to various primary user systems. Considering the limited
spectrum resources, the scarcity of unallocated spectrum bands
becomes a critical bottleneck in the allocation and utilization
of spectrum resources. Cognitive radio (CR) [1]–[3], capable
of monitoring the target spectrum pool and interacting with
the radio environment, is recognized as an effective tech-
nology to allow secondary users to detect and access idle
spectrum resources. In CR, multi-band spectrum prediction
is an enabling technique to obtain the awareness of future
spectrum occupancy in wideband sceanrios. It enables CR
systems to predict the dynamic spectrum occupancy status
and detect the potential spectrum access opportunities for
secondary users [4]–[6].

Traditional spectrum prediction methods mainly focus on
the temporal domain, but lacking of studies on the fre-
quency domain. Existing works include Markov prediction
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methods [7], linear regression methods [8], and tensor-based
methods [9]. In recent years, deep learning methods have
been introduced for spectrum prediction to jointly exploit the
potential frequency and temporal correlations. For example,
a Long Short-Term Memory (LSTM) model is developed to
predict the power spectral density (PSD) values in different
frequency ranges and time periods, by jointly exploring the
spectral-temporal correlations [10]. In [11], a hierarchical
spectrum learning method is developed to perform spectrum
availability prediction, by combining a convolutional neural
network (CNN) and a recurrent neural network (RNN).

In the real world of wireless communications, there usually
exists multi-band correlation between adjacent bands, due to
inevitable power leakage from operating band to its adja-
cent bands [12]. Meanwhile, the multi-band correlation also
results from simultaneous spectrum occupancy by the same
transmitter over discontinuous bands [13]. Such multi-band
correlations can be represented as graph-structured spectrum
data, in which the bands and their correlations are expressed
as the nodes and edges in the graph. To handle the graph-
structured data, graph neural networks (GNNs) are designed
to learn the embeddings of the graph nodes, by leveraging
the graph topology information [14]. However, existing GNN-
based spectrum prediction methods work as a straightforward
application of GNNs in traditional traffic prediction fields,
while overlooking the widely existed spectrum occupancy pat-
terns [4]–[6]. Considering these inherent patterns, it is crucial
to exploit the implicit but important multi-band correlations
as well as their temporal dynamics across different bands in
spectrum prediction tasks.

To fill the gap, this paper aims at a novel deep learn-
ing model of graph convolutional regression neural network
(GCRNN), by introducing efficient graph structure learning
(GSL-GCRNN) for dynamic multi-band spectrum prediction.
In this work, the wideband spectrum data having multi-band
correlations is first represented as a graph. Then, a graph
structure estimator is proposed to learn the multi-band cor-
relations across different time periods in an on-the-fly mode.
In addition, a graph convolutional network (GCN) is used to
capture frequency features of spectrum data, while a gated
recurrent unit (GRU) learns the temporal features of spectrum
changes over time. The main contributions of this work are
summarized as follows:

1) To exploit the multi-band correlations and their tem-
poral dynamics stemmed from the inherent spectrum
occupancy patterns, this paper formulates the spectrum
prediction problem as a graph learning task. To the



best of our knowledge, this work is the first attempt to
introduce the graph structure learning (GSL) techniques
into the GNN-based spectrum prediction, which is capa-
ble to adaptively capture the temporal dynamics across
different bands.

2) To effectively learn both multi-band and temporal cor-
relations in dynamic wideband spectrum scenarios, we
propose the GSL-GCRNN model by integrating three
components: GSL, GCN and GRU. For GSL, a graph
structure estimator is developed to iteratively update the
graph topology information over different time periods.
A GCN is applied to capture the frequency features,
while a GRU focuses on the temporal features.

3) To evaluate the performance of the proposed GSL-
GCRNN approach, we test it compared with different
benchmark methods, by using real spectrum data col-
lected from practical sensors. Simulation results reveal
that GSL-GCRNN outperforms the existing graph-based
methods for spectrum prediction. Our comprehensive
experiments demonstrate the merits of GSL-GCRNN
thanks to the introduction of GSL into learning-based
spectrum prediction.

The rest of this paper is organized as follows. Section II
formulates the problem of spectrum prediction. In Section III,
the GSL-GCRNN model is proposed through a holistic inte-
gration of GCN, GSL, and GRU models. Section IV evaluates
the performance of our GSL-GCRNN via comprehensive
experiments, followed by the conclusions in Section V.

II. PROBLEM FORMULATION

Suppose that the wideband spectrum pool is uniformly
divided into N bands, where each band can be occupied by
primary users (PUs). The wideband spectrum prediction task
can be formulated as a multivariate time series prediction task.
Its objective is to utilize historical spectrum data monitored
by sensors to predict the future spectrum occupancy status. In
this work, PSD values are collected as the observed spectrum
data for spectrum prediction, recorded in the feature matrix
X = {x1, . . . ;xN} ∈ RN×T , where N denotes the number
of bands, T represents the number of historical PSD values
collected in each band, and xi with i = 1, . . . , N is the
length-T row vector of X . A graph G = {V,E} is used
to characterize the frequency correlations between different
bands, where the nodes V = {v1, . . . , vN} represent the N
bands in the spectrum data, and the multi-band correlations
are indicated as the edges E in the graph. An undirected graph
is utilized to depict the correlations between bands, where
the edge Eij = Eji indicates the connection between node
i and node j. An adjacency matrix A ∈ RN×N describes the
connectivity of edges among the N nodes in the graph. If there
exists an edge between node i and node j, then Aij = 1,
otherwise Aij = 0. Meanwhile, the feature matrix X also
characterizes the temporal correlations, where Xt

N denotes the
length-N column vector of X that contains the features of all
the N nodes in the graph at time t.

Thus, the spectrum prediction task boils down to
learning a mapping f : (A, {Xt−τ

N , Xt−τ+1
N , . . . , Xt

N}) →
{Xt+1

N , Xt+2
N , . . . , Xt+δ

N }, where τ represents the number of
historical PSD values of N bands, δ represents the number
of future PSD values to be predicted, and f is a feature
aggregation model composed of trainable model parameters.
Learning the mapping f is related to two key factors in the
practice of spectrum prediction in wideband scenarios. The
first factor arises from power leakage issues, as the energy
radiated from radio transmissions in the operating frequency
band may extend beyond the assigned bandwidth. Specifically,
a PU is transmitting signals at a certain band, which affects the
adjacent unoccupied bands due to power leakage. The second
factor stems from the multi-band aggregation, where multiple
non-contiguous bands can be simultaneously occupied by the
same PU. Both factors result in the multi-band correlations.

Fig. 1: Dynamic spectrum occupancy in multi-band scenarios.

Moreover, most existing works overlook the multi-band
correlations across different time periods. For an illustration,
as shown in Figure 1, bands 2 and 4 are simultaneously
occupied by PU 1 for transmitting a video stream, and bands
3 and 5 are simultaneously occupied by PU 2 for transmitting
text messages. In this way, multi-band correlations caused
by simultaneous occupancy exist between bands 2 and 4,
and between bands 3 and 5, respectively. As a video stream
requires a relatively long transmission time, bands 2 and 4 are
simultaneously occupied by PU 1 from time t0 until time t3.
Meanwhile, bands 3 and 5, used for transmitting text messages
by PU 2, have a shorter occupancy time than that by PU 1 for
videos. It is worth noting that such multi-band correlations are
indeed time-varying. For example, in figure 1, the correlation
between bands 3 and 5 is strong from time t0 to t1, but
becomes weak afterwards. Therefore, it is crucial to consider
the multi-band correlations and their temporal dynamics in the
design of spectrum prediction model.

III. PROPOSED METHOD

To enhance the capability of spectrum prediction and cap-
ture the temporal dynamics across different bands, this section
proposes a graph-based wideband spectrum prediction model,
named GSL-GCRNN, by leveraging the GSL technique.

A. Overview of GSL-GCRNN

We represent the spectrum data in the form of a graph,
and propose the GSL-GCRNN model by integrating GCN,
GSL and GRU. GCN is utilized to extract frequency domain
correlations of spectrum data, and GRU is employed to capture
time domain correlations of spectrum data. To better learn



Fig. 2: Framework of the proposed GSL-GCRNN.

the dynamic changes in correlations of spectrum data, a
graph structure estimator for GSL is introduced for the first
time to extract the multi-band correlations across different
time periods on-the-fly. The overall framework of our GSL-
GCRNN is illustrated in Figure 2.

B. Graph structure representation

Spectrum data collected over a certain time period records
the PSD values of each frequency band at each time point.
Feeding such spectrum data, the proposed GSL-GCRNN
model in Figure 2 starts with constructing a graph structure. To
this end, each frequency band in the spectrum data is treated as
a node in the graph. Then, statistical measures such as Pearson
correlation coefficient can be used to calculate the correlation
between each pair of all frequency bands. Accordingly, the
correlation between vectors xi and xj , corresponding to the
i-th and j-th bands, is measured as:

Sij =

∑n
t=1(xi,t − x̄i)(xj,t − x̄j)√∑n

t=1(xi,t − x̄i)2
∑n

t=1(xj,t − x̄j)2
, (1)

where xi,t and x̄i represent the PSD value of the i-th band
at time t and the mean of its all historical PSD values,
respectively, and n is the total number of bands.

An adjacency matrix A is then constructed based on the
calculated correlation values from (1). Note that the elements
in S are continuous-valued and bounded within the interval
[0,1], which requires a fully connected graph structure and
thus involves substantial computation overhead. Moreover, the
most significant correlations typically exist between frequency
bands that are either adjacent to or occupied by the same PU.
Consequently, a sparse adjacency matrix A is calculated by
keeping and binarizing the top k elements from S:

Aij =

{
1, if Sij ∈ topk(Si),

0, otherwise.
(2)

Given all historical spectrum data X , the adjacency matrix
A from (2) expresses the statistically significant correlations
between bands. Both X and A serve as the inputs to GCN.

C. Graph convolutional network for frequency correlation

Next, GCN is applied to extract the frequency correlation
of spectrum data, by following the principle of neighborhood
aggregation. Specifically, the feature of each node is updated
with the features of its neighbor nodes, whose neighboring
relationship is determined by A in (2). This operation is similar
to the convolution conducted in convolutional neural networks,
but applied under graph structures. For each node, GCN
computes the weighted sum of its neighbor nodes’ features
and its own feature. The neighborhood aggregation at the l-th
layer of GCN can be expressed as:

Zl = D−1/2AD−1/2Zl−1W l, (3)

where D is the degree matrix of the symmetric adjacency
matrix A, W l denotes the trainable parameter matrix of the
l-th layer, Zl−1 represents the input features to the l-th layer,
the input to the first layer is Z0 = X , and the output Zl is
the embeddings of the l-th layer.

According to (3), with the fed-in adjacency matrix A and
the feature matrix X , the GCN model can be expressed as an
input-output manner:

Z = σ(GCN(A,X)), (4)

where Z ∈ RN×d is the output embeddings of the last layer
of the GCN model, d is a hyper parameter denoting the
dimensionality of each node embedding row vector, and σ
represents the non-linear activation function.

On the one hand, the single-layer operation in (3) shows
that each layer of GCN only aggregates the features among
the nodes who are one-hop neighbors to each other. On the
other hand, the multi-layer operations of the GCN model in
(4) enable to capture the potential features between multi-hop
nodes via the forward propagation layer-by-layer. In this way,
GCN boosts the capability to learn the graphed embeddings
among the nodes, corresponding to the frequency correlations
between the bands.

D. Graph estimator for graph structure learning

The effectiveness of the aforementioned GCN model relies
on the accuracy of the adjacency matrix A provided as the
graph structure in (4). In practice, the correlation between
bands may change dynamically over time as illustrated in Fig-
ure 1. As a result, the original adjacency matrix A calculated
via (2) is not able to reflect the time-varying characteristics in
the streaming spectrum data. In this sense, the adjacency ma-
trix A needs to be re-estimated on-the-fly to flexibly represent
the multi-band correlations and depict the temporal dynamics
across different bands. To this end, a graph structure estimator
is introduced to re-evaluate the interconnections between node
pairs based on the learned node embeddings Z from (4).

Specifically, the embeddings of node v and node u are
concatenated and then input into a single-layer feed-forward
network to calculate the correlation weight wvu between the
two nodes:

wvu = [Zv||Zu] ·W + b, (5)



where the operation || concatenates two row vectors to form a
double-length row vector, W ∈ R2d×1 is the weighting vector
and b ∈ R is the bias term. Next, for node v ∈ {1, . . . , N}, the
weight wvu from (5) is further regularized over its neighbor
nodes to obtain the confidence Qvu on the existence of an
edge between node v and node u:

Qvu =
exp(wvu)∑

m∈Sv
exp(wvm)

, (6)

where Sv represents a set of the top k neighbors of node
v, who have the k largest values computed via (5). Thus,
the graph structure learned by the graph estimator is formed
as AQ = {Qvu, v, u ∈ {1, . . . , N}}. Finally, the estimated
adjacency matrix Ã is updated by combining the original A
from (2) with the estimated AQ as:

Ã = µA+ (1− µ)AQ, (7)

where µ ∈ (0, 1) is the combination coefficient.
It is worth noting that the adjacency matrix A is used only

during the first epoch of GCN training as in (4). Since the
second epoch, the estimated adjacency matrix Ã output from
the graph estimator by (7) replaces A in (4), which helps GCN
iteratively extract more accurate frequency correlations than by
using the original A.

E. Gated recurrent unit for temporal correlation

As an improved version of the LSTM model, the GRU
model optimizes the neural network by combining the forget
and input gates into a single update gate, resulting in a more
efficient network architecture. Compared to the LSTM models,
GRU benefits from fewer parameters, faster training speed, and
better generalization ability, making it suitable for tasks with
small datasets and real-time decision-making requirements.
Therefore, we apply the GRU model for capturing temporal
correlations of spectrum data.

Given the learned Z from (4) as the input to GRU, a single-
layer GRU is adopted as:

ct = σ(WcZt + Ucht−1 + bc),

rt = σ(WrZt + Urht−1 + br),

h̃t = tanh(WhZt + Uh(rt ⊙ ht−1) + bh),

ht = (1− ct)⊙ h̃t + ct ⊙ ht−1,

(8)

where Zt denotes the output embeddings of GCN for each
frequency band at time t, the function tanh(·) represents
the hyperbolic tangent activation function, ct and rt corre-
spond to the update gate and reset gate, respectively, ht−1

is the hidden state at time t − 1, h̃t represents the can-
didate hidden state, the operator ⊙ denotes element-wise
multiplication, ht indicates the current hidden state, and the
parameters Wc, Uc, bc,Wr, Ur, br,Wh, Uh, bh, are all trainable
neural weights and biases of the GRU model.

In GSL-GCRNN, the final output Yt = MLP(ht) is obtained
by linearly mapping ht of (8) through a multi-layer perceptron
(MLP) network.

Fig. 3: Prediction results of different methods.

F. Loss function

To train GSL-GCRNN, the mean-square error between the
final output Yt of the model and the ground truth Y ∗

t is
computed to accurately predict the spectrum state for the future
T time steps. The loss function for this task is represented as:

L =
1

T

T∑
t=1

(Yt − Y ∗
t )

2, (9)

where T denotes the number of future steps, Yt is the predicted
value at time t by GSL-GCRNN, and Y ∗ is the ground-truth
label value.

IV. EXPERIMENTS

In this section, we evaluate the performance of GSL-
GCRNN. The baselines used for comparison include LSTM
[15] and the existing GNN-based spectrum prediction method
A-GCRNN [6].

A. Simulation setup

In this work, we use the dataset collected from the the
public platform ”Electrosense” [16]. Electrosense is a cloud-
based system designed to offer users access to high-quality
wireless spectrum data. In our simulations, we collect spec-
trum measurement datasets from the 600-700 MHz frequency
band, measured by four sensors within a 6 km radius in
central Madrid, Spain. The four sensors are named: test yago,
test rpi4, rack 2, and bcn L. Each dataset spans from June
1st 2021 to June 8th 2021, with a time resolution of 1 minute,
resulting in 10,081 time steps. Each dataset covers the 600-
700 MHz frequency range with a bandwidth resolution of 2
MHz, thus comprising 101 bands.

In simulations, 80% of the datasets are used as historical
data for training, and 20% for testing. The Adam optimizer
is applied for training. The time window defined for training
the model is 16 steps, meaning that 16 time steps of data are
used for training, and the prediction step is defined as 1 step,
so each sample contains 17 time steps. The batch size for the



(a) LSTM

(b) A-GCRNN

(c) GSL-GCRNN

Fig. 4: Prediction results on test rpi4 dataset.

proposed model is set to 32, the number of hidden units is set
to 64, the number of training epochs is set to 3000, and the
learning rate is set to 0.0001.

B. Results and discussion

Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Coefficient of Determination (R2) are used to
compare the performance of the proposed and baseline models.
The simulation results on four datasets are presented in Figure
3, which indicates that GSL-GCRNN always outperforms
other benchmark models. It verifies the effectiveness of the
proposed GSL-GCRNN in learning the multi-band correlations
across different time periods on-the-fly, by improving spectrum
prediction performance then other existing methods.

To visualize the spectrum prediction results, we test differ-
ent modes on the 610 MHz-612 MHz frequency band, selected
from the test rpi4 dataset. In Figure 4, the x-axis represents
the time steps within a time interval of 1 minute, and the
y-axis represents the PSD of the band. Compared to LSTM
and A-GCRNN, the proposed GSL-GCRNN shows superior
predictive capability.

V. CONCLUSION

This paper proposes a novel multi-band spectrum prediction
method by leveraging the graph structure learning in the
combination with graph neural network and recurrent neural
network. As a graph-based approach, we first model the
wideband spectrum data as a graph, by treating bands as in-
dividual nodes and establishing connections between nodes as
links based on multi-band correlations. A new graph structure

learning based graph convolutional regression neural network
model (GSL-GCRNN) is designed for dynamic learning the
inherent correlations in both frequency and temporal domains.
In doing so, the frequency band correlations are extracted by
a GCN, and then GRU is employed to capture the tempo-
ral correlations within each frequency band. It is the graph
structure estimator that enables to adaptively learn the multi-
band correlation across time periods. In contrast with the latest
GNN-based spectrum prediction methods, our GSL-GCRNN
model demonstrates its excellent prediction performance.
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