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Abstract—This paper presents a new reinforcement learning
approach to the design and optimization of irregular reconfig-
urable intelligent surface (IRIS) for downlink communications in
6G multiuser wireless systems. Under the total power constraint
of the IRIS device, we formulate a sum rate maximization
problem that jointly optimizes the elements selection, the phase
shift and the precoding design. For this challenging problem,
we develop a deep reinforcement learning technique that can
approach the optimal solution at affordable complexity. Physical
constraints of the design parameters are properly incorporated
into the developed DRL approach. Simulation results show that
our proposed algorithm is able to learn from its environment and
gradually improve its performance, and also converge to better
performance compared to the state-of-the-art benchmarks when
implemented in large-scale antenna systems.

Index Terms—Reinforcement learning, irregular reconfig-
urable intelligent surfaces, element selection, joint optimization.

I. INTRODUCTION

With recent developments in programmable meta-materials,
low-cost reconfigurable intelligent surfaces (RIS) have been
widely considered for adoption in wireless systems to enhance
system capacity and throughput [1]. An RIS is typically a
uniform array that consists of a large number of reflecting el-
ements with high-resolution phase shifters [2], and it serves as
a relay in a fully passive mode. However, power consumption
in adjusting the phases of all elements is non-negligible [3],
which limits the size of practical RIS devices.

To collect the diversity benefits of large-size RIS while sav-
ing the power consumption, the concept of irregular RIS (IRIS)
was introduced [4], which only selects a limited number of RIS
elements from a large-size regular RIS structure to maximize
system capacity. Joint optimization of the antenna selection
and reflection beamforming design for IRIS was formulated
and implemented in [4], [5]. IRIS significantly enhances the
sum rate by activating elements distributed over an enlarged
surface, in contrast with conventional RIS structure by packing
the same number of active antennas. This line of work is
optimization-based, given known channel conditions. As a
result, IRIS parameters need to be re-designed whenever the
channel changes, which does not adapt to dynamic environ-
ments and not meet the real-time implementation needs given
high computational costs.

Artificial intelligent (AI) has been introduced in wireless
communications [6]-[8], such as beamformer designs and
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channel estimation for large-scale MIMO systems using su-
pervised deep learning (DL) [9], [10], and wideband spectrum
sensing via attention-based and distributed DL [11], [12].
These DL approaches significantly reduce the complexity
and computation time during online prediction, after offline
training. However, this requires large labeled training dataset.
To overcome this issue, deep reinforcement learning (DRL)
provides an alternative paradigm of training deep neural net-
work on an agent. DRL allows this agent to take actions
and observe the environment so as to maximize a cumulative
reward [13]-[15]. DRL-based solutions have been developed
for RIS design involving all elements. In [14], the signal-to-
interference-plus-noise ratio (SINR) is maximized by jointly
designing the beamforming, power control and interference
coordination using DRL. An RIS-aided MISO NOMA system
is developed in [16], where the DRL agent selects phase shift
of the RIS element to maximize the sum rate. In quest to
maximize energy efficiency, DRL is adopted to jointly select
the base station beamforming vector and RIS configuration
[17], [18]. In [19], a DRL-RIS empowered multihop terahertz
communication is proposed to jointly select both BS beam-
forming vector and RIS phase shifts for each of the multi-
RIS involved. However, these prior works involve all RIS
elements during communications, which entails high power
consumption and limits practical use of large-scale RIS.
There is few work that considers DRL for IRIS. Unlike
RIS, IRIS requires antenna element selection in its design,
leading to an integer programming problem. Therefore direct
extension of DRL-RIS methods is not applicable for IRIS.
In [20], IRIS antenna element problem is solved using DRL
in a separate-approach manner. A single DRL structure first
selects the RIS elements, and then a signal processing (SP)
based phase estimation algorithm is applied to further find the
phases of these selected elements. Because an SP module is
blended into the data-driven DRL model, the DRL training
has to be customized to involve a predefined threshold, and
the training converges only when the accumulated rewards
over several episodes exceed the threshold. Setting the re-
ward threshold low may prevent the DRL agent from fully
exploring the environment to reach the optimal solution. On
the other hand, setting it too high may prevent the DRL agent
from converging. Hence determining an judicious threshold is
challenging, and it renders this algorithm impractical. This is
an inherent drawback of such a DRL structure with a hybrid
SP module, which prevents to fully leverage the strength and
benefit of DRL. Also, the SP-based phase shift estimation is



a nonconvex optimization problem without closed-form solu-
tion. It is usually solved via greedy search or approximation,
e.g. iterative majorization-minimization (MM) methods [20],
which is not only computationally involved but also subject
to suboptimal performance. Therefore, it is still a challenging
problem to design efficient antenna selection schemes for IRIS
to achieve high sum rate in real time, as the focus of this work.

This paper investigates IRIS element selection to maximize

the sum rate for a typical IRIS-aided communication system
utilizing DRL. Assuming full channel state information (CSI),
we focus on solving the non-convex mixed integer program-
ming problem. We propose an IRIS optimization scheme based
on deep deterministic policy gradient (IRIS-DDPG) to jointly
optimize the transmit beamforming, the IRIS element selection
and the phase shift. Our contributions are summarized below:

o In our IRIS-DDPG, we define the reward function using
the sum rate of multiple users, and design the DDPG
procedure to find the optimal action (i.e., transmit beam-
forming, element selection and phase shift) policy in a
given wireless environment. In lieu of exhaustive search,
the computational bottleneck of integer programming for
element selection is resolved by properly designing the
deep neural network (DNN)-based action network using
differentiable activation functions in the output neurons
for antenna section.

o While traditional DRL applies to unconstrained optimiza-
tion problems, we design the DDPG structure for DRL
to tailor for the physical constraints of IRIS systems,
given a total power budget. To the best of our knowledge,
this is the first work to introduce a fully learning-based
DRL framework to IRIS optimization, without invoking
ad hoc design components such as thresholding. Such a
learning-based IRIS systems can interact with the com-
plex wireless environment and improve the performance
by constantly adjusting the DDPG model parameters.

o Numerical results demonstrate that the proposed IRIS-
DDPG is able to achieve the desired sum rate perfor-
mance which comes closer to the optimal results by
exhaustive search. Compared with existing algorithms
with polynomial complexity, IRIS-DDPG offers better
performance at lower computational complexity. Such
advantages are particularly attractive for real-time opera-
tions of large-scale IRIS systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink RIS-aided communication system
where a BS equipped with M antennas communicates to /X
single-antenna users. An N-element RIS plays as a relay
in Fig. 1, where only Ny elements are activated during
communications to save power. The BS transmitter employs
a precoding vector for each user and superposes the precoded
symbols from all K users to form the transmitted signal:

x=Ws, (D

where W = [wy,wq---wg] is the precoding matrix and
wi € CM*! denotes the precoding vector for user k, and
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Fig. 1: A wireless communication system aided by IRIS.

s = [s1, 52, - sx]T € CE*! denotes the transmitted symbol
vector for K users satisfying E[ss’f] = Ix. The signal
is transmitted to each user k through two channel paths:
one direct path between the BS and user £ and the other
reflected channel from BS to IRIS and from IRIS to user k.
To reflect antenna selection, we introduce a selection matrix

Z = diag(z), where z = [z1,---,zy]T is a binary-valued
indicator vector representing the activation state of the N RIS
reflecting elements, that is, z, = 1 if the n-th element is
selected, and z,, = 0 otherwise, n =1,..., N.

The reflection coefficient matrix for IRIS N elements has
© = diag ([e??", €%, eIV]), )

where Vn = 1---N, and 6, € [0,27] represent con-
tinuous phase shift of the n-th RIS element in the IRIS.
We define G € CN*M a5 the BS-RIS channel. We
let HY ¢ [h.1,h.5- -, h. g]7 € CK*N and HY €
hgi,hgo- -, hy k] € CEXM where hf’[k and hgk rep-
resents the channel between the RIS and user k£ and direct
channel from BS to user k respectively. The received signal
y € CE*1 for all K users can be expressed as

y = (H’ZOG + H )x +u, 3)

where x € CM*! is the transmitted signal at the BS in (1),
u € CH*! denotes the additive white Gaussian noise (AWGN)
with zero mean and variance o2, Based on the signal model

in Fig. 1, the SINR of user £ is given by

|(h), ZOG+h] ) wy|?

SINR,= )
i (W ZOG+] wi[2 402

k=1,...,K. (4)

A. Problem Formulation

In this paper, our aim is to maximize the sum rate of
all users by jointly optimizing the element selection Z, the
corresponding phases ® and the precoding matrix W of the
IRIS-aided system. The transmit power at the BS is given by
P, = Zle ||wy |3, which follows the allowable power budget,



that is, it cannot be larger than the maximum transmit power
Ppax. We formulate the sum rate maximization problem as

(P1) : o Ry =38 log,(1+SINRy), (5)
s.t., (C1) : P, < P, (6)
(C2): 6, €l0,2n], ¥Yn=1,2,---,N, (7)
(C3): 2,€{1,0}, Vn=1,2,--- N, (8)
(C4): 17z = N,. 9)

Here (C1) depicts the transmission power constraint, (C2)
reflects the continuous-valued phase-shift range, and (C3) and
(C4) denote the antenna topology constraints that there are
N, ones (i.e., activated elements) and N — N, zeros (i.e.,
deactivated elements) in the topology matrix Z.

The problem (P1) is a mixed integer programming problem
due to the binary-valued vector z. Finding the optimal solution
entails exhaustive search over all 2V possible values for
z, which is inefficient especially for large-scale cases with
large N. In this paper, we opt to solving this challenging
optimization problem by reformulating it in the context of
advanced DRL method to obtain computationally feasible
solutions to Z, W, ©.

III. DEEP REINFORCEMENT LEARNING EMPOWERED IRIS

This section starts from DRL and DDPG which are the
foundation and the enabling techniques to our IRIS algorithm.

A. Fundamentals of DRL

RL is a learning framework where an agent gradually
makes the best decision by interacting with the environment —
performing actions in the environment, observing the instant
rewards and the transitions of the state in the environment.

State: Let S denote the set of all possible states describing
the environment. The state s(*) € S is the observation at time .

Action: We use A to represent the set of actions. Action is
a set of options that an agent takes to transition between states
of the environment. At time ¢, once the agent performs action
a® € A following a policy 7, the current state s(*) transits
to next state s(**1) and the agent gets rewards 7(*).

State transition probability: Transitioning between states
is usually random and the environment is the source of
randomness. The transition probability from state s to s’ after
taking action a is P2, = Pr(s(*) = ¢/[s®) = 5,0 = q).

Reward: A Value rewarded to the agent after an action is
taken. At a given time t, reward r(*) shows how good action
a® is given state s(*).

Experience buffer: Over episodes of the agent’s interaction
with the environment, its experience is stored in a buffer as a
collection of the quadruplets (s, a®, (1) s(+1) vt which
are used for training.

The agent aims an optimal policy to maximize the cumula-

ti\/e reWard
T t+74+1
,Y /r( )7

where « € [0,1] is the discount rate. To this end, Q-learning,
a model-free RL algorithm, can be used to find the optimal

(10)

action-selection policy [21]. To assess an action under the
current state, the ) function defines the expected reward as

Qr (s, a®) = (11)

For a huge state-action space, a function approximator is used
to obtain optimal Q*(s®), a®).

E.[RY|s®) =5 a® = q).

B. Deep Deterministic Policy Gradients - DDPG

For continuous action space, DDPG as an actor-critic
DRL [22], is adopted in this work due to its ability to stabilize
the learning process and provides a more efficient approach for
learning in complex environments. DDPG has both actor and
critic architectures [13]. The actor network learns the optimal
policy to choose actions, while the critic network evaluates
the state-action pairs using () function. Due to the huge state-
action space, DNN has been introduced to approximate both
the @ function and the action. With DRL, the () function is:

Q(s(t), a(t)) = Qo(s(t), a(t)),

where 6 is the weight parameters of DNN and will be updated
by gradient descent:

12)

oD 2 9 _ L AGIL(6), (13)

where p is the learning rate for the update on 6 and Ay is the
gradient of the loss IL(#) with respect to 6. The loss function
is the difference between the NN’s predicted value and the
actual target value. In RL, the actual target value is unknown.
To address this problem, DDPG introduces two NNs with
identical architectures. The training NN and the target NN with
value functions Q (674 |s®) (1)) and Q((**r9¢D) |5(1) (1))
respectively. The actual target Value is estimated as

y =" +ymax QOIS d). 4
The loss function is given as
L(6) = (y — Q"™ s, al))2. (15)

In DDPG, the actor takes state as input and output an action,
which together with the state is fed as input to the critic. The
critic then calculates the Q value which is used to evaluate the
performance of the current action. The training critic network
(c, train) is updated by

r(:fttz)zn = gzrain - M(37t7'ui”AL(6£ttrazn) (16)
L0 rain) = ) #2000

q(e(('tram|s(t a(t))) )

where i trqin 15 the learning rate for the update on training
critic network. o’ 1s the action output from the target actor
network and A]L(QC ) win) denotes the gradient with respect
to the training critic network 6. ¢rqin. The training and target
critic network, 0 irqin and 0. iqrgee respectively. The update
on the training actor network (a, train) is given as

(t+1)  _p(®)

a,train ~ “a,train

(18)
*,ua,trainAQ(e(ttargr’t |S(t

OYAT(O), i),



where [t trqin denotes the learning rate for the training actor

network. Aw(@étimmb ) is the gradient of the training actor

network with respect to its parameters Ha train - The gradient
of the target critic network with respect to the action is given
by Aq(6,. N get|s®,aM). The target network are updated
after a spec1ﬁed time interval O by synchronizing it with the

training network, which is actively trained in each iteration.

19)
(20)

where 7., 7, are the soft update rate of the target critic network
and the target actor network respectively. This soft update
ensures stability and convergence during training.

C. IRIS-DDPG

In this section, we discuss our proposed IRIS-DDPG al-
gorithm. The key steps are to properly define the state,
actions and rewards for the IRIS systems at hand, and design
the double DNNs that can effectively address that physical
constraints in our optimization formulation (P1). Note that the
standard DDPG is designed for unconstrained problems only.

State: In this work, we define s to be the transmit power
and the received power of all users at the ' time step as:

o= ({rn) )

where P( )k is the transmit power for user k at time ¢ given by

ec,target — Tcec,train + (1 - Tc)gc,targetv

Ha,ta'r'get — Taoa,train + (1 - Ta)aa,targeta

ey

PT(i)k = ||lwHwy H and Péi) & 1s the received power for user
at time ¢ given by Péx)k = (hkaGG + hgk)|2.

Action: We define the action to include the IRIS struture,
corresponding phases and the precoding design:

a® — {Z(t)7 @m,W(t)} .

It is important to note that the action space of (22) should
be defined to obey constraints (6) — (9).

Reward: Given the instantaneous channels G, h,.;;,hg ;. V&
and the action W®, Z(®) and ®®), we compute the sum rate
Rs (5) as the reward. For the output of the critic networks,
we define the reward function as:

RS7 P, t =
T =
RS - Cv P, t =
where C' is a large value to penalize any violation of the
power constraint, say C' = 100.

(22)

(23a)
(23b)

Tr(WWH) < Ppa
Tr(WWH) > Prax

D. IRIS-DDPG DNN Architecture

The DNN structures of the actor and critic network are fully
connected DNNs, consisting of one input layer, one output
and 3 hidden layers as shown in Fig. 2. The input and output
dimension of the actor network is the cardinality of the state
and action respectively. Specifically, the numbers of tunable
elements in Z,®, W are N, N and M K, respectively, which
correspond to (2N 4+ M K) total neurons at the output layer
of the action network. For the critic networks, the output layer

has one neuron to yield the Q value, which is based on the
reward function defined in (23) and the Q value function (11),
an indicator to evaluate the performance of current action.

A key step in our DRL design is to holistically confine
the agent within its constrained action space. Tailoring to
the specific constraints on design parameters of IRIS, we
construct the action and critic multi-layer neural networks as
in Fig. 2. First, to satisfy the power constraint (6) on W, we
employ linear activation functions for the M K output neurons
corresponding to W. Violation of (6) will be panelized in
the reward function (23). Then, the N RIS elements along
the diagonal of Z are chosen based on softmax algorithm.
Specifically, we select the highest Ny probabilities and the
rest of N — N are the RIS element not selected, to satisfy
constraints (8) and (9). Lastly, the corresponding N phases
0 of RIS element are chosen according to sigmoid algorithm
and then multiplied by 27 to satisfy constraint (7).

L1 = State Dimension
L2 = Action Dimension

sn_

[I) (t) I I
—1. {Pl'x L3 1 I

2n(Sigmoid (8))

alt) = [w’-“_zl”, e(r]}

Actor Network
§® =
K K
([P‘EE“]hV[PR(-E"]k:-l) @
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L1+1L2 13=1

Critic Network

Fig. 2: The actor and critic networks in IRIS-DDPG.

The optimizer used for both the training critic network
and training actor network is Adam optimizer with adaptive
learning rate ug) = )\C,u(t D and u(t) )\a,ut(ffl), where A,
and A\, are the decaying rate for the training critic and training
actor network. The complete training process of proposed
IRIS-DDPG is summarized in Algorithm 1.

IV. NUMERICAL RESULTS
A. Simulation settings and benchmarks

In the IRIS systems of interest, X single-antenna users are
served by a BS equipped with M antennas and an irregular RIS
equipped with IV elements of which N, elements are selected.
The uncorrelated Rayleigh fading channel model is adopted.
The hyperparamters in our algorithm are described in table I.
We consider three state-of-the-art algorithms as benchmarks:
the ATS-NECE (NECE) algorithm [4], successive refinement
(SR) [23] and the optimal solution via exhaustive search.

Fig. 3 depicts the achieved sum rate performances of various
algorithms as a function of the total transmit power constraint,



Algorithm 1 IRIS-DDPG Algorithm

Require: G,h, ;,hg ., Yk
Ensure: Action: W, Z, ®, Reward: R, Q-value function
1: Initialize the experience buffer B with size D, training

actor network parameter 9a,tmm, target actor network
parameter 0y target = a,train, training critic network with
parameter 6. trqin, target critic network with parameter
Oc.target = Oc train, transmit beamforming matrix W, RIS
element selection Z and phase shift matrix ®

2: for episode = 0,1,---, N — 1 do

3; Collect G, h, , hy, Vk to obtain first state s(©)

4 fort=0,1,2---, T —1 do .

5: Obtain output from output layer Hc(fmm)

6: Compute Tr (WWH) = P, from section of layer
with linear activation

7: Choose highest N, probabilities as selected ele-
ments in Z*) from section of layer with softmax activation

8: Choose respective phases @(*) from section of
layer with sigmoid activation and multiply by 27

o: Obtain action a(®) = Wz @)

10: if P, < P.x then

11: Compute instant reward as (23a) with a®

12: else

13: Compute instant reward (23b) with a®

14: end if

15: Obtain new state s(**1) given action a®

16: Store in experience buffer (s(), a(®), 7(t) s(t+1))

17: Update our network parameters by sampling ran-
dom batch size U from experience buffer

18: Calculate target value by (14)

19: Update the training critic network 6. +yqin by (16)

20: Update the training actor network 0, ¢rqin by (18)

21: Update target critic network 6. tqrgct after every
O steps by (19)

22: Update target actor network 6, ¢qrge: after every
O steps by (20)

23: end for

24: end for

for M=4, N=20, Ny=10 and K=4. It shows that IRIS-
DDPG outperforms the state-of-the-art and comes closest to
that of the optimal exhaustive search method. In general, the
sum rate increases with the transmit power.

Consider a large-scale system with M =4, N=100, Ny=>50,
and K'=4. The large value of N makes it infeasible to simulate
the exhaustive search method, which is thus dropped from the
comparison. From Fig. 4, we observe that IRIS-DDPG method
outperforms the NECE and SR methods, which confirms the
effectiveness of IRIS-DDPG for large-scale RIS systems.

B. Computational Complexity

We analyze the complexity order of the proposed IRIS-
DDPG algorithm, along with that of other benchmarks.

In the exhaustive search method, (ZJ\? ) possible IRIS
structures are searched. For each structure, we quantize to
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N 40 , i
»
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=
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Fig. 3: Sum rate versus transmit power for small scale system with
M=4, N=20, N,=10 and K=4.

TABLE I: Hyperparamter Descriptions

Simulation Parameters Value
Discounted rate 0.95
Learning rate fic, fba, Tc, Ta 0.001
Decaying rate ., \q 10—°
Experience replay buffer size D | 100000
Training episode N 100
Training steps 1’ 10000
Mini-batch size U 16
Synchronization interval O 20
Noise power o~ -80dBm

have up to L phase shift combinations for each N, ac-
tive elements. Hence, the complexity is on the order of
O((J]\X)LNSKlog N?), which is exceedingly high for large
values of N and NV,.

The SR algorithm in [23] is an approximate search algo-
rithm that sequentially select the antenna elements one by
one in a greedy manner. The complexity is on the order of
O(eN(LN,)K log N3), 1 < e <10 [24].

NECE is a population-based optimization algorithm that
also resorts to an approximate search strategy. Its complexity
order turns out to be O(eN?K log N3), 1 < e < 10 [24].

For complexity of IRIS-DDPG, L denotes the layers of the
model, Uy denotes the size of the input layer, U; represents
the size of the [-th layer. There are N, episodes and T'
steps per episode. Then, the whole training computation is
defined as O (NepiT (Zle Ul_lUl))

of the hidden layers (ZZL;; Ul_lUl) are constant C. The
size of the input layer Uy is 2K and that of the output,
Ur, is 2N + M K. Hence the complexity order turns out
to be O(2K + 2N + MK + (). Once the actor and critic
networks is trained, IRIS-DDPG can be used to adapt to
different channel environments directly, without retraining.
This is a huge computational advantage over signal processing

. However, the size
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Fig. 4: Sum rate versus transmit power for large scale system with
M=4, N=100, N;=50 and K=4.

based approaches. By comparison, the complexity order of
IRIS-DDPG is linear in the RIS size NN, which has evident
complexity advantages over the benchmarking methods.

V. CONCLUSION

This work develops a new joint design of transmit beam-
forming, RIS element selection and phase shifts based on
the DRL technique. The proposed IRIS-DDPG method, by
virtue of its judicious design of the embedded double DNN
structures, efficiently overcomes the bottleneck of the mixed
integer programming problem imposed by antenna selection.
In addition, the DDPG structure is enhanced to accommodate
the total power constraint of the RIS systems. Simulation
results verify that the proposed IRIS-DDPG outperforms the
start-of-the-art methods in terms of both sum-rate performance
and computational complexity, making it attractive for high-
data-rate wireless systems with large-scale RIS.
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