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Abstract—This paper presents a new reinforcement learning
approach to the design and optimization of irregular reconfig-
urable intelligent surface (IRIS) for downlink communications in
6G multiuser wireless systems. Under the total power constraint
of the IRIS device, we formulate a sum rate maximization
problem that jointly optimizes the elements selection, the phase
shift and the precoding design. For this challenging problem,
we develop a deep reinforcement learning technique that can
approach the optimal solution at affordable complexity. Physical
constraints of the design parameters are properly incorporated
into the developed DRL approach. Simulation results show that
our proposed algorithm is able to learn from its environment and
gradually improve its performance, and also converge to better
performance compared to the state-of-the-art benchmarks when
implemented in large-scale antenna systems.

Index Terms—Reinforcement learning, irregular reconfig-
urable intelligent surfaces, element selection, joint optimization.

I. INTRODUCTION

With recent developments in programmable meta-materials,

low-cost reconfigurable intelligent surfaces (RIS) have been

widely considered for adoption in wireless systems to enhance

system capacity and throughput [1]. An RIS is typically a

uniform array that consists of a large number of reflecting el-

ements with high-resolution phase shifters [2], and it serves as

a relay in a fully passive mode. However, power consumption

in adjusting the phases of all elements is non-negligible [3],

which limits the size of practical RIS devices.

To collect the diversity benefits of large-size RIS while sav-

ing the power consumption, the concept of irregular RIS (IRIS)

was introduced [4], which only selects a limited number of RIS

elements from a large-size regular RIS structure to maximize

system capacity. Joint optimization of the antenna selection

and reflection beamforming design for IRIS was formulated

and implemented in [4], [5]. IRIS significantly enhances the

sum rate by activating elements distributed over an enlarged

surface, in contrast with conventional RIS structure by packing

the same number of active antennas. This line of work is

optimization-based, given known channel conditions. As a

result, IRIS parameters need to be re-designed whenever the

channel changes, which does not adapt to dynamic environ-

ments and not meet the real-time implementation needs given

high computational costs.

Artificial intelligent (AI) has been introduced in wireless

communications [6]–[8], such as beamformer designs and
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channel estimation for large-scale MIMO systems using su-

pervised deep learning (DL) [9], [10], and wideband spectrum

sensing via attention-based and distributed DL [11], [12].

These DL approaches significantly reduce the complexity

and computation time during online prediction, after offline

training. However, this requires large labeled training dataset.

To overcome this issue, deep reinforcement learning (DRL)

provides an alternative paradigm of training deep neural net-

work on an agent. DRL allows this agent to take actions

and observe the environment so as to maximize a cumulative

reward [13]–[15]. DRL-based solutions have been developed

for RIS design involving all elements. In [14], the signal-to-

interference-plus-noise ratio (SINR) is maximized by jointly

designing the beamforming, power control and interference

coordination using DRL. An RIS-aided MISO NOMA system

is developed in [16], where the DRL agent selects phase shift

of the RIS element to maximize the sum rate. In quest to

maximize energy efficiency, DRL is adopted to jointly select

the base station beamforming vector and RIS configuration

[17], [18]. In [19], a DRL-RIS empowered multihop terahertz

communication is proposed to jointly select both BS beam-

forming vector and RIS phase shifts for each of the multi-

RIS involved. However, these prior works involve all RIS

elements during communications, which entails high power

consumption and limits practical use of large-scale RIS.

There is few work that considers DRL for IRIS. Unlike

RIS, IRIS requires antenna element selection in its design,

leading to an integer programming problem. Therefore direct

extension of DRL-RIS methods is not applicable for IRIS.

In [20], IRIS antenna element problem is solved using DRL

in a separate-approach manner. A single DRL structure first

selects the RIS elements, and then a signal processing (SP)

based phase estimation algorithm is applied to further find the

phases of these selected elements. Because an SP module is

blended into the data-driven DRL model, the DRL training

has to be customized to involve a predefined threshold, and

the training converges only when the accumulated rewards

over several episodes exceed the threshold. Setting the re-

ward threshold low may prevent the DRL agent from fully

exploring the environment to reach the optimal solution. On

the other hand, setting it too high may prevent the DRL agent

from converging. Hence determining an judicious threshold is

challenging, and it renders this algorithm impractical. This is

an inherent drawback of such a DRL structure with a hybrid

SP module, which prevents to fully leverage the strength and

benefit of DRL. Also, the SP-based phase shift estimation is



a nonconvex optimization problem without closed-form solu-

tion. It is usually solved via greedy search or approximation,

e.g. iterative majorization-minimization (MM) methods [20],

which is not only computationally involved but also subject

to suboptimal performance. Therefore, it is still a challenging

problem to design efficient antenna selection schemes for IRIS

to achieve high sum rate in real time, as the focus of this work.

This paper investigates IRIS element selection to maximize

the sum rate for a typical IRIS-aided communication system

utilizing DRL. Assuming full channel state information (CSI),

we focus on solving the non-convex mixed integer program-

ming problem. We propose an IRIS optimization scheme based

on deep deterministic policy gradient (IRIS-DDPG) to jointly

optimize the transmit beamforming, the IRIS element selection

and the phase shift. Our contributions are summarized below:

• In our IRIS-DDPG, we define the reward function using

the sum rate of multiple users, and design the DDPG

procedure to find the optimal action (i.e., transmit beam-

forming, element selection and phase shift) policy in a

given wireless environment. In lieu of exhaustive search,

the computational bottleneck of integer programming for

element selection is resolved by properly designing the

deep neural network (DNN)-based action network using

differentiable activation functions in the output neurons

for antenna section.

• While traditional DRL applies to unconstrained optimiza-

tion problems, we design the DDPG structure for DRL

to tailor for the physical constraints of IRIS systems,

given a total power budget. To the best of our knowledge,

this is the first work to introduce a fully learning-based

DRL framework to IRIS optimization, without invoking

ad hoc design components such as thresholding. Such a

learning-based IRIS systems can interact with the com-

plex wireless environment and improve the performance

by constantly adjusting the DDPG model parameters.

• Numerical results demonstrate that the proposed IRIS-

DDPG is able to achieve the desired sum rate perfor-

mance which comes closer to the optimal results by

exhaustive search. Compared with existing algorithms

with polynomial complexity, IRIS-DDPG offers better

performance at lower computational complexity. Such

advantages are particularly attractive for real-time opera-

tions of large-scale IRIS systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink RIS-aided communication system

where a BS equipped with M antennas communicates to K
single-antenna users. An N -element RIS plays as a relay

in Fig. 1, where only Ns elements are activated during

communications to save power. The BS transmitter employs

a precoding vector for each user and superposes the precoded

symbols from all K users to form the transmitted signal:

x = W s, (1)

where W = [w1,w2 · · ·wk] is the precoding matrix and

wk ∈ C
M×1 denotes the precoding vector for user k, and

Fig. 1: A wireless communication system aided by IRIS.

s = [s1, s2, · · · sK ]T ∈ C
K×1 denotes the transmitted symbol

vector for K users satisfying E[ssH ] = IK . The signal

is transmitted to each user k through two channel paths:

one direct path between the BS and user k and the other

reflected channel from BS to IRIS and from IRIS to user k.

To reflect antenna selection, we introduce a selection matrix

Z = diag(z), where z = [z1, · · · , zN ]T is a binary-valued

indicator vector representing the activation state of the N RIS

reflecting elements, that is, zn = 1 if the n-th element is

selected, and zn = 0 otherwise, n = 1, . . . , N .

The reflection coefficient matrix for IRIS N elements has

Θ = diag
([
ejθ1 , ejθ2 , · · · , ejθN ])

, (2)

where ∀n = 1 · · ·N , and θn ∈ [0, 2π] represent con-

tinuous phase shift of the n-th RIS element in the IRIS.

We define G ∈ C
N×M as the BS-RIS channel. We

let HH
r ∈ [hr,1, hr,2 · · · , hr,K ]H ∈ C

K×N and HH
d ∈

[hd,1, hd,2 · · · , hd,K ]H ∈ C
K×M where hH

r,k and hH
d,k rep-

resents the channel between the RIS and user k and direct

channel from BS to user k respectively. The received signal

y ∈ C
K×1 for all K users can be expressed as

y = (HH
r ZΘG + HH

d )x + u, (3)

where x ∈ C
M×1 is the transmitted signal at the BS in (1),

u ∈ C
K×1 denotes the additive white Gaussian noise (AWGN)

with zero mean and variance σ2, Based on the signal model

in Fig. 1, the SINR of user k is given by

SINRk=
|(hH

r,kZΘG+hH
d,k)wk|2∑K

i�=k|(hH
r,kZΘG+hH

d,k)wi|2+σ2
, k=1, . . . ,K. (4)

A. Problem Formulation

In this paper, our aim is to maximize the sum rate of

all users by jointly optimizing the element selection Z, the

corresponding phases Θ and the precoding matrix W of the

IRIS-aided system. The transmit power at the BS is given by

Pt =
∑K

k=1‖wk‖22, which follows the allowable power budget,



that is, it cannot be larger than the maximum transmit power

Pmax. We formulate the sum rate maximization problem as

(P1) : max
Z,W,Θ

Rs =
∑K

k=1 log2(1 + SINRk),

s.t., (C1) : Pt ≤ Pmax,

(C2) : θn ∈ [0, 2π], ∀n = 1, 2, · · · , N,

(C3) : zn ∈ {1, 0}, ∀n = 1, 2, · · · , N,

(C4) : 1T z = Ns.

(5)

(6)

(7)

(8)

(9)

Here (C1) depicts the transmission power constraint, (C2)

reflects the continuous-valued phase-shift range, and (C3) and

(C4) denote the antenna topology constraints that there are

Ns ones (i.e., activated elements) and N − Ns zeros (i.e.,

deactivated elements) in the topology matrix Z.

The problem (P1) is a mixed integer programming problem

due to the binary-valued vector z. Finding the optimal solution

entails exhaustive search over all 2N possible values for

z, which is inefficient especially for large-scale cases with

large N . In this paper, we opt to solving this challenging

optimization problem by reformulating it in the context of

advanced DRL method to obtain computationally feasible

solutions to Z,W,Θ.

III. DEEP REINFORCEMENT LEARNING EMPOWERED IRIS

This section starts from DRL and DDPG which are the

foundation and the enabling techniques to our IRIS algorithm.

A. Fundamentals of DRL

RL is a learning framework where an agent gradually

makes the best decision by interacting with the environment –

performing actions in the environment, observing the instant

rewards and the transitions of the state in the environment.

State: Let S denote the set of all possible states describing

the environment. The state s(t) ∈ S is the observation at time t.
Action: We use A to represent the set of actions. Action is

a set of options that an agent takes to transition between states

of the environment. At time t, once the agent performs action

a(t) ∈ A following a policy π, the current state s(t) transits

to next state s(t+1) and the agent gets rewards r(t).
State transition probability: Transitioning between states

is usually random and the environment is the source of

randomness. The transition probability from state s to s′ after

taking action a is P a
ss′ = Pr(s(t+1) = s′|s(t) = s, a(t) = a).

Reward: A value rewarded to the agent after an action is

taken. At a given time t, reward r(t) shows how good action

a(t) is given state s(t).
Experience buffer: Over episodes of the agent’s interaction

with the environment, its experience is stored in a buffer as a

collection of the quadruplets (s(t), a(t), r(t), s(t+1)), ∀t, which

are used for training.

The agent aims an optimal policy to maximize the cumula-

tive reward

R(t) =
∑∞

τ=0 γ
τr(t+τ+1), (10)

where γ ∈ [0, 1] is the discount rate. To this end, Q-learning,

a model-free RL algorithm, can be used to find the optimal

action-selection policy [21]. To assess an action under the

current state, the Q function defines the expected reward as

Qπ(s
(t), a(t)) = Eπ[R

(t)|s(t) = s, a(t) = a]. (11)

For a huge state-action space, a function approximator is used

to obtain optimal Q∗(s(t), a(t)).

B. Deep Deterministic Policy Gradients - DDPG

For continuous action space, DDPG as an actor-critic

DRL [22], is adopted in this work due to its ability to stabilize

the learning process and provides a more efficient approach for

learning in complex environments. DDPG has both actor and

critic architectures [13]. The actor network learns the optimal

policy to choose actions, while the critic network evaluates

the state-action pairs using Q function. Due to the huge state-

action space, DNN has been introduced to approximate both

the Q function and the action. With DRL, the Q function is:

Q(s(t), a(t)) = Qθ(s(t), a(t)), (12)

where θ is the weight parameters of DNN and will be updated

by gradient descent:

θ(t+1) � θ(t) − μΔθL(θ), (13)

where μ is the learning rate for the update on θ and Δθ is the

gradient of the loss L(θ) with respect to θ. The loss function

is the difference between the NN’s predicted value and the

actual target value. In RL, the actual target value is unknown.

To address this problem, DDPG introduces two NNs with

identical architectures. The training NN and the target NN with

value functions Q(θ(train)|s(t), a(t)) and Q(θ(target)|s(t), a(t))
respectively. The actual target value is estimated as

y = r(t) + γmax
a′

Q(θ(target)|s(t+1), a′). (14)

The loss function is given as

L(θ) = (y −Q(θ(train)|s(t), a(t)))2. (15)

In DDPG, the actor takes state as input and output an action,

which together with the state is fed as input to the critic. The

critic then calculates the Q value which is used to evaluate the

performance of the current action. The training critic network

(c, train) is updated by

θ
(t+1)
c,train = θ

(t)
c,train − μc,trainΔL(θ

(t)
c,train), (16)

L(θ
(t)
c,train) = (r(t) + γq(θ

(t)
c,target|s(t+1), a′)

−q(θ
(t)
c,train|s(t), a(t)))2,

(17)

where μc,train is the learning rate for the update on training

critic network. a′ is the action output from the target actor

network and ΔL(θ
(t)
c,train) denotes the gradient with respect

to the training critic network θc,train. The training and target

critic network, θc,train and θc,target respectively. The update

on the training actor network (a, train) is given as

θ
(t+1)
a,train =θ

(t)
a,train

−μa,trainΔq(θ
(t)
c,target|s(t), a(t))Δπ(θ

(t)
a,train|s(t)),

(18)



where μa,train denotes the learning rate for the training actor

network. Δπ(θ
(t)
a,train|s(t)) is the gradient of the training actor

network with respect to its parameters θ
(t)
a,train . The gradient

of the target critic network with respect to the action is given

by Δq(θ
(t)
c,target|s(t), a(t)). The target network are updated

after a specified time interval O by synchronizing it with the

training network, which is actively trained in each iteration.

θc,target ← τcθc,train + (1− τc)θc,target,

θa,target ← τaθa,train + (1− τa)θa,target,

(19)

(20)

where τc, τa are the soft update rate of the target critic network

and the target actor network respectively. This soft update

ensures stability and convergence during training.

C. IRIS-DDPG

In this section, we discuss our proposed IRIS-DDPG al-

gorithm. The key steps are to properly define the state,

actions and rewards for the IRIS systems at hand, and design

the double DNNs that can effectively address that physical

constraints in our optimization formulation (P1). Note that the

standard DDPG is designed for unconstrained problems only.

State: In this work, we define s(t) to be the transmit power

and the received power of all users at the tth time step as:

s(t) =

({
P

(t)
Tx,k

}K

k=1
,
{
P

(t)
Rx,k

}K

k=1

)
, (21)

where P
(t)
Tx,k is the transmit power for user k at time t given by

P
(t)
Tx,k = ‖wH

k wk‖2 and P
(t)
Rx,k is the received power for user k

at time t given by P
(t)
Rx,k = |(hH

r,kZΘG + hH
d,k)|2.

Action: We define the action to include the IRIS struture,

corresponding phases and the precoding design:

a(t) =
{

Z(t),Θ(t),W(t)
}
. (22)

It is important to note that the action space of (22) should

be defined to obey constraints (6) – (9).

Reward: Given the instantaneous channels G, hr,k, hd,k ∀k
and the action W(t), Z(t) and Θ(t), we compute the sum rate

Rs (5) as the reward. For the output of the critic networks,

we define the reward function as:

r =

{
Rs, Pt = Tr(WWH) ≤ Pmax

Rs − C, Pt = Tr(WWH) > Pmax

(23a)

(23b)

where C is a large value to penalize any violation of the

power constraint, say C = 100.

D. IRIS-DDPG DNN Architecture

The DNN structures of the actor and critic network are fully

connected DNNs, consisting of one input layer, one output

and 3 hidden layers as shown in Fig. 2. The input and output

dimension of the actor network is the cardinality of the state

and action respectively. Specifically, the numbers of tunable

elements in Z,Θ,W are N , N and MK, respectively, which

correspond to (2N +MK) total neurons at the output layer

of the action network. For the critic networks, the output layer

has one neuron to yield the Q value, which is based on the

reward function defined in (23) and the Q value function (11),

an indicator to evaluate the performance of current action.

A key step in our DRL design is to holistically confine

the agent within its constrained action space. Tailoring to

the specific constraints on design parameters of IRIS, we

construct the action and critic multi-layer neural networks as

in Fig. 2. First, to satisfy the power constraint (6) on W, we

employ linear activation functions for the MK output neurons

corresponding to W. Violation of (6) will be panelized in

the reward function (23). Then, the N RIS elements along

the diagonal of Z are chosen based on softmax algorithm.

Specifically, we select the highest Ns probabilities and the

rest of N − Ns are the RIS element not selected, to satisfy

constraints (8) and (9). Lastly, the corresponding N phases

θ of RIS element are chosen according to sigmoid algorithm

and then multiplied by 2π to satisfy constraint (7).

Fig. 2: The actor and critic networks in IRIS-DDPG.

The optimizer used for both the training critic network

and training actor network is Adam optimizer with adaptive

learning rate μ
(t)
c = λcμ

(t−1)
c and μ

(t)
a = λaμ

(t−1)
a , where λc

and λa are the decaying rate for the training critic and training

actor network. The complete training process of proposed

IRIS-DDPG is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

A. Simulation settings and benchmarks

In the IRIS systems of interest, K single-antenna users are

served by a BS equipped with M antennas and an irregular RIS

equipped with N elements of which Ns elements are selected.

The uncorrelated Rayleigh fading channel model is adopted.

The hyperparamters in our algorithm are described in table I.

We consider three state-of-the-art algorithms as benchmarks:

the ATS-NECE (NECE) algorithm [4], successive refinement

(SR) [23] and the optimal solution via exhaustive search.

Fig. 3 depicts the achieved sum rate performances of various

algorithms as a function of the total transmit power constraint,



Algorithm 1 IRIS-DDPG Algorithm

Require: G, hr,k, hd,k, ∀k
Ensure: Action: W,Z,Θ, Reward: R, Q-value function

1: Initialize the experience buffer B with size D, training

actor network parameter θa,train, target actor network

parameter θa,target = θa,train, training critic network with

parameter θc,train, target critic network with parameter

θc,target = θc,train, transmit beamforming matrix W, RIS

element selection Z and phase shift matrix Θ
2: for episode = 0, 1, · · · , N − 1 do
3: Collect G, hr,k, hd,k, ∀k to obtain first state s(0)

4: for t = 0, 1, 2 · · · , T − 1 do
5: Obtain output from output layer θ

(train)
a

6: Compute Tr (WWH) = Pt from section of layer

with linear activation

7: Choose highest Ns probabilities as selected ele-

ments in Z(t) from section of layer with softmax activation

8: Choose respective phases Θ(t) from section of

layer with sigmoid activation and multiply by 2π
9: Obtain action a(t) = W(t),Z(t),Θ(t)

10: if Pt ≤ Pmax then
11: Compute instant reward as (23a) with a(t)

12: else
13: Compute instant reward (23b) with a(t)

14: end if
15: Obtain new state s(t+1) given action a(t)

16: Store in experience buffer (s(t), a(t), r(t), s(t+1))
17: Update our network parameters by sampling ran-

dom batch size U from experience buffer

18: Calculate target value by (14)

19: Update the training critic network θc,train by (16)

20: Update the training actor network θa,train by (18)

21: Update target critic network θc,target after every

O steps by (19)

22: Update target actor network θa,target after every

O steps by (20)

23: end for
24: end for

for M=4, N=20, Ns=10 and K=4. It shows that IRIS-

DDPG outperforms the state-of-the-art and comes closest to

that of the optimal exhaustive search method. In general, the

sum rate increases with the transmit power.

Consider a large-scale system with M=4, N=100, Ns=50,

and K=4. The large value of N makes it infeasible to simulate

the exhaustive search method, which is thus dropped from the

comparison. From Fig. 4, we observe that IRIS-DDPG method

outperforms the NECE and SR methods, which confirms the

effectiveness of IRIS-DDPG for large-scale RIS systems.

B. Computational Complexity

We analyze the complexity order of the proposed IRIS-

DDPG algorithm, along with that of other benchmarks.

In the exhaustive search method,
(
N
Ns

)
possible IRIS

structures are searched. For each structure, we quantize to
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Fig. 3: Sum rate versus transmit power for small scale system with
M=4, N=20, Ns=10 and K=4.

TABLE I: Hyperparamter Descriptions

Simulation Parameters Value
Discounted rate γ 0.95

Learning rate μc, μa, τc, τa 0.001

Decaying rate λc, λa 10−5

Experience replay buffer size D 100000
Training episode N 100

Training steps T 10000
Mini-batch size U 16

Synchronization interval O 20

Noise power σ2 -80dBm

have up to L phase shift combinations for each Ns ac-

tive elements. Hence, the complexity is on the order of

O(
(
N
Ns

)
LNsK logN3), which is exceedingly high for large

values of N and Ns.

The SR algorithm in [23] is an approximate search algo-

rithm that sequentially select the antenna elements one by

one in a greedy manner. The complexity is on the order of

O(εN(LNs)K logN3), 1 ≤ ε ≤ 10 [24].

NECE is a population-based optimization algorithm that

also resorts to an approximate search strategy. Its complexity

order turns out to be O(εN2K logN3), 1 ≤ ε ≤ 10 [24].

For complexity of IRIS-DDPG, L denotes the layers of the

model, U0 denotes the size of the input layer, Ul represents

the size of the l-th layer. There are Nepi episodes and T
steps per episode. Then, the whole training computation is

defined as O
(
NepiT

(∑L
l=1 Ul−1Ul

))
. However, the size

of the hidden layers
(∑L−1

l=2 Ul−1Ul

)
are constant C. The

size of the input layer U0 is 2K and that of the output,

UL, is 2N + MK. Hence the complexity order turns out

to be O(2K + 2N + MK + C). Once the actor and critic

networks is trained, IRIS-DDPG can be used to adapt to

different channel environments directly, without retraining.

This is a huge computational advantage over signal processing
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Fig. 4: Sum rate versus transmit power for large scale system with
M=4, N=100, Ns=50 and K=4.

based approaches. By comparison, the complexity order of

IRIS-DDPG is linear in the RIS size N , which has evident

complexity advantages over the benchmarking methods.

V. CONCLUSION

This work develops a new joint design of transmit beam-

forming, RIS element selection and phase shifts based on

the DRL technique. The proposed IRIS-DDPG method, by

virtue of its judicious design of the embedded double DNN

structures, efficiently overcomes the bottleneck of the mixed

integer programming problem imposed by antenna selection.

In addition, the DDPG structure is enhanced to accommodate

the total power constraint of the RIS systems. Simulation

results verify that the proposed IRIS-DDPG outperforms the

start-of-the-art methods in terms of both sum-rate performance

and computational complexity, making it attractive for high-

data-rate wireless systems with large-scale RIS.
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