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Abstract

Ambient diffusion is a recently proposed frame-

work for training diffusion models using cor-

rupted data. Both Ambient Diffusion and al-

ternative SURE-based approaches for learning

diffusion models from corrupted data resort to

approximations which deteriorate performance.

We present the first framework for training dif-

fusion models that provably sample from the un-

corrupted distribution given only noisy training

data, solving an open problem in Ambient diffu-

sion. Our key technical contribution is a method

that uses a double application of Tweedie’s for-

mula and a consistency loss function that allows

us to extend sampling at noise levels below the

observed data noise. We also provide further evi-

dence that diffusion models memorize from their

training sets by identifying extremely corrupted

images that are almost perfectly reconstructed,

raising copyright and privacy concerns. Our

method for training using corrupted samples can

be used to mitigate this problem. We demonstrate

this by fine-tuning Stable Diffusion XL to gener-

ate samples from a distribution using only noisy

samples. Our framework reduces the amount of

memorization of the fine-tuning dataset, while

maintaining competitive performance.
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1. Introduction

In recent years, we have witnessed remarkable progress in

image generation as exemplified by state-of-the-art models

such as Stable Diffusion (-XL) (Rombach et al., 2022;

Podell et al., 2023) and DALL-E (2, 3) (Betker et al., 2023).

This progress has been driven by two major enablers: i) the

diffusion modeling framework (Ho et al., 2020; Song &

Ermon, 2019; Song et al., 2020b); and ii) the existence

of massive datasets of image-text pairs (Schuhmann et al.,

2022; Gadre et al., 2023).

The need for high-quality, web-scale data and the intricacies

involved in curating datasets at that scale often result in

the inclusion of copyrighted content. Making things worse,

diffusion models memorize training examples more than

previous generative modeling approaches (Carlini et al.,

2023; Somepalli et al., 2023), such as Generative Adversar-

ial Networks (Goodfellow et al., 2020), often replicating

parts or whole images from their training set.

A recently proposed strategy for mitigating the memoriza-

tion issue is to train (or fine-tune) diffusion models using

corrupted data (Daras et al., 2023b; Somepalli et al., 2023;

Daras & Dimakis, 2023). Indeed, developing a capability for

training diffusion models using corrupted data can also find

applications in domains where access to uncorrupted data is

expensive or impossible, e.g. in MRI (Aali et al., 2023) or

black-hole imaging (Lin et al.; The Event Horizon Telescope

Collaboration, 2019). Unfortunately, existing methods for

learning diffusion models from corrupted data (Daras et al.,

2023b; Aali et al., 2023; Kawar et al., 2023; Xiang et al.,

2023) resort to approximations (during training or sampling)

that significantly hurt performance. Our contributions are

as follows:

i We propose the first exact framework for learning dif-

fusion models using only corrupted samples. Our key

technical contributions are: i) a computationally effi-

cient method for learning optimal denoisers for all levels

of noise � � �n, where �n is the standard deviation

of the noise in the training data, obtained by apply-

ing Tweedie’s formula twice; and ii) a consistency loss

function (Daras et al., 2023a) for learning the optimal

denoisers for noise levels � ÿ �n. Note that given sam-
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Figure 1. Top row: images from LAION (Schuhmann et al., 2022), middle row: masked images, bottom row: reconstructed images with

the SDXL (Podell et al., 2023) inpainting model. The accuracy of the reconstructions presents strong evidence that the images on the

top-row were in the training set of SDXL (or SDXL Inpainting) and have been memorized. To the best of our knowledge, SDXL does not

disclose its training set.

ples at level of noise �n it is possible to obtain samples

at levels of noise � > �n (by adding further noise) but

prior to our work it was not known how to train diffusion

models to obtain samples at levels of noise � < �n.

ii We provide further evidence that foundation diffusion

models memorize their training sets by showing that

extremely corrupted training images can be almost per-

fectly reconstructed. Moreover, we show that memoriza-

tion occurs at a higher rate than previously anticipated.

iii We use our framework to fine-tune diffusion foundation

models using corrupted data and show that the perfor-

mance of our trained model declines (as the corruption

in the training data increases) at a much slower rate

compared to previously proposed approaches.

iv We evaluate trained models against our as well as

a baseline method for testing data replication and

we show that models trained under data corruption

memorize significantly less.

v We open-source our code to facilitate further research

in this area: https://github.com/giannisdaras/ambient-

tweedie.

2. Background and Related Work

Consider a distribution of interest admitting a density func-

tion p0. Our goal is to train a diffusion model that generates

samples from p0. However, we only have access to noisy

samples from p0. In particular, we have samples of the form

Xtn = X0 + �tnZ, where X0 á p0 and Z á N (0, Id).
We denote by ptn the distribution density of these samples.

Throughout the paper we fix an increasing non-negative

function �(t), where t 2 [0, T ], T > 0, and �(0) = 0, and

denote �(t) by �t. We take tn 2 (0, T ). The subscript ‘n’

in tn refers to “nature” and, as stated above, we assume

that nature is giving us access to samples at noise level

�tn . We denote by pt the distribution of random variable

Xt = X0 + �tZ, where X0 á p0 and Z á N (0, Id).

2.1. Background on denoising diffusion models

Diffusion models can equivalently be viewed as denoisers at

many different noise levels �t, t 2 [0, T ]. They are typically

trained with the Denoising Score Matching loss:

JDSM(7) =

Ex0áp0(x0)EtáU [0,T ]Extápt(xt|x0)

h

||h7(xt, t)� x0||
2
i

.

If the function class {h7} is sufficiently rich, the minimizer

of this loss satisfies h7å(xt, t) = E[X0|Xt = xt] for all

t,xt. Tweedie’s formula connects the conditional expecta-

tion, i.e. the best denoiser in the `
2
2 sense, with the score

function r log pt(xt),

r log pt(xt) =
E[X0|Xt = xt]� xt

�2
t

. (2.1)
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stop diffusion sampling at time t : �t = �tn . This type of

approach is adopted by Kawar et al. (2023) and Xiang et al.

(2023) and it only guarantees samples from the distribution

E[X0|Xtn ].

Notably, similar problems arise in the setting of training

diffusion models from linearly corrupted data, i.e. when

the available samples are Y0 = AX0, for a known matrix

A, as considered in the Ambient Diffusion paper (Daras

et al., 2023b). In this setting, the authors manage to learn

E[X0|AXt] for all t, but not E[X0|Xt], where Xt =
X0 + �tZ, as always in this paper. Similar challenges

are encountered in the G-SURE paper (Kawar et al., 2023).

In sum, training exact diffusion models, i.e. diffusion models

sampling the target distribution p0, given corrupted data re-

mains unsolved. In this paper, we resolve this open-problem

with two key technical contributions: i) an efficiently com-

putable objective for learning the optimal denoisers for all

levels of noise t : �t � �tn , obtained by applying Tweedie’s

formula twice; and ii) a consistency loss for learning the

optimal denoisers for levels of noise t : �t ÿ �tn . We

describe these contributions in the next section.

3. Method

3.1. Learning the Optimal Denoiser for �t > �tn

We first present an efficiently computable objective that

resembles Denoising Score Matching and enables learning

the optimal denoisers for all noise levels t : �t > �tn .

Theorem 3.1 (Ambient Denoising Score Matching). Define

Xt as in the beginning of Section 2. Suppose we are given

samples Xtn = X0 + �tnZ, where X0 á p0 and Z á
N (0, I). Consider the following objective:

Extn
EtáU(tn,T ]Ext=xtn

+
p

�2

t
��2

tn
η

"�
�
�
�

�
�
�
�

�
2
t � �

2
tn

�2
t

h7(xt, t) +
�
2
tn

�2
t

xt � xtn

�
�
�
�

�
�
�
�

2
#

,

where η in the above is a standard Gaussian vector. Sup-

pose that the family of functions {h7} is rich enough to

contain the minimizer of the above objective overall func-

tions h(x, t). Then the minimizer 7å of J satisfies:

h7å(xt, t) = E[X0|Xt = xt], 8xt, t > tn. (3.1)

The theorem above states that we can estimate the best l22
denoisers for all noise levels t : �t > �tn without ever see-

ing clean data from p0 and using an efficiently computable

objective that contains no divergence term.

Proof Overview. The central idea for this proof is to apply

Tweedie’s Formula twice, on appropriate random variables.

We start by stating (a generalized version of) Tweedie’s

formula, the proof of which is given in the Appendix.

Lemma 3.2 (Generalized Tweedie’s Formula). Let:

Xt = µtX0 + �tZ, (3.2)

for X0 á p0, Z á N (0, I), and some positive function µt

of t. Then,

rx log pt(xt) =
µtE[X0|Xt = xt]� xt

�2
t

. (3.3)

For t : �t > �tn , the R.V. Xt can be written in the following

two equivalent ways:

(
Xt = X0 + �tZ

Xt = Xtn +
q

�2
t � �2

tn
Z

. (3.4)

By applying Tweedie’s formula twice, we get two alternative

expressions for the same score-function since the distribu-

tion remains the same, irrespectively of how we choose to

express Xt. By equating the two expressions for the score,

we arrive at the following result:

E[Xtn |Xt = xt] =
�
2
t � �

2
tn

�2
t

(E[X0|Xt = xt]� xt) + xt.

We can train a network with denoising score matching to

estimate E[Xtn |Xt = xt] and hence we can use the above

equation to obtain E[X0|Xt = xt], as desired.

The method we propose is conceptually similar to Nois-

ier2Noise (Moran et al., 2020) but instead of adding noise

with a fixed magnitude to create further corrupted iterates,

we consider a continuum of noise scales and we train the

model jointly in a Denoising Score Matching fashion.

We underline that our method can be easily extended to

the Variance Preserving (VP) (Song et al., 2020b) case,

i.e. when the available data are Xtn =
q

1� �2
tn
X0 +

�tnZ. This is the setting for our Stable Diffusion finetuning

experiments (see Section 4). For the sake of simplicity, we

avoid these calculations in the main paper and we point the

interested reader to the Appendix (see Theorem A.5).

Developing Intuition. A nice interpretation of our method

is that it trains the network to predict the denoised image

E[X0|Xt = xt] by removing additional noise that we intro-

duced to the given samples xtn . This is similar to the idea of

further corruption developed in Ambient Diffusion (Daras

et al., 2023b). The way we create further noisy samples

xt given samples xtn has some high-level connections to

DDRM (Kawar et al.) that reuses noise in the measurements

to solve inverse problems with diffusion models.

3.2. Learning the Optimal Denoiser for �t ÿ �tn

Theorem 3.1 allows us to learn the optimal denoisers for

t : �t > �tn . However, to perform exact sampling we need
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to also learn E[X0|Xt = xt] for t : �t ÿ �tn . We achieve

this by training the network to be consistent.

Definition 3.3 (Consistent Denoiser (Daras et al., 2023a)).

Let p7(xt0 , t
0|xt, t) be the density of the sample Xt0 of the

stochastic diffusion process of Equation 2.3 at time t0 when

initialized with xt at time t > t0. The network h7(·, t) that

drives the process is a consistent denoiser if:

h7(xt, t) = EX
t0
ápθ(xt0

,t0|xt,t) [h7(Xt0 , t
0)] . (3.5)

The concept of consistency was introduced by Daras et al.

(2023a) as a way to reduce error propagation in diffusion

sampling and improve performance. Here, we find a com-

pletely different use case: we use consistency to learn the

optimal denoisers for levels below the noise level of the

available data. We are now ready to state our main theorem.

Theorem 3.4 (Main Theorem (informal)). Define Xt as in

the beginning of Section 2. Suppose we are given samples

Xtn = X0 + �tnZ, where X0 á p0 and Z á N (0, I).
Consider the following objective:

Ambient Score Matching
z }| {

Extn
EtáU [tn,T ]Ext=xtn

+
p

�2

t
��2

tn
η

"�
�
�
�

�
�
�
�

�
2
t � �

2
tn

�2
t

h7(xt, t) +
�
2
tn

�2
t

xt � xtn

�
�
�
�

�
�
�
�

2
#

+EtáU(tn,T ],t0áU(/,t),t00áU(t0�/,t0)Ext
Ex

t0
|xt

[
�
�
�
�h7(xt0 , t

0)� Ex
t00

ápθ(xt00
,t00|x

t0
,t0) [h7(xt00 , t

00)]
�
�
�
�
2
�

| {z }

Consistency Loss

,

(3.6)

where η in the above is a standard Gaussian vector. Sup-

pose that the family of functions {h7} is rich enough to

contain the minimizer of the above objective overall func-

tions h(x, t). Then the minimizer 7å satisfies:

h7å(xt, t) = E[X0|Xt = xt], 8xt, t. (3.7)

The formal statement and the proof of this Theorem is given

in the Appendix (see Theorem A.6).

Intuition and Proof Overview. It is useful to build some

intuition about how this objective works. There are two

terms in the loss: i) the Ambient Score Matching term and

ii) the Consistency Loss. The Ambient Score Matching term

regards only noise levels t : �t > �tn . Per Theorem 3.1,

this term has a unique minimizer that is the optimal denoiser

for all levels t : �t > �tn . The consistency term in the loss,

penalizes for violations of the Consistency Property (see

Definition 3.3) for all pairs of times t, t0. The desired so-

lution, h(xt, t) = E[X0|Xt = xt], 8t,xt, minimizes the

first term and makes the second term 0, since it corresponds

to a consistent denoiser. Hence, the desired solution is an

optimal solution for the objective we wrote and the question

becomes whether this solution is unique. The uniqueness

of the solution arises from the Fokker-Planck PDE that de-

scribes the evolution of density: there is unique extension

to a function that is E[X0|Xt = xt], t : �t > �tn and is

consistent for all t. The latter result comes from Theorem

3.2 in Consistent Diffusion Models (Daras et al., 2023a).

Implementation Trade-offs and Design Choices. When

it comes to implementing the Consistency Loss there are

trade-offs that need to be considered. First, we need to run

partially the sampling chain. Doing so at every training step

can lead to important slow-downs, as explained in Daras

et al. (2023a). To mitigate this, we choose the times t0, t00

to be very close to one another, as in Consistent Diffusion,

using a uniform distribution with support of width /. This

helps us run only 1 step of the sampling chain (without intro-

ducing big discretization errors) and it works because local

consistency implies global consistency. Second, for the

inner-term in the consistency loss we need to compute an ex-

pectation over samples of p7. To avoid running the sampling

chain many times during training, we opt for an unbiased

estimator of this term that uses only two samples, following

the implementation of Daras et al. (2023a). Specifically, we

use the approximation:

�
�
�
�h7(xt0 , t

0)� Ex
t00

ápθ(xt00
,t00|x

t0
,t0) [h7(xt00 , t

0)]
�
�
�
�
2

á (h7(x
1
t00 , t

00)� h7(xt0 , t
0))T (h7(x

2
t00 , t

00)� h7(xt0 , t
00)),

where x
1
t00 ,x

2
t00 are samples from p7(·|x

0

t, t
0). We finally

note that our Consistency Loss defined in Eq. 3.6 involves

three expectations, instead of two, as in the original defini-

tion of Daras et al. (2023a). This is because the consistency

property needs to hold for all pairs of times (t0, t00) and for

t0 > tn we don’t have direct access to samples, i.e. we have

to use the model to sample them given xt.

3.3. Testing Training Data Replication

Learning from corrupted data is a potential mitigation strat-

egy for the problem of training data replication. Thus, we

need effective ways to evaluate the degree to which our

models (and baselines trained on clean data) memorize.

A standard approach is to generate a few thousand

samples with the trained models (potentially using the

dataset prompts) and then measure the similarities of the

generated samples with their nearest neighbors in the

dataset (Somepalli et al., 2022; Daras et al., 2023b). This

approach is known to “systematically underestimate the

amount of replication in Stable Diffusion and other models”,

as noted by Somepalli et al. (2022).

We propose a novel attack that shows that diffusion models

memorize their training sets at a higher rate than previously

known. We use the trained diffusion priors to solve inverse

problems at extremely high corruption levels and we show

that the reconstructions are often almost perfect as long as

the uncorrupted images belong to the training set.
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4. Experimental Evaluation

4.1. Experiments with pre-trained models

In this section, we measure how much pre-trained founda-

tion diffusion models memorize data from their training

set. We perform our experiments with Stable Diffusion

XL (Podell et al., 2023) (SDXL), as it is the state-of-the-art

open-source image generation diffusion model.

We take a random 10, 000 image subset of LAION and we

corrupt it severely. We consider two models of corruption.

In the first model, we take the LAION images and mask

significant portions of them, as shown in Figure 1. The

masked regions are selected automatically, using a YOLO

object detection network (Redmon et al., 2016), to contain

whole faces or large objects that are impossible to perfectly

predict by only observing the non-masked content of the im-

age. Yet, as seen in the last row of Figure 1, some posterior

samples are almost pixel-perfect matches of the original im-

ages. This strongly indicates that the images in the top row

of Figure 1 were in the training set of SDXL and have been

memorized. Its important to note that the captions (from the

LAION dataset) are entered as input in the inpainting model

and this attack did not seem to work with null captions.

In the second corruption model, we encode LAION images

with the SDXL encoder and we add a significant amount of

noise to them. In Figure 2, we show images from LAION

dataset, their encodings (visualizing them as 3-channel RGB

images), the noisy latents, the MMSE reconstruction (using

the model’s one-step prediction at the noise level of the cor-

ruption) and posterior samples from the model. Again, even

if the corruption is severe and the MMSE denoised images

are very blurry, the posterior samples from the model are

very close to the original images from the dataset, indicat-

ing potential memorization. In this corruption model the

near-duplicate reconstructed images were obtained with null

captions, so no text guidance was needed.

To quantify the degree of memorization and detect replica-

tion automatically, we adapt the methodology of Somepalli

et al. (2022). In this work, the authors embed both the gener-

ated images and the dataset images to the DINOv2 (Oquab

et al., 2023) latent space, and for each generated image com-

pute its maximum inner product (similarity score) with its

nearest neighbor in the dataset. We repeat this experiment,

previously done for Stable Diffusion v1.4, for the latest

SDXL model. We empirically find that similarities above

0.95 correspond to almost identical samples to the ones in

the training set and similarities above 0.9 correspond to

close matches. We compare the distribution obtained using

the Somepalli et al. (2022) method with the distribution

obtained using our noising approach (for two different noise

levels) in Figure 3. As shown, our approach finds signifi-

cantly more examples that have similarity values close to

Figure 3. Distribution of image similarities of generated images

with their nearest neighbors in the dataset for: i) the Somepalli et al.

(2022) method, and ii) for our noising method for two different

noise levels. As shown, the fraction of images with similarities

above 0.95 (near-identical to training set) is much higher for our

method compared to the Somepalli et al. (2022) baseline.

1. Also as mentioned, our attack did not need the prompts

in this case. This is not necessarily surprising since our

approach uses more information (the noisy latents) com-

pared to the previously proposed method that only uses the

prompts. Still, our results present evidence that diffusion

models memorize significantly more training data compared

to what was previously known. For the inpainting case, we

only compute embeddings for the infilled regions and hence

the similarity numbers are not directly comparable. We

present these results in Figure 9 in the Appendix.

4.2. Finetuning Stable Diffusion XL

The next step is to use our framework, detailed in Sections

3.1, 3.2, to finetune SDXL on corrupted data. We finetune

our models on FFHQ, at 1024å1024 resolution, since it is a

standard benchmark for image generation. Given that SDXL

is a latent model, we first encode the clean images using

the SDXL encoder and then we add noise to the latents.

We consider four noise levels which we will be referring to

as: i) noiseless, tn = 0, �tn = 0, ii) low-noise, tn = 100,

�tn = 0.325, iii) medium-noise, tn = 500, �tn = 0.850,

and, iv) high-noise, tn = 800, �tn = 0.981. For reference,

we fix an image from the training set and we visualize

posterior samples for each one of the noise levels in Figure

5. We train models with our Ambient Denoising Score

Matching loss, with and without consistency. We provide

the training details in the Appendix, Section B.

We first evaluate the denoising performance of our models.

To do so, we take 32 evaluation samples from FFHQ, we
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Noise Level Eval Noise Level Training Latent MSE Pixel MSE

900

100 0.3369 (0.0521) 0.0802 (0.0257)

500 0.3377 (0.0514) 0.0804 (0.0253)

800 0.3375 (0.0514) 0.0796 (0.0254)

800

100 0.2974 (0.0463) 0.0566 (0.0219)

500 0.2978 (0.0464) 0.0566 (0.0222)

800 0.3001 (0.0466) 0.0570 (0.0220)

500

100 0.2153 (0.0283) 0.0219 (0.0092)

500 0.2159 (0.0283) 0.0221 (0.0092)

800 0.2182 (0.0284) 0.0226 (0.0094)

100

100 0.0405 (0.0029) 0.0068 (0.0027)

500 0.0409 (0.0029) 0.0069 (0.0028)

800 0.0411 (0.0029) 0.0070 (0.0028)

Table 1. Restoration performance of models trained with noisy data at different noise levels. All the models have comparable performance,

irrespective of the noise level of the dataset they were trained with.

Figure 4. FID results for SDXL finetuned models, with and with-

out consistency, on FFHQ, as we change the corruption level.

The performance of models trained without consistency deterio-

rates significantly as we increase the corruption. Models trained

with consistency maintain comparable performance to the baseline

model (trained on clean data) for noise levels up to tn = 500.

add noise to levels teval 2 {900, 800, 500, 100}, we use our

trained models to denoise and we measure the reconstruction

error. Since SDXL is a latent diffusion model, the noise

(and the denoising) happens in the latent space. Hence, the

MSE reconstruction error can be measured directly in the

latent space or pixel space (by decoding the reconstructed

latents). We present our results in Table 1. As shown, all the

models have comparable performance across all noise levels,

irrespective of the noise level of the data they saw during

training. This is in line with our theory: all the models are

trained to estimate E[x0|xt] for all levels t.

To understand better the role of consistency, we visualize

unconditional samples from our models trained with and

(a) Noisy Latents for tn ∈ {0, 100, 500, 800}.

(b) Posterior samples for tn ∈ {0, 100, 500, 800}.

Figure 5. Visualization of the noise levels considered in the paper.

The top row shows noisy latents, visualized as RGB images. The

bottom row shows posterior samples obtained by the SDXL (Podell

et al., 2023) model given these noise latents.

without consistency in Figure 6. As shown in the left col-

umn of Figure 6, models trained without consistency lead

to increasingly blurry generations as the level of noise en-

countered during training increases. This is not surprising:

as explained in Subsection 2.3, models trained without con-

sistency sample from the distribution of MMSE denoised

images, E[X0|Xtn ]. As the noise level tn increases, these

images become averaged and high-frequency detail is lost.

As shown in the right column on Figure 6, training with

consistency recovers high-frequency details and leads to sig-

nificantly improved images, especially for models trained

with highly noisy data (tn 2 {500, 800}).

We proceed to evaluate unconditional generation perfor-

mance. For each of our models, we generate 50, 000 images

and we compute the FID score. We visualize the perfor-

mance of our models trained with and without consistency

in Figure 4. As shown, the performance of models trained
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To further show that our method can be used for data that

follow a distribution significantly different to the training

one, we finetune SDXL on a dataset of chest x-rays. In

Figure 11, we provide same samples of the training dataset

(Row 1), generated samples without fine-tuning (Row 2),

noisy samples that were used to fine-tune the model (Row

3), generated samples after fine-tuning without consistency

(Row 4) and finally generated samples after fine-tuning with

consistency. For all our generations, we use prompts from

the dataset of interest. The generations of the model with-

out fine-tuning are very different compared to the dataset

samples, hinting that the model initially models a differ-

ent distribution conditioned on the given prompt. After

fine-tuning with noisy data, the generated samples are more

closely related to the samples from the dataset. As we also

observed in the rest of the experiments in this paper, consis-

tency decreases the blurriness of the generated samples.

4.4. Measuring Memorization of Finetuned Models

Figure 8. Distribution of similarities of posterior samples to their

nearest neighbor in the dataset, given noisy latents (at t = 900) for

two models. The model trained with clean data (blue curve), has

a distribution of similarity values that is more shifted to the right,

indicating higher dataset memorization compared to the model

trained with corrupted data (orange curve).

The final step in our experimental evaluation is to investi-

gate to what extent training with noisy data reduced the rate

of training data replication. To do so, we use the method

we proposed in Section 4.1. Specifically, we get the FFHQ

training images, we encode them to the latent space of the

SDXL Encoder and we add noise to them that corresponds

to tn = 900. We then use the model trained with clean

images and the model trained with data at tn = 500 noise

level to perform posterior sampling, given the noisy latents.

For each generated sample, we measure its DINO similarity

to the nearest neighbor in the dataset. We plot the result-

ing distributions for the model trained with clean data and

the tn = 500 model in Figure 8. As shown, the model

trained with clean data (blue curve), has a distribution of

similarity values that is more shifted to the right, indicating

higher dataset memorization compared to the model trained

with corrupted data (orange curve). Finally, we once again

compare with the method of Somepalli et al. (2022) for

identifying training data replications. We use the model

trained with clean data, we take the 50, 000 images that we

used for FID generation and we compute their similarity to

their nearest neighbor in the dataset. We compare with our

approach in Figure 10 in the Appendix.

5. Discussion and Other Related Work

The concurrent work of Lu et al. (2024) shows that an ad-

versary can “disguise” copyrighted images in the training

set. The implication is that training dataset inspection is

not enough to detect whether copyrighted images have been

used. This is finding conveys a similar message to our work

since the training set might contain (severely corrupted)

copyrighted images and pure inspection of the noisy images

is not enough to determine if that’s the case. Finally, we

underline that the use of consistency enables sampling im-

ages below the observed data noise level, solving an open

problem in the space of learning from corrupted data. For

a more detailed exposition of diffusion models and consis-

tency, we refer the interested reader to the relevant works

of Daras et al. (2023a); De Bortoli et al. (2024); Boffi &

Vanden-Eijnden (2023); Shen et al. (2022); Albergo et al.

(2023); Lai et al. (2023b;a).

6. Conclusions, Limitations and Future Work

We presented the first exact framework for training diffu-

sion models to sample from an uncorrupted distribution

using access to noisy data. We used our framework to fine-

tune SDXL and we showed that training with corrupted

data reduces memorization of the training set, while main-

taining competitive performance. Our method has several

limitations. First, it does not solve the problem of training

diffusion models with linearly corrupted data that provably

sample from the uncorrupted distribution. Second, training

with consistency increases the training time (Daras et al.,

2023a). Finally, in some preliminary experiments on very

limited datasets (< 100 samples), the proposed Ambient

Denoising Score Matching objective did not work. We plan

to explore all these exciting open directions in future work.
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