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Fast 2-Approximate All-Pairs Shortest Paths
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Abstract

In this paper, we revisit the classic approximate All-Pairs Shortest Paths (APSP) problem in undirected graphs. For
unweighted graphs, we provide an algorithm for 2-approximate APSP in O(n?5~" + n®()) time, for any r € [0, 1]. This is
0(n*932) time, using known bounds for rectangular matrix multiplication n®(") [Le Gall, Urrutia, SODA 2018]. Our result
improves on the O(n%2%) bound of [Roditty, STOC 2023], and on the O(m+/n + n%) bound of [Baswana, Kavitha, SICOMP
2010] for graphs with m > n!->3? edges.

For weighted graphs, we obtain (2 + €)-approximate APSP in O(n3" +n®(") time, for any r € [0,1]. This is O(n
time using known bounds for w(r). It improves on the state of the art bound of O(n??°) by [Kavitha, Algorithmica 2012].
Our techniques further lead to improved bounds in a wide range of density for weighted graphs. In particular, for the
sparse regime we construct a distance oracle in é(mnz/ 3) time that supports 2-approximate queries in constant time. For
sparse graphs, the preprocessing time of the algorithm matches conditional lower bounds [Patrascu, Roditty, Thorup, FOCS
2012; Abboud, Bringmann, Fischer, STOC 2023]. To the best of our knowledge, this is the first 2-approximate distance
oracle that has subquadratic preprocessing time in sparse graphs.

We also obtain new bounds in the near additive regime for unweighted graphs. We give faster algorithms for (1 + €, k)-
approximate APSP, for k = 2,4, 6, 8.

We obtain these results by incorporating fast rectangular matrix multiplications into various combinatorial algorithms
that carefully balance out distance computation on layers of sparse graphs preserving certain distance information.
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1 Introduction

The All-Pairs Shortest Paths (APSP) problem is one of the most fundamental problems in graph algorithms. In this problem,
the goal is to compute the distances between all pairs of vertices in a graph. It is well-known that APSP can be solved in
O(n®) time in directed weighted graphs with n vertices using the Floyd-Warshall algorithm (see [CLRS94]), or in O(mn)
time using Dijkstra’s algorithm, where m is the number of edges in the graph (see also [Tho99, Pet04, PRO5]). A slightly
subcubic algorithm for APSP with running time n*/ 2@(logm)'”* yag given by Williams [Wil14]. A natural hypothesis in
graph algorithms (see [RZ11, Vas18]) is that n®~°(!) time is required to solve APSP in weighted graphs; this is known as the
APSP hypothesis. Subcubic equivalences! between the APSP problem and many other problems such as finding a negative
weight triangle or finding the radius of the graph [Vas15, WW18, AGW23] significantly strengthened the belief in the
APSP hypothesis.

All the above algorithms solve the problem in weighted, directed graphs. If the graphs are unweighted and undirected,
APSP can be solved faster, in O(n®) time, using fast matrix multiplication [Sei95, GM97], where < 2.372 is the exponent
of square matrix multiplication [CW87, Wil12, Gal14, AW21, DWZ23]. For weighted, directed graphs with bounded weights,
Zwick showed an algorithm that takes O(n?%%°) time [Zwi02, GU18]%. In O((n® /€) -log W) time it is also possible to obtain
a (1 + ¢)-approximation for APSP in weighted directed graphs [Zwi98], where W is the maximum edge weight and the
weights are scaled such that the smallest non-zero weight is 1.

However, the above complexities can be high for large graphs, and it is desirable to have faster algorithms. While it may
be difficult to get faster algorithms for exact APSP, a natural question is whether we can get faster approximation algorithms
for APSP. We say that an algorithm gives an (¢, )-approximation for APSP if for any pair of vertices u, v it returns an
estimate §(u, v) of the distance between u and v such that d(u,v) < §(u,v) < « - d(u,v) + S, where d(u,v) is the distance
between u and v. If f = 0, we get a purely multiplicative approximation that we refer to as a-approximation, « is sometimes
called the stretch of the algorithm. If & = 1, we get a purely additive approximation, and call it a +f-approximation.

Dor, Halperin, and Zwick [DHZ00] showed that obtaining a (2 — €)-approximation for APSP is at least as hard as
Boolean matrix multiplication. This implies that we cannot get algorithms with running time below O(n®) for approximate
APSP with approximation ratios below 2, as it would lead to algorithms for matrix multiplication with the same running
time. Their reduction holds even in the case that the graphs are unweighted and undirected. In the directed case the
same result holds for any approximation. This makes the special case of a 2-approximation in undirected graphs a very
interesting special case, as this is the first approximation ratio where we can beat the O(n®) bound. Since in directed
graphs any approximation for APSP requires Q(n®) time, we will focus from now on undirected graphs.

2-Approximate APSP. While 2-approximation algorithms for APSP have been extensively studied [ACIM99, DHZ00,
CZ01, BK10, Kav12, DKRW™22, Dir23, Rod23] (see Table 1 for a summary), it is still unclear what the best running
time is that can be obtained for this problem. This question is also open even in the simpler case of unweighted and
undirected graphs. The study of 2-approximate APSP was treated by the seminal work of Aingworth, Chekuri, Indyk,
and Motwani [ACIM99] that showed an additive +2-approximation algorithm for APSP that takes O(n®°) time. Their
algorithm works in undirected unweighted graphs. While the running time of the algorithm is above O(n®), it is a simple
combinatorial algorithm, where we use the widespread informal terminology that an algorithm is combinatorial if it does
not use fast matrix multiplication techniques. The running time was later improved by Dor, Halperin, and Zwick that
showed a +2-approximation algorithm in O(min{n*?m"/2,n’/3}) time [DHZ00]. This algorithm is still the fastest known
combinatorial algorithm for a +2-approximation. Very recent results show that using fast matrix multiplication techniques,
one can get faster algorithms for a +2-approximation, leading to an O(n*?%%°) running time [DKRW*22, Diir23]. All the
above mentioned algorithms give an additive +2-approximation in unweighted undirected graphs, which also implies a
multiplicative 2-approximation. This holds since for pairs u, v where d(u,v) = 1 we can learn the exact distance in O(m)
time, and once d(u,v) > 2, an additive +2-approximation is also a multiplicative 2-approximation. However, if our goal is
to obtain a multiplicative approximation, it may be possible to get a faster algorithm.

Algorithms for multiplicative 2-approximate APSP are studied in [CZ01, BK10, Kav12, Rod23]. In particular, Cohen and
Zwick [CZ01] showed that a 2-approximation for APSP can be computed in O(n*?m!/?) time also in weighted graphs. A
faster algorithm with running time of O(m+/n + n?) was shown by Baswana and Kavitha [BK10], this algorithm also works
in weighted graphs. While in dense graphs the running time is O(n®%), this algorithm is more efficient in sparse graphs. In

TTwo problems are subcubically equivalent if one problem can be solved in time O(n3~€) for some € > 0 if and only if the other can be solved in time

0(n39) for some § > 0.
2The running time of this algorithm depends on the exponent of rectangular matrix multiplication, and becomes O(n?%2°) with the rectangular
matrix multiplication algorithm from [GU18].
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particular, for graphs with O(n*?) edges, the running time becomes O(n?). A faster algorithm for denser graphs was shown
by Kavitha that showed a (2 + €)-approximation for weighted APSP in O(n*%) time [Kav12].? This algorithm exploits fast
matrix multiplication techniques. Very recently, Roditty showed a combinatorial algorithm for 2-approximate APSP in
unweighted undirected graphs in O(n*%*) time [Rod23]. To conclude, currently the fastest 2-approximation algorithms
take O(min{m+/n +n? n®?3}) time, and it is still unclear what is the best running time that can be obtained for the problem.
In particular, the following question is still open.

QUESTION 1. Can we get a 2-approximation for APSP in O(n?) time?

It is worth mentioning that a slightly higher approximation of (2, 1) can be obtained in O(n?) time in unweighted
undirected graphs [BK10, BK07, Som16, Knu17]. In weighted undirected graphs, a multiplicative 3-approximation can be
obtained in O(n?) time [CZ01, BK10]. Furthermore, [BK10] also gives a (2, W, ,)-approximation for weighted undirected
graphs in O(n?) time, where W, , is the maximum weight of an edge in the shortest path between u and v. In other words,
for any pair of vertices u, v the algorithm returns an estimate §(u, v) < 2d(u,v) + W,,,.

Distance Oracles. Note that Q(n?) is a natural barrier for APSP, as just writing the output of the problem takes Q(n?)
time. However, Q(n?) time or space may be too expensive for large graphs, and if we do not need to write the output
explicitly, we may be able to obtain algorithms with subquadratic time or space. This has motivated the study of distance
oracles, which are compact data structures that allow fast query of (possibly approximate) distances between any pair of
vertices. The study of near-optimal approximate distance oracles was initiated by the seminal work of Thorup and Zwick
[TZ05] that showed that for any integer k > 2, a distance oracle of size O(kn**'/¥) can be constructed in O(kmn'/*) time,
such that for any pair of vertices we can obtain a (2k — 1)-approximation of the distance between them in query time O(k).
As an important special case, it gives 3-approximate distance oracles of size O(n*/?) in O(m+/n) time. The construction
is for weighted undirected graphs. Note that the distance oracle uses subquadratic space, and the construction time is
subquadratic for sparse graphs. As shown later these distance oracles can be built also in O(min{kmn'/¥, n?}) time [BK10].
The construction time was further improved in [Wul12], where the query time and size were further improved in [Wul13,
Che14, Che15].

Distance oracles of size O(n®/) that provide a (2, 1)-approximation in unweighted undirected graphs are studied in
[BGS09, PR14, Som16, Knu17]. This tradeoff between stretch and space is optimal assuming the hardness of set intersection
[PR14, PRT12]. The fastest of them run in min{O(n? mn?/?)} time [BGS09, Som16, Knu17].*

Recently, slightly subquadratic algorithms with nearly 2-approximations were given for undirected unweighted
graphs. In particular, a distance oracle with stretch (2(1 + €), 5) and slightly subquadratic running time is given by Akav
and Roditty [AR20]. In a follow-up work, Chechik and Zhang constructed a (2, 3)-approximate distance oracle of size
O(n°?) in O(m + n'*%") time. They also study other trade-offs between the stretch and running time, and in particular
show that (2 + €, c(€))-approximate distance oracle of size O(n°/?) can be constructed in O(m + n/**€) time, where c(e)
is a constant depending exponentially on 1/e. The preprocessing time of this distance oracle nearly matches a recent
conditional lower bound by Abboud, Bringmann, and Fischer [ABF23], who showed that m5/3-0() time is required for a
(2 + 0(1))-approximation, conditional on the 3-SUM conjecture. While there are subquadratic constructions of distance
oracles with nearly 2-approximations, all existing algorithms for 2-approximations take at least Q(n?) time [DHZ00, CZ01,
BK10, Kav12], which raises the following question.

QUESTION 2. Can we construct a 2-approximate distance oracle in subquadratic time?

1.1 Our Results Throughout we write n(") for the time for multiplying an n X n” matrix by an n” X n matrix (see
Section 2). Rectangular matrix multiplication is an active research field, with the bounds on w(r) being improved in recent
years [Gal23, GU18, Gal12]. We provide how the recent work by Vassilevska Williams, Xu, Xu, and Zhou [WXXZ23] affects
our running times in Appendix A. For the rest of this paper, we use [GU18], the last published paper on the topic, for the
sake of replicability. We balance the terms using [Bra].

Unweighted 2-Approximate APSP. Our first contribution is a faster algorithm for 2-approximate APSP in unweighted
undirected graphs.”

3In the introduction we assume that 1/ = n®) for simplicity of presentation. Similarly, when we discuss weighted graphs, we assume polynomial
weights.

“The running time of O(mn?/?) is implicit in [BGS09].

SAll our randomized algorithms are always correct; the randomness only affects the running time.
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THEOREM 1.1. There exists a randomized algorithm that, given an unweighted, undirected graph G = (V, E), computes 2-
approximate APSP. With high probability, the algorithm takes O(n*>~" + n®(")) time, for any r € [0,1]. Using known upper
bounds for rectangular matrix multiplication, this is O(n*%%2) time.

Our running time improves over the previous best running time of O(min{m+/n + n?, n>?3}) [BK10, Kav12, Rod23] as
long as m > n'532, and gets closer to an O(n?) running time. In particular, if we have a rectangular matrix multiplication
bound of w(0.5) = 2, then we obtain a O(n?) time algorithm. Currently, we know «(0.5) < 2.043 [WXXZ23] - a very
recent improvement on [GU18]: w(0.5) < 2.044183.

While the fastest version of our algorithm exploits fast rectangular matrix multiplication, our approach also leads
to an alternative simple combinatorial 2-approximation algorithm in O(n*%*) time, matching the very recent result by
Roditty [Rod23]. See Section 3.2 for the details.

Algorithms for Unweighted APSP Algorithms for Weighted APSP
Reference | Time | Approx. .
5 Reference Time Approx.
[ACIM99] | nZ +2 T
773 [CZ01] n’’“m 2
[DI1Z00] | n +2 ,
" 587 [BK10] myn+n 2
[DKRW*22] | n* +2 ‘ i
- 5760 [Kav1z] n* 2+e
[Dir23] n* +2 - WAL
— % This work n* 2+e
[Rod23] n* 2 Thi K 273 5
This work | n*%% 2 15 wor mn

Table 1: Algorithms for 2-Approximate APSP. The last result in the right table is a 2-approximate distance oracle.

Weighted 2-Approximate APSP. For weighted undirected graphs we show the following.

THEOREM 1.2. There exists a randomized algorithm that, given an undirected graph G = (V,E) with non-negative
integer weights bounded by W, computes (2 + €)-approximate APSP. With high probability the algorithm takes O(n>~" +
n®(1/€)°M log W) time, for any r € [0,1]. Using known upper bounds for rectangular matrix multiplication, this is
0(n*?4(1/€)°M) log W) time.

We remark that with standard scaling techniques the result generalizes to non-integer weights. Hence we state all our
weighted results only for integers.

To the best of our knowledge, this is the first improvement for weighted (2 + €)-approximate APSP since the work
of Kavitha [Kav12] that showed an algorithm with O(n??°) running time, that also exploited fast matrix multiplication
techniques. We note that our algorithm and the algorithm of [Kav12] give a (2 + €)-approximation, and currently the
fastest algorithms that give a 2-approximation for weighted APSP take O(min{n®, mvn + n®}) time [Zwi02, BK10]. The
fastest combinatorial algorithm for the problem is the O(m~/n + n?) time algorithm of Baswana and Kavitha [BK10]. This
algorithm takes O(n?®) time in dense graphs, but it is faster for sparser graphs.

Our approach can also be combined with the approach of [BK10] to obtain faster algorithms for sparser graphs, giving
the following. See Table 2 for some specific choices for the value of m.

THEOREM 1.3. There exists a randomized algorithm that, given an undirected graph G = (V, E) with non-negative, integer
weights bounded by W and a parameter r € [0, 1], computes (2 + €)-approximate APSP. With high probability, the algorithm
runs in O(mn'™" +n®") (1/€)°W log W) time.

In particular, our algorithm is faster than [BK10] for m > n©(05)-05 With the current value of ©(0.5) our algorithm is
faster for m > n!*% [GU18].

Weighted 2-Approximate Distance Oracle. The results mentioned above are fast for graphs that are relatively dense.
For sparser graphs we show a simple combinatorial algorithm that gives the following.

THEOREM 1.4. There exists a combinatorial algorithm that, given a weighted graph G = (V, E), constructs a distance oracle
that answers 2-approximate distance queries in constant time, and uses O(mn®) space with preprocessing time O(mn?/?).
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For sparse graphs (m = o(n*/®)), we have subquadratic running time and space. To the best of our knowledge this is
the first 2-approximate distance oracle with subquadratic construction time for sparse graphs. Moreover, when m = O(n)
our bounds match the conditional lower bound of Q(m*?) preprocessing time for 2-approximations, conditional on the
set intersection conjecture [PRT12] or the 3-SUM conjecture [ABF23], where [PRT12] shows the stronger Q(m®/?) space
lower bound. Moreover, for any stretch strictly below 2, there is a Q(n?) lower bound (conditional on the set intersection
conjecture) [PR14]. In [PR14] they also show a polynomial time construction of a 2-approximate distance oracle for
weighted graphs of size O(n**m!/?), which is subquadratic space for sparse graphs. The proof of Theorem 1.4 can be found
in Section 4.3.

We can also obtain a (2, W, ,)-approximate distance oracle with a better construction time than our 2-approximate
construction. In particular, we can obtain a subquadratic preprocessing time of O(nm??) when m < n®?, see Appendix B
for full details. This result is also implied by an algorithm of Baswana, Goyal, and Sen [BGS09]. They focus on (2, 1)-distance
oracles for unweighted graphs using the same algorithm. We observe that 1) the same algorithm can lead to subquadratic
preprocessing time (in sparse graphs), and 2) this leads to a (2, W, ,)-approximation for weighted graphs. We make these
observations explicit for a wider range of parameter settings and for completeness give an analysis in Appendix B.

m | This work Previous results - -
ol 0 1667 [BK 10] m | This work | Previous results
T e n2 BK10] 16 1,206 n®T [BK10]
= - , ni7 172097 %% [BK10]
n n- n® [BK10] T3 7133 775

13 1967 2 n- n* n*> [Kavi2]
n- n- n* [BK10] 1.9 2173 2.25

T4 2.009 2 n- n® n®* [Kav12]
n n* n® [BK10] 70 PRIT 775

15 7032 2 n* n* n** [Kav12]
n' n- n* [BK10]

Table 2: Comparison of the novel running time bounds of our approximation algorithms for weighted graphs and prior
work, for 1/e = n°)). For sparser graphs (m < n'®), we use our 2-approximate distance oracle (Theorem 1.4), and for
denser graphs (m > n'*) we use our (2 + €)-approximate APSP (Theorem 1.3). Theorem 1.4 gives the fastest running
time when m < n*/3, and Theorem 1.3 gives the fastest running time when m > n'3% For n!33 < m < n'>*, we do not
improve on [BK10].

Near-Additive APSP. We also study algorithms that give a near-additive approximation in unweighted undirected
graphs. We show the following.

THEOREM 1.5. There exists a deterministic algorithm that, given an unweighted, undirected graph G = (V, E) and an even
~ 2

integer k > 2, computes (1 + €, k)-approximate APSP with running time O n? %2 4 n®)(1/e)|, for any choice of

re[0,1].

As an important special case, we get a (1 + €, 2)-approximation in O(n*!*?) time when 1/e = n°(!). While
the running time is higher compared to our multiplicative 2-approximation, it improves over previous additive or
near-additive approximation algorithms. As mentioned above, currently the fastest algorithm for a +2-approximation
takes O(n%%%0) time [Diir23], and it exploits fast matrix multiplication. The fastest combinatorial +2-approximation
algorithm takes O(min{n*?m'/2, n7/3}) time [DHZ00]. If we consider near-additive approximation algorithms, Berman
and Kasiviswanathan showed a (1 +€,2)- -approximation in n2240(1) time based on fast matrix multiplication [BK07].

For k — logn, our running time goes to O(n?). In particular, when 1/e = n°!) we obtain a (1 + €, 4)-approximation in
O(n?*1Y) time, a (1 +¢, 6)-approximation in O(n*%%®) time, and a (1 + ¢, 8)-approximation in O(n%*%*) time. The state of the
art for these approximations is O(n??), O(n?1%), and O(n*%°1) [DHZ00] respectively, using the purely additive algorithm by

Dor, Halperin, and Zwick [DHZ00] that gives a deterministic +k-approximation for APSP in O(min{nz_ﬁ mé n2+ﬁ 3]
time, for even k > 2. See also Table 3 in Section 3.3 for comparison of our results and prior work. We remark that the
algorithm of [DHZ00] becomes faster than ours once the additive term is at least 10. Our work shows that for smaller
additive terms, a (1 + €, §)-approximation can be obtained faster than a purely additive +f-approximation. To the best of
our knowledge, previously such results were known only for the special case of § = 2 [BK07].

We remark that except [BK07] previous algorithms for near-additive approximations [Coh00, Elk05, EGN22] had larger
additive terms compared to the ones we study here. In particular, Elkin, Gitlitz and Neiman [EGN22] showed an algorithm
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that computes a (1 + ¢, f)-approximation in O(mn/¥ + n**/2*=1) time, where = 0(k/€)°®). While f is a constant
when € and k are constants, it is larger compared to the constants we consider here.

Independent work Independently, Saha and Ye [SY23] achieved similar results. They also obtain 2-approximate APSP
for unweighted graphs in O(n*%?) time (Theorem 1.1), moreover they give a deterministic algorithm for this problem
in O(n?%73) time. In the (near) additive regime (Theorem 1.5), they both give faster running times and do not incur the
multiplicative (1 + €) error. They include additional results for additive approximations in weighted graphs, but do not
have our results for 2-approximate APSP on weighted graphs (Theorem 1.3 and Theorem 1.4).

1.2 Technical Overview

Unweighted 2-Approximate APSP We start by describing our 2-approximation algorithm for APSP in unweighted
undirected graphs running in O(n*%?) time. At a high-level, we divide all the shortest paths in the graph into 2 types: the
sparse paths and the dense paths. A path is sparse if the degrees of all vertices in the path are at most 4/n, and it is dense
otherwise.

Dealing with sparse paths. In order to compute the distances between all pairs of vertices u, v where the shortest path
between u and v is sparse we use the following approach. All the sparse paths are contained in a subgraph G’ = (V, E’)
of the input graph G = (V, E) obtained by taking all edges adjacent to vertices of degree < +/n. Note that this graph has
only O(n%/?) edges. To estimate the distances, we run the algorithm of Baswana and Kavitha [BK10] on the graph G’, and
exploit the fact that this algorithm is efficient for sparse graphs. This gives a 2-approximation for the distances in the sparse
graph G’ in O(|E’|[\n + n?) = O(n?) time.

Dealing with dense paths in O(n®°) time. We are left with dense shortest paths, i.e. paths that have at least one vertex
with degree larger than y/n. As a warm-up, we start by describing a simple algorithm that obtains +2-approximations for
the lengths of all these paths in O(n?°) time, following the classic algorithm of Aingworth, Chekuri, Indyk and Motwani
[ACIM99], and later we explain how we get a faster algorithm. We denote by H the high-degree vertices that are vertices
with degree larger than y/n. We start by computing a hitting set S, a small set of vertices such that each vertex in H has a
neighbor in S. It is easy to find a hitting set of size O(+/n), for example by adding each vertex to the set with probability
O(1/~/n). Since each high-degree vertex has degree at least y/n, with high probability all high-degree vertices will have
neighbors in S. The algorithm then proceeds as follows.

1. We compute distances from S to all other vertices.
2. We set 6(u,v) = minges{d(u,a) +d(a,v)}.

If the shortest path between u and v is dense, then after Step 2 the value &(u,v) is a +2-approximation for d(u,v).
The reason is that there exists a high-degree vertex x in the shortest u — v path, and x has a neighbor a € S. Then
d(u,a) +d(a,v) < d(u,x) +d(x,a) +d(a,x) +d(x,0) = d(u,v) + 2. See Figure 1 for illustration. Hence by computing
distances from S to all other vertices, we can get an additive +2-approximation for all dense paths.

------------
...........
.............
__________
.....

deg(x) = vn
Figure 1: Illustration of the stretch analysis.

The running time is O(n®%). First, computing distances from all vertices in S takes O(|S|m) = O(n®9) time since
IS| = O(y/n),m = O(n?) and computing the distances from one vertex in S takes O(m) time by computing a BFS tree.
Second, in Step 2, for each one of the n? pairs of vertices we compute distances through all possible vertices in S which
takes O(n*°) time.
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Implementing Step 1 faster. Our goal is to implement the above approach faster. First, note that Step 1 takes O(|S|m)
time. To obtain a faster algorithm, our goal is to run this step on a graph where O(|S|m) = O(n?). To do so, we divide the
dense paths to O(log n) different levels. We say that a path is 2!-dense if the maximum degree of a vertex in the path is
between [2, 2/*1]. Since 2/-dense paths have a vertex with degree at least 2!, we can find a hitting set S; of size O(n/2)
such that each 2!-dense path will have a neighbor in S;. Our goal is to repeat the above algorithm but on a sparser graph.
Let G; = (V, E;) be a subgraph of G that has all edges adjacent to vertices of degree at most 2/*1. To deal with 2!-dense
paths we work as follows.

1. We compute distances from S; to all other vertices in the graph G;.
2. We set §(u,v) = minges, {6(u, a) + 6(a,0)}.

In Step 2, the distance estimates §(u, a), 6(a, v) are the estimates computed in Step 1. By definition, all the vertices of
the 2/-dense paths and their edges to their neighbors are included in the graph G;, so it is enough to compute distances in
this graph in order to obtain +2-approximation for the lengths of 2‘-dense paths. Since we worked on a sparser graph the
running time for computing the BFS trees in level i is now O(|S;]|E;]) = O((n/2) - n2™*1) = O(n?). Summing up over all
O(log n) levels gives O(n?) running time for computing the BES trees. After this step, we are guaranteed that if the shortest
path between u and v is 2-dense, then there is a vertex a € S; such that §(u, a) + §(a,v) < d(u,v) + 2, where 6(u, a), §(a, v)
are the distances computed from a in G;.

Implementing Step 2 faster. By now we have computed all the relevant distances from the sets S;, there is a remaining
challenge. In order to estimate the distance of each pair u and v we need distance estimates going through all possible
vertices a € S; (Step 2), which takes O(n?®) time for all pairs, as in the worst case |S;| = O(+/n). To implement this step
faster, we exploit fast matrix multiplication. Note that Step 2 is essentially equivalent to matrix multiplication when the
operations are minimum and plus, such multiplications are called distance products. While it is well-known that APSP can
be computed using matrix multiplication, usually it requires multiplication of square matrices which takes O(n®) time. The
trick in our case is that since we only want to compute distances through a small set S;, we can use fast rectangular matrix
multiplication, as first exploited by Zwick [Zwi02]. Since |S;| = O(y/n) we only need to multiply matrices with dimensions
n x n®> and n®> X n, which can be done in just O(n*%) time using the rectangular matrix multiplication algorithms by Le
Gall and Urrutia [GU18]. Fast matrix multiplication algorithms do not directly apply to distance products, however there is
a well-known reduction that shows that we can get (1 + €)-approximation for distance products in the same time [Zwi02],
see Section 2 for the details.

Conclusion. Using the ideas described we can get a (2 + €)-approximation in O(n*%?°) time. To remove the € term in the
stretch, we exploit the fact that in unweighted graphs we can get an additive + log n-approximation in O(n?) time [DHZ00].
Note that for pairs of vertices at distance larger than log n, an additive + log n-approximation is already a multiplicative
2-approximation. Hence we can focus our attention on pairs of vertices at distance at most log n from each other. We show
that this allows us to turn any (2 + €)-approximation for unweighted graphs to a 2-approximation, as long as the algorithm
depends polynomially on 1/€ (see Section 2.1 for the details).

Moreover, we can improve the running time to O(n*%) by a better balancing of our two approaches, for dealing with
sparse and dense paths. In particular, in our discussion so far we defined sparse paths to be ones where the maximum
degree is at most /i, which led to hitting sets of size O(+/n). To obtain a faster algorithm we want to have a smaller hitting
set of size O(n") for an appropriate choice or r, and then the sparse paths are paths where the maximum degree is at most
O(n'""). With these parameters, computing distances in the sparse graph using [BK10] takes O(n®>~") time, while dealing
with dense paths takes O(n®(")) time. Balancing these two terms gives an O(n*%%?) time algorithm. Full details appear in
Section 3.

We remark that we can also implement Step 1 using the (1 + ¢)-approximate multi-source shortest paths algorithm by
Elkin and Neiman [EN22] that is based on fast rectangular matrix multiplication. This allows computing (1+ €)-approximate
distances from O(n") sources in O(n®(")) time, which leads to the same overall running time. If we do so we can have
only one set S as in the original description of the algorithm. In our paper we implement Step 1 using the combinatorial
algorithm discussed above that takes O(n?) time, which shows that currently the bottleneck in the algorithm is Step 2, and
other parts of the algorithm can be computed in O(n?) time.

A combinatorial algorithm. Our approach also leads to a simple combinatorial 2-approximation algorithm that takes
O(n??%) time. To do so, we just change the threshold of sparse and dense paths. We say that a path is sparse if all the
vertices in the path have degree at most n*/4, and it is dense otherwise. Computing 2-approximations for sparse paths will
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now take O(n®?°) time by [BK10]. In the dense case, since the dense paths now have a vertex of degree at least n**, we

can construct a smaller hitting set S of size O(n'/*), and then we can implement Steps 1 and 2 directly via a combinatorial
algorithm in O(n?2°) time (by the same approach described above but replacing the size of S with O(n'/%)). See Section 3.2
for the details.

We remark that Roditty [Rod23] recently obtained the same result (a combinatorial 2-approximation in O(n?2°) time)
via a different approach. At a high-level, his approach is based on a detailed case analysis of the +4-approximation algorithm
of Dor, Halperin, and Zwick [DHZ00], showing that for close-by pairs a better approximation can be obtained.

Near-additive approximations. We can use the same approach also in order to obtain near-additive approximations.
Note that in the dense case, our algorithm actually computed a (1 + ¢, 2)-approximation, where the (1 + ¢€) term comes from
using fast matrix multiplication. Hence, if on the sparse graph we run the +k-additive approximation algorithm by Dor,
Halperin, and Zwick [DHZ00] instead of the multiplicative 2-approximation algorithm of Baswana and Kavitha [BK10], we
can get (1 + ¢, k)-approximations for all the distances. See Section 3.3 for the details.

Weighted 2-Approximate APSP The techniques above do not generalize well to the weighted setting. For weighted
graphs, we use a different approach, based on the set-up of bunches and clusters as introduced by Thorup and Zwick [TZ05].
For a parameter p € [% 1] we sample each vertex with probability p, and if sampled we add it to a set S. With high
probability, we have |S| = O(pn). Now, for each vertex u € V, we define the pivot of u to be the closest vertex
in S to u, i.e,, p(u) is an arbitrary vertex in the set {v € S : d(u,v) = d(u,S)}, and we define the bunch of u by
B(u) ={v € V : d(u,0) < d(u,p(u))} U {p(u)}. For a vertex v € V, we define the cluster of u as the inverse bunch:
C(v) :={u € V : v € B(u)}. Thorup and Zwick [TZ05] show how to compute pivots, bunches, clusters, and distances
d(u,v) forallu € V,v € B(u) in time O(%). Moreover, in follow up work [TZ01] they show that with different techniques,

that is, a more involved construction of S, we can have that both bunches and clusters are bounded by é( 11,) with high

probability. The running time remains (5(%)

Warm-up: 3-approximate APSP. To see how we use this to compute approximate shortest paths, we consider a pair of
vertices u,v € V. If either v € B(u) or u € B(v), we have the exact distance, so assume this is not the case. In particular if
v ¢ B(u), then d(u, p(u)) < d(u,v). We compute shortest paths from S to V, in particular obtaining d(p(u),v). With this
additional information we get a 3-approximation almost directly [TZ05]:

d(u, p(u)) +d(p(u),0) < d(u,p(w)) +d(p(u),u) +d(u,0) < 3d(u,v),
where the first inequality holds by the triangle inequality.

2-approximate APSP. By a closer inspection, we can improve this analysis to a 2-approximation for each pair of vertices,
whose shortest path interacts in a particular way with the bunches. To be precise, let u,v € V be a pair of vertices and let
7 be a shortest path between them. Suppose it contains a vertex x, such that x ¢ B(u) and x ¢ B(v), see the right case
in Figure 2. That means that d(u, p(u)) < d(u,x) and d(v, p(v)) < d(x,0), so at least one of the two is at most d(u,v)/2.
Without loss of generality, say that d(u, p(u)) < d(u,v)/2. Hence, after computing shortest paths from S, we can obtain a
2-approximation as follows: d(u, p(v)) +d(p(u),v) < d(u, p(u)) +d(u, p(u)) +d(u,v) < 2d(u,v), where the first inequality
holds by the triangle inequality.

It remains to give an algorithm that guarantees a 2-approximation for the case that for every vertex x on the shortest
path 7 we have x € B(u) or x € B(v), the left case in Figure 2. Note that this case also contains the special case that the
bunches overlap. We will refer to it as the ‘adjacent case’, since the two bunches B(u) and B(v) are adjacent in the sense
that they are connected by an edge. In previous work, this adjacent case is often a bottleneck in the running time, and
dealt with in various ways. As seen above, by not distinguishing it at all, we obtain a 3-approximation [TZ05]. By only
considering the cases where the bunches have at least one vertex in common, Baswana, Goyal, and Sen [BGS09] obtain a
(2, 1)-approximation. In Appendix B we generalize this result to (2, W,,,)-approximate APSP in weighted graphs, where
Wy, is the maximum weight of an edge on a shortest v — v path. For a 2-approximation, Kavitha [Kav12] and Baswana and
Kavitha [BK10] each use a multilevel approach, the latter of which we detail later. More recently, in distributed [CDKL21,
DP22] and dynamic [DFNV22] 2-approximate APSP algorithms, the adjacent case is computed explicitly. To be precise,
they compute

Sadjacent (4, 0) = min{d(u, u") + w(u',0") +d(v’,0) : {u’,0"} € E,u’ € B(u),v" € B(v)},
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B(u) B(v) B(u) B(v)
Figure 2: Two different possible interactions between the shortest path between u and v, and the bunches of u and v.

which in the case that 7 C B(u) U B(v) returns the exact distance between u and v. Using these algorithms directly does not
lead to fast algorithms in our, centralized, setting, since they are tailored for their respective models. Our work is inspired
by this approach, and gives two novel ways to compute Jagjacent (4, 0); one for sparse graphs and one for dense graphs.

Sparse case. Rather than fixing u,o € V and trying to compute S,djacent (%, v), we fix an edge {u’,v’} € E, and see for
which pairs u,v € V this contributes to Sadjacent (4, ). More precisely, by definition of bunches and clusters we have
u' € B(u) < u € C(u'), so we can compute Sagjacent as follows: for all {u’,0’} € E, for all u € C(u’), and for all
v e C):

1. Initialize Sadjacent (1, 0)  d(u,u’) + w(u’,0") +d(v’,v) if no such entry exists.
2. Otherwise: dagjacent (1, 0) ¢ min{dagjacent (4, 0), d(u, u”) + w(u’,0") +d(v’,v)}.

We note that Step 1 and 2 can both be done in constant time, so computing Sydjacent takes time

om= Y o(cu)l-lc@)h= Y OGh)

{w, v }eEueC(uw') veC(v') {uw,v'}€E {w, ' }eE

where the last equality holds since clusters have size at most é(ll]). This means it takes ON(l%) time in total to compute

5adjacent~
Together with the running time for computing bunches and clusters, (5(%), and the running time for computing

-1/3

shortest paths from S, O(|S|m) = é(pnm) using Dijkstra, we obtain (5(}% + pnm). For p = n~'/°, we obtain running time

O(mn?/3).

We note that for each pair of vertices u, v € V, we still have to take the minimum between the estimate through the
pivot, d(u, p(u)) + d(p(u), v), and Sagjacent (1, v). Doing this explicitly would take n? time. Instead, we provide a distance
oracle, and perform this minimum in constant time when the pair u, v is queried.

Dense case. We adapt our algorithm in two ways for the dense case. We use a different approach to compute S,djacent,
and we compute shortest paths from the set of pivots S differently.
First, we show how to compute Sydjacent in O(%z) time. For each node u, we run Dijkstra twice on a graph with O(g)

edges, whose size comes from the fact that for each node the bunches have size O(%). On the first graph we obtain estimates
from u to v’ for every v’ that neighbors the bunch of u, i.e., Ju’ € B(u) such that {u’,0’} € E. And on the second graph we
obtain estimates Sydjacent (4, v) for all v € V. For more details see Section 4.4.

Second, for computing shortest paths from S, we can do something (much) more efficient than computing multiple
Dijkstra’s by using recent results on approximate multi-source shortest paths (MSSP). Elkin and Neiman [EN22] provide
efficient (1 + €)-MSSP results using rectangular matrix multiplication. For example, we can let the number of pivots be as
big as n8, while the running time stays below O(n???). This means that the sizes of bunches drop dramatically to O(n®?)

5

making the above very efficient. To be more precise, we need to balance the running time to compute Sagjacent, (5("5), with

the running time to compute shortest paths from S, which has size O(pn). If we use Dijkstra for the latter (for a graph with
m = n?), we need to balance % and pn®, obtaining running time O(n*°) for p=1/n
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To see how this trade-off improves using [EN22], we denote p = n"~1. Now we have |S| = O(pn) = O(n"), and we can
compute (1+¢€)-approximate shortest paths from S in O(n®(")) time. We obtain total running time O~(”§ +n®() = O(n?214),
using [GU18] for an upper bound on w(r).

We note that the (1 + ¢)-factor carries over to our stretch analysis, making it a (2 + €)-approximation, see Lemma 4.2.

A Density Sensitive Algorithm. Next, we describe how we can generalize the ideas from the dense case to a wider
density range. Our goal is to combine our approach from the dense case with the 2-approximate APSP algorithm of
Baswana and Kavitha [BK10]. Similar to the dense case, they create a set of pivots S of size O(pn). They compute shortest
paths from S to V using Dijkstra in O(pnm) time, and use this for an estimate through the pivot.

Baswana and Kavitha [BK10] do not consider the adjacent case explicitly, but consider O(log n) additional levels, each
with a gradually growing set of pivots S;. For each of those sets, they compute shortest paths in a sparser graph, where the
distances to some essential vertices equal the distances in the original graph. They show that on at least one of the levels, a
distance estimate through the pivot of that level gives a 2-approximation. For details we refer to Section 4.5.

By computing shortest paths on the sparser graph, they avoid the expensive computation of shortest paths from S;
to all of V. Instead, for each level, they require O(m/p) time to construct the sparser graph, and O(n?) time to compute
shortest paths from ;. Combining this with the first step, their algorithm takes O(pnm + m/p + n®) time. Setting p = 1/y/n
balances the terms and gives O(mvn + n?) time.

We modify their algorithm in two ways. First of all, we remark that parameterizing the size of the (smallest) set of
pivots S, by |S| = O(pn) already gives us the following result, which allows us to get a better trade-off.

THEOREM 1.6. There exists a randomized algorithm that, given an undirected graph with non-negative edge weights G = (V, E)
and parameters p € (%, 1], € > 0, computes (2 + €)-approximate APSP. With high probability, the algorithm takes

O(n* + m/p + T((j(pn))) time, where T (s) is the time to compute (1 + €)-MSSP from s sources.

Secondly, we use the fast MSSP algorithm of Elkin and Neiman [EN22] to compute the shortest paths from S faster.
If we write p = n9~!, for some r € [0, 1], then [EN22] gives T(pn) = T(n") = O(m"*°() 4+ n®(")_The total running time
for 2-approximate APSP is then O(mnl" + n‘*’(’)), for any r € [0,1]. For m = n? this recovers our result, Theorem 1.2, for
dense graphs. See Theorem 1.3 and Table 2 for our results for graphs with different densities.

1.3 Additional Related Work

Approximation between 2 and 3. In addition to the 2-approximate APSP algorithms mentioned above, approximate
APSP algorithms with approximations between 2 and 3 in weighted undirected graphs are studied in [CZ01, BK10,
Kav12, AR21]. In particular, [CZ01, BK10] studied algorithms with approximation 7/3, and [Kav12] studied an algorithm
with approximation 5 / 2. These results were generalized by Akav and Roditty [AR21] who showed an algorithm with
approximation 2 + £2 and running time O(m?*n?=%/¥ + n?) for any k > 2.

Algorithms using fast matrix multiplication. Algorithms for fast rectangular matrix multiplication are studied in
[Cop82, LR83, Cop97, HP98, KZHP08, Gal12, GU18], and have found numerous applications in algorithms (see e.g. [Zwi02,
RS11, Yus09, YZ04, KRSV07, KSV06, SM10, WWWY14, BRSW'21, BN19, VEN22, BHGW" 21, WX20, GR21]).

In the context of APSP, the state of the art algorithm by Zwick for computing APSP in directed graphs with bounds
weights is based on rectangular matrix multiplication [Zwi02]. In addition, Kavitha [Kav12] used fast rectangular
matrix multiplication as one of the ingredients in her (2 + €)-approximation algorithm for weighted APSP. Additive
+2-approximations for APSP based on fast matrix multiplication are studied in [DKRW*22, Diir23]. The latter algorithms
are based on Min-Plus product of rectangular bounded difference matrices. The (1 + ¢, 2)-approximation of Berman
and Kasiviswanathan [BK07] is also based on fast rectangular matrix multiplication. In addition, Elkin and Neiman
showed (1 + €)-approximation for multi-source shortest paths based on rectangular matrix multiplication [EN22]. For
the problem of computing shortest paths for S X T, for |S|, |T| = 0(n%), Dalirrooyfard, Jin, Vassilevska Williams, and
Wein [DJWW22] provide a 2-approximation in O(m + n(1*©)/8) time for weighted graphs, by leveraging sparse rectangular
matrix multiplication. Dynamic algorithms for shortest paths and spanners based on rectangular matrix multiplication
are studied in [BN19, VFN22, BHGW"21], and an algorithm for approximating the diameter based on rectangular matrix
multiplication is studied in [BRSW*21].

1.4 Discussion In this work we showed fast algorithms for 2-approximate APSP, many intriguing questions remain open.
First, our algorithm for 2-approximate APSP in unweighted undirected graphs takes O(n®%?) time, and an interesting
direction for future work is to try to obtain an O(n?) time algorithm for this problem.
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Second, many of our algorithms are based on fast rectangular matrix multiplication, and it would be interesting
to develop also fast combinatorial algorithms for these problems. Currently the fastest combinatorial algorithm for 2-
approximate APSP in unweighted undirected graphs is the recent algorithm by [Rod23] that takes O(n*%°) time. For
weighted undirected graphs the fastest combinatorial 2-approximate APSP algorithm takes O(m+/n + n?) time, which is
O(n??) for dense graphs, where we show a non-combinatorial (2 + €)-approximation algorithm that takes O(n%*%'%) time.
Narrowing the gaps between the combinatorial and non-combinatorial algorithms, or proving conditional hardness results
for combinatorial algorithms is an interesting direction for future research. We remark that such a gap exists also for the
case of additive +2-approximations, where the fastest combinatorial algorithm takes O(min{n*/>m'/2, n’/*}) time [DHZ00],
and the fastest non-combinatorial algorithm takes O(n?2%°) time [Diir23].

2 Preliminaries

Throughout, we use n = |V| and m = |E|. When writing log-factors, we round them to the closest integer. We use dg (u,v)
for the distance between u and v in G, where we omit G if it is clear from the context. We write & (u, v) for distance estimates
between u and v. We denote SSSP for the Single Source Shortest Path Problem, MSSP for the Multi Source Shortest Path
Problem, and APSP for the All Pairs Shortest Path Problem. SSSP takes the source as part of the input, and MSSP takes the
set of sources as part of the input. We say that an algorithm gives an (a, f)-approximation for SSSP/MSSP/APSP if for any
pair of vertices u, v it returns an estimate &(u, v) of the distance between u and v such that d(u,v) < §(u,0) < @ -d(u,0) +p,
where d(u, v) is the distance between u and 0. If § = 0, we get a purely multiplicative approximation that we refer to as
a-approximation. If & = 1, we get a purely additive approximation, and call it a +f-approximation. If « = 1 + €, we refer to
it as a near-additive approximation.

All our randomized algorithms are always correct, and provide running time guarantees ‘with high probability’, which
means with probability 1 — n™° for any constant c.

When we refer to the APSP problem, we are required to output all n? distances. If we drop this requirement, and only
want to give a data structure subject to distance queries, we call it a distance oracle. For distance oracles, there are three
complexities to consider: preprocessing time, space, and query time. Both the preprocessing time and the required space
can be less than n?. In our algorithms, we provide constant query time.

Rectangular Matrix Multiplication and Shortest Paths Let A be an ny X n; matrix, and B be an ny X n3 matrix, then
we define the distance product, also called min-plus product, A % B by

(A% B);j = min {Aj + B},
1<k<n;

fort<i<njand1<j < ns.

Moreover we say a matrix A’ € R™*™ is a (1 + ¢)-approximation of a matrix A € R™*™ if A;; < A;j < (1+¢€)A;j, for
all1<i<nand1<j<n,.

Distance product form a semiring, i.e., a ring without guaranteed additive inverses. Although the results for fast matrix
multiplication hold for rings, it turns out they can be leveraged for distance products as well [AGM97]. In particular, we
have the following result for approximate distance products.

THEOREM 2.1. ([Zw102]) Let W be a positive integer, and € > 0 be a parameter. Let A be an n X n" matrix and B be ann” X n
matrix, whose entries are all in {0, 1,..., W} U {co}. Then there is an algorithm that computes a (1 + €)-approximation to
A% B in time O(n®") Jelog W).

Here w(r) denotes the time constant for rectangular matrix multiplication, i.e., the constant such that in n®() time we
can multiply an n X n" with an n” X n matrix. This algorithm is a deterministic reduction to rectangular matrix multiplication,
for which the state of the art [GU18] is also deterministic. Note that [GU18] does not provide a closed form for w(r).
Throughout, we use the tool of van den Brand [Bra] to balance w(r) with other terms to obtain our numerical results.

Backurs, Roditty, Segal, Vassilevska Williams, and Wein [BRSW*21] leverage these results to obtain multi-source
approximate shortest paths from /n sources, given that the distances are short. Elkin and Neiman [EN22] show how to
exploit rectangular matrix multiplication to compute distances from an arbitrary set of sources S.

THEOREM 2.2. ([EN22]) There exists a deterministic algorithm that, given a parameter € > 0, an undirected graph G = (V,E)
with integer weights bounded by W and a set of sources S of size |S| = O(n"), computes (1+ €)-approximate distances for S X V
in O(m'*°W 4 n) (1/€)°M log W) time.
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2.1 From 2 + € to 2-Approximate APSP Dor, Halperin, and Zwick [DHZ00] provide a +log n-approximate APSP for
unweighted graphs in O(n?) time. Using this result, we can reduce the problem of an unweighted 2-approximation to an
unweighted (2 + €)-approximation.

LEMMA 2.1. Given an algorithm that computes (2 + €)-approximate APSP on unweighted graphs in t(n, m) poly(1/€) time,
we obtain an algorithm that computes 2-approximate APSP in O(n? + t(n,m)) time. The reduction is deterministic and
combinatorial.

Proof. Set € = 1/logn, and let §(u, v) denote the output of the (2 + ¢)-approximate APSP algorithm. Let ¢’ (u,v) denote
the output of the +log n approximation of [DHZ00] (see also Theorem 3.5). We output ci(u, 0) = min{|6(u,v)], 6 (u,0)}.
Clearly this takes O(n? + 7(n, m)) time in total, so it remains to show that d (+,-) is a 2-approximation.

First of all we notice that since distances in an unweighted graph are integers, we have that d(u,v) < 6(u,v) implies
that d(u,0) < [5(u,0)]. Since also d(u,v) < &'(u,v), we can conclude d(u,v) < d(u,v).

To show that d(u,v) < 2d(u,v), we distinguish the cases d(u,v) < logn and d(u,v) > logn. If d(u,v) < logn, then
from 8(u,v) < (2 + €)d(u, v) we obtain

d(u,0) < |8(u,0)] < [(2+€)d(u,0)]
=2d(u,0) + led(u,0) | = 2d(u,v) + | 422 |

logn
< 2d(u,v).

Now if d(u,v) > log n, we have that d(u,0) < 8 (u,0) < d(u,0) + logn < 2d(u,v). d

3 Approximate APSP Algorithms for Unweighted Graphs

We obtain our three unweighted APSP results, 2-approximate (Theorem 1.1), combinatorial 2-approximate (Theorem 3.4),
and (1 + ¢, k)-approximate for even k > 2 (Theorem 1.5), through a more general framework. In this section, we develop
said framework, from which these theorems follow almost immediately.

The goal of our framework is to split the graph into two cases: a sparse graph and a dense graph. On the sparse graph,
we just run an existing approximate APSP algorithm that performs well on sparse graphs (denoted by Algorithm A in
Theorem 3.1 below). For the dense graph, we use more ingenuity. We further split it into poly log n density regimes, where
in each regime the bottleneck is to compute APSP through a known set S, i.e., for each u, v to find a shortest path of the form
(u, x,v) for some x € S (this task is done by Algorithm $B). If we solve this problem exactly, we obtain a +2-approximation.
If we solve it approximately, this carries over into the overall approximation factor. For example, if we solve it up to a
multiplicative factor (1 + ¢€), we obtain total approximation (1 + ¢, 2(1+¢)) for the dense graph. For our approximations, we
only use algorithms B that are either exact or (1 + €)-approximate. The formal statement of the framework is as follows.

THEOREM 3.1. Let A be an algorithm that computes (multa, adda)-approximate APSP on unweighted graphs with running
time 74 (n, m), and let B(S) be an algorithm that computes (multg, addp)-approximate all-pairs shortest paths on weighted
graphs, among the u — v paths of the form (u, x,v) for some x in a given set S, with running time tg(n, |S|). Then there exists
an algorithm that, given an unweighted, undirected graph G = (V,E) and a parameter r € [0, 1], computes approximate
APSP with running time t4(n, n*™") + O(rg(n, O(n"))), where for each pair of vertices we have either a (multa, adda) or a
(multg, addp + 2multg) approximation.

Besides possibly Algorithm A and B, the procedure is deterministic and combinatorial.

Note that 74(n, n?™"), 75(n, O(n")) > n? as they both need n? time to write their output.

In Section 3.1, Section 3.2, and Section 3.3, we obtain a 2-approximation, a combinatorial 2-approximation, and a
near-additive approximation respectively, by using different algorithms for A, 8 and balancing the parameter r accordingly.

Next, we proceed by describing the algorithm satisfying Theorem 3.1, followed by a correctness proof and running
time analysis. Pseudo-code can be found in Algorithm 1. To desecribe the algrithm, we recall the notion of hitting sets. A
set S is said to be a hitting set for the vertices that have at least one neighbor in S. The following result provides a hitting
set S for the vertices with degree at least s. Such a set can easily be obtained by random sampling or with a deterministic
algorithm [ACIM99, DHZ00].

LEmMA 3.1. ([DHZ00]) There exists a deterministic algorithm HittingSet(G,s) that, given an undirected graph G = (V,E)
and a parameter 1 < s < n, computes a set S C V of size O(*; logn) such that all vertices of degree at least s have at least one
neighbor in S. The algorithm takes O(m + n) time.
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Algorithm. Given the parameter r € [0, 1], we say a vertex is light if it has at most n' ™" incident edges. We look at the
sparse graph, where each vertex keeps at most n!~" edges to its neighbors. On this graph we run Algorithm A. We show
that if for two vertices the shortest path only consists of light vertices, then this provides a (multa, add)-approximation.
We also run the following procedure, on the entire input graph. This part ensures that if the shortest path between two
vertices contains at least one dense vertex, we obtain a (multg, addp + 2)-approximation. We look at O(log n) levels. At
level i, the goal is to get an approximation for a shortest path with maximum degree in [2/, 2/*1]. We let i be all the integer
values between (1 — r) log n and log n. By abuse of notation, we write i = (1 —r)logn, (1 -r)logn+1,...,logn. At level i
we do the following.

1. Let S; C V be defined by HittingSet(G, 2!). We set G; = (V, E;) to be the graph with E; := {{u,0} € E : deg(u) <
21 or deg(v) < 211}

2. We compute multi-source shortest paths from S; on G;, by running Dijkstra from each vertex in S;. We store these
results in the graph G} := (V, E)). So E] = S; X V, and wg;(a,v) := dg,(a,v).

3. Now we want to compute shortest paths through S; on the graph induced by edges in step (2), hereto we call algorithm
B(G}, ;).

Algorithm 1: Our algorithm to compute APSP using algorithms A and B

1 Let G’ = (V,E’), where E’ := {{u,0} € E : deg(u) < n'™" or deg(v) < n'""};
2 Let 54(-, -) be the result of Algorithm A(G’) ;
3 fori=(1-r)logn,...,logndo
Let G; = (V,E;), where E; := {{u,0} € E : deg(u) < 2! or deg(v) < 2/*1};
S; :== HittingSet(G, 2%);
fora € S; do
‘ Run Dijkstra from a on G;
end
Let G; := (V,E}) be a weighted graph, where E; = S; XV, and wg;(a,0) := dg,(a,v) fora € S;,0 € V.
10 Let 6;(-, -) be the result of Algorithm B(G/, S;);
11 end
Op(u,v) == min{5;(u,0) : (1 —r)logn <i < logn}, foru,o eV,
13 0(u,v) := min{d4(u,v), dg(u,v)}, for u,v € V.;
return 6(-, -)

LR S - *

=
N

-
-

Correctness. Given u,v € V, we have to show that the returned approximation §(u,v) is a 2-approximation. We
distinguish two (non-disjoint) cases:

a) There exists a shortest path from u to v solely consisting of light vertices: vertices of degree at most n!~". In this case,
we show we obtain a (mults, add4)-approximation through 4.

In this case, this shortest path is fully contained in the sparse graph, hence running algorithm A on it provides the
given approximation 4.

b) There exists a shortest path from u to v containing at least one heavy vertex: a vertex with degree at least n'~". In this
case, we show we obtain a (multp, addg + 2multg)-approximation through Jp.

Letie {(1—-r)logn, (1-r)logn+1,...logn} be the maximal index such that there exists a vertex x on the shortest
path from u to v with degree in [2/, 27*1]. We show that &; provides the desired approximation. By definition of S;, x has
at least one neighbor in S;, denote this neighbor by a, see Figure 3.

Now consider the distance from u to v in G;. Since G; contains the shortest path in G, we have dg, (u,v) = dg(u,v).
Further we know that d(u, a) + d(a,v) < dg,(u,v) + 2, since a is neighboring x on the shortest path between u and v. In
particular, this means that ming s, dg, (v, @) + dg,(a’,v) < dg,(u,v) + 2 = dg(u,v) + 2. So we can focus on computing
shortest paths through S;. In the second step of the algorithm, we have computed the (exact) distances S;: dg, (@', y) for
all y € V, in particular to u and v. To compute mingcs, dg, (4, a’) + dg, (a’,v), we use Algorithm B(G;, S;). which then
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Figure 3: llustration of the stretch analysis.

provides an estimate J; (u, ) for the distance from u to v through S; in G;. Hence, the approximation factors aggregate
as follows:

8i(u,v) < multg(dg, (u, a) + dg,(a,v)) + addp
< multg(dg, (u,x) + 1 +dg,(x,0) + 1) + addp
=multp - dg, (4, v) + 2 - multg + addp
= multg - d(u,0) + 2 - multg + addp.

If Algorithm A is correct with probability at least 1 — p4, and Algorithm B is correct with probability at least 1 — pp,
then our algorithm is correct with probability at least 1 — p4 — pp - log n. Note that in all applications below we have
pa =0 = pp, i.e,, both algorithms are always correct.

Running time. We run algorithm A(G’), where G’ has n vertices and O(n?~") edges, hence this takes 74(n, n?~") time.
Then, for each i, we perform three steps. First, we compute a hitting set in O(m + n) time. Second, we run Dijkstra from
IS;| = O(%) vertices on a graph with O(n2™*') edges, taking O(n?) time. Third, we run algorithm B(G},S;), where we
know every shortest path goes through S; with [S;| = O(5; logn) = O(n"), hence taking 75(n, O(n")) time.

Any probabilistic guarantees on the running time of Algorithm A and B simply carry over.

3.1 2-Approximate APSP for Unweighted Graphs We employ the theorem of the previous section to obtain a
multiplicative 2-approximation. Hereto we use the following result of Baswana and Kavitha [BK10], which gives an efficient
algorithm for sparse graphs.®

TueoReM 3.2. ([BK10]) There exists a randomized, combinatorial algorithm that, given an undirected graph with non-negative
edge weights G = (V, E), computes 2-approximate APSP. With high probability, the algorithm takes O(n® + m+/n) time.

The algorithm of Theorem 3.2 can be retrieved from our more general algorithm for weighted graphs in Section 4.

TueoREM 3.3. There exists a randomized algorithm that, given an unweighted, undirected graph G = (V, E), computes 2-
approximate APSP. With high probability, the algorithm takes O(n*>~" + n®(")) time, for any r € [0,1]. Using known upper
bounds for rectangular matrix multiplication, this is O(n*%%2) time.

Proof. By Lemma 2.1, it is sufficient to provide a (2 + €)-approximation, given that the running time only depends
polynomially on 1/e. We utilize Theorem 3.1 and for that we need to specify which algorithms to use for A and B, and
analyze the tradeoffs on the approximation and running time.

For algorithm A we use Theorem 3.2 ([BK10]) on a graph with n vertices and n?>~" edges, which results in a 2-
approximation in O(n? + n%?7") time w.h.p. Algorithm 8B has to provide shortest u — v paths, that are minimal among all
paths of the form u — x — v, for x in a given set S. We use rectangular matrix multiplication for this: multiplying the V' x S
with the S X V edge weight matrices gives exactly the paths of length 2. We obtain (1 + €/2)-approximate shortest paths
through a set of O(n") vertices in time O(m**°() 4+ n©() (1/¢)°(D) [Zwi02] (see also Theorem 2.1).

®We note that [BK10] states their result with an expected running time. We can easily make this ‘with high probability’ as follows. We run the
algorithm log n time, stopping whenever we exceed the running time we aim for by more than a factor log n. By a Chernoff bound, at least one of them
finishes within this time w.h.p.
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By Theorem 3.1, for each pair of vertices we either obtain a stretch of (2,0), or a stretch of (1+€/2, (1+€/2) - 2). Note
that for any d(u,v) > 2 we have (1+€/2)d(u,v) + (1 +€/2) -2 < (1+€)d(u,v) + 2, so we have a (1 + ¢, 2)-approximation,
hence a (2 + €)-approximation in total.

Also by Theorem 3.1, w.h.p. we obtain a running time of O(n?) + O(n? + n%/*7") + O(m"+°() 4 n© () (1/)0M)) =
O((n°* " + n©(M)(1/€)OW)) = O(n203184039(1 /)0 for r = 0.46815961, where we use [Bra] to balance the terms. 0

3.2 2-Approximate Combinatorial APSP for Unweighted Graphs The algorithm of the previous section uses matrix
multiplication as a subroutine. In this section, we present a simple combinatorial algorithm for the same problem, matching
the very recent result by Roditty [Rod23].

THEOREM 3.4. There exists a combinatorial algorithm that, given an unweighted, undirected graph G = (V, E), computes
2-approximate APSP. With high probability, the algorithm takes O(n*?) time.

Proof. Again, we use Theorem 3.1. For algorithm A we use Theorem 3.2 to obtain a 2-approximation in O(n? + n®/2~") time
w.h.p. Algorithm B has to provide shortest u — v paths, that are minimal among all paths of the form u — x — v, for x in a
given set S. In particular, we can consider the graph (V,S X V), which has n - O(n") = O(n'*") edges. Running Dijkstra
from each node gives the (exact) result in O(n**") time.

By Theorem 3.1, for each pair of vertices we either obtain a stretch of (2,0), or a stretch of (0,2), hence a (2, 0)-
approximation in total.

Also by Theorem 3.1, with high probability, we obtain a running time of O(n*°~" + n**") = O(n*%), for r = 0.25.

Since both Theorem 3.2 and Dijkstra are combinatorial, the final result is combinatorial. 0

3.3 (1+¢€,k)-Approximate APSP for Unweighted Graphs As a third application of Theorem 3.1, we give an algorithm
for computing (1 + €, k)-approximate APSP for even k > 2. Hereto, we use the following result of Dor, Halperin, and
Zwick [DHZ00], which gives an efficient algorithm for sparse graphs.

TueoreMm 3.5. ([DHZ00]) i) There exists a deterministic algorithm that, given an unweighted, undirected graph G = (V,E),
computes +2-approximate APSP in O(min{n®?m'/?,n"/3) time.

ii) There exists a deterministic algorithm that, given an unweighted, undirected graph G = (V, E) and an even integer k > 4,

. 2 2 o 2
computes +k-approximate APSP in O(min{n*~ &2 m%&2, n**3%k-2}) time.

~ 2 2
In particular, this gives a +log n-approximation in O(n?) time. Also note that n*/?m!/? = n*”k+z m¥+2 for k = 2. So we can
2 2

also say that for even k > 2 there exists a +k-approximate APSP algorithm that runs in n®~ k+2 mk+2 time.

THEOREM 3.6. There exists a deterministic algorithm that, given an unweighted, undirected graph G = (V,E) and an even
. 2
integer k > 2, computes (1 + €, k)-approximate APSP with running time O (n2+(1_r) k+z + n”’(’)(l/e)), for any choice of

re[0,1].

Proof. Again, we use Theorem 3.1. For algorithm A, we use the result of Theorem 3.5 for sparse graphs. We apply it to a

graph with n vertices and n*~" edges, which leads to the running time é(nzﬂl_ﬂé).

For algorithm B, we use (1 + €/2)-approximate rectangular matrix multiplication in time O(n®(")(1/€)°™).

By Theorem 3.1, for each pair of vertices we either obtain a stretch of (0, k), or a stretch of (1 + ¢/2, (1 + €/2)2), Note
that for any d(u,v) > 2 we have (1+¢/2)d(u,0) + (1+€/2) -2 < (1 +€)d(u,v) + 2, so we have a (1 + ¢, 2)-approximation
hence a (1 + ¢, k)-approximation in total.

Also by Theorem 3.1, we obtain a running time of é(anr(l_r)ﬁ +n°) (1/e€)), for any choice of r € [0, 1] [Zwi02]

(see also Theorem 2.1).
Since both [DHZ00] and [Zwi02] are deterministic, the final result is deterministic. O

To give optimal results, we pick k as a function of r. Since there is no closed form for (the state of the art of) w(r), we
balance it for specific k using [Bra].

k = 2: we have O(n?*(1=1)/2 4 po (1) (1/€)) = O(n2 19195331 /¢) for r = 0.69609339.
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k = 4: we have O(n?*(1=1)/3 1 no (N (1/€)) = O(n®119%756 /&), for r = 0.64297733.
k = 6: we have O(n?*(1=1/4 4 no(") (1/€)) = O(n*%81921 J¢), for r = 0.60723159.

k = 8: we have O(n?*(1=1/5 4 n@() (1/€)) = O(n298383115 /¢) for r = 0.58084427.

k > 10: The exponent will go to 2, as k goes to logn. However, for k > 10, we do not improve upon the results of Dor,

Halperin, and Zwick [DHZ00].

k | This work | Previous results (for m = n?)
2 n2.152 n2.24+0(l) [BK07]

4| 2™ nZZ [DHZ00]

6| n*"® n?15 [DHZ00]

8 n2.084 n2.091 [DHZOO]

Table 3: Comparison of our (1 + €, k)-approximation and prior work.

Discussion. For future work, a further possibility would be to use a +k-approximation for Algorithm % in Theorem 3.1,
which in total gives a +(k + 2)-approximation. However, that requires an efficient +k-approximation for MSSP, to the best
of our knowledge no such algorithm exists at this time. Note that the +k algorithm of [DHZ00] is APSP and does not give a
faster MSSP. Hence reducing +(k + 2) to +k with that algorithm is only slower.

4 Weighted (2 + €)-Approximate APSP

The techniques of the previous section do not generalize well to the weighted setting. In this section we present an
alternative approach for weighted graphs. First, we review some standard definitions and results on bunches and clusters
in Section 4.1. Then we continue with two different approaches to some subroutines to obtain efficient algorithms for
sparse and dense graphs, in Section 4.3 and Section 4.4 respectively. Finally, we show that we can generalize the latter
result to obtain faster algorithms in a wider density range in Section 4.5. Moreover, in Appendix B, we provide a faster
algorithm for a (2, W)-approximation. This can be seen as an adaptation of Section 4.3.

4.1 Bunches and Clusters We use the concepts bunches and clusters as defined by Thorup and Zwick [TZ05]. Given
a parameter p € [%, 1], called the cluster sampling rate, we define S to be a set of sampled vertices, where each vertex
is part of S with independent probability p. The pivot p(v) of a vertex v is defined as the closest vertex s in S, i.e.,
p(v) = argmingeg d(s,v). With equal distances, we can break ties arbitrarily. Now we define the bunch B(u) of u by
B(u) := {v € V : d(u,0) < d(u,p(u)}. If the set S is not clear from context, we write B(u, S). Clusters are the inverse
bunches: C(v) :== {u € V : d(u,0) < d(u,p(u)} = {u € V : v € B(u)}. By our random choice of S, we have with high
probability that |B(u)| < O(lo%).

Thorup and Zwick [TZ05] showed how to compute this efficiently, in é(%) time. It is immediate that the total load of
the bunches and clusters is the same: ), .y |B(u)| = 2 e |C(0)|. Hence the average size of each cluster is O(%). However,
the maximal load over all clusters can still be big. In a later work, Thorup and Zwick [TZ01] showed that by refining the
set S, we can bound the bunch and cluster sizes simultaneously.

LEMMA 4.1. ([TZ01],[TZ05]) There exists an algorithm ComPUTEBUNCHES(G, p) that, given a weighted graph G and a parameter
p € [+.1], computes

« aset of vertices S C V of size O(pn);
« pivots p(u) € A such that d(u, p(u)) =d(u,S) forallu e V;
« the bunches and clusters with respect to S;
« distances d(u,v) forallu € V andv € B(u) U {p(u)}.
With high probability, we have that both the bunches and clusters have size at mosté(’%). The algorithm runs in time (3(%)
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B(u) B(v) B(u) B(v)
Figure 4: Two different possible interactions between the shortest path between u and v, and the bunches of u and v.

4.2 Structure of the Algorithm At a high-level, our algorithm is as follows. We compute a suitable set of centers
with bounded bunch and cluster size using Lemma 4.1. Then for each pair of vertices whose bunches are adjacent (we
depict this ‘adjacent case’ on the left in Figure 4) we store a distance estimate through the edge connecting them. This case
also includes the case that the bunches overlap or even when u € B(v). In both cases there is still an edge connecting the
bunches, it is just contained within one of the bunches already. We show that we maintain the exact distance in the adjacent
case, and otherwise we give a 2-approximation by going through the pivot. We provide pseudo-code in Algorithm 2.

Algorithm 2: A (2 + ¢)-approximate APSP algorithm for unweighted graphs

Input: Unweighted graph G = (V, E), parameter p € [%, 1]
ComPUTEBUNCHES(G, p);
Compute (1 + €/2)-approximate MSSP from S, denoted by Js;
Compute dagjacent (¢, 0) = min{d(u, u’) + w(u’,0") +d(v’,0) : {v',0'} € E,u’ € B(u),v” € B(v)};
foreach u,0 € V do
| 8(u,0) — min{d(u, p(w)) + s (p(u), 0), d(v, p(0)) + 5s (p(0), 1), Sucgacent (. 0)}
end
return §

NG W N -

LEmMMA 4.2. The distance estimate § returned by Algorithm 2 satisfies d(u,v) < 5(u,v) < (2 + €)d(u,v) for everyu,v € V.

Proof. First, note that §s(x,y) > d(x,y) for any x,y € V, and all other distance estimates making up &(u,v) correspond to
actual paths in the graph, hence d(u,v) < 5(u,v). Next, let & be the shortest path from u to v. We distinguish two cases.
Case 1. There exists x € & such that x ¢ (B(u) U B(v)) (the right case in Figure 4).

Since x ¢ B(u), we have d(u,x) > d(u,p(u)), and since x ¢ B(v), we have d(x,v) > d(v,p(v)). Because
d(u,x) + d(x,v) = d(u,v), we have either d(u,x) < @
d(u,x) < @. Then we have:

or d(x,v) < @. Without loss of generality, assume

8(u,0) < d(u,p(u)) +8s(v, p(u))
<d(u,p(u)) + (1+¢/2)d(o,p(u))
<d(u,p(u) + (1+€/2)(d(u, p(u)) + d(u,0))
< (2+¢€/2)d(u,x) + (1+€/2)d(u,0)
< (2+¢€)d(u,0),

where the third inequality holds by the triangle inequality.

Case 2. There is no x € x such that x ¢ (B(u) U B(v)) (the left case in Figure 4).
In other words, 7 C (B(u) U B(v)). This means there are vertices v’ € B(u) and v’ € B(v) such that {u’, v’} is an edge on
the shortest path. Note that there is always at least one such edge, since u # v and we allow 4’ = u and v” = 0. Since

Sadjacent (4, 0) = min{d(u, u") + w(u’,0") +d(v',v) : u’ € B(u) and v" € B(v)},
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we get 6(u,v) = Sadjacent (4, v) = d(u, v) in this case.
1]

In the following two sections, we give two different approaches to execute Algorithm 2, giving efficient algorithms for
sparse and dense graphs respectively.

4.3 AnEfficient Distance Oracle for Sparse Graphs In this section, we provide an efficient algorithm for 2-approximate
APSP in sparse graphs. We use the structure of the previous section and use combinatorial subroutines to obtain a
combinatorial algorithm. Note that as opposed to most of our other results (with an exception of Appendix B), this is a
distance oracle and not explicit APSP. For m = O(n), our bounds match the conditional lower bound of Q(m°/?) preprocessing
time for 2-approximations, conditional on the set intersection conjecture [PRT12] or the 3-SUM conjecture [ABF23], where
[PRT12] shows the stronger Q(m®/?) space lower bound.

THEOREM 4.1. There exists a combinatorial algorithm that, given a weighted graph G = (V, E), constructs a distance oracle
that answers 2-approximate distance queries in constant time, and uses O(mn®?) space with preprocessing time O(mn?/3).

Proof. Algorithm details and running time. Let p € [%, 1] be a parameter to be set later. We use Algorithm 2, below we
specify certain steps and the running time of this algorithm.

« line 1 takes é(%) time by Lemma 4.1.

« For line 2, we use Dijkstra in O(m|S|) time to obtain exact shortest paths (¢ = 0). By Lemma 4.1 we have that
|S| = O(pn), hence this takes O(pnm) time.

« By definition of bunches and clusters we have u’ € B(u) <= u € C(u’), so we can compute line 3 as follows: for
all {u’,0’} € E, forallu € C(u’), and for all v € C(v’):

1. Initialize Sadjacent (4, 0) — d(u,u’) + w(u’,0") + d(v’,v) if no such entry exists.

2. Otherwise: dagjacent (4, 0) < min{Jagjacent (4, 0), d(u, u’") + w(u’,v") +d(v’,0)}.

We note that Step 1 and 2 can both be done in constant time, so line 3 takes

SOY S om= Y oqcw)-lc@h= Y 06k,

{u,0'}eEueC(u’) veC(v') {u',v'}€E {u',v'}€E
where the last equality holds by Lemma 4.1. This means it takes ON(j%) time in total.

« Instead of executing the for-loop of line 4, we execute line 5 in the query. This clearly takes constant time for a fixed
pair u,v € V.

-1/3

Together we obtain a running time of O~(% + pnm + [%) = O(pnm + [%). Balancing pnm = 1% gives p = n~'/7, so total

running time O(mn?/3).
Correctness. This holds by Lemma 4.2. As detailed above, we have € = 0, obtaining a 2-approximation.
Space. We need O(|S|n) = O(pn?) space for the distances from S, and O(f%) space for the adjacent data structure. All

-1/3

other space requirements are clearly smaller. Inserting p = n~'/, we obtain total space requirement O(mn?/> + n%?) =

O(mn?3). 0

4.4 (2 + e)-Approximate APSP for Dense Graphs In this section, we provide an efficient algorithm for (2 + €)-
approximate APSP for dense graphs. In this case, by dense we mean m = n?. The algorithm of this section already improve
on the state of the art for a wider range of m, but we defer the case of m = 0(n?) to Section 4.5, where we obtain better
results for this regime.

THEOREM 4.2. There exists a randomized algorithm that, given an undirected graph G = (V,E) with non-negative
integer weights bounded by W, computes (2 + €)-approximate APSP. With high probability the algorithm takes O(n>~" +
n®(1/€)°M log W) time, for any r € [0,1]. Using known upper bounds for rectangular matrix multiplication, this is
0(n*?%(1/€)°W log W) time.
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Proof. Again, we will use a parameter p € [%, 1]. For ease of notation, we let r € [0, 1] such that p = n"~!. We use
Algorithm 2, below we specify certain steps and the running time of this algorithm. Algorithm details and running time.

« line 1 takes é(%) time by Lemma 4.1.
« For line 2, we use [EN22] this takes time O(m!*°(") + n®(") (1/€)°(M) log W).
« We execute line 3 as follows, in ON("%) time:

a) For all v’ € V, run Dijkstra on the graph G, = (V, E, ), where E,, consists of all edges incident to v’, and for
each vertex it contains edges connecting the vertex to the bunch. More formally, E, := {{v/,x} € E : x €
VYU Uxev{x, y} : y € B(x)}, with weights wg,, (v, x) := wg(v’,x) and wg,, (x,y) = dg(x,y) respectively.
This second term has size O( g), since each bunch has size O( ’%) Hence computing SSSP with Dijkstra takes
O(% +n) = O(%) time.

b) For all u € V, run Dijkstra on the graph G, := (V,E,), where E;, consists of the distances computed in
the previous step and again the edges between vertices and their bunch. More formally, E;, := ({u} X V) U
Uxev{x,y} : y € B(x)}, with weights wg; (u,0") := dg,, (v, u) and wg;, (x,y) = dg(x,y) respectively. For
each u, the graph G, has é(lﬂ)) edges, hence computing shortest paths takes é(g) time using Dijkstra. Denote
the output of this step by dagjacent (4, 0).

Correctness. From Step a we obtain an edge {u, v’} for each v’ € V such that there exists v’ € B(u) with {u’,v’} € E.
This edge has weight w(u,v") = miny ep,) d(u,u’) + w(u’,v"). By Step b we combine this with the shortest path
from o’ to v for o* € B(v). So in total we get dagjacent (1, 0) = min{d(u, u’) + w(u’,v") +d(v’,0) : {v',0'} € E,u’ €
B(u),v” € B(v)}.

« The for-loop of line 4 takes n? time.

In total we have é(%z +n°0)(1/€)°W log W) = O(n*" + n®" (1/€)°M) log W). For r = 0.7868671417236328, we get

O(n?21313612(1 /)0 Jog W) = O(n??%(1/€)°V) log W), using [Bral.
Correctness. By Lemma 4.2 we obtain (2 + €)-approximate APSP. |

4.5 AParameterized APSP Algorithm for Weighted Graphs This section generalizes the 2-approximation of Baswana
and Kavitha [BK10], such that there is a parameter in the running time controlling from how many sources we need to
compute shortest paths. We then use fast matrix multiplication results to compute MSSP [EN22] to do this part efficiently,
and balance the parameters. We follow the algorithms and proofs of [BK10], making adjustments where necessary.

We start by creating a hierarchy of k = (1 —r) logn sets: V.=5y 2 S; 2 - -+ 2 Sk. We refer to this as an r-hierarchy.
For notational purposes we also have a set Si,;, which we define to be the empty set: Sg,; = 0. We create these by
starting with a hierarchy created by subsampling: we start with all vertices Sy := V and each subsequent S] € S/ _, is
created by selecting each element of S]_, with probability % Now |§; | = O(n - (%)“"”Og”) = O(n") w.h.p. This creates
V=825 2 2S5;. Now we use Lemma 4.1 to compute a set of pivots S of size |S| = O(n"), and we set S; = S;US. By
adding the set S, we guarantee that the size of each cluster is bounded by at most é(nl‘r), by Lemma 4.1. We note that
w.hp. [S;| < [S][+ S| = (5(2—",) +0(n") = O(%). In particular, the last set of sources Sy as size [Sg| < [S;| +|S] = o(n").
Using Lemma 4.1, it is easy to see that we can compute an r-hierarchy in O(mn'~") time w.h.p., including pivots, bunches
and clusters for each S;.

Later, we compute shortest paths from the last level S, and show that either this gives a 2-approximation, or that
we can obtain a 2-approximation through the lower levels. The latter is done with Algorithm 3. Here, for each level, we
compute shortest paths from S; in a sparser graph, where the distances to some essential vertices equal the distances in the
original graph. This suffices for correctness: on at least one of the levels, a distance estimate through the pivot of that level
gives a 2-approximation, see Lemma 4.3.

Notation. We denote d(v, A) for the distance from a vertexv € Vtoaset A C V, ie., d(v,A) := min,ca d(v, u). Next,
we define E4(v) as the set of edges with weight less than d(v, A), i.e, E4(v) := {{u,0} € E : w(u,v) < d(v, A)}. And finally,
we define E4 := ) ,cy Ea(v). We recall that we use B(u, A) to denote the bunch of u w.r.t. some set of pivots A.
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Algorithm 3: A subroutine for computing APSP [BK10, Algorithm 8]
Input: An r-hierarchy V=5S,28 2 - 2S¢ 2 Sky1 =0, fork = (1 —r)logn
1 foreachi € [0,k] andu € V do
2 Compute pivot p;(u) of u w.r.t. S;;
3 O(u, pi(w)) «— d(u, p;(u))
4 end
5 foreachu € V \ S do

6 Compute B(u, Sk);

7 foreach x € B(u,S;) and0 < i <k do

8 foreach neighbory of x do

9 | 8(pi(w),y)  min{8(pi(u), y), 8(u, pi(w)) + 5w, x) +w(x, y)}
10 end
1 end
12 end

13 foreachi € [0,k — 1] ands € S; do
14 ‘ Run Dijkstra from s on (V, Es
15 end

16 return §

U {s} x V), with w(s,v) = §(s,v), and update §(s,v) for all v € V accordingly

i+l

Independent of our choice of r, this algorithm ensures a 2-approximation for certain vertices.

LEmMA 4.3. [[BK10] Theorem 7.3] Let u,v € V be any two vertices, and let § be the output of Algorithm 3. If d(u, px(u)) +
d(v, pr(v)) > d(u,v), then

in {8(u, pi(u)) + 8(pi(w),0), 8(v, pi(0)) + 8(pi(0), u)} < 2d(u, v).

This holds for any choice of r € [0,1].

The running time however does depend on r. By computing shortest paths on the sparser graph, we avoid the expensive
computation of shortest paths from S; to all of V. Instead, for each level, we require O(mn!~") time to construct the sparser
graph, and O(n?) time to compute shortest paths from S;.

LEMMA 4.4. [[BK10] Lemma 7.4] Givenr € [0, 1], Algorithm 3 takes O(mn'™" + n?) time w.h.p.

Next, we combine this subroutine with shortest paths from the last level to obtain a 2-approximation, see Algorithm 4.
This corresponds to Algorithm 9 of [BK10], where we parameterize the hierarchy.

Algorithm 4: A 2-approximate APSP algorithm

1 ke (1-r)logn;

2 Compute an r-hierarchy V. =5y 2 51 2 --- 2 Sk 2 Sg41 = 0;
3 Run Algorithm 3 w.r.t. S, Sy, . . ., Sk, Sk+1 = 0;
4 Compute (1 + €/2)-approximate MSSP from S in (V, E)
5 foreach u,v € V do
6 if v ¢ B(u,S;) and u ¢ B(v, Sr) then
7 ‘ 8(u,v) — ming<; <k {S(w, pi(w)) + 8(pi(u), ), 5(v, pi(v)) + 6(pi(v), u)}
8 end
9 end
10 return §

We show that independent of our choice for r, this gives a 2-approximation. In case € = 0, this is [BK10, Lemma 7.5],
we adapt this proof to allow for approximate shortest paths.

LEMMA 4.5. Algorithm 4 computes (2 + €)-approximate APSP for any choice of r € [0, 1].

Proof. First of all, if u € B(v, Sx) or v € B(u, S) the exact distance is known by §(u,v). So for the rest of the proof we
assume otherwise. Now if d(u, pr (1)) + d(v, px(v)) > d(u,v), then we obtain a 2-approximation by Lemma 4.3.
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We are left with the case that d(u, pr(v)) +d(v, px(v)) < d(u,v). Without loss of generality, let d(u, pr(v)) < d(u,v)/2.
By Algorithm 3, we have 8(u, px(u)) = d(u, px(u)). Furthermore, by line 4, we have §(p (u),v) < (1 + ¢/2)d(pr(u),v). In
total we obtain by line 5 and the triangle inequality that

8(u,0) < 6(u, pr(u)) +5(pr(u),0) < d(u, pr(u)) + (1+€/2)d(pr(u),v)
<d(u,pr(u) + (1 +¢€/2)d(u, pr(w)) + (1 + €/2)d(u,0) < (2+€)d(u,v).

Since all distance estimates §(u, v) correspond to paths in the graph, we trivially have d(u,v) < §(u, ). ]
Next, we show how the running time depends on r.

LEMMA 4.6. For r € [0,1], Algorithm 4 takes O(n®* + mn'™" + T(O(n")) time w.h.p., where T(s) is the time to compute
(1 + €)-approximate MSSP from s sources in a graph with n vertices and m edges.

Proof. We can compute an r-hierarchy in O(mn'~") time w.h.p. (follows directly from the definition and Lemma 4.1).
Algorithm 3 takes O(mn'~" +n?) time (Lemma 4.4). Next, in line 4, we need to compute MSSP from |Si| = O(n"), for which
we denote the running time as T(O(n")). Finally, the for-loop of line 5 takes O(n%k) = O(n?) time. Adding all running
times, we obtain O(n® + mn'~" + T(O(n")) time w.h.p. 0

Together Lemma 4.5 and Lemma 4.6 give Theorem 1.6.

THEOREM 4.3. There exists a randomized algorithm that, given an undirected graph with non-negative edge weights G = (V, E)
and parameters p € (% 1], € > 0, computes (2 + €)-approximate APSP. With high probability, the algorithm takes

O(n? + m/p + T(O(pn))) time, where T(s) is the time to compute (1 + €)-MSSP from s sources.

(2 + €)-Approximate APSP for Weighted Graphs Baswana and Kavitha [BK10] proceed by setting r = 1/2 (or
equivalently p = 1/4/n). For the MSSP computations they use Dijkstra (hence € = 0) in O(n'~"m) = O(m+/n) time, see also
Theorem 3.2. Instead, we keep r as a parameter, and use fast matrix multiplication to obtain (1 + €)-approximate MSSP.

THEOREM 4.4. There exists a randomized algorithm that, given an undirected graph G = (V, E) with non-negative, integer
weights bounded by W and a parameter r € [0, 1], computes (2 + €)-approximate APSP. With high probability, the algorithm
runs in O(mn'™" +n®(" (1/€)°W) log W) time.

Proof. This follows directly from Theorem 1.6, combined with the (1 + €)-approximate MSSP algorithm of [EN22] (see
Theorem 2.2). |

For dense graphs, i.e., m = n2, we can balance the terms using [Bra]. If we do so, we recover Theorem 1.2. Results for

other densities are obtained in a similar fashion, see Table 2 for the results.

THEOREM 4.5. There exists a randomized algorithm that, given an undirected graph G = (V,E) with non-negative
integer weights bounded by W, computes (2 + €)-approximate APSP. With high probability the algorithm takes O(n>~" +
n®™ (1/€)°M log W) time, for any r € [0,1]. Using known upper bounds for rectangular matrix multiplication, this is
0(n*?14(1/€)°W) log W) time.

Proof. For m = n’, whp. the running time of Theorem 1.3 becomes On*" + n®"(1/e)°Wlogw) =
O(n?21313612(1/6)0() Jog W) for r = 0.78686388. 0
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A Utilizing Recent Improvements on Rectangular Matrix Multiplication

Rectangular matrix multiplication is an active research field, with the bounds on w(r) being improved in recent years [Gal23,
GU18, Gal12]. Throughout this paper, we used [GU18], the last published paper on the topic, for the sake of replicability.
However, more recent, concurrent work by Vassilevska Williams, Xu, Xu, and Zhou [WXXZ23] gives better bounds. In this
section, we detail how this affects our running times.

Our result for 2-approximate APSP in unweighted graphs, Theorem 1.1, has running time O(n?°~" + n®(")) =
O(n?031062336) "for r = 0.4689376644.

Our results for (2 + €)-approximate APSP in weighted graphs, Theorem 1.3, are given in Table 4.

m | Runnning time | Using [WXXZ23] for w(r) with r
nld | 2 AT o) 2008199835 0.3918001650
s | 25T 4 o) pn?.031062336 0.4689376644
nl6 p2-6-r 4 po(r) 12-061029532 0.5389704676
W7 | 27T 4 pen) pn%09>342149 0.6046578512
nl8 | pZ8=r 4 po() n?:132019229 0.6673807708
A9 [ 297 4 o) p2 7770761 0.7282292393
720 3T 4+ pe p?-212352011 0.7876479892

Table 4: Our (2 + €)-approximate APSP results (Theorem 1.3) using [WXXZ23], for 1/e = n°1). Theorem 1.3 gives the
fastest running time when m > n'*%. For m < n'*, we do not improve on [BK10].

Our results for near-additive APSP in unweighted graphs, Theorem 1.5, are given in Table 5.

k | Runnning time | Using [WXXZ23] for w(r) with r

2 | n2t(-172 4 po(r) p%151353127 0.6972937458
4 | p2ra-nB ol n%11851189% 0.6444643104
6 | n2t@-n/d { poln 12097785917 0.6088563325
8 | n2t@-n/5 { po(n 12-083460832 0.5826958380

Table 5: Our (1 + ¢, k)-approximate APSP results (Theorem 1.5) using [WXXZ23], for 1/e = n°).

B (2,W,,)-Approximate APSP

In this section, we prove Theorem B.1, stated below, providing (2, W, ,)-approximate shortest paths. This is a generalized
version of Baswana, Goyal, and Sen [BGS09], who provide (2, 1)-APSP in unweighted graphs in O(nm?/® + n?) time. We
make three improvements in our generalization: 1) the algorithm allows for weighted graphs, 2) it achieves subquadratic
time for m < n®2, since it is a distance oracle rather than explicit APSP, and 3) we achieve a faster running time for
m > n*?2, by having a wider choice in parameters.

The structure of the algorithm is similar to Section 4.3. We show that for vertices whose bunches not overlap, the path
through the pivot is actually a (2, W, ,)-approximation (even if the bunches are adjacent, top left case in Figure 5). Then for
bunches that do overlap (the bottom case in Figure 5), we create a data structure to store these distances.

We note that this result is mostly interesting in the regime where m = O(n*?), where we obtain subquadratic time and
space. For denser graphs, we do not improve upon Baswana and Kavitha [BK10], who provide a (2, W,,,)-approximation in
O(n?) time and space.

THEOREM B.1. Given a weighted graph G, we can compute a distance oracle that returns (2, W, ,)-approximate queries in
constant time, where W, , is the maximum weight on a shortest path from u to v, with one of the following guarantees:

« preprocessing time O(nm?/®) and uses space O(nm?/*), when m < n*?, and
« preprocessing time O(mn'/?) and uses space O(n?), when m > n®?,
or it has (optimizing for space) running time O(mn?/*) and O(n°/) space.

Proof. Algorithm. Let p € [% 1] be a parameter, to be chosen later.
PreProcessing(G, p):
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B(u) B(v) B(u) B(v)

Figure 5: Three different possible interactions between the shortest path between u and v, and the bunches of u and v.

1. Run CompUTEBUNCHES(G, p)
2. Run Dijkstra for each vertex u € A to compute all distances d(u,v) foru € A,jv € V.
3. Foru € V, for w € B(u), forv € C(w):

(a) Initialize Sovertap(u,v) < d(u, w) +d(w,0) if no such entry exists.

(b) Otherwise: doverlap (4, v) = min{Sovertap (), d(u, w) +d(w,v)}.

Query(u,v):
Output §(u, v) to be the minimum of

(2) min{d(u, p(u)) +d(v, p(u)),d(u, p(v)) + d(v, p(v))};
(b) 5overlap(us U);

Correctness. We will show that 6(u, v) gives a (2, W, ,)-approximation of d(u,v). First, note that all distances making
up &(u,v) correspond to actual paths in the graph, hence d(u,v) < §(u,v). Next, let 7 be the shortest path from u to v. We
distinguish two cases.

Case 1. There exists w € 7 such that w € B(u) N B(v) (the bottom case in Figure 5).

We have that

doverlap (4, ) = min{d(u,x) +d(x,v) : x € B(u) and y € C(x)}
= min{d(u,x) +d(x,v) : x € B(u) and x € B(y)}.

In particular, this includes x = w, and w is on the shortest path, so by Query Step b, we have that §(u,v) < d(u,v).

Case 2. There is no w € & such that w € B(u) N B(v).

This means there is either a vertex w € & such that w ¢ B(u) U B(v) (the top right case in Figure 5), or there is an
edge {u',v’} on 7 such that v’ € B(u) \ B(v) and o’ € B(v) \ B(u) (the top right case in Figure 5). The first case gives a
2-approximation by the same reasoning as in the proof of Lemma 4.2, where we use exact shortest path, hence € = 0.
Here we only consider the second case. Since v" ¢ B(u), we have d(u,v’) > d(u,p(u)), and since v’ ¢ B(v), we have
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d(u’,v) > d(v, p(v)). Combining this, we obtain d(u, p(u)) + d(v, p(v)) < d(u,v) + w(u’,v"). Without loss of generality,
assume that d(u, p(u)) < w By Query Step a we have:

8(u,0) < d(u,p(u)) +d(v, p(u))
< d(u,p(u)) +d(u, p(u)) +d(u,0)
< 2d(u,0) + w(u', ")
< 2d(u,0) + W,0.

Running time. Step 1 and 2 take ON(%) and O(pnm) time respectively, see Lemma 4.1. For Step 3, notice that Step 3a
and 3b both take constant time. So Step 3 takes total time

DD DL o) =0(),

u€V weB(u) veC(w)

since |B(u)| = ON(’%) and |C(w)| = O~(Il—)), by Lemma 4.1. We obtain total time O~(% + pnm + 1%) We can balance this in
three different ways:

« I = pnm, which implies p = n~"/2 and gives running time O(mn'/? + n?).
. % = 1%, which implies p = ;- and gives running time (3(’"72 +n?).

1/3 and gives running time O(m*/ + nm?/?).

. pnm = l% which implies p = m~
Note that O(mn'/? + n?) is always smaller than O~(’"T2 +n?), since mn'/? < mTZ for m > n®/? and mn'/? < n® for m < n*/2.

Further we see that O(m*/® + nm?/?) is smaller than O(mn'/? +n?) when m < n3/2, since then m*® < n? and mn'/? < n.

Finally we notice that nm?3 > m*/® when m < n%/2, and that mn'/? > n? for m > n%/. So our running time simplifies
to

« O(nm?/?), when m < n%/?2, and
« O(mn'/?), when m > n3/2.

Query time. We note that we have computed B(u) and B(v), so checking if v € B(u) or u € B(v) can be done in
constant time. Further, we have also computed d(u,v) if v € B(u). For Query Step a, notice that we computed distances
from A to V, and for Query Step b we have already computed the value §oyertap (4, v). So the whole query can be done in
constant time.

Space. We need O(|A|n) = O(pn?) space for the distances from A, and ON(I%) space for the overlap data structure.

All other space requirements are clearly smaller. Using p = n~1/2 gives space O(n?), using p = m~'/3 gives space
O(nm?P + n?m=13) = O(nm?7).

To optimize the space usage, we set pnz = 1%’ sop = n’1/3, we obtain total space requirement é(ns/s) — O(mn2/3).
This gives running time O(mn'/* + mn®?® + n%/3) = O(mn?/). O
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