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Abstract—1In this paper, we study a novel fixed-time
extremum-seeking algorithm that eliminates the need for filters
to obtain an appropriate estimation of the gradient of a
static map for optimization problems where the cost function
is available only via measurements or evaluations. Previous
research leveraged these filters to facilitate the application
of averaging theory in analyzing the stability properties of
the system. Specifically, they were employed to separate,
using multi-time scale techniques, the non-smooth terms of
the algorithms from the rapidly fluctuating oscillatory terms
associated with periodic dithers. This separation was achieved
through a singular perturbation argument, where the filter
acted as boundary layer system with a sufficiently fast transient.
However, since in many practical applications such transient
cannot be made arbitrarily fast, and since classic extremum-
seeking algorithms are also known to be stable even in the
absence of filters, it is natural to ask whether the fixed-time
extremum-seeking dynamics can also be simplified by removing
the filters while achieving semi-global practical fixed-time
convergence properties. This paper addresses this question for
scalar quadratic cost functions, providing positive and negative
answers depending on the structure of the cost. Additionally,
we demonstrate that removing the filters results in average
dynamics distinct from the conventional fixed-time gradient
flow dynamics found in existing literature. Furthermore, we
provide numerical examples to illustrate our findings.

I. INTRODUCTION

We study a class of extremum-seeking (ES) dynamics
aimed at solving model-free optimization problems in static
maps. Standard ES algorithms, grounded in classic averaging
theory, are recognized for approximating gradient-flows (on
average) as the frequency of the dither increases, thereby
inheriting the stability and convergence properties of these
gradient flows. In recent years, efforts have been made to
enhance the convergence rate of ES algorithms, particularly
when the cost function exhibits certain qualitative properties
such as being quadratic, strongly convex, invex, etc. For
instance, in the case of smooth strongly convex functions, the
basic ES scheme studied in [1], [2] can achieve exponential
rates of convergence of order O(e™"'), where kK > 0
denotes the strong convexity constant. In [3], a Newton-based
ESC method was introduced to eliminate the dependency
on ~ in the convergence rate. In [4], momentum-based
methods and hybrid techniques were used to achieve rates
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of convergence of order O(e~V**) and O(%). Furthermore,
prescribed-time results were recently derived in [5] using
chirpy probing signals whose frequency increases over time.
Similarly, fixed-time results (of semi-global practical nature)
were investigated in [6], [7] employing non-smooth dynamics
that blend sub-linear and super-linear feedback, inspired by
the constructions of [8] and [9].

The findings of [6] relied on a low-pass filter to de-
couple the oscillatory terms and the non-smooth terms of
the algorithm, thereby facilitating analysis through averaging
and singular perturbation theory. However, this approach
relies on analyzing the filter as a “parasitic” dynamics via a
sufficiently large time-scale separation between the low-pass
filter and the main state dynamics, which may be challenging
to achieve in many practical applications. Based on this, it
is natural to ask whether the filters can be eliminated from
the fixed-time scheme proposed in [6], while retaining, to
some extent, the semi-global practical fixed-time properties.
Establishing this property for non-smooth ES algorithms is
challenging, primarily due to the complexity of explicitly
computing several integrals that emerge in the average non-
smooth dynamics associated with the system.

In this paper, we advance the study of fixed-time ES
dynamics by exploring approaches that do not rely on filters.
Naturally, this investigation entails a detailed computation
and analysis of the average dynamics of the proposed non-
smooth algorithm, and establishing the connection between
the stability properties of these dynamics and those of the ac-
tual algorithm. In this paper we primarily focus on quadratic
scalar cost functions and demonstrate that even for such
“simple” cost functions, the average dynamics without filters
differ from the target fixed-time gradient flows examined in
[6], [8]. We also establish that despite the disparity between
the average dynamics obtained without filters and the flows
of [6], [8], the resulting average dynamics still exhibit the
same type of fixed-time stability property provided the cost
has no offset. In other words, we establish that for such cost
functions, achieving fixed-time extremum seeking (in a semi-
global practical sense) is feasible without resorting to low-
pass filters. The analysis is complemented by a judicious
application of Lyapunov-based arguments and an averaging
result for non-Lipschitz systems, where the average dynamics
are only semi-globally practically asymptotically stable with
respect to certain parameters. We finish the paper by pre-
senting numerical examples that serve to illustrate the main
theoretical results.

The rest of this paper is organized as follows: Section
IT presents preliminaries on notation and stability proper-
ties. Section III presents the problem statement. Section IV



presents the main results. Section V presents a numerical
example, and Section VI ends with the conclusions.

II. PRELIMINARIES

In this section we introduce some basic notation and
stability definitions.

A. Notation and Auxiliary Lemmas

We use R. to denote the set of positive real numbers,
Z4 to denote the set of positive integers, N := Z, U {0},
and S' to denote the unit circle in R%2. We denote the floor
function [-|] : R — Z as the largest integer that does
not exceed its argument. We also define the sign function,
sgn(+) : R — {—1,1}, to be -1 when its argument is negative
and 1 otherwise. A continuous function p : R>o — Ry
is said to be of class K if it satisfies p(0) = 0 and is
strictly increasing. It is said to be of class I, if it is of
class K and, additionally, it grows unbounded. A function
B:R>g x R>g — R>g is said to be of class KL if it is of
class K in its first argument and for each r > 0, 5(r, -) is non-
increasing and lim;_,~, 8(r,t) = 0. Furthermore, 5 € KLy
(generalized K L) if B(-,0) € K and for each fixed r > 0,
B(r,-) is continuous, non-increasing and there exists some
T(r) € [0,00) such that 8(r,t) = 0 for all ¢ > T'(r). The
mapping T is called the settling time function.

B. Fixed-Time Stability

Consider a system of the form
&= f(z), x(0)= o, (D

where [ : RN — RY is a continuous function, z € R¥ is
the state of the system, and zg € RY is the initial condition.
In general, we shall not assume that f is differentiable or
even Lipschitz. The following definition will be useful to
study the properties of system (1).

Definition 1: System (1) is said to render the origin z = 0
uniformly globally finite-time stable if there exists a class
KL+ function § such that every solution of (1) satisfies:

lz(t)] < B(jz(0)], 1), V=0, 2)

where the settling time function 7" is continuous. System (1)
is said to render the origin « = 0 uniformly globally fixed-
time stable if, additionally, sup, cgp~v T'(7g) < oc. O

The following Lemma corresponds to [10, Lemma 1]. The
converse result is also established in [11, Thm.2] when the
settling time 7' is continuous.

Lemma 1: Suppose there exists a smooth function V' :
RY — R that is positive definite, radially unbounded, and
satisfies:

V= (VV(2), f(z)) < —a1 V()P =V (2)P2, Vo e RY,

for some c¢1,co > 0, p; € (0,1) and po > 1. Then, the origin
x = 0 is globally fixed-time stable for the dynamics (1), and
the settling time function satisfies the bound

1 1

Tl < =) T am =1’

3)

for all x5 € RY. Moreover, if pr=1-— i pa =1+ i

and « > 1, then the settling time function satisfies the bound

T(z(0)) < —21 4)

C1C2 '
for all z(0) € R™. O

Finally, in this paper we will also make use of the
following practical stability properties.

Definition 2: Consider a parameterized system & = f.(x),
with unique equilibrium point x*, where ¢ > 0 is a tun-
able parameter. We say that x* is semi-globally practically
asymptotically stable if there exists § € KL such that for
each A > 0 and v > 0 there exists €* > 0 such that
for all ¢ € (0,e*) all solutions of the system satisfying
|z(0) — z*| < A also satisfy

lx(t) —z*| < B(|=(0) —x*|,t) +v, ¥V t>0. (5)

If 5 € KL7 and the settling time function of /3 satisfies
sup,, ey T'(r) < oo, then the system is said to render z*
semi-globally practically fixed-time stable. (|

III. PROBLEM STATEMENT

We consider the problem of minimizing a scalar cost
function J : R — R using only measurements or evaluations.
In this way, it is assumed that the exact mathematical form
of J and its derivatives is unknown. Such types of problems
can be tackled using extremum-seeking (ES) algorithms [1],
[2]. The simplest ES scheme that can tackle this problem is
characterized by the following dynamics with state x:

T = —% sin(wt)J (z + asin(wt)), (6)

where a,w, k are positive tunable parameters. System (6) can
be analyzed using a multi-time scale approach. In particular,
when £ is sufficiently small compared to w, and a is
sufficiently small compared to k, the average dynamics of
(6) can be shown to be:

T =-VJ(&) + O(a). (7)

where ¥ denotes the average of state x. Under suitable
assumptions on J, and for sufficiently small values of a,
this system renders the set of minimizers of J semi-globally
practically asymptotically stable as a — 07. Indeed, as
a — 07, the trajectories of (7) approximate those of a
standard gradient flow ¢y = —V.J(y). Moreover, as w — 0,
or, equivalently (k — 0), the trajectories of (6) approximate
those of (7) (on compact time domains and compact sets
of initial conditions) [12], thus eventually establishing a
connection between the stability properties of (6) and those
of a standard gradient flow.

A. Fixed-Time ESC: A Filterless Approach

To improve over the asymptotic rates of convergence of
smooth ES dynamics, a class of fixed-time ES algorithms was
studied in [6]. Such algorithms seek to approximate fixed-
time gradient flows [8] of the form:

VJ(x) VJ(x)

S 5 T 7 e




where k > 0, p; € (0,1) and po < 0. Indeed, as shown
in [6], [8], if J is strongly convex with a globally Lipschitz
gradient, then the minimizer x* of J is fixed-time stable
under the dynamics (8). Based on this observation, and
following the same ideas behind the study of (6) and (7),
one can hypothesize that the following filterless ES algorithm
could provide a model-free version of (8):

_ k() (@ 4 ap(t))  kap()J (z + ap(t))

w(8) I (z + ap(®) [P |p(t) (2 + ap(t)) P>’
where p(t) = sin(wt), & > 0, p1 € (0,1) and p2 < 0.
Note that this system has a continuous right-hand side. The
main goal of this paper is to study to what extent the above
hypothesis is true, and whether the average dynamics of
(9) are indeed given by (8). Since the dynamics described
in equation (9) are highly non-smooth, which can rapidly
render several computations intractable, we will concentrate
on quadratic cost functions.

Assumption 1: The cost J has the form J(z) = $Ha? +
Bx + Hy, where H > 0. O

While the class of quadratic cost functions is not as
general as the class of strongly cost functions studied in
[6], it will be shown in the next section that, whenever the
filters are removed, the quadratic structure of J may induce
some unexpected phenomena depending on the nature of the
bias. Furthermore, scalar quadratic cost functions can provide
suitable approximations for functions that emerge in different
practical applications, see [13].

(€))

IV. MAIN RESULTS

To study system (9) for scalar quadratic maps, without loss
of generality we can take w = 1, since otherwise a suitable
change of time scale can be used to obtain this condition.
Then, system (9) takes the form

k1J(x 4+ asint)sint
|J(x + asint)sint|P

koJ(z + asint)sint
|J(z 4 asint)sint[p2
(10)

By Assumption 1, J(x + asint) can be written as:

2 2
J(x + asint) = %H <x+ g +asint> + Hp — f—H
Using the transformation = = x+ %, we can assume without
loss of generality that B = 0. In this way, we can focus on
studying the stability properties of the optimal point z* = 0.
We now divide our analysis into two different cases: Hy = 0
and Hy > 0.

A. Case I: Hy=0

When Hj = 0, the optimal value of the cost satisfies J* =
0, and the dynamics (10) can be written as:

.’t = —\1/1(1') — \Ifg(l'), (11)
where
H\'"" sint -
() — L : —2p;
U, (z) =k; ( 5 ) ErT |x + asint| . (12)

for i € {1,2}. To analyze this system, we will consider two
different conditions on « : |z| > a and |z| < a.

1) Suppose that |x| > a: By applying the generalized
binomial theorem to |« + asin t|>~2P¢, and using the obser-
vation that |z 4+ asint| = |z| 4+ sgn(z)asint we obtain

2—2p;

(] +sen(e)asing)® " = o~ +a(2 — 2p) - sin

+ Z Chi |x§§ik )f (asint)®
(13)
for all |z| > a, where
1 k
Cri= 27 [ =20 =), (14)
j=1

Using a Stirling approximation, it can be shown that
>ore 1 |Cril < oo for i € {1,2}. Substituting (13) into
(11), we obtain the following alternative expression for (10)
whenever |z| > a:

2 1-p; :
H t
_ _Zki (2> sin . (lmlz—zpi
jzlsgn(z)*
+a(2 - 2pz)‘ |2 sint + E C;”W(asmt)
(15)

System (15) is continuous and can be studied via averaging
theory [14], [15]. By setting k; = I for ¢ = 1,2 and
computing the average vector field, we obtain:

2

Hx x
T pi—1 prp: 2k
r= Z<q’2 H |Hz|2: +Z Ck%|x|2pz+2k>

i=1
(16)
where ¢; and C} ; are given by:
2=2p;i [T . o p
¢ = P / | sin t|?Pidt (17)
27 o

H 1*Pz‘C i s
C;,i—<2> 2;;1’/ |sin |22 Pige.  (18)

To arrive at (16), we used the following facts:

e k1
sin ¢
/ %:0 V k even

|z|sgn(z)* =2 Yk odd,

which follow immediately from the fact that an odd periodic
function has average 0. To study the stability properties of the
average dynamics (16), we consider the Lyapunov function

V(z) = 127, whose time derivative along the trajectories of

the average system satisfies:
y 2 H Lo 2—-2 S 2k 2-2 2k
VZ*Z(%(;) \x|_p"+ZC;’ia £ )
=1 k=1
19)
for all  where |z| > a. To proceed, it is helpful to

state the following lemma, as it will be instrumental for our
simplification of the expression in (19).



Lemma 2: Let S; = {|1 —p;] +1,[1 —p;] +2,..}.
For k; € Z4 \ S; and i = 1,2, we have sgn(C}, ;) = 1.
Otherwise, if k; € S; then:

—1 if p1 € (0,3)
1 ifp €[i,1)
. 1 ifpre (-
Sgn(ck2,2) 11 else

Proof: This follows immediately from the observation
that sgn(Cy ;) = sgn(Cax+1,;) and by inspecting (14). ®
With Lemma 2 at hand, we can observe that for p; € [%, 1)
and po & (—n—1,—n — 1) Vn €N, the inner summation
in (19) is negative. Hence, for p; satisfying these properties,
we have that:

Sgn(CZI,l) = {

)

—n—3),neN

v < 7q12p171H17p1 |x|272p1 _ q22p271H17p2|x‘272p2
< —qH'TPVITP g HITP2Y P2 Y ] > a.
(20)

Now, suppose p; € [3,1) and po € (—n —1,—n — 1) for
some n € N. Then we can proceed from (19) as follows:

A H 1—p1 B H 1—p2 B
V= —q (2> ‘CC|2 2p1 __ g2 (2) |x‘2 2p2

o0 oo
o Z Cz,la2k|x|272p172k o Z 0;2a23 ‘x|272p272]

k=1 =1

1—p; 1—p2
o (H 2-2 H 2-2
< = = P1 __ _ P2

o) 1-p
+ a2—2p2 Z ‘C;Q B % (_I;I) 1 a2—2p1

J=[1-p2|+1
2D
We choose a > 0 sufficiently small such that
>y N H\'"™ 4 g,
a > e 2|_7 <2> a <0. (22)

J=[1-p2]+1

Thus, we can proceed from (21) and obtain

1-p1 1-p2
. e (H 9_9 H 9_9
V< -—=—=|= P1 _ _ P2
<-2(5) kP -w(y)

< —Hl‘pl%vl_’“ —HY P2V Y g >
This last inequality directly implies by [16, Thm. 4] that the
optimal point z* is globally practically fixed-time stable as
a — 0% for the average system (18). Moreover, the settling
time can be upper-bounded as:

2 1
T < — ) 23
(wo) < Hi=pigipy H'7P2qop (23
Therefore, we have verified that as long as p; € [%, 1) and

|x| > a, the average system of (11) satisfies the Lyapunov
conditions for practical fixed time stability. If po & (—n —
1,—n — %) Vn € N, the result holds even if a does not
satisfy (22).

2) Suppose that |x| < a: In this case, to the best of
the authors’ knowledge, there is no well-defined method for
approximating the average of (11). However, we can still
analyze the qualitative properties of the average dynamics
by considering the integral:

2 H\1-Pi .
—ki (%) T sint 2-2
r = int|“~*Pidt
=3 =t | gl ot

i=1
—k H\1-pi ™
1( ) / \sint|1_p'i(|x+asint|2_2’”
0

2
— |z - asint\2*2Pi>dt.

-yl

i=1
(24)

In particular, note that:

|2_2pi

sgn(|z + asint — |z — asint|*"?P) = sgn(x),

for all t € [0,7], and since (24) is continuous in x and
vanishes at * = 0, we can conclude that the average
converges to zero once it enters the neighborhood [—a, a|. In
particular, using the same Lyapunov function V' = lxz we
have that V' = x4 and since z and & always have dlfferent
sign, then V < 0. Moreover, the product & vanishes only at
x = 0. This analysis reveals that in the O(a) neighborhood

of the origin, the average dynamics are also well-defined.

By combining the above results, we can obtain the fol-
lowing key technical result:

Proposition 1: Consider the average dynamics (16) and
suppose that p; € [%, 1),p2 < 0. Then, the optimal point
x* is globally practically fixed-time stable as a — 07. In
particular, there exists a* > 0, such that for all a € (0,a*),
all solutions of (16) satisfy

|z(t) — 2" < B(|2(0) — ™[, ) + p(a),

where p(-) is a positive definite function, and 5 € KL with
settling time 7'(-) satisfying (23) for all 2(0) =z € R. O
Remark 1: The result of Proposition 1 establishes a key
missing technical result in the literature of ESC. Namely,
it shows that the average dynamics of the filterless ESC
algorithm (10) do have (in a practical sense) the fixed-
time stability property. However, the result also highlights
an important fact: the average dynamics of system (10) are
not exactly equal to the fixed-time gradient flow (8), even if
O(a) terms are neglected outside an a-neighborhood of the
origin. In particular, using (16), the average dynamics can
be written as
Y S A C) B

V(@)

(25)

VJ(z)
* V(@)

+ O(a), (26)
where O(a) denotes terms bounded for all || > a, and the
constants l~£1, ky >0 depend on H. This observation already
highlights an important distinction compared to the results of
[6], where a smooth filter was used to obtain a quasi-steady
state approximation of (8). (|

Remark 2: The closed-form expression presented in (16)
also highlights an interesting behavior of the system when-
ever p; = 1. In this case, using (17), we obtain ¢; = 0,



fao(z) with J* =0 and J* = 0.5
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Fig. 1: Vector field of the average system of (11) with a =
0.005,p1 = 0.62,po = —0.7, and H = 9.84. For Hy we
use Hy =0 and Hy = 0.5

which in turn implies that ki = 0 in (26) thus effectively
removing any “finite-time” behavior from the average dy-
namics. Again, this is in contrast to the behavior obtained
in the filter-based approach of [6], where p; = 1 recovers a
finite-time gradient flow. (]

By leveraging Proposition 1, we can now state the second
main result of this paper, which studies the stability prop-
erties of the filterless ESC algorithm (10) when J has no
offset.

Theorem 1: Consider the filterless ESC algorithm (10),

and suppose that Assumption 1 holds, p; € [,1), p» <0,
and Hy = 0. Then, the global minimizer x* is semi-globally
practically fixed-time stable as (1,a) — 0%.
Proof: The result follows by a direct application (in the
correct time scale) of averaging results for non-Lipschitz
systems whose average dynamics are only semi-globally
practical stable, i.e., [15, Thm. 7]. Specifically, we consider
the following system:

1 pJ(x+ap)
a|pJ(x + ap)Pr

1 pd(z+ap)
alpd(x +ap)lP2’
(27a)
E-[8 312 wass e
where the exosystem (27b) is used to generate the sinusoid
signal ¢ — pu(t). In particular, every solution to the linear
oscillator (27b) satisfies p(t) = sin(wt 4+ ¢g), where ¢g €
[0,27). Since the phase-shift is inconsequential due to the
periodicity of the dither, by Proposition 1 the resulting dy-
namics (27a) have a well-defined average system satisfying
(25) as a — O7T. Then, by [15, Thm. 7], the original
system (27a) will retain the same KL bound, provided w is

sufficiently large and « is sufficiently small. This establishes
the result. u

According to Theorem 1, the initial hypothesis on the
connections between the stability properties of (8) and (10)
turns out to be true for the case when Hy = 0, i.e., when the

10°

Original System
== = Average System
Settling Time Bound
a
100
x
105 T
10-10
0

time (s)

Fig. 2: Trajectories of the example system with H = 6.74
compared with its average system (30) We can see that
the trajectories reach the set (a, —a) within our computed
settling time bound. For all simulations we use a = 0.005

optimizer of the cost function is zero. However, in the next
section we show that the inclusion of a non-zero offset in
the cost function can significantly change the nature of the
stability properties of the non-smooth filterless ES dynamics.

B. Case Il: Hy > 0

When the cost function J has a positive offset, the
term Hy > 0 essentially ”smooths” out the filterless ESC
dynamics, resulting in the loss of the fixed-time stability
properties. To see this phenomena, note that in this case the
dynamics can be written as:

& =—fi(z,t) = fa(z,1), (28)
where
~ B H 1-p; sint ] 5 2H0 1—p;
fl(x7t) =ki (5) |sint\1’i (((L’ + asin t) + T) .

Let fq,(z) denote the time average of (28). Since % >0,
W is continuous for all £, x. Hence, we can differentiate

fav(x) to obtain:

Oulz) 1 [0
or  2n)_ . O«

(fl (z,) + f2(z,t)) dt,  (29)

which is clearly bounded if we restrict z on any compact set
even if @ = 0. Hence, the finite-time convergence property
is not preserved. For a better visualization of the smoothing
effect of having J* > 0, please refer to Figure 1.

V. NUMERICAL EXAMPLES

In this section, we illustrate our theoretical results via a
numerical example, where p; = % and py = —%. With this
choice of p;, we can obtain a more detailed characterization
of the average dynamics of the system and also of the settling
time. Similar to our previous analysis, we consider two cases.

When |z| > a, we have that |x + asint| = sgn(x)(z +



5 Vector Field of the Average System

Inside the (—a, a) neighborhood
1 T T

0.03
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Fig. 3: Vector field of the average system of (30)

asint). With this observation, we can obtain the average
system as follows:

2 H 2 . _3 _1 H‘f
= —q (2> sgn(r) —q227 2 H QW

3
2 (H\?2 =, T
(1(2)%11(@/ |sint|2 dt,

o (30)

—Tr

where we set k1 = ky = é It can also be verified that
g1 and g2 here are consistent with the formulas given in
(17). We can also see that the first two terms in (30) are
consistent with (16), since sgn(z) = HQ% and z|z| =

x 2

Hﬂ%l). Furthermore, since Cj, 1 =0 for £ > 2 and C}, 5 =
xT 2

0 for k > 4, it follows that only CT , is nonzero. We can
compare the last term in (30) with (18) and see that they
are consistent. With the Lyapunov function V' (z) = ix‘l, we
can compute its time derivative along the trajectories of (30)

and obtain that for all |z| > a:
V<2 H3VE -2, H3VE

By using (4) with a = 2 we can obtain a settling time bound
of T(zo) < 2221, We simulate the trajectories of the system
along with those generated by its average also for H = 6.74.
The result is shown in Figure 2, and the computed settling
time of % = 0.533. To better illustrate our results, we
provide simulations for the vector field of the average system
and the trajectories generated by the average system.

VI. CONCLUSIONS

In this work, we provide a thorough and comprehensive
analysis of a proposed filterless ESC algorithm for the solu-
tion of fixed-time optimization problems in scalar quadratic
maps that are only accessible via measurements. Compared
to existing results, the approach simplifies the implementa-
tion by removing additional states and auxiliary filters. We
provided a detailed analysis of the average dynamics of the
system, uncovering the smoothing effect that non-zero cost
minima can have on the algorithm, as well as conditions
on the exponents under which the finite-time or fixed-time

convergence properties are lost. Future research directions
will extend the results to multi-variable and time-varying
optimization problems.
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