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AbstractÐ In this paper, we study a novel fixed-time
extremum-seeking algorithm that eliminates the need for filters
to obtain an appropriate estimation of the gradient of a
static map for optimization problems where the cost function
is available only via measurements or evaluations. Previous
research leveraged these filters to facilitate the application
of averaging theory in analyzing the stability properties of
the system. Specifically, they were employed to separate,
using multi-time scale techniques, the non-smooth terms of
the algorithms from the rapidly fluctuating oscillatory terms
associated with periodic dithers. This separation was achieved
through a singular perturbation argument, where the filter
acted as boundary layer system with a sufficiently fast transient.
However, since in many practical applications such transient
cannot be made arbitrarily fast, and since classic extremum-
seeking algorithms are also known to be stable even in the
absence of filters, it is natural to ask whether the fixed-time
extremum-seeking dynamics can also be simplified by removing
the filters while achieving semi-global practical fixed-time
convergence properties. This paper addresses this question for
scalar quadratic cost functions, providing positive and negative
answers depending on the structure of the cost. Additionally,
we demonstrate that removing the filters results in average
dynamics distinct from the conventional fixed-time gradient
flow dynamics found in existing literature. Furthermore, we
provide numerical examples to illustrate our findings.

I. INTRODUCTION

We study a class of extremum-seeking (ES) dynamics

aimed at solving model-free optimization problems in static

maps. Standard ES algorithms, grounded in classic averaging

theory, are recognized for approximating gradient-flows (on

average) as the frequency of the dither increases, thereby

inheriting the stability and convergence properties of these

gradient flows. In recent years, efforts have been made to

enhance the convergence rate of ES algorithms, particularly

when the cost function exhibits certain qualitative properties

such as being quadratic, strongly convex, invex, etc. For

instance, in the case of smooth strongly convex functions, the

basic ES scheme studied in [1], [2] can achieve exponential

rates of convergence of order O(e−κt), where κ > 0
denotes the strong convexity constant. In [3], a Newton-based

ESC method was introduced to eliminate the dependency

on κ in the convergence rate. In [4], momentum-based

methods and hybrid techniques were used to achieve rates
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of convergence of order O(e−
√
κt) and O( 1

t2
). Furthermore,

prescribed-time results were recently derived in [5] using

chirpy probing signals whose frequency increases over time.

Similarly, fixed-time results (of semi-global practical nature)

were investigated in [6], [7] employing non-smooth dynamics

that blend sub-linear and super-linear feedback, inspired by

the constructions of [8] and [9].

The findings of [6] relied on a low-pass filter to de-

couple the oscillatory terms and the non-smooth terms of

the algorithm, thereby facilitating analysis through averaging

and singular perturbation theory. However, this approach

relies on analyzing the filter as a ªparasiticº dynamics via a

sufficiently large time-scale separation between the low-pass

filter and the main state dynamics, which may be challenging

to achieve in many practical applications. Based on this, it

is natural to ask whether the filters can be eliminated from

the fixed-time scheme proposed in [6], while retaining, to

some extent, the semi-global practical fixed-time properties.

Establishing this property for non-smooth ES algorithms is

challenging, primarily due to the complexity of explicitly

computing several integrals that emerge in the average non-

smooth dynamics associated with the system.

In this paper, we advance the study of fixed-time ES

dynamics by exploring approaches that do not rely on filters.

Naturally, this investigation entails a detailed computation

and analysis of the average dynamics of the proposed non-

smooth algorithm, and establishing the connection between

the stability properties of these dynamics and those of the ac-

tual algorithm. In this paper we primarily focus on quadratic

scalar cost functions and demonstrate that even for such

ªsimpleº cost functions, the average dynamics without filters

differ from the target fixed-time gradient flows examined in

[6], [8]. We also establish that despite the disparity between

the average dynamics obtained without filters and the flows

of [6], [8], the resulting average dynamics still exhibit the

same type of fixed-time stability property provided the cost

has no offset. In other words, we establish that for such cost

functions, achieving fixed-time extremum seeking (in a semi-

global practical sense) is feasible without resorting to low-

pass filters. The analysis is complemented by a judicious

application of Lyapunov-based arguments and an averaging

result for non-Lipschitz systems, where the average dynamics

are only semi-globally practically asymptotically stable with

respect to certain parameters. We finish the paper by pre-

senting numerical examples that serve to illustrate the main

theoretical results.

The rest of this paper is organized as follows: Section

II presents preliminaries on notation and stability proper-

ties. Section III presents the problem statement. Section IV



presents the main results. Section V presents a numerical

example, and Section VI ends with the conclusions.

II. PRELIMINARIES

In this section we introduce some basic notation and

stability definitions.

A. Notation and Auxiliary Lemmas

We use R>0 to denote the set of positive real numbers,

Z+ to denote the set of positive integers, N := Z+ ∪ {0},

and S
1 to denote the unit circle in R

2. We denote the floor

function ⌊·⌋ : R → Z as the largest integer that does

not exceed its argument. We also define the sign function,

sgn(·) : R → {−1, 1}, to be -1 when its argument is negative

and 1 otherwise. A continuous function ρ : R≥0 → R≥0

is said to be of class K if it satisfies ρ(0) = 0 and is

strictly increasing. It is said to be of class K∞ if it is of

class K and, additionally, it grows unbounded. A function

β : R≥0 × R≥0 → R≥0 is said to be of class KL if it is of

class K in its first argument and for each r > 0, β(r, ·) is non-

increasing and limt→∞ β(r, t) = 0. Furthermore, β ∈ KLT
(generalized KL) if β(·, 0) ∈ K and for each fixed r ≥ 0,

β(r, ·) is continuous, non-increasing and there exists some

T (r) ∈ [0,∞) such that β(r, t) = 0 for all t ≥ T (r). The

mapping T is called the settling time function.

B. Fixed-Time Stability

Consider a system of the form

ẋ = f(x), x(0) = x0, (1)

where f : RN → R
N is a continuous function, x ∈ R

N is

the state of the system, and x0 ∈ R
N is the initial condition.

In general, we shall not assume that f is differentiable or

even Lipschitz. The following definition will be useful to

study the properties of system (1).

Definition 1: System (1) is said to render the origin x = 0
uniformly globally finite-time stable if there exists a class

KLT function β such that every solution of (1) satisfies:

|x(t)| ≤ β(|x(0)|, t), ∀ t ≥ 0, (2)

where the settling time function T is continuous. System (1)

is said to render the origin x = 0 uniformly globally fixed-

time stable if, additionally, supx0∈RN T (x0) < ∞. □

The following Lemma corresponds to [10, Lemma 1]. The

converse result is also established in [11, Thm.2] when the

settling time T is continuous.

Lemma 1: Suppose there exists a smooth function V :
R

N → R that is positive definite, radially unbounded, and

satisfies:

V̇ := ⟨∇V (x), f(x)⟩ ≤ −c1V (x)p1−c2V (x)p2 , ∀ x ∈ R
N ,

for some c1, c2 > 0, p1 ∈ (0, 1) and p2 > 1. Then, the origin

x = 0 is globally fixed-time stable for the dynamics (1), and

the settling time function satisfies the bound

T (x0) ≤
1

c1(1− p1)
+

1

c2(p2 − 1)
, (3)

for all x0 ∈ R
N . Moreover, if p1 = 1 − 1

2α , p2 = 1 + 1
2α ,

and α > 1, then the settling time function satisfies the bound

T (x(0)) ≤ απ√
c1c2

. (4)

for all x(0) ∈ R
n. □

Finally, in this paper we will also make use of the

following practical stability properties.

Definition 2: Consider a parameterized system ẋ = fε(x),
with unique equilibrium point x∗, where ε > 0 is a tun-

able parameter. We say that x∗ is semi-globally practically

asymptotically stable if there exists β ∈ KL such that for

each ∆ > 0 and v > 0 there exists ε∗ > 0 such that

for all ε ∈ (0, ε∗) all solutions of the system satisfying

|x(0)− x∗| ≤ ∆ also satisfy

|x(t)− x∗| ≤ β(|x(0)− x∗|, t) + ν, ∀ t ≥ 0. (5)

If β ∈ KLT and the settling time function of β satisfies

supx0∈RN T (r) < ∞, then the system is said to render x∗

semi-globally practically fixed-time stable. □

III. PROBLEM STATEMENT

We consider the problem of minimizing a scalar cost

function J : R → R using only measurements or evaluations.

In this way, it is assumed that the exact mathematical form

of J and its derivatives is unknown. Such types of problems

can be tackled using extremum-seeking (ES) algorithms [1],

[2]. The simplest ES scheme that can tackle this problem is

characterized by the following dynamics with state x:

ẋ = −2k

a
sin(ωt)J(x+ a sin(ωt)), (6)

where a, ω, k are positive tunable parameters. System (6) can

be analyzed using a multi-time scale approach. In particular,

when k is sufficiently small compared to ω, and a is

sufficiently small compared to k, the average dynamics of

(6) can be shown to be:

˙̃x = −∇J(x̃) +O(a). (7)

where x̃ denotes the average of state x. Under suitable

assumptions on J , and for sufficiently small values of a,

this system renders the set of minimizers of J semi-globally

practically asymptotically stable as a → 0+. Indeed, as

a → 0+, the trajectories of (7) approximate those of a

standard gradient flow ẏ = −∇J(y). Moreover, as ω → ∞,

or, equivalently (k → 0), the trajectories of (6) approximate

those of (7) (on compact time domains and compact sets

of initial conditions) [12], thus eventually establishing a

connection between the stability properties of (6) and those

of a standard gradient flow.

A. Fixed-Time ESC: A Filterless Approach

To improve over the asymptotic rates of convergence of

smooth ES dynamics, a class of fixed-time ES algorithms was

studied in [6]. Such algorithms seek to approximate fixed-

time gradient flows [8] of the form:

ẋ = −k
∇J(x)

|∇J(x)|p1
− k

∇J(x)

|∇J(x)|p2
, (8)



where k > 0, p1 ∈ (0, 1) and p2 < 0. Indeed, as shown

in [6], [8], if J is strongly convex with a globally Lipschitz

gradient, then the minimizer x∗ of J is fixed-time stable

under the dynamics (8). Based on this observation, and

following the same ideas behind the study of (6) and (7),

one can hypothesize that the following filterless ES algorithm

could provide a model-free version of (8):

ẋ = − k1µ(t)J(x+ aµ(t))

|µ(t)J(x+ aµ(t))|p1
− k2µ(t)J(x+ aµ(t))

|µ(t)J(x+ aµ(t))|p2
, (9)

where µ(t) = sin(ωt), k > 0, p1 ∈ (0, 1) and p2 < 0.

Note that this system has a continuous right-hand side. The

main goal of this paper is to study to what extent the above

hypothesis is true, and whether the average dynamics of

(9) are indeed given by (8). Since the dynamics described

in equation (9) are highly non-smooth, which can rapidly

render several computations intractable, we will concentrate

on quadratic cost functions.

Assumption 1: The cost J has the form J(x) = 1
2Hx2 +

Bx+H0, where H > 0. □

While the class of quadratic cost functions is not as

general as the class of strongly cost functions studied in

[6], it will be shown in the next section that, whenever the

filters are removed, the quadratic structure of J may induce

some unexpected phenomena depending on the nature of the

bias. Furthermore, scalar quadratic cost functions can provide

suitable approximations for functions that emerge in different

practical applications, see [13].

IV. MAIN RESULTS

To study system (9) for scalar quadratic maps, without loss

of generality we can take ω = 1, since otherwise a suitable

change of time scale can be used to obtain this condition.

Then, system (9) takes the form

ẋ = − k1J(x+ a sin t) sin t

|J(x+ a sin t) sin t|p1
− k2J(x+ a sin t) sin t

|J(x+ a sin t) sin t|p2
.

(10)

By Assumption 1, J(x+ a sin t) can be written as:

J(x+ a sin t) =
1

2
H

(

x+
B

H
+ a sin t

)2

+H0 −
B2

4H
.

Using the transformation x̄ = x+ B
H

, we can assume without

loss of generality that B = 0. In this way, we can focus on

studying the stability properties of the optimal point x∗ = 0.

We now divide our analysis into two different cases: H0 = 0
and H0 > 0.

A. Case I: H0 = 0

When H0 = 0, the optimal value of the cost satisfies J∗ =
0, and the dynamics (10) can be written as:

ẋ = −Ψ1(x)−Ψ2(x), (11)

where

Ψi(x) = ki

(

H

2

)1−pi sin t

| sin t|pi

|x+ a sin t|2−2pi , (12)

for i ∈ {1, 2}. To analyze this system, we will consider two

different conditions on x : |x| > a and |x| ≤ a.

1) Suppose that |x| > a: By applying the generalized

binomial theorem to |x+ a sin t|2−2pi , and using the obser-

vation that |x+ a sin t| = |x|+ sgn(x)a sin t we obtain

(|x|+ sgn(x)a sin t)
2−2pi = |x|2−2pi + a(2− 2pi)

x

|x|2pi

sin t

+
∞
∑

k=2

Ck,i

|x| sgn(x)k
|x|2pi+k−1

(a sin t)
k
,

(13)

for all |x| > a, where

Ck,i =
1

k!

k
∏

j=1

(3− 2pi − j). (14)

Using a Stirling approximation, it can be shown that
∑∞

k=1 |Ck,i| < ∞ for i ∈ {1, 2}. Substituting (13) into

(11), we obtain the following alternative expression for (10)

whenever |x| > a:

ẋ = −
2

∑

i=1

ki

(

H

2

)1−pi sin t

| sin t|pi

(

|x|2−2pi

+ a(2− 2pi)
x

|x|2pi

sin t+

∞
∑

k=2

Ck,i

|x| sgn(x)k
|x|2pi+k−1

(a sin t)
k

)

(15)

System (15) is continuous and can be studied via averaging

theory [14], [15]. By setting ki = 1
a

for i = 1, 2 and

computing the average vector field, we obtain:

ẋ = −
2

∑

i=1

(

qi2
pi−1Hpi

Hx

|Hx|2pi

+

∞
∑

k=1

a2kC∗
k,i

x

|x|2pi+2k

)

(16)

where qi and C∗
k,i are given by:

qi =
2− 2pi
2π

∫ π

−π

| sin t|2−pidt (17)

C∗
k,i =

(

H

2

)1−pi C2k+1,i

2π

∫ π

−π

| sin t|2k+2−pidt. (18)

To arrive at (16), we used the following facts:

∫ π

−π

(sin t)
k+1

| sin t|pi

= 0 ∀ k even

|x| sgn(x)k = x ∀ k odd,

which follow immediately from the fact that an odd periodic
function has average 0. To study the stability properties of the
average dynamics (16), we consider the Lyapunov function
V (x) = 1

2x
2, whose time derivative along the trajectories of

the average system satisfies:

V̇ = −

2
∑

i=1

(

qi

(

H

2

)

1−pi

|x|2−2pi +

∞
∑

k=1

C
∗

k,ia
2k|x|2−2pi−2k

)

(19)

for all x where |x| > a. To proceed, it is helpful to

state the following lemma, as it will be instrumental for our

simplification of the expression in (19).



Lemma 2: Let Si = {⌊1 − pi⌋ + 1, ⌊1 − pi⌋ + 2, ...}.

For ki ∈ Z+ \ Si and i = 1, 2, we have sgn(C∗
ki,i

) = 1.
Otherwise, if ki ∈ Si then:

sgn(C∗
k1,1) =

{

−1 if p1 ∈ (0, 1
2 )

1 if p1 ∈ [ 12 , 1)

sgn(C∗
k2,2) =

{

−1 if p2 ∈ (−n− 1,−n− 1
2 ), n ∈ N

1 else

Proof: This follows immediately from the observation

that sgn(C∗
k,i) = sgn(C2k+1,i) and by inspecting (14).

With Lemma 2 at hand, we can observe that for p1 ∈ [ 12 , 1)
and p2 ̸∈ (−n− 1,−n− 1

2 ) ∀n ∈ N, the inner summation

in (19) is negative. Hence, for pi satisfying these properties,

we have that:

V̇ ≤ −q12
p1−1H1−p1 |x|2−2p1 − q22

p2−1H1−p2 |x|2−2p2

≤ −q1H
1−p1V 1−p1 − q2H

1−p2V 1−p2 , ∀ |x| > a.

(20)

Now, suppose p1 ∈ [ 12 , 1) and p2 ∈ (−n − 1,−n − 1
2 ) for

some n ∈ N. Then we can proceed from (19) as follows:

V̇ = −q1

(

H

2

)1−p1

|x|2−2p1 − q2

(

H

2

)1−p2

|x|2−2p2

−
∞
∑

k=1

C∗
k,1a

2k|x|2−2p1−2k −
∞
∑

j=1

C∗
j,2a

2j |x|2−2p2−2j

≤ −q1

2

(

H

2

)1−p1

|x|2−2p1 − q2

(

H

2

)1−p2

|x|2−2p2

+



a2−2p2

∞
∑

j=⌊1−p2⌋+1

|C∗
j,2| −

q1

2

(

H

2

)1−p1

a2−2p1



 .

(21)

We choose a > 0 sufficiently small such that

a2−2p2

∞
∑

j=⌊1−p2⌋+1

|C∗
j,2|−

q1

2

(

H

2

)1−p1

a2−2p1 < 0. (22)

Thus, we can proceed from (21) and obtain

V̇ ≤ −q1

2

(

H

2

)1−p1

|x|2−2p1 − q2

(

H

2

)1−p2

|x|2−2p2

≤ −H1−p1
q1

2
V 1−p1 −H1−p2q2V

1−p2 , ∀ |x| > a.

This last inequality directly implies by [16, Thm. 4] that the

optimal point x∗ is globally practically fixed-time stable as

a → 0+ for the average system (18). Moreover, the settling

time can be upper-bounded as:

T (x0) ≤
2

H1−p1q1p1
− 1

H1−p2q2p2
. (23)

Therefore, we have verified that as long as p1 ∈ [ 12 , 1) and

|x| > a, the average system of (11) satisfies the Lyapunov

conditions for practical fixed time stability. If p2 ̸∈ (−n −
1,−n − 1

2 ) ∀n ∈ N, the result holds even if a does not

satisfy (22).

2) Suppose that |x| ≤ a: In this case, to the best of

the authors’ knowledge, there is no well-defined method for

approximating the average of (11). However, we can still

analyze the qualitative properties of the average dynamics

by considering the integral:

ẋ =

2
∑

i=1

−ki
(

H
2

)1−pi

2π

∫ π

−π

sin t

| sin t|pi

|x+ a sin t|2−2pidt

=

2
∑

i=1

−ki
(

H
2

)1−pi

2π

∫ π

0

| sin t|1−pi

(

|x+ a sin t|2−2pi

− |x− a sin t|2−2pi

)

dt. (24)

In particular, note that:

sgn(|x+ a sin t|2−2pi − |x− a sin t|2−2pi) = sgn(x),

for all t ∈ [0, π], and since (24) is continuous in x and

vanishes at x = 0, we can conclude that the average

converges to zero once it enters the neighborhood [−a, a]. In

particular, using the same Lyapunov function V = 1
2x

2, we

have that V̇ = xẋ and since x and ẋ always have different

sign, then V̇ ≤ 0. Moreover, the product xẋ vanishes only at

x = 0. This analysis reveals that in the O(a) neighborhood

of the origin, the average dynamics are also well-defined.

By combining the above results, we can obtain the fol-

lowing key technical result:

Proposition 1: Consider the average dynamics (16) and

suppose that p1 ∈ [ 12 , 1), p2 < 0. Then, the optimal point

x∗ is globally practically fixed-time stable as a → 0+. In

particular, there exists a∗ > 0, such that for all a ∈ (0, a∗),
all solutions of (16) satisfy

|x(t)− x∗| ≤ β(|x(0)− x∗|, t) + ρ(a), (25)

where ρ(·) is a positive definite function, and β ∈ KLT with

settling time T (·) satisfying (23) for all x(0) = x0 ∈ R. □

Remark 1: The result of Proposition 1 establishes a key

missing technical result in the literature of ESC. Namely,

it shows that the average dynamics of the filterless ESC

algorithm (10) do have (in a practical sense) the fixed-

time stability property. However, the result also highlights

an important fact: the average dynamics of system (10) are

not exactly equal to the fixed-time gradient flow (8), even if

O(a) terms are neglected outside an a-neighborhood of the

origin. In particular, using (16), the average dynamics can

be written as

˙̃x = −k̃1
∇J(x̃)

|∇J(x̃)|2p1
− k̃2

∇J(x̃)

|∇J(x̃)|2p2
+ Õ(a), (26)

where Õ(a) denotes terms bounded for all |x| > a, and the

constants k̃1, k̃2 > 0 depend on H . This observation already

highlights an important distinction compared to the results of

[6], where a smooth filter was used to obtain a quasi-steady

state approximation of (8). □

Remark 2: The closed-form expression presented in (16)

also highlights an interesting behavior of the system when-

ever p1 = 1. In this case, using (17), we obtain q1 = 0,
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Fig. 1: Vector field of the average system of (11) with a =
0.005, p1 = 0.62, p2 = −0.7, and H = 9.84. For H0 we

use H0 = 0 and H0 = 0.5

which in turn implies that k̃1 = 0 in (26) thus effectively

removing any ªfinite-timeº behavior from the average dy-

namics. Again, this is in contrast to the behavior obtained

in the filter-based approach of [6], where p1 = 1 recovers a

finite-time gradient flow. □

By leveraging Proposition 1, we can now state the second

main result of this paper, which studies the stability prop-

erties of the filterless ESC algorithm (10) when J has no

offset.

Theorem 1: Consider the filterless ESC algorithm (10),

and suppose that Assumption 1 holds, p1 ∈ [ 12 , 1), p2 < 0,

and H0 = 0. Then, the global minimizer x∗ is semi-globally

practically fixed-time stable as ( 1
ω
, a) → 0+.

Proof: The result follows by a direct application (in the

correct time scale) of averaging results for non-Lipschitz

systems whose average dynamics are only semi-globally

practical stable, i.e., [15, Thm. 7]. Specifically, we consider

the following system:

ẋ = −1

a

µJ(x+ aµ)

|µJ(x+ aµ)|p1
− 1

a

µJ(x+ aµ)

|µJ(x+ aµ)|p2
,

(27a)

1

ω

[

µ̇

ξ̇

]

=

[

0 −1
1 0

] [

µ

ξ

]

, (µ, ξ) ∈ S
1. (27b)

where the exosystem (27b) is used to generate the sinusoid

signal t 7→ µ(t). In particular, every solution to the linear

oscillator (27b) satisfies µ(t) = sin(ωt + ϕ0), where ϕ0 ∈
[0, 2π). Since the phase-shift is inconsequential due to the

periodicity of the dither, by Proposition 1 the resulting dy-

namics (27a) have a well-defined average system satisfying

(25) as a → 0+. Then, by [15, Thm. 7], the original

system (27a) will retain the same KL bound, provided ω is

sufficiently large and a is sufficiently small. This establishes

the result. ■

According to Theorem 1, the initial hypothesis on the

connections between the stability properties of (8) and (10)

turns out to be true for the case when H0 = 0, i.e., when the
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a

Fig. 2: Trajectories of the example system with H = 6.74
compared with its average system (30) We can see that

the trajectories reach the set (a,−a) within our computed

settling time bound. For all simulations we use a = 0.005

optimizer of the cost function is zero. However, in the next

section we show that the inclusion of a non-zero offset in

the cost function can significantly change the nature of the

stability properties of the non-smooth filterless ES dynamics.

B. Case II: H0 > 0

When the cost function J has a positive offset, the

term H0 > 0 essentially ºsmoothsº out the filterless ESC

dynamics, resulting in the loss of the fixed-time stability

properties. To see this phenomena, note that in this case the

dynamics can be written as:

ẋ = −f̃1(x, t)− f̃2(x, t), (28)

where

f̃i(x, t) = ki

(

H

2

)

1−pi sin t

| sin t|pi

(

(x+ a sin t)2 +
2H0

H

)

1−pi

.

Let fav(x) denote the time average of (28). Since H0

H
> 0,

∂f̃i(x,t)
∂x

is continuous for all t, x. Hence, we can differentiate

fav(x) to obtain:

∂fav(x)

∂x
= − 1

2π

∫ π

−π

∂

∂x

(

f̃1(x, t) + f̃2(x, t)
)

dt, (29)

which is clearly bounded if we restrict x on any compact set

even if a = 0. Hence, the finite-time convergence property

is not preserved. For a better visualization of the smoothing

effect of having J∗ > 0, please refer to Figure 1.

V. NUMERICAL EXAMPLES

In this section, we illustrate our theoretical results via a

numerical example, where p1 = 1
2 and p2 = − 1

2 . With this

choice of pi, we can obtain a more detailed characterization

of the average dynamics of the system and also of the settling

time. Similar to our previous analysis, we consider two cases.

When |x| > a, we have that |x + a sin t| = sgn(x)(x +
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Fig. 3: Vector field of the average system of (30)

a sin t). With this observation, we can obtain the average

system as follows:

˙̃x = −q1

(

H

2

)
1
2

sgn(x̃)− q22
− 3

2H− 1
2

Hx̃

|Hx̃|−1

− a2
(

H
2

)
3
2 sgn(x̃)

2π

∫ π

−π

| sin t| 92 dt, (30)

where we set k1 = k2 = 1
a

. It can also be verified that

q1 and q2 here are consistent with the formulas given in

(17). We can also see that the first two terms in (30) are

consistent with (16), since sgn(x) = x

|x|2(
1
2
)

and x|x| =
x

|x|2(−
1
2
)
. Furthermore, since Ck,1 = 0 for k ≥ 2 and Ck,2 =

0 for k ≥ 4, it follows that only C∗
1,2 is nonzero. We can

compare the last term in (30) with (18) and see that they

are consistent. With the Lyapunov function V (x) = 1
4x

4, we

can compute its time derivative along the trajectories of (30)

and obtain that for all |x| > a:

V̇ ≤ −2q1H
1
2V

3
4 − 2q2H

3
2V

5
4

By using (4) with α = 2 we can obtain a settling time bound

of T (x0) ≤ 3.594
H

. We simulate the trajectories of the system

along with those generated by its average also for H = 6.74.

The result is shown in Figure 2, and the computed settling

time of 3.594
H

= 0.533. To better illustrate our results, we

provide simulations for the vector field of the average system

and the trajectories generated by the average system.

VI. CONCLUSIONS

In this work, we provide a thorough and comprehensive

analysis of a proposed filterless ESC algorithm for the solu-

tion of fixed-time optimization problems in scalar quadratic

maps that are only accessible via measurements. Compared

to existing results, the approach simplifies the implementa-

tion by removing additional states and auxiliary filters. We

provided a detailed analysis of the average dynamics of the

system, uncovering the smoothing effect that non-zero cost

minima can have on the algorithm, as well as conditions

on the exponents under which the finite-time or fixed-time

convergence properties are lost. Future research directions

will extend the results to multi-variable and time-varying

optimization problems.
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