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Abstract

The advent of large-scale inference has spurred reexamination of conventional statistical think-
ing. In a series of highly original articles, Efron persuasively illustrated the danger for downstream
inference in assuming the veracity of the theoretical null distribution. However intimidating in other
contexts, the large-scale setting is to the statistician’s benefit here. There is now potential to es-
timate, rather than assume, the null distribution. In a Gaussian model for n many z-scores with
at most k < 4 nonnulls, Efron suggests estimating the location and scale parameters of the null
distribution. Placing no assumptions on the nonnull effects, the statistical task can be viewed as a
robust estimation problem. However, the best known robust estimators fail to be consistent in the
regime k < n which is especially relevant in large-scale inference. The failure of estimators which are
minimax rate-optimal with respect to other formulations of robustness (e.g. Huber’s contamination
model) might suggest the impossibility of consistent estimation in this regime and, consequently, a
major weakness of Efron’s suggestion. A sound evaluation of Efron’s model thus requires a complete
understanding of consistency.

We sharply characterize the regime of k£ for which consistent estimation is possible and further
establish the minimax estimation rates. It is shown consistent estimation of the location parameter
is possible if and only if § — k = w(y/n), and consistent estimation of the scale parameter is possible
in the entire regime k < 7. Faster rates than those in Huber’s contamination model are achievable
by exploiting the Gaussian character of the data. The minimax upper bound is obtained by consid-
ering estimators based on the empirical characteristic function. The minimax lower bound involves
constructing two marginal distributions whose characteristic functions match on a wide interval con-
taining zero. The construction notably differs from those in the literature by sharply capturing a

scaling of n — 2k in the minimax estimation rate of the location.

1 Introduction

Consider the model
X;j=0+v+0Z; (1)

where 0 € R is the location parameter of interest, i, ..., v, € R are the unknown effects, 71, ..., Z, o

N(0,1) are the noise variables, and o > 0 is the scale parameter. We are primarily concerned with
estimation of @ and o” given observations from (1). We denote the joint distribution of {X;}}_; by
Py .- when the data are given by (1); the expectation with respect to Py - - is denoted by Fg . o.
Of course, the parameters of interest are not identifiable in (1) as written. To ensure identifiability,
we assume a limited number of v; are nonzero, that is, 37| 1(, 201 <k < 3.

The model (1) is a natural choice in the very typical setting in which a fraction of the data points
exhibit perturbed values (“signal” or “corruption” depending on the context) against an unknown

background level. Indeed, in investigating this typical statistical setting by considering models similar
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to (1), the literatures of robust statistics and large-scale inference have witnessed vigorous research

activity.

1.1 Robust statistics

An immediate connection between model (1) and robust statistics can be seen by simply conceptu-
alizing X; as an inlier if 4; = 0 and as an outlier otherwise. In the parlance of robust statistics,
nonzero «; might be referred to as “corruption” or “contamination”.

Of course, the robust statistics literature has not studied model (1) exclusively. To describe one

foundational backdrop (among others), consider a dataset X1, ..., X, in which

N(0,0? ifj €T,
X, ~ (6,0%) fJ
contamination if j € O.

Here, Z denotes the inliers from which the location parameter is to be estimated, and O with |O] <
k < % denotes the outliers.

With this backdrop in place, researchers stipulate various models for the contamination process
and investigate its effects on statistical tasks. A popular choice is an adversarial contamination process
in which an adversary has the opportunity to inspect a dataset of n independent and identically
distributed samples from the inlier distribution N (0, 02), make any desired modifications, and pass
on the modified dataset to the statistician. Another popular choice with a long history in statistics
is Huber’s contamination model, proposed by Huber in a highly influential article [32]. A variant is
given by

X, ind N(9,0%) l:ijL )
dn; if € O.
Here, the sets Z and O are unknown but fixed in advance to the generation of the data. The
contamination points 7; are unknown and arbitrary, but also fixed in advance to the data generation.
From a minimax perspective, this variant is closely related to the usual Bayes formulation of Huber’s
contamination model [32], that is,

X1, X X (1= €)N(0,02) +€Q, (3)
where ¢ = % is the contamination level and @ is an unknown, arbitrary probability distribution on
R. That @ can be any probability distribution on R is due to the fact that the n; can be any values
in R. In a minimax context, the conclusions about in-probability estimation rates in the frequentist
version (2) and the Bayes version (3) are the same [13, 20].

Basic statistical intuition correctly asserts sample average is not optimal due to its sensitivity to
outliers. It turns out the instinct to reach for sample median is the right one as established in [13],
where the minimax rate of estimation was derived and applies to both Bayes (3) and frequentist (2)

contexts. In particular, they showed that if £ < %7 then

| median (X, ..., X,,) — 0> < o” (% + 52) = o’ (% + %Z)
with high probability. A matching lower bound (up to universal constants) was obtained, thus
establishing the rate-optimality of sample median.

Returning to (1), the situation seems slightly, yet apparently different from that in Huber’s con-
tamination model. Rather than outlier observations being set to arbitrary unknown values, outliers
from (1) exhibit mean shifts. Mean shift contamination has been extensively studied in the robust
statistics literature, mostly in a regression context. To elaborate, consider the regression model for
data {(w;,Y;)}=1,

Y; = (z;,8) + 7 +0Zj, (4)



where 3,21, ...,zn, € R? and Z1,..., Zp, w N(0,1). The responses are contaminated by the nonzero

mean shifts v; € R, and there are at most k nonzero of them. Evidently, the location model (1) is a
special case of (4). To the best of our knowledge, the first appearances of this mean shift regression
model were in [53, 30, 45]. Gannaz [30], noting v = (y1,...,7») € R™ is a k-sparse vector, suggested

what is now a basic impulse for many statisticians,

L 1
(B,4) = argmin = |[Y — X8 —~|* + pll7]]1, (5)
EERP 2
~YER™
where Y = (Y1, ...,Y,) € R" are the responses, X € R™*? is the design matrix, and p is a penalty
hyperparameter to be tuned. Though the motivation for the ¢; penalty from high-dimensional statis-
tics appears somewhat distant from robustness, it turns out [53, 30, 21, 1] that the B solving (5) is

also a robust M-estimator, namely, it solves

n

é%i{% Zlﬁﬂuber(yj —{z5,0);p),
i=

where Lyuper is the Huber loss function

2 .
& if |t] < p,

EHuber(t; P) = 2 )
ol =2 il >

Owen and She [55], motivated from B’s sensitivity to leverage points, suggest modifying (5). Since
the ¢1 penalty in (5) corresponds to soft-thresholding in 4, they suggest replacing soft-thresholding by
other thresholding functions, even those which may correspond to nonconvex penalties. Their article
is methodological in nature and no theoretical guarantees are offered. In more modern contexts, the
regression parameter 3 is also sparse. Consequently, a number of articles [47, 18, 16] (see also [29]
and references therein for a compressed sensing perspective) investigate a natural extension of (5) by
placing an additional ¢; penalty on f.

Returning to our mean shift location model (1), Collier and Dalalyan’s article [16] perhaps bears

down the most among the aforementioned literature. They study the estimator
(6.%) = argmin ||X — p1 —~1* + pllvll1,
HER
where X = (X1, ..., X5) € R". As Collier and Dalalyan note, the solution 6 has the interpretation of
maximizing a profile penalized likelihood

4 = argmin [|(X = X1,) — (v = 31a)[I* + pll7/]1,

~ER™
=130 -4)
= n < i)

Assuming % < cfor a sufficiently small universal constant 0 < ¢ < % and o = 1, they show that for the
choice p < v/logn the estimator achieves |é79|2 < % + Z_; log n with high probability. This is actually
slower than the rate % + fL—Z achievable by sample median! The logarithmic factor is a consequence
of a typical analysis for ¢;-penalized estimators. Collier and Dalalyan suggest a modification by
introducing individual penalities, defining 4 = argmin. cgn ||(X — X1,) — (v — 51,)|* + > i=1 pilvil
and = 1 >-7—1(X;—%;). An optimal choice of the p; depends on unknown quantities. To circumvent
this issue, they suggest an iterative scheme and propose an iterative soft-thresholding estimator Ors.
Under the assumption £ < ¢, they show |Orst — 0] < Ly :—z with high probability. Hence, it
matches the performance of sample median.

These results may give the impression that the Huber rate % + :—2, which is minimax optimal

under (2) or (3), should also be the sharp rate in (1). This impression is strengthened when one



expresses the observations as
X, ind N(6,0%) Zifjezy (6)
N(nj,0®) ifj €O,
where O = {1 < j<mn:~; #0},Z=0° and n; = 0 + ~;. The expression (6) bears a striking
resemblance to (2). The temptation is strong to intuit that since the shifts v, in (2) are completely
arbitrary as in (6), estimation should not be easier than in the Huber model. In other words, intuition
may suggest the Gaussian character of the outliers in (6) is an inconsequential difference.

Though easily forgiven, such intuition is mistaken. Consider the corresponding Bayes formulation
(i.e. analogous to how (3) corresponds to (2)),

X1, X X (1= 2)N(0,02) +£(Q = N(0,02)), (7)
where ¢ = £ and * denotes convolution. Minimax rate conclusions are the same in (7) and (6) (in
the way those in (3) and (2) are the same as discussed earlier). A comparison between (7) and the
Bayes formulation of Huber’s contamination model (3) reveals the additional structure available in
the mean shift model. To elaborate, in (3) the distribution with weight & can be any distribution Q.
In contrast, the distribution with weight € in (7) must be of the form Q * N (0, ¢?). Clearly the set of
distributions of this form is a smaller set than the set of all distributions.

It is immediately seen that if a rate-optimal estimator is to achieve a faster rate than that in
Huber’s model, it must make specific use of the Gaussian character of the data. The penalized
regression estimators discussed earlier appear not to exploit this structure. A fundamental question
arises; for which values of & is consistent estimation of 6 possible, and for which values is it impossible?

More specifically, is the regime of consistency different from that in Huber’s model?

1.2 Large-scale inference

In many modern scientific fields, the researcher is faced with the problem of simultaneously considering
a very large number of hypothesis tests. For the sake of discussion, let us consider a researcher armed
with z-scores Xi,..., X,, each of which represents a test statistic corresponding to a hypothesis
test. Traditionally, it is assumed a z-score follows exactly the standard normal distribution if its
corresponding hypothesis is null. To simplify matters, let us also assume the z-score follows a normal
distribution with unit variance but nonzero mean if its corresponding hypothesis is nonnull, that is
to say,

N(0,1) ifj € Ho,

N(v;,1) if j € Mg,

X; ~

where Ho denotes the set of null hypotheses and the nonzero ; are the nonnull effects. Assume
[H5] < k < %, which is usual in the relevant scientific settings.

Efron, in a sequence of highly original and persuasive articles [23, 24, 25], demonstrated the
assumption that the null z-scores exactly follow the standard normal distribution is not at all mild.
Seemingly slight misspecification can substantially affect downstream inferential conclusions. As
Efron points out, a variety of practical issues can cause misspecification of the null hypothesis.

One major issue is correlation between z-scores [24, 49, 52, 51]. To illustrate in a stylized bench-
mark example, consider a one factor correlation model [28, 27, 41, 40], where the z-scores are given by
Xj =5+ /PW + VT = pZ; with W, Z1, ..., Zn & N(0,1). Here, W is the common factor inducing
equicorrelation of level p. Observe that, marginally, the null distribution is correctly specified as
X; ~ N(0,1) if j € Ho. However, due to the correlation, the ensemble of null z-scores does not

behave like a standard normal distribution. Conditionally on W,

N(y/pW,1—p) if 7 € Ho,
N(/PW +7;,1—p) if j € Hj.

X;|w R



It is more appropriate to treat the ensemble of null z-scores as being drawn from a shifted normal
distribution with variance 1 — p, rather than the centered normal distribution with unit variance. As
Efron [24, 25] illustrates with more sophisticated arguments, correlation can substantially shift and
alter the width of the ensemble null z-scores, and subsequently can have disastrous effects on down-
stream inference if a standard normal null distribution is assumed (see also [52, 28]). Correlation’s
effects and methodology to handle it were further studied in [54, 2, 57, 56, 31, 48], but a complete
theoretical picture has not yet been attained.

To address issues stemming from a misspecified theoretical null, Efron argues an empirical null
capturing the null z-score ensemble should be estimated from the data. The large-scale nature of the
problem is now to our advantage as the majority of the z-scores are nulls; the nonnull z-scores are a
nuisance from this point of view. Model (1) is the result of taking Efron’s recommendation seriously.

Retaining Gaussianity as in [23], Efron suggests considering

ind N(07U2) Zf] € H07
Xj o~ o (8)
N(n;,o%) ifj€ Mg,

where §# € R and o > 0 are parameters to be estimated. The models (1) and (8) are equivalent
with ; = 0 +v; and Ho = {1 < j < n:~; = 0}. As in our discussion of robust statistics, the
model (8) is closely related to a mixture formulation (7), which has the name (Gaussian) two-groups
model in the context of large-scale inference. Indeed, minimax conclusions in the two models are the
same. Further, ) now has the interpretation of a signal distribution rather than contamination. The
two-groups model has been widely adopted for large-scale inference and tremendous methodological
development has occurred [56, 36, 7, 58, 8.

It is worth emphasizing the setting k < n is especially relevant to modern large-scale inference.
Indeed, it is not at all an extreme case that a constant fraction (e.g. 0.1%, 1%, 10%, 25% etc.) of the
z-scores are nonnull. The limitations of the robust statistics literature are readily apparent as the
best known estimators for 6 are not even consistent in this regime! The minimax rate in Huber’s
contamination model % + 2—2 = 1 is of constant order when k£ < n. Even in the mean shift setting, the
best estimators in the literature are only shown to achieve Huber’s rate, to the best of our knowledge.
Moreover, special care should be taken to avoid making assumptions like % < ¢ for some sufficiently
small constant ¢, even though such assumptions seem innocuous in robust statistics. Theory relevant
to the practice of large-scale inference ought to address the case where k is quite close to 5. The
question raised earlier concerning the possibility of consistent estimation is a pressing one.

In the large-scale inference literature, arguably the most successful estimators for the empirical
null parameters in the contexts of (6) and (7) are based on Fourier analysis. To the best of our
knowledge, this suite of methods was first introduced and developed in [36, 7, 35]. Fourier-analytic
approaches have also seen success in other statistical topics such as deconvolution and estimation in
stochastic processes [46, 5, 4]. Also, a Fourier-based estimator was recently shown to nearly achieve
the optimal estimation rate of a robust location estimation problem in a heavy-tailed formulation of
robustness [3]. Most directly related to our setting is the work of Cai and Jin [7]. To roughly describe
the estimators of Cai and Jin [7], observe the characteristic function of (7) is

w202

bw) = F (1 -)e™ +2Qw)),

where Q denotes the characteristic function of (). Note that Q can also be considered in the frequentist
context of (8) where now Q(w) = ‘—(19‘ 2jeo e™mi. Cai and Jin’s key observation is that for large
frequencies w, ) s

b(w) e F (1 - e)e,
if it is assumed Q decays fast enough (e.g. if @ is smooth enough). Hence, the null parameters
can be extracted from the large frequency components of the characteristic function. Of course, the

population characteristic function is not accessible, so it is estimated via the empirical characteristic



function. Taking an appropriate w to balance a typical bias-variance tradeoff, estimators Ocs and
6&; are formed.

Their result can be stated informally as follows. Fix a > 2 and 8 € [0,1/2). Let ecn™® < e < ¢
where 0 < ¢ < 1 is a universal constant. Note c can be larger than % Assuming some moment condi-
tions on Q as well as the decay conditions limsup,, , . |Q(w)]|w|® < oo and limsup,,_, . |Q'(w)]|w]|**! <

o0, they establish

2

E(|6cy —07?) < ——— 9

(| cJ | ) ~ loga-l»l(n)’ ( )
2 22\ <« g’

E (|6c; — —_—. 10

(198 =) % e (10)

Matching minimax lower bounds are also obtained. From these bounds, Cai and Jin [7] have shown
that consistent estimation is possible even in the practically salient case ¢ < 1. Furthermore, their
result is quite appealing as it sharply captures the effect of the interaction between the smoothness
of the signal distribution ) and the signal sparsity on optimal estimation rates.

Though impressive, their results leave a few fundamental questions unresolved. First, they require
a number of assumptions on the signal distribution ¢ which are undesirable from a robust statistics
perspective; nothing can be immediately said about (7) or (1). Noting Q(w) = ﬁ 2jeo €™ | the
‘—(19‘ 2jeo inje™m| |w|*T! < co. The

outliers 7n; are effectively required to be bounded. Second, their minimax theory requires the null

condition limsup,,_, . |Q’(w)||w|**! < oo requires limsup,, ,

parameters 6 and o to be bounded by fixed constants. Third, one might hope that plugging in
a = 0 may give the correct rates of the problem without smoothness. This is not true. The bound
(9) applies for any en™P < e < ¢, that is, it notably holds for the choice € = % Plugging in o = 0
gives the rate log™"(n), asserting that consistent estimation is possible in (7) even when & = %7 which
is clearly false since 6 is not identifiable when ¢ = % without any assumptions on (. Hence, the
problem of establishing the optimal estimation rate without any assumptions on @ is still completely

open.

1.3 Main contribution

Throughout the remainder of the paper, we focus on the frequentist model (1) though we remind the
reader all our results also hold for the Bayes formulation (7). Recall 1 < k < % for identifiability
reasons. Our first contribution is to obtain the sharp minimax rate of estimating 6 with respect to

square loss,

S

if1<k</n,
2 bog (L) vm<k<E,

2
€ (k,n)?>={ "
o2 log~ (J"——j’“ﬁ) ifr<k<-—n

Uﬁog(ﬁ) ifr—Vn<k<2

The minimax rate turns out to exhibit scaling not only in k£ but also in n — 2k. Scaling of the form

a, =8

(11)

n — k has been observed in a sparse signal detection problem under correlation [37] as well as a
one-sided version of (1) where the shape constraints 7; > 0 are imposed [9]. It is quite natural to see
n — k as it denotes the number of “null” or “uncontaminated” samples. The term n — 2k denotes the
number of inliers (nulls) minus the number of outliers (nonnulls). Its appearance is not surprising
since the problem becomes more difficult as k approaches 7, at which point 6 is no longer identifiable.

The fundamental question regarding when consistent estimation is possible can now be answered.
It is quickly concluded that consistent estimation of 6 is possible if and only if n — 2k = w(y/n). In
contrast, consistent estimation is possible in Huber’s model (2) if and only if £ = o(n). Importantly,
0 can be consistently estimated in (1) in the practically relevant setting where k is a constant fraction
of n mentioned in Section 1.2.

When n — 2k < /n, consistent estimation of # is not possible. The minimax rate in this regime



can be directly established from recently available results in [38]. A kernel mode estimator turns out
to be rate-optimal. Section 5.1 discusses this regime further.

We note that the minimax rate in the regime 1 < k < ¢n for a small universal constant ¢ € (0,1)
had been independently developed by Carpentier and Verzelen'. Though their result nicely pins down
the rate in this regime, the remaining regime is unaddressed. Our result delivers a full characterization
of the minimax rate by covering the practically important case where k can be a large fraction of n.

Broadly, both our upper and lower bound approaches are conceptually different from theirs.

Remark 1 (The effect of the data’s Gaussian character). By comparing to Huber’s contamination
model (2), our result enables us to understand the effect of the data’s Gaussian character. To
elaborate, in both (1) and Huber’s contamination model (2) the minimax rate is parametric for
k< y/n. For v/n < k < % (recall [13] assumes the contamination level is below 1/5), there is a
log™!(k*/n) improvement. It turns out one can easily prove (see Appendix E), using the methods
of [13], that the minimax rate in Huber’s model (2) is log (en/(n — 2k)) for £ < k < %. Hence,
when n — 2k = o(n) and n — 2k = w(y/n) the rate in Huber’s model is actually growing whereas
e*(k,n)? =< log™! (e(n— 2k)2/n) is vanishing. All of these improvements are attributable solely to
the Gaussian character of the data.

Remark 2 (Comparison to a one-sided version). It is also interesting to compare the location es-
timation rate €*(k,n)? to the minimax rate obtained for the one-sided version of (1) in [9] where
Vi 2 07

2

< if1<k<m,

9 2,2 _ 2 .
Conensiaealk,m)? = 3 282 10g ™ (L) if Vi < k< 3,
o* log* (525

log3 n

if2r<k<n-L

Note k can be as large as m — 1 since the shape constraint on 7 ensures identifiability of 6. The

situation in the one-sided case is quite different from the two-sided case we consider; the rate ¢*(k,n)

*
one-sided

is not at all an obvious extension of € (k,n). The estimators proposed in [9] heavily rely on

the shape constraint and thus are not suitable for (1).

Our second contribution is to establish the minimax rate for estimating the variance o2,

if1<k<m,

1
G‘tar(k’n)Q = :2 -2 k . n
5 log <1+ﬁ) if Vn <k <%,

(12)

This rate should be compared to the minimax rate for variance estimation in Huber’s contamination
model (3). The article [13] showed, under the assumption £ < i, the rate  + Z—z Namely, it
is exactly the same rate for estimating the location parameter 6. In contrast, we see €y, (k, n)2 is
not only faster than the rate in Huber’s model, but it also enjoys a logarithmic improvement over
e*(k,n)%

It also turns out that the minimax rate for variance estimation is exactly the same as if 6 were
already known. In particular, our result is an extension of the minimax rate for variance estimation
in the sparse Gaussian sequence model [17] (i.e. @ = 0 is known). However, the estimator proposed
in [17] requires £ < ¢ for a small universal constant 0 < ¢ < 2. As discussed in Section 1.2, such a
condition is undesirable. The estimator we propose establishes that the minimax rate proved in [17]
extends beyond this regime. Variance estimation was also considered in [7], but their result suffers
from requiring various assumptions on the outliers which have been discussed in Section 1.2.

As a consequence of our results on parameter estimation, the minimax rate for estimating the null
distribution in total variation follows directly. The rate for location estimation turns out to dominate,
and so most of the conclusions for estimating 6 carry over to minimax estimation in total variation.

A few high-level remarks about our approach are in order. For both location and variance estima-
tion, we take inspiration from earlier work [17, 7, 36, 35] and adopt a Fourier-based approach in both

the upper and lower bounds. In Section 2, the location estimator’s development is discussed in detail

L(A. Carpentier and N. Verzelen, personal communication, 2023)



for the case of known variance. In Section 3, the estimator is generalized to handle unknown variance;
rate-optimal variance estimation is also discussed. For location estimation, the lower bound is proved
via a two-point testing argument by constructing two marginal distributions in the Bayes model (7)
which have characteristic functions which agree on a large interval containing zero. The construction
is notably different from existing work [17, 7] in order to sharply capture the second order n — 2k
scaling in the minimax rate; previous constructions miss this scaling entirely. As mentioned earlier,
the lower bound for variance estimation was known [17], but a matching upper bound for all k < %
was absent from the literature.

Our Fourier-based upper bound for location estimation, though similar in examining frequency
space, is very different from the estimator proposed by Cai and Jin [7]. A detailed discussion is
given in Section 2. Briefly, as noted in Section 1.2, Cai and Jin localize € by inspecting the empirical
characteristic function at a suitably large frequency; the assumptions they place on the outliers are
crucial to their estimator’s success. A big advantage of the characteristic function is that it transforms

Xi. Specifically, it is very well-suited to

the unbounded quantity X; to the bounded quantity e™
dealing with unbounded outliers. However, the assumptions (e.g. bounded moments of outliers,
bounded null parameters) of [7] limit this advantage of the characteristic function. In contrast to [7],
we make no assumptions on the outliers and instead consider an estimator which fits to the nuisance
outliers in frequency space. Interestingly, the interval of frequencies considered in the upper bound
is the same interval of frequencies used in the lower bound, thus pointing to the optimality of the

estimator.

1.4 Notation

For a,b € R the notation a < b denotes the existence of a universal constant ¢ > 0 such that

~

a < c¢b. The notation a 2 b is used to denote b < a. Additionally @ =< b denotes a < b and
a 2 b. The symbol := is frequently used when defining a quantity or object. Furthermore, we
frequently use a Vb := max(a,b) and a Ab := min(a, b). We generically use the notation 14 to denote
the indicator function for an event A. For a vector v € R™ and a subset S C [n], we sometimes
use the notation vs € R™ to denote the vector with coordinate j equal to v; if j € S and zero
otherwise. Additionally, |[v|[o := 3°7_; Ly, 20y, |[v|l1 == 227, |v;l, and [|lv]|? == > v:. For two
probability measures P and @ on a measurable space (X,.A), the total variation distance is defined
as drv(P, Q) := sup 4 |P(A) — Q(A)|. If P is absolutely continuous with respect to @, then the
x*-divergence is defined as x*(P||Q) = [, (% - 1)2 d@. We will frequently use the same notation
for two probability densities p and g. For sequences {ax}ie; and {bx}rz;, the notation ar = o(bx)
denotes limy_s oo %il = 0 and the notation ay = w(by) is used to denote by = o(ax). For a point z € R,
the symbol §, denotes the probability measure which places full probability mass at the point . The
symbol * denotes convolution and the same symbol will be used in the context of the convolution
of probability measures as well as functions. Complex numbers are used throughout and so i € C
denotes the imaginary unit satisfying i*> = —1. For z € C, Z denotes the complex conjugate of z. In
other places, i may be used as an indexing variable; the context will be clear to the reader even if
not explicitly stated. Furthermore, we will |- | to denote modulus. In some places, it is used with a

finite set, in which case it denotes cardinality.

2 A Fourier-based estimator

In this section, we propose a Fourier-based location estimator for the regime k < 2 —C+/n. According
to the minimax rate formula (11), this is the regime where consistent estimation is possible. A rate-
optimal estimator in the other regime k > % — C'y/n will be presented in Section 5.1.1. For ease
of presentation and to aid understanding, we first discuss the case where the variance is known and
taken to be unit. For notational ease in this section, Py, and Fp  will be used in place of P 1 and

Ey 1 respectively.



Inspired by the success of Fourier-based methods [36, 7], we look to the empirical characteristic
function. As discussed in Section 1.2, the central idea of [7, 36] is no longer applicable since the
characteristic function of ) need not decay when no assumptions are imposed. Before defining our
estimator, we briefly outline Cai and Jin’s estimator [7]. Their article works in the context of the
Bayes model (7) but is also applicable in the frequentist model (6) by taking Q = ‘—(19‘ Z]’EO dy;- Let
P(w) =e” g ((1 —e)e™? + EQ(w)) and o (w) = eiwe*# denote the characteristic functions of
the marginal and the null distributions. To extract 6 from the characteristic function, Cai and Jin
[7, 36] first define the function p: R — R with

_ SEDE W)

t=w
for w € R and for a differentiable function £ : R — C. Here, J(z) denotes the imaginary part
of the complex number z € C. Importantly, it is shown that p(w;to) = 0 for all w # 0. Of
course, 1o is not available to the statistician. Taking the empirical characteristic function 9 (w) :=
%Z?:I e™Xi Cai and Jin [7] define the estimator § = u(w*;t)) with a specific choice of w*. As
explained in [7, 36], the idea is that plugging in the empirical characteristic function should yield
0 = p(w*, ) ~ p(w*, ). SinceAH = /J,(L;J*Q, o), Cai and Jin [7] essentially need v to be close to .
Since ¥(w) = (1 — &)tho(w) + eQ(w)e™ "2, assumptions on Q cannot be avoided if ¢ and 1y are to
be close. This is a major drawback to writing 6 as a function of .

We obtain 6 from ¢ directly and thus do not need 1 and 1o to be close. Consequently, assumptions
on the outliers are totally avoided. To motivate our construction, consider the following line of
reasoning. Recall the notation O = {1 < j < n:v; # 0} and Z = O°. Consider the expectation of

the empirical characteristic function at any frequency w € R is

1 . iwX iwfw—2 n— |0 1 Wy
o (R ) o F (525 o)
j=1

jeo

Cai and Jin [7] essentially assume ‘—(19‘ Zj co €™ is small for a choice of large frequency. Instead, we

will fit the function w +— ﬁ > €' directly. The following result states how 6 can be obtained

jeo
from a population level optimization program.

Lemma 2.1. Ifk < 3, then

0 = argmin sup inf
peR  weR ¢€C
[¢I<1

(13)

L 2 _
EQ,W <% Zezw(xj—ﬂ)+7> _ nTk _ SC .

Jj=1

Proof. Clearly 0 is a minimizer at which the objective function is equal to zero. It remains to show

0 is a unique minimizer. Suppose p is also a minimizer. Then

Im iwx,—mie2) n—k k
0= inf |F - w(Xj -+ | _ K
2 B (Z a
ICl<1 J=1
—k [ iwo- k1 S -~
= sup 1n£ n (ezw(9 n) 1) 4+ E ezw(9+-y] ) 74_
wer \E\ESI " " jeor
where O’ is O along with some arbitrary indices taken from Z (if needed) to ensure |O’| = k. Suppose



1 # 0. By reverse triangle inequality,

0 > sup in£ —k (eiw(g—ﬂ) _ 1)‘ _ E % Z et E+vi—n) _ ¢

weRga! " "\ Vo

> sup n—k e O=n) _ 1‘ 2k

N weR n n
n—k i igro6-m _ 1‘ _ 2%

~ n n

_ 2(n — 2k)

- n

which is a contradiction since k < 3. Therefore, § = 1, which is to say 6 is the unique minimizer. [

Since 6 can be written as the minimizer of a population level optimization program, it is natural
to consider the estimator which minimizes an empirical version of the population level program.
Following instinct, we would like to replace the expectation in (13) with its empirical counterpart.
However, it is nonsensical to do this without any modification since (13) involves supremum over
w € R and so the term % 22:1 ei‘”(Xj_”H% has variance which may blow up. To rectify this issue,

we truncate and only consider |w| < 7. Consider

L ewtnmmrsy _nok ko
n 4 n n
j=1

0 = argmin sup inf
peR  |w|<r S€C
wIST <

(14)

Here, 7 is a tuning parameter to be selected. It will turn out to determine the bias-variance tradeoff
in the risk of .

Theorem 2.2. Fiz§ € (0,1). There exist C,C’, ¢ > 0 depending only on § such that if n is sufficiently
large depending only on 8, k < 2 —Cy/n, and T =1V c\/log (1 + 162(7;;3%)2), then

. 1 kE
P _ ’ v 1 < 6.
sup 9w{|0 0> C <_\/ﬁ+n7- )}75

€
[vllo<k

Note

if k<,
_— ifvn<k<Z

k - nlog(1+%) f\/_ P

1
—=+
n
vn n\/lvlog(1+kz("n;32k)2) —k  fn<k<Z_n
N2 4 — 2 )
n,/log(l«ki(nisk) )

from the inequality u/2 < log(1 + u) < u for u € (0,1). Thus, 0 indeed achieves the rate (11) when
k<% —Cyn.

As with other Fourier-based methods, exploits the Gaussian character of the data to denoise.

S

Namely, (14) involves dividing by the characteristic function of the standard Gaussian distribution,

i.e. the term e~’/2 appears. As discussed in Section 5.4, the estimator can be generalized to handle

non-Gaussian noise. A couple of remarks are in order.

Remark 3. The minimax rate for 1 < k < c¢n for a small universal constant ¢ € (0,1) had been
independently developed by Carpentier and Verzelen?, though their estimator is conceptually different

from ours.

Remark 4 (Computation). Fitting to the outliers in the frequency domain is advantageous as it only
involves optimization over the two-dimensional (one-dimensional complex) variable ¢. In contrast,
typical ideas of fitting to outliers in the spatial domain (e.g. as in the mean shift contamination
literature discussed in Section 1.1) require optimization over a k-dimensional variable (or an n-

dimensional variable with a penalty, as in [16] mentioned in Section 1.1). The computation of (14) is

2(A. Carpentier and N. Verzelen, personal communication, 2023)
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thus straightforward. First, consider the minimization over . One can take the interval having length
of order /logn centered at median(Xi, ..., X,,) and discretize it with grid points having distance of
order the statistical rate e(k,n) given by (11). Since the domain of optimization over w is a bounded
interval, it can be discretized with a fine enough grid. A glance at the proof suggests taking grid
points having distance of order ﬁ since we are guaranteed |é — 0] < /logn by the discretization
employed for p. Minimization over (¢ is direct as it is a convex problem with a convex constraint.

The estimator can then be computed by a simple two-dimensional grid search.

3 Methodology: unknown variance

In this section, the model (1) is considered in the setting where the variance o is unknown. Sections
3.1 and 3.2 address variance estimation and Section 3.3 addresses generalizing the Fourier-based

estimator of Section 2 to handle unknown variance.

3.1 A pilot variance estimator

A pilot estimator which captures the order of o2 will be needed, and we will directly use the correlation
estimator of [38]. As the context of [38] appears different from our current setting, we discuss, for
the reader’s understanding, the development of the pilot estimator of [38]. One idea for a variance
estimator is )
. o \2

S e ]EZS(XJ Xs)?,
where Xg = ‘—é‘ Zjesz. The intuition is that the X; all have the same mean 0 for j € Z, and
so the usual sample variance estimator could be used if Z were known. Since it is unknown, a
search must be done. Subsets of size at least 5 are searched over because 7 is of at least this size.
If S C Z, then \S\+1 > ies (X — Xs)? will be a decent estimator of ¢>. On the other hand, if
SNO # 0, then \S\+1 > ies (X — Xs)? will overestimate 0. Outliers can be conceptualized as
contributing additional variability. Therefore, it is natural to minimize over all subsets S C {1,...,n}
with |S| = [%]. However, the variance estimator in our setting appears to require an exhaustive
search and thus seems computationally intractable. The idea is rescued in [38] by random sampling
to obtain a polynomial-time estimator.

Independently draw subsets Ei, ..., Em C {1,...,n} of size £ uniformly at random and define

1 _

~2 . 2

= e X, — X 1

7%= min o > (X, - X% (15)
JEE

where Xp, = % Z]‘eEr X;. Tt is immediate that &2 is an estimator computable in polynomial time in

n whenever m scales polynomially in n. The following result can be proved via the same argument

as in [38], so we omit the proof.

Proposition 3.1 ([38]). Fizd € (0,1). There exist constants C1,Ca, L > 0 depending only on § such
that if m = [n1] and 2 < £ = [Calogn], then

~2
inf Py . {L‘l <L < L} >1-4.
(S o
lIvllo<n/2
o>0

With the pilot estimator in hand, a Fourier-based variance estimator can now be constructed.

3.2 A rate-optimal variance estimator

Our Fourier-based variance estimator is quite different from Cai and Jin’s Fourier-based variance
estimator [7]. Recalling they work in the context of (7) (but their work is applicable to (6) as
well), let ¥(w) = e~w’e?/2 ((1 —e)e™? + 6Q(w)) and o (w) = ¢0=*7*/2 denote the characteristic

11



functions of the marginal and the null distributions. Cai and Jin [7, 36] define the function v : R — R
with

FAd0]
tE)]

v(w;&) = —

for w € R and for a differentiable function £ : R — C. Importantly, v(w;vo) = o2 for all w # 0.
With the empirical characteristic function ¢ (w) := 1 > =1 e™Xi_ Cai and Jin [7] define the estimator
5% = v(w*; 7\[)) with some specific choice w*. The same considerations noted for their location estimator
in Section 2 apply to their variance estimator. As mentioned before, their estimator requires decay
of Q and so various assumptions were imposed on the outliers.

The estimator we propose avoids assumptions by exploiting the connection between the variance

and the norm of the characteristic function. Set N (w) := 1 Z;;l e™Xi|. Define
52— inf —2108N() log];](“’) (16)
a<w<b w

where a < b are tuning parameters to be set.
Theorem 3.2. Fiz § € (0,1). There exist constants C,c > 0 depending only on & such that if n is
sufficiently large depending only on 6, a = c¢6~* < 1Vlog (%)), and b = 100a, then

sup Poo — (<
OeR _r_
HW\EOSk nlog (1+ ﬁ)

where & is the pilot estimator from Section 3.1.

Note
k ﬁ if 1 <k <+/n,
_— = i ) N
nlog <1+%) 7nlog(l+%) if vVn < k < 3

by the inequality u/2 < log(1 4+ u) < u for u € (0,1). Thus, % indeed achieves the rate (12).

The estimator given in (16) is quite close to the variance estimator proposed in the context of
sparse Gaussian sequence model [17], which is a special case of (1) with § = 0. Even though 0 is
unknown in the setting of (1), it is clear N (w) is shift invariant; it retains the same value even if the
original data {X;}7_, are replaced with the shifted data {X; + u}j=; for any p € R. The difference
between (16) and the estimator of [17] lies entirely in taking infimum over a < w < b; the authors of
[17] explicitly choose w and use the estimator

52 — 2o Nw) loijj(“)A (17)
However, it was only proved in [17] that this estimator is rate-optimal in the regime % < ¢ for some
sufficiently small constant 0 < ¢ < %. In large-scale inference contexts, there is a practical need to
address the case k > 3.

To explain how (16) improves on (17), suppose |O| = k without loss of generality and consider

k 1 s
1ﬁ<1EZe ’YJ>’.

A rearrangement of the above equality leads to the following population counterpart of (17),

1—<1—Ze“”f>‘. (18)

jeO

the population counterpart of N (w),

n
N(w) = | D2 0
j=1

,M:CR,_IOg

w?
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, and the

extra infimum over a < w < b in (16) is to achieve a smaller bias. To elaborate, we first note that

The key quantity in (18) is the nonnegative bias term —-; log ‘1 - & (1 -z Yico ei“’“ﬁ)

2

iy

jeo

1- % Z e’

j€O

Zcos (wv5) <2<1——Zcos (wv5) ) (19)

JEO JjEO

Thus, a lower bound for + > jco cos(wy;) leads to an upper bound for the positive bias term in (18).

The paper [17] uses the inequality £ > jeo cos(wy;) = —1, so that

1ﬁ<1—26“"”>

JEO

-— log

n
< — .
~ w? log (n — Qk) (20)

It is clear k needs to be bounded away from % so that the bias bound (20) does not blow up. In fact,
the bound (20) is sharp in the sense that for any w, there exist 1, ...,y such that (20) is an equality.
Therefore, the condition that £ is bounded away from % imposed by [17] cannot be improved for the
estimator (17).
The additional infimum in our estimator (16) leads to better bias control. To elaborate, consider
the following population counterpart of (16),
2log N (w) 2

inf ——————+=0"— sup log
a<w<b w a<w<b W?

1—E<1——ZMJ>“ (21)

JjeEO

Compared with (18), now the positive bias term becomes — sup, <, <y, Zlog|l— £ (1 -1 Yico ei“”]') ’
In view of the inequality (19), it suffices to find a lower bound for sup,«,, <, 1 > jeo cos(wy;), which

is given by the following proposition.

Proposition 3.3. Suppose 1, ..., € R. Define the function f : R — R with f(w) = + Zle cos(w;).
If a > 0, then sup,¢(q,1000] flw) > —%.

To apply Proposition 3.3, we set b = 100a, and then the bias term in (21) can be bounded by

2 12 k 1
17— 17— Will< —Zlog [1—4/ =2 ) < =
k

whenever the condition = < % holds. In particular, the bias bound does not blow up to infinity

— sup —210g
a<w<100a W

when k = %, and an improvement over (20) for k near % has been achieved. The estimator (16) is
thus motivated from this bias improvement. The choice of the hyperparameter a involves a typical

bias-variance tradeoff and Theorem 3.2 attests the success of (16).

3.3 A variance-adaptive location estimator

In this section, the Fourier-based estimator of Section 2 is generalized to handle unknown variance.
Define
Rk .2 Rk

[02_,01] = |1l-—] 6" [1+ —
k k
nlog (1 + ﬁ) nlog (1 + ﬁ)

where R is some constant to be set. Then, the estimator is

(6,0) = argmin sup inf
HER  |w|<7 GEC
03§v§0+ [¢I<1

Zezw(x: preigt _n=k ko
n

- - (22)

The following theoretical guarantee is available.

Theorem 3.4. Fiz § € (0,1). Let 6 be the variance estimator from Section 3.2 at confidence level

$. There exist C,C", ¢, R > 0 depending only on & such that the following holds. If n is sufficiently

13



large depending only on §, 1 <k < 2 —Cy/n, and 7 = 51 (1 \Y c\/log (1 + ﬁ%%ﬁ)>, then

5 200 o132
sup Po .o { 10 = 9] > C'/Elog_% <1+ al 32k) )} <9
0 n n

(o

where 0 is given by (22).
This estimator achieves the same rate as if the variance is known; adaptation to unknown o2 is

possible. The proof is broadly the same as the argument in the case where o2 is known. The only

difference is in the additional optimization over v, which is not a serious complication.

4 Lower bounds

In this section, minimax lower bounds are given. Location estimation is addressed in Section 4.1 and

variance estimation is discussed in Section 4.2.

4.1 Location estimation

Since adaptation to ¢? when estimating the location parameter is possible, we will prove the lower
bounds as if 0 = 1 were known. Recall that Py and Ey ., are used in place of Ps .1 and Ep .1
respectively. The Fourier transform of an integrable function f is f(t) = [ e " f(x) dz and the
Fourier transform of a finite Borel measure 7 is #(t) = [ e~ "“nx(dz).

A minimax lower bound can be established for 1 < k < 2 — /n via a Fourier-based approach,
showcasing an interesting parallel with the upper bound involving a Fourier-based estimator proposed

in Section 2.
Theorem 4.1. Suppose 1 <k < 5 — /n. There exist some universal constants C,c > 0 such that
20 5132
inf sup Py, {|0 -0 >C- Elogfl/2 (1 + M)} >ec.
€R n n

6 6
[Ivllo<k

Note Theorem 4.1 implies consistent estimation is impossible when n — 2k < y/n as at least constant

order error is unavoidable. Furthermore, consider

N NG if k </,
if Vn<k<3%—+/n,

= k
TL\/IOg (1 + Wn;;fw) n\/log(l-l»kz("n;:fkﬂ)

from the inequality u/2 < log(1l + u) < u for u € (0,1), and so the lower bound does indeed match

the upper bound. The minimax lower bound for £ > % — /n will be presented in Section 5.1.2.
The proof of Theorem 4.1 proceeds by first linking the model (1) to its mixture formulation (7)
via a standard concentration argument. The lower bound argument then involves considering the

testing problem

Ho: X1, .., Xn & (1 = )N(=6,1) + £(Qo * N(0,1)),
iid

H1 : Xl,.“?Xn ~ (1 —8)N(0, 1) +8(Q1 >k]\7(07 1))

where contamination distributions Qo and @1 as well as the location parameter 6 € R are all to be

selected. Here, € = % As usual in minimax lower bound arguments, the goal is to construct Qo and
Q1 such that 0 can be taken as large as possible while ensuring Hy and H; cannot be distinguished.
It turns out a Fourier-based approach [7, 10, 17] yields a rate-optimal construction. Letting fo
and f1 denote the marginal densities of Hyp and H; respectively, the parameters Qo,Q1, and 0 are

selected such that the Fourier transforms of fo and f1 agree on as wide an interval [—7, 7] as possible.

14



As argued in the literature [7, 17, 10], the x>-divergence admits a bound in terms of the Fourier
transforms of the marginal densities,

V2T o= 1 AT : —it
1—522’€—k!/ ‘w(fl“)*f“t))e '
k=0 B

2
dt.

X*(f1] fo) <

If Qo,Q1, and 6 are chosen such that the Fourier transforms match fi(t) = fo(t) on [—7,7], then
there is hope for the above integral to be small. It turns out the optimal choice of 7 in Theorem 2.2
is precisely the correct choice in the lower bound as well, and essentially the optimal choice for the
location parameter is 6] < £.

Let us elaborate by making some more technical remarks. The condition fo(t) = fi(t) implies
one should pick Qo and @1 such that

A A 1—¢

Q1(t) — Qo(t) = — 2i sin(t0).
% implies == > 1, it is clear that this cannot hold for all ¢ € R since |Q1(2) — Qo(t)] < 2
because |Q1(t)| V |Qo(t)] < 1 by virtue of Qo and Q1 being probability measures. An idea is to seek
Qo and Q1 such that

Since € <

0 if t < =271,
== . 2isin(r0) - == if —27 <t < T,
Q1(t) — Qo(t) = { 1= 2isin(t0) if —T<t<r, (23)
L=< . 2isin(r0) - 2= ifr <t <27,
0 if t > 2T,

where 7 is a tuning parameter to be set and will depend on the choice of . The linear functions
for 7 < [t| < 27 simply taper to zero. When [0] < £, the existence of such Qo and Q1 is given by
Proposition B.1.

Though appealing in its simplicity, it seems to us this avenue is only capable of delivering a sharp
minimax lower bound for, say, the regime ¢ < i The behavior for e close to % is missed; indeed, it
)

is not clear from this idea why the term 1 — 2¢ (: should even appear in the rate. Roughly

speaking, choosing 0| =< £ yields the following bound on the x2-divergence

2
X (foll fr) ST,

where C' > 0 is a universal constant. To have x*(fo || f1) < < would force the choice 7 < y/log (ene?) =

log (%)7 thus missing the n — 2k scaling.

The main issue is that the approximation of 1;6 - 2isin(t6) by 0 for |t| > 27 is not good enough.
Instead, consider seeking for |t| > 27,
Q1(t) — Qo(t) = 2¢ - 2isin(th). (24)

Observe that now the approximation error is [1== (2isin(t)) — 2¢ (2i sin(t6))| = (1—2e) (1—:5) |22 sin(t0)],
which scales with 1 — 2¢. Of course, a major question is whether it is even possible to find two prob-
ability measures Qo and Q1 satisfying (24). It turns out via a simple reparameterization that this
question can be reduced to asking the same question in the context of the previous idea, namely

whether there exists a pair Qo, Q1 satisfying (23). Consider the parameterization

Qo = 2¢dp + (1 — 2¢)Qo,
Q1 =2e0_9p + (1 — 26)@1.

Then Q1(t) — Qo(t) = 2e - 2isin(t0) + (1 — 2e) (él (t) — Qo(t)). Then both the condition (24)
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for [t| > 27 and the condition Q:1(t) — Qo(t) = == - 2isin(t0) for |t| < 7 is satisfied if Qo, Q1

5

satisfy (23) with contamination proportion =% in place of €. The choice of parameterization admits

1
a natural explanation. In the case ¢ = %J: we have Qo = dp and Q1 = d_p. This is natural
as the location parameter is not identifiable and x*(f1|| fo) = 0. This extreme case suggests the
above parameterization, which interpolates between the construction (23) (useful for € < 1) and the
extremal case € = %

The technical parts of the proof consist entirely in constructing suitable Qo and Ql and bounding
the induced x2-divergence using arguments inspired by [17]. The correct choices of 7 and @ emerge as

consequences. Roughly speaking, choosing 0| < £ yields the following bound on the x2-divergence

XP(foll f1) S (1 —26)2%% 7,

where C' > 0 is a universal constant. Then the correct choice 7 =< /log (1 +ne2(1 —2¢)2) =<

\/log (1 + kz(”n;g%)z) is available to yield x*(fo || f1) < % This rough sketch captures the essential
spirit of the proof of Theorem 4.1.

4.2 Variance estimation

For variance estimation, a minimax lower bound is given by Part (ii) of Proposition 7 in [17], matching
the upper bound of Section 3.2. We give a statement of their lower bound in the present context for

completeness.

Theorem 4.2 (Part (ii) of Proposition 7 in [17]). There ezxist some universal constants C,c > 0 such
that

A2 2

— Ck

inf sup Py .0 | 20 | > - >
6  0eRr o k
irlloz niog (1+ )

5 Discussion

In this section, some remarks are made discussing finer points of interest.

5.1 Inconsistent, yet rate-optimal estimation for n — 2k < /n

In the regime n — 2k < /n, consistent estimation of @ is impossible as implied by the lower bound of
Section 4.1. From the perspective of large-scale inference which motivates the two-groups model (1),
it seems uninteresting to investigate this regime further. However, it turns out that the minimax rate
in this regime still exhibits a subtle logarithmic dependence on n — 2k, which can be derived from

recent understanding of a kernel mode estimator [38].

5.1.1 Upper bound

Motivated by the recent results in [38], we consider a kernel mode estimator with a box kernel. For
a bandwidth h > 0, define G, (t) := s > i—1 Lyje—x,|<ny and set

6 := argmax G (t). (25)
teR
To simplify presentation, the variance will be assumed known and equal to one in this section;
adaptation to o2, as well as k, has been discussed in [38].
A mode-type estimator is natural for the purpose of null distribution estimation. In the setting
of two-groups model (1), the majority of the coordinates share the same mean value 6. Efron [23, 25]
essentially estimates a marginal density of the z-scores and then takes the center of the peak as an

estimator of . The kernel mode estimator in the form of (25) has a long history. It was first proposed
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by Parzen [50] in his original paper of kernel density estimation. Consistency, rates of convergence
and asymptotic distribution were investigated by Chernoff [14] and Eddy [22].

The recent paper [38] studies the statistical property of the kernel mode estimator in the context
of robust estimation. Unlike the classical literature [50, 14, 22], it turns out the optimal choice of the

bandwidth is a widening, rather than shrinking, one.
Theorem 5.1 (Theorem 3.1 [38]). Suppose 1 < k < &. There exist universal constants C1,Ca > 0

such that the following holds. For any § € (0,1), there exists Ls depending only on § such that if n
is sufficiently large depending only on § and h = C \/1 Vlog (Lsn/(n — 2k)?), then

sup Ps.- {|é —0 > C’gh} <5
0eR

[vllo<k

where 0 is given by (25).

Applying Theorem 5.1 to the regime § —C+y/n < k < %, the minimax rate (11) is achieved in the

inconsistency regime, thus complementing the result of Theorem 2.2 for the Fourier-based estimator.

5.1.2 Lower bound

In Section 5.1.1, a kernel mode estimator is used to achieve the minimax rate in the inconsistency
regime. The following matching minimax lower bound can be established, which is stated for 6% = 1

without loss of generality.

Theorem 5.2. Suppose & —\/n < k < Z. There exist some universal constants C,c > 0 such that

~ n
inf Poyd16—0 log (1+ —2— ) {>e
% oek 0’”{' |>C\/Og< +(n—2k)2)}_c

[llo<k

Together with the result of Theorem 4.1, we have established the lower bound of the minimax
rate (11) for all 1 <k < 3.

The construction in the proof of Theorem 5.2 is, at its core, similar to that in [38]. Since the context
of [38] is quite different, we still present a self-contained proof in the paper. Instead of constructing
contamination distributions and selecting a location parameter such that the characteristic functions
of the marginals match on a large interval containing zero, a more direct argument is available.
Strictly speaking, the concentration argument used in Section 4.1 to link the frequentist model (1)
to the Bayes model (7) can no longer be used. The proof of Theorem 5.2 is thus directly constructed
for the frequentist model (1).

5.2 Null estimation in total variation

In some situations, estimation of the null distribution with respect to some information-theoretic
distance or divergence is of interest. Our results regarding parameter estimation turn out to directly
yield minimax rates for estimating the null distribution in the total variation distance. The connection
between the total variation of two univariate Gaussian distributions and their parameters is given by
the following result of Devroye, Mehrabian, and Reddad [19].

Lemma 5.3 (Theorem 1.3 in [19]). If p1, 2 € R and 01,02 > 0, then

2 2
drv (N 2N ) =1 (lr o2l I = pal)
TV( (M1701)7 (M2702)) < Uf\/a% o1V o2

This result immediately yields the minimax rate for estimation of the null distribution in total vari-

ation, namely

Elog7%(1+M) ifl1<k<2Z—.n
erv(k,n) < 1A k =" n sks3—vm,
1 ifs —vn<k<ig.

n\/log (1 + kz(nn;fw)
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Notably, the location estimation rate dominates and thus determines the total variation rate. A

formal statement of the minimax rate follows, which we give without proof.
Theorem 5.4. Suppose 1 < k < 5, and consider the estimators 6 and &> from Theorems 3.2 and
3.4, respectively. For any 0 € (0,1), there exists some constant C' > 0 depending only on ¢ such that

sup Py { dry (N(é7&2)7N(0,02)) e i A b <
R

qu\'\eoogk n\/log (1 + 162(7;;3%)2)
o>

Furthermore, there exist some universal constants C',c > 0 such that

inf sup Py {dry (N(é,&Q),N(9,02))zC' i A S >e

6,6 _
' meueoﬂzgk n\/log (1 + 7’62("”3%)2)
o>

Since for k > 2 — /n the lower bound is ety (k,n)
variation that NV (é7 &%) achieves the minimax rate even though no guarantees are available for 6 when
n — 2k < /n. We always have drv (N(é,&Q),N(H,UQ)) < 1. This marks a significant difference

between parameter estimation (in which minimax estimation for k& > % — \/n is nontrivial) and

2 1, it follows from the boundedness of total

~

estimation in total variation.

5.3 Adaptation to k

Thus far it has been assumed that the signal/contamination level k in (1) is known to the statistician.
In practice, this is usually not the case and so adaptation to unknown k is an important problem.
As frequently seen in the literature, a standard application of Lepski’s method [42, 43, 44] gives an
adaptive estimator of the location parameter 0. Fix §,n € (0,1). We will consider adaptation to k for
1<k < % —Csy/n where Cs > 0 is the constant depending on ¢ from Theorem 3.4. Let &2 denote
the pilot variance estimator in Proposition 3.1 at confidence level 7. By Proposition 3.1 there exists
L, > 1 such that &QL;I < 0% < 5°L, with probability at least 1 — 7 uniformly over the parameter
space. To apply Lepski’s method, define

K= {1,2,3,..., g - cm/ﬁJ } (26)

Let 0; denote the estimator of Theorem 3.4 at signal level k and confidence level §. Define

k

n\/log (1 + kz(nn;g%)z)

e(k,n) =

For k € KC, define the intervals
Ji = (B = Cs.y/Tuelh,n), 0 + Ch o/ Loire(k,m)|

where C(';’,] is chosen large enough depending on § and 7. The adaptive estimator 6 is defined to be

any element of the set

) s (28)

keK
K>k

where k' € K is the smallest value such that the set is nonempty. If no such k" exists, set 6 = 0. Note
that computing 6 does not require any knowledge of the true signal/contamination level nor the true

variance.

Theorem 5.5. Suppose 6,1 € (0,1). There exists Cs,Csn > 0 sufficiently large depending only on §
and 0, m respectively such that the following holds. If n is sufficiently large depending only on §,n and
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1<k* <% —Csy/n, then

0—0 .
sup Poyo {' > Gy ek m)} <n+é
6€R (2
lIvllo<k*
o>0

where e(k,n) is given by (27).
Thus, the adaptive estimator 6 achieves the minimax rate. It is not so surprising that adaptation to k
is possible since it has been established in a one-sided contamination model [9]. Of course, adaptation
is trivial in Huber’s contamination model since the sample median is already rate-optimal.

The construction of an adaptive variance estimator is similar. Fix §,7 € (0,1). Recall that 52 is a
pilot variance estimator satisfying &QL; ! < ¢* < %L, with probability at least 1 — 7 uniformly over
the parameter space. Let 67 denote the estimator from Section 3.2 at confidence level § and signal

level k. Define .

evar(k,n) = m.

(29)
For 1 <k < 3, define the intervals
Ju = [6% — 5°C%  Lyevar (K, n), 67 + 5°Ch p Lyevar (k, )]

where C’(/;m is a sufficiently large constant depending only on i and §. The adaptive estimator 52 is

defined to be any element of the set

M 7 (30)

K<k

where 1 < k' < 5 is the smallest value such that the set is nonempty. If no such k' exists, set 62 = 1.
Again, note that computing 62 does not require any knowledge of the true signal /contamination level.
The following guarantee is available.
Theorem 5.6. Suppose 1 < k* < &. If 6,n € (0,1), and n is sufficiently large depending only on n
and 9, then there exists Cs, > 0 depending only onn and § such that

2 2

0 —o «
sup Py o {% > Cs névar(k 7n)} <n+64.
(1S g

lvllo<k™
a>0

With an adaptive variance estimator in hand which can achieve the minimax rate of location esti-

mation, an adaptive estimator of the null distribution in total variation distance can be immediately

constructed, yielding the following result which we state without proof.

Theorem 5.7. For ¢ € (0,1), there exists C>0 depending only on § such that the following holds.
If n is sufficiently large depending only on &, then

sup Py 3 dav (N(D,5%), N(0,0%)) > C i A b <s
R

H«,e\'\eoogk n\/log (1 + kZ(nn;g%)z)
o>

with appropriate hyperparameters for the adaptive estimators 0 and 6.

Thus, the minimax rate can be achieved without knowledge of k.

5.4 General noise distributions

The model (1) stipulates the noise is Gaussian. However, it is also interesting to consider the generic
version of (1) where Z1, ..., Z, Y F for some known symmetric distribution F' (e.g. Cauchy, Laplace,
etc.). For discussion, take 0 = 1 to be known.
Since the parametric rate can always be achieved by the sample median for k¥ < \/n, for sake
n

of discussion consider the regime \/n < k < 2 — Cy/n. Our methodology requires only a slight
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w2
modification to accommodate noise variables drawn from F. Note in (14) the term e 2 is the
reciprocal of the characteristic function of N(0,1) evaluated at w. Therefore, a natural idea is to

consider the estimator

%

w(X;j—p) n—k k
Yrw)  n 7EC’

1 e—e
0 = argmin sup inf |— E
R <. CEC |n 4
nel ST 1T =

where Y (w) = E(e?1) is the characteristic function of F.

The arguments in the Gaussian case can be straightforwardly modified to show that with the

choice 7 such that ﬁm = k(::,,_/ik)7 we have [0p — 0] < L7~" with high probability. For example,
if F'is the Laplace distribution with unit scale, then ¢ (w) = ﬁ7 and so the choice 72 = %
yields |0F — 0% < % . ﬁ Notably, this Laplace rate is faster than the Gaussian rate (11) by a

polynomial factor! The improvement in the rate can be seen as the result of the Laplace distribution
having a characteristic function which decays polynomially in w rather than exponentially like that
of the standard Gaussian distribution. This phenomenon has been noted before in the deconvolution
literature [46, 26, 11]. An interesting problem is to prove a matching minimax lower bound for

estimating 0 with a generic noise distribution F'.

6 Proofs

This section contains the analyses of the Fourier-based location estimator of Section 2 and the variance

estimator of Section 3.2.

6.1 Fourier-based estimator: known variance

Proof of Theorem 2.2. Fix § € (0,1). It follows from an argument using the bounded differences
inequality (e.g. Theorem D.13) that for a sufficiently large L > 0 depending only on §, the event
&= {SqueR ‘% Z?Zl (ei“’(xffe) — Eo (ei“’(Xffe)))‘ < %} has Py -probability of at least 1 — ¢
uniformly over (6,~). Examining (14), by definition of § we have on the event &,

n . 2
sup inf 1 Zei‘“(xj_‘g)‘“dT _nzk_ EC
lw|<r CEC, | = n n
=gl g=t
) L m iwix,—ore2 n—k k
< sup Cmé —Ze g 2 —— = —C
€C, 1n £ n n
WIS <t 1T =
Ny 2 -k k1 ;
< sup |— ezw(Xj—0)+”7 _ n— _ M1 et
Jwl<r [ 4= n n kje@
1 n . 2 . 2
— sup |~ Z <ew(xj79)+% — Eo <ew(xj79)+“’7)>
Jw|<T nj:1 ’

7_2
Le=
S e

(31)

E
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Now, consider that on £ we also have

1 . iw(X;—6 w? iw —0 iwh+ < 1 = iw -
sup _Z(e (XG=0)+ _ w0+ 9)) R _Z<e X, (047 )
|w|<T n j=1 Jw|<T n j=1

2 1 — < X
<e? -sup|— (ew i — FEg. (ew 7))
weR | N “—
Jj=1
2 1
— e sup |— (6zw(X i—0) EQ,W( w(X *9)))
weR nj:l
7_2
Lez

inf Zew(x e k- EC
\w\ST ¢eC, | n n n
I¢I<1

1< 5 —
> sup inf —Zew((ﬂ’“ o_n—k_ EC —
lw| <7 CEC,

- K=t
72
n—Fk ( io0-0) k1 iw(0+~,;—0) Le™>
= sup inf (e 71)+— —Ze R
lw|<T ‘C"EC n n kjeo’ vn
—k 6 k| Le®
> sup inf o (e“"(‘9 2 71) L (32)
S vn

Here, O is defined to be O with any arbitrary k — |O| indices added from Z. This is simply to ensure
|O'| = k. Let us now examine the first term on the right hand side of (32). We break up the analysis
into two cases to separately obtain the parametric part ﬁ and the nonparametric part % in our

target bound. Let C1 > 0 be sufficiently large depending only on 6.

Case 1: Suppose k < C1y/n. The argument is fairly simple to obtain the parametric rate. From
(32) and (31) it follows

7_2 -
iw(0-0) _ 1‘ < (-2 2le> 2k} L (1 ) (op.m o0 ) < &
c = <nfk v wm | Sm\is % e

where C' > 0 depends only on §. Here, we have used n is sufficiently large (depending only on §).
We have also used k < C14/n implies log (1 + ﬁ%%ﬁ) < log (1 + Cf), and so 7 = 1 by selecting

sup
lwl<T

¢ sufficiently small depending only on 6. Let C' = %é’ We claim |t§ -0 < % To prove the

claim, suppose not, that is, suppose |t§ —0] > % Consider the choice w* = #:é) and observe

lw*| < 1= 7. Therefore, from the inequality 3z < sinz < |e** — 1| for z € (0, 1), we have

2C o A | w0 :
C_5 C :§w*(9_9)§61w(0 0)_1’S8up

vn 6 Vn 6 wl<r

el (0=0) _ 1‘ <Y

= n

which is a contradiction. Hence, we have the claim. To summarize, we have shown |§ — 6] < <~ on
the event & when k < Ci14/n, as desired.

Case 2: Suppose k > Ciy/n. For any fixed w with |w| < 7, it is straightforward to solve the

optimization problem
n—=k (6iw(0—é) _ 1) + Ez
n
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directly and obtain the solution

_n—k ( w(0—6) )
2" = r
2 w(0— .
ciw(@=—9) 1] ( 1) otherwise.

w(0—0) _ 1’§2k

n—k’

Plugging in 2", we see the value of the optimization problem is zero when

piw(0—0) _ 1‘ <

—k°
Therefore,
—k [ iwo—b k —k k .
sup inf n (e“’(e 0 _ 1) + ~z| = sup n (e (=6 1) + —z
|w|<T zeC, n n |w[<T n
|z[<2
_ sup n—k<w(9 6) 1)—&—&5‘
lwl<T,
ew(efé)71|>n2Tkk
= sup n—k — 2k/An iw(0=0) _ 1‘ .
w| <7, n er(@=0) —1]
em(efe)_1|>n277kk
To summarize, from (31) and (32) it has been shown that on £ we have
—k 2k iuo(6—0 2Le
sup L - — /n w(®=6) _ 1‘ <= - (33)
Jwl<, no fe@=0 —1| n

iw(6—6) _ 2k
e 1|>'n.7k

2
Set C = ( 4_];) and take ¢ < % (and sufficiently small so that the Case 1 analysis goes through).

We claim that (33) implies |0 — 0] < 8&771. For sake of contradiction, suppose 10— 0| > Bt
Now, consider the choice w* = %. Note that |w*| = % < %T = 7. Further consider
|ei“*(6_é) — 1] = [e!"AER/™) | If © < 8k/n, then |ei“*(0_é) —1]=2> -2 since k < 2. On the
other hand, if # > 8k/n, then |ei‘”*(0_é) — 1| = |e"®F/m) 1] > & 5 2k Hence, w* lives in the

domain of optimization in (33) and so

ﬂ_2

2Le 2

Jn

Y

(-3 () o<
2 n—

2k if 3>

4— k - 8k
=oow <
2. 022k 4f Bk > g
4-

\Y

4—m  k  n—2k 8k
=oae = oaf el

> 2 n n
=) a— —2k _k  r 8k
dom . on=2h kg 8k > o
_ (n —2k)k
N 2 n?
where we have used that ”%% and % are both less than or equal to 1 in the penultimate step.
Rearranging, we have
4L 32 .2
1< —- nie 2,

“4—7 (n—2kk

Since C1y/n < k < & — Cy/n, we can take C1, C large depending only on ¢ to obtain ("71# > Oy
for a sufficiently large C2 > 0 depending only on §. Consequently,

. 272 N 272 . 272
2 =1V clog 1+M <110g M < log M —2log 4L )
n3 2 n3 n3 41—

3/2 2 .. A _
Therefore, 1 < 2 . MeT < 1 and so we have a contradiction. Hence, |6 — 0] < 277" on €.

The proof is complete. O
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6.2 Variance estimation

Proof of Theorem 3.2. Fix § € (0,1). It follows from an argument using the bounded differences
inequality (e.g. Theorem D.13) that for a sufficiently large L > 0 depending only on §, the event

£ .= {SqueR 1 - (%5 — Eg o (éw%))‘ < %} satisfies inf ger, Poy0(€) > 1 — £. For
wa\r\ggk,
. 5202
w € R, define N(w) := % ?:1 e (0F7;) =% ‘ By definition of 52, for any a < w < b, we have on
the event &
.2 2 - 2log N (w) 2
-0 <F’10gN(w)—logN( )‘— 2
L2 M) - N@)|  2logN@w)
T w? N(w)AN(W) w?
L
2 2N 5
w N _ L w
(Ve - %),

where we have used the inequality |log(z) —log(y)| < % for z,y > 0. On the other hand, consider

that for every w € R, we have on the event £

_2logN(w) < _210g (N(‘*’) + L’n)

w? - w?
52,2 .
2]0g <€_ 2 % ;}:1 6zw(0+”/j) + %)
= =
2log <ef 2 + ﬁ)
>

2
2 _e?? L o2 )
=3 <log<e 2 +%)—log<e 2 >)+U.

. . . . le—y]
Rearranging and using the inequality |log(x) — log(y)| < Tz for x,y > 0, we have

2log N (w) 2 2 %
O 2
w w? %

Taking infimum over w € [a, b] yields

.2 2 2 Le 2
6°—0">— sup — - (35)
wé€la,b] w? \/ﬁ
To summarize, combining our upper and lower bounds yields
Le™5 = 2log N
6% —o’| < | sup - 6\/_2 + infb — ﬁL - ogQ(w)_Ug
wela,b] W n wela,b] | W (N(w) — ﬁ)+ w
o2w? L n
Le 2 2 n 1 iw(0+;)
= up — — — log | = e g
wela,b] W Vn €lab] | w? (N( ) — L) 2 ;
"+
(36)

Define the event &' = {7 < Z < L'} where L’ depends only on § and, according to Proposition 3.1,
1

1V [SEIY

ensures inf ger, Po,0(E)

— 2. Let us examine the second term in (36). Let O’ be the set
[llo<k,
o>0
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given by O along with some arbitrary additional indices from Z to ensure |O’| = k. Then

LN iw(0tq)| k 1 iy k 1 iy
;Z@ AN=n-— I_Eze i Zl_ﬁl_ﬁze il. (37)
j=1 jeo’ Jjeo’
Consider that
2 2
1 ony s 1 oy 2
1-— Z Z N =14 Z Z s - Z cos(wy;) <2 [1—- = Z cos(wy;)
jeo’ jeo’ jeo’ JEO!

Proposition 3.3 implies there exists w* € [a, b] such that + > jeor cos(wy;) > —1, and so (37) can be
bounded as ‘% > et (0+75)

Therefore, the bound (36) reduces to

n

k2 o2 (w*)? _ 12
> M#" Note this directly implies N (w*) > e~ 2 (Mi")

o2w? L
.9 Py 2 Le 2 n 1
- < | sup = o +log | ————
w€la,b] W Vn (w*) _o2wn)? 3 L _k /12
(& 2 1-— 5) T 1 n 5
+
22 L
2 Le 2 2 Tn 4k
< el Jn + pol 32 + — (38)
(T 0-V)-%), "
5 Vi),

k2
where we have used % < % to obtain ‘Y5 > 11— \/g We have also used the inequality

n

&’ we have a > %O'_11 [1V log (eff) and b < 100Lco™ "4 /1 V log (%) Choosing ¢ appropriately

small depending only on L, L’ and noting n is sufficiently large depending only on §, it thus follows
from (38) that on the event €N &’

log (1/ (1 —x %)) <4z for 0 <z < % Consider that a = ¢~ *{/1V log (#) On the event

k !
|é’2—o'2|< C'o? 1\/%_’_% < C'o?k
~ 1Vlog (#) vn nj) nlog(l—&-%)

for some constant C’ > 0 depending only on § (whose value may change from instance to instance).
Since union bound asserts £ N &’ has Py -, ,-probability at least 1 — § uniformly over the parameter

space, the proof is complete. O
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A Fourier-based estimator: unknown variance

Proof of Theorem 8.4. Fix § € (0,1). It follows from an argument using the bounded differences
inequality (e.g. Theorem D.13) that for a sufficiently large L > 0 depending only on §, the event

L
£ = < —
{i‘é‘é - ﬁ}

has Py ~,o-probability of at least 1 — g uniformly over the parameter space. Let us also define the

n

L~ (- (X —
- Z ezw(Xj 0) E@,'y,o (ezw(X] 9))
Jj=1

event
gvar = {0'2 (S [0'370'1]} .

For an appropriate R, Theorem 3.2 asserts that Evar has Py -, s-probability of at least 1 — % uniformly

over the parameter space. For ease of notation, let us define the function

1 - iw (X — v2w? n—k k
il "\t L A . .
n Z n TLC

By definition of 0 and 9, we have on the event & N Evar

o272 n 52,2
N Le 1 i, m—Kk k Le 2
F(6,0) < F(8,0%) < =——— inf |= vy 2% 2] = ) 39

27



On the other hand, consider that on the event £ N Evar

F(0,9) = sup inf

1 iw(X~7§)+f“"2 n—~k k
— J 2 - — =
a2 e ¢

ec, : n n
wisr G 1™ 5=
A2
Le™® 1 g (0=02w?  n—k  k
>—Z—+ sup inf |= ) MO - =¢
NG lw|<r CEC, | n 4= n n
= e<al g=l
Leag . n—=k gy (B—ow? k(1 A (h—02)w?
= — \/_ + sup Cmé <6zw(0 0)+ 5 1)+ E (2 Z e (v =0+ —5—— —¢
n eC, n n
WIS < jeo!
a2
Le = — ko g, (0—02)w? k
> -2 " 4 sup inf |2 (0= 5= _ 1) 4 b, (40)
T Vn || <r \Z\Ef’ n n
|z fa

where O’ is the set obtained by taking O and adding arbitrary indices from Z if needed to ensure
(9—0?)w?

|O'| = k. Also, here we denote o = 1 + ¢~ 2 . Similar to the proof of Theorem 2.2, we break up

the analysis into two cases to separately obtain the parametric part and the nonparametric part of

our target bound. Let C > 0 be a sufficiently large constant depending only on 4.

Case 1: Suppose k < C14/n. From (39) and (40) we have

sup |e
lw|<r

( 522 5272
Lle 2 +4e 2 )
Gy (0—02)w? 2|2
iw(9—6)+(—2L_1‘§ n E<1+6‘ 7| )+

n—k|n

Since we are working on the event £ N &y where we have 9,02 € [U%,Ji], by taking c sufficiently

small depending only on ¢ we have

20 912
|1,) _ O'2|7'2 S 2Rk . <1 v CQ log <1 + k (TL . 2k) )) S 2Rk S 4R01
nlog (1+%) n nlog (1+%\/ﬁ) Vn

where we have used that one can take C1 > 1 and we have used the inequality § < log(1 4 ) for

[o—o2|r2
43%1,We have 1 +e 2 §2+% from the

inequality e” < 1+ ex for 0 <z < 1. Further, since n is sufficiently large and ¢ sufficiently small we

0 <z < 1. Since n is sufficiently large to ensure
have

20 2 20 2
027220—2<1\/0210g<1+k(n 2k) ))gl le <1vC210g<1+M)>§27

n3 n3

V]

Q»

20 5712
< 14— B8 <1vC21og<1+M>>gz
nlog(l—&—%) n

Putting together these bounds, we have

 (h—02)w2 =
eiw(@—@)-k(f) _ 1‘ < n (E (2+ 2eRCl) n 2_Le) < £

sup
lw|<r

T n—k\n vn vn) = Vn

for some positive constant C' depending only on §. We claim |é -6 < % where C' is a sufficiently

large constant depending only on 0. To prove the claim, suppose not, that is, suppose |é —-0| > é—\//g
Cv/

_ V(0—8)

|cos(z)e'™ — 1| for all 2,y € R, we have

é/ I
cos| —= Jevn —1| <
NG

Consider the choice w* =

satisfies |w*| < 671 < 7. Using the inequality |ye™® — 1| >

5L (9—02)w?
iw(0—0)+-—F5—

 (h—o2)(w*)2
piw™ (0—0)+ (2= )
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Clearly this gives a contradiction when €’ and n are sufficiently large depending only on §. Hence,
we have established the claim |é -0 < C—\/lﬁ" Since we are working on the event & N Eyar, it thus

follows |é -6 < C’”% for some constant C”’ depending only on §. Thus we have the desired result.

Case 2: Suppose k > C1y/n. Consider the second term in (40). Analogous to the proof of Theorem

2.2, the minimizer solving

is

n—k iw(g,é)JFm . iw(g,é)+m ok
—55 e - if e e N
.
z = . Ay (h—o)w?
o iw(0—0)+ —F—— .
- : e 2 -1 otherwise.
eiw(ﬂfé)#»g—%; w? 1 ( )

Therefore, arguing analogously as in the proof of Theorem 2.2, we have

N 2y 2
sup inf |—— K el | + Ez
lw|<T z€C, n n
ST L<a
n—=k . v, (—oPw? k
= sup |—— <e“~’(0 0)+ 5 -1 + _Z*
wl<r| T n
~ o 2 2
_ sup n—=k 6@(9,9”@%& 1) 4 Ez*
lw|<T, n n
R s 2
Jiw(o—0)+ =g des > ok
n—k ak o (0— )4 D= PIw?
— sup _ ezw(Q )+ 5 _1].
lw|<T, n n |eiw@-0+ 0=
S (0—02)w? -
-0+ O=50e ) o

To summarize, from (39) and (40), we have

n—k ak (0 )y 2=oP)w?
sup o — ezw(Q 0)+ 5 —1l <
\w\%r, , n n 61w(97é)+(1};‘;& _ 1’ \/ﬁ
ew(efé)Jr@*—C;&_l >k
(41)
The argument continues similarly as in the proof of Theorem 2.2. We claim (41) implies |6 — 0] <
16k =1 For sake of contradiction, suppose |é — @] > L% 7=1 " Consider the choice w* := TA(AGk/n)
n n 0—0
Note |w*| = %‘@ < 7. Let a” denote the value of « corresponding to w*. If 7 < 16k/n, then
T
w” = ;5% and so
Py {)702 w* 2 *
ew(e,g)g% B 1‘ s 2 k .
n—~k
Likewise, if 7 > 16k/n, then
eiw*(efé)+4(’3*°22)(w*)2 _ 1‘ _ ei(le/n)+4(ﬂ7”22)(w*)2 1 %
n

Here, we have used the inequality |ye'” — 1| > 2 which holds at least on the region {(z,y) €
16k

R?:y >0and 0 < 2 < w}. We have applied this inequality with the choice x = < 7 and

PN 2 *\2
Yy = exp (%) > 0. Further consider that since (w*)? < 72 and since 9,0° € [02,0%] as we
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are working on & N Eyar, we have

(9—02)(w*)2
a*=1+e 2
[o—o?|72
<l+e 2
200 — k)2
<1+exp E*(l\/c%og(l—f—M))
2nlog(1+%) n

2
< 1+exp<cfk>

where we have used C1 < k < £ —C/n for C1 and C sufficiently large. Consider that for ¢ such that
2R < 1, we have e BE/m <1 4 “2% by the inequality e” < 1+ ex for = € [0, 1]. Therefore, taking

c sufficiently small to ensure ec?R<1 gives us " <2+ % < g Hence,

~ 5 2 *\2
R

5k _ o'k
n

-1 > .
‘> “n—k

In summary, w* lives in the domain of optimization in (41). Therefore, from (39)

(=2k) " if m < 16k/n,
(22 -2) (%) ifn>16k/n
4 n=2k) if v < 16k/n,
k) ifw > 16k/n

h
/N
@

q
N\‘m
[§)
+
@
=
I\i“m
[V
——
A\

%

I
'
oo‘l
3
—_ —_
3
|
N
=
el

L) if m < 16k/n,
(2=2E) if m > 16k/n

Y

. 3/2 o272 222 .
Note we have used a® > 1. Rearranging, we have 1 < % . (n"_—%)k (e 2 4+e 2 ). Since

2 =677 (1 V ¢ log (1 + &";T%ﬁ)), since n is larger than a sufficiently large constant depending
only on d, and since C1 < k < % — C/n for C1 and C sufficiently large, we have

2 20 5132
0272:% (1\/C2log <1+M)>
g n
1 k2 (n — 2k)?
S—F—— <1\/0210g<1+%>)

1 —
nlog(l«‘ﬁ%)
2/ 2
< 2¢% log <1 + M) ,
n

and
2, _ 9k)2 20, _ 9k)2
P F L (1\/C2log <1+k(”73k))> < 2¢*log <1+ M) :
nlog (1 + %) n n
Taking ¢ sufficiently small and C' sufficiently large yields

32L n3/? 2¢2 log<1+4k2(”n*32k)2)

N 1
i—n 20k <

1<

which is a contradiction. Hence, on the event £ N Eyvar we have |é -0 < %7_1, which clearly yields

our desired result. O
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B Lower bounds

In this section, we prove Theorems 4.1 and 5.2. Recall that the Fourier transform of an integrable
function f is f(t) = [e”"*f(x)dx and the Fourier transform of a finite Borel measure 7 is 7 (t) =
[ e ™" 7(dz). Recall also that P denotes the joint distribution of the data {X;}}—, generated from
the model (1) with parameters 6 and v (recall from Section 2 that suppression of ¢ in the notation

denotes o = 1).

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. For ease of notation, set

2/ 2
b= Lrog2 <1 ¢ B 28 ) A

If n is bounded above by a universal constant, it is trivial to show the lower bound ¢ =< 1. Suppose
n is larger than a sufficiently big universal constant. If k¥ < y/n, then ¢ =< élog_l/2 (1 + %) =

ko % = n~'/? where we have used $ <log(l+z) <z for z € [0,1]. Thus ¢ is the parametric

n
rate and a very standard two point argument will establish the lower bound. Hence, we can limit
our attention to the case k > C’/n for a sufficiently large universal C’ > 0 and n larger than a
sufficiently big universal constant.
We now construct the priors for (0,7) to establish the lower bound. Let fo and fi denote the
k—10v/n
n

probability densities given by Proposition B.2 with the choice ¢ = and ¢ = 1. Let u, 1, A, go,

and g1 be the associated quantities from Proposition B.2. Note that

_ co) _( o ) € ~
T 1+2e/ 1V Bey/log(ene2(1 — 2¢)2) B

where c¢g is a small universal constant and B, is a large universal constant. Note to conclude p < 1)
we have used that & < 2 — \/n implies 1 — 2¢ = "7%:20‘/5 = ”_n%. Define the priors mg and 7 as

follows. Let d1,...,0n Y Bernoulli (¢). A draw (6,v) ~ mo is obtained by setting # = 0 and setting

v = (d1v1, ..., 0nvyn) where v1, ..., vp g go * 0,. Likewise, a draw (6,7) ~ 71 is obtained by setting
0 = 2u and setting v = (6101, ..., 0nvn) where (vi,...,vn) % g1 % O0—p.

Note that mp and w1 are not supported on the parameter space. Namely, it is not the case that
[|7]lo < k with probability one under either prior since the d; are independent. We are only guaranteed

E (||v]lo) < k. Consequently, define the truncated versions 7o and 71 where for any event A,

mi (AN {llyllo < k})
mi ({Illo < k})

for i = 0,1. Denote the mixture distributions P; = [ P mi(d0,dy) and P; = [ Py #:(d0,dy) for
i=0,1. Note that Py and P; admits densities f&™ and f&™ where fo and f; are given in Proposition
B.2. With these definitions in hand, consider

ﬁ'Z(A) =

ut s By {10-01> )
0 0€R,
[llo<k

> i%fmax{Po {|c§ —0] > u} P {|(§79| > u}}
= i%fmax {150 {|é| > u} , Py {|é— 2u| > u}}

> i%fmax {150 {|é| > u} , Py {|é| < u}}

> igfmax {Po(A), PL(A)}

1
>

Z5 (1 —drv (P, po))
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where the infimum runs over all events A. We have also used {|é —2ul > u} D {|é| < u}, which
follows from triangle inequality. Note triangle inequality further gives dTv(Pl, ]50) < drv(Pi, Py) +
drv (Po, Po)+drv(Pi, P1). The data processing inequality gives drv (Bi, P;) < drv (7, m;) for i = 0, 1.
Consider that for any event B, we have m;(B)—7:(B) < m;(B)—m:i(BN{||7llo < k}) < m:({||7|lo > k}).

Likewise, m(B)—7:(B) = m(BN{|[yllo < kD+m(BN{Illlo > k})—=EBHURIED > o Bfiylo <

k) (1 - W) = —m({||7llo > k}). Therefore, we have |m:(B) — 7:(B)| < m({|[7llo > k}).
Taking supremum over all events B yields

n

. . k —10/n 1
dov (mi, 7)) = mi({[[yllo > k}) < P {zzl di > k} = P {Binomial (n,&) > k} < Trz/_ < 00

where we have used Chebyshev’s inequality. To summarize, these calculations imply drv (Pr, Po) <
drv(Po, P1) + % and so it remains to bound drv(Po, Pi). Note that if X ~ P; for ¢ = 0,1, then
{X;}j=1 are mutually independent. Therefore, by Proposition B.2 we have

dev(Py, Po) < 3P TRo) = 53/ T+ o))" = 1< 3/ =1,

Therefore, we have drv(P1, Py) <

6  0cR, -2 2 50 10°
[Ivllo<k
Since p =< 1, we have the desired result. The proof is complete. O

Proposition B.1. Suppose 0 < A < % and 7 > 0. There exists a universal positive constant co < 1
such that the following holds. Let p = @ and define the probability density function po : R — [0, 00)
with

T ikl
po(z) =4 " .
Further define the real-valued function A = f% where h : R — C is the purely imaginary-valued
function
0 if t < =27,

—j(—t) if —2r<t< -
h(t) = 1 k(t) if —T<t<mT,
J(t) if T <t <27,

0 if t > 27,

with k(t) = 21152 sin(tp) and j(t) = 2252 sin(rp) 2Z=L. Then the function py = po+A is a probability

-

density function.

Proof. Since p1 = po + 4, it suffices to show p; is nonnegative and g integrates to zero in order to
show p is a probability density function. We first show p; is nonnegative provided ¢y is sufficiently

small. Since h is a purely-imaginary odd function, it follows that

Ay = _P@ _ 1 <72i/7 () sin(tz) dt — 2i /QTj(t) sin(tz) dt).

2 Tom
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By the power series representation k(t) = 21152 sin(tp) = 20152 3% 020 Lemma D.7,

(2n+1)!
—21/ k(t) sin(tz) d

)\ (_ CO>\ 2n+1 / t2n+1
0

:4 ) (2t 1 g sin(tzx) dt

1— )= (— c)\Q"‘H cos(
=14 5 (=1 2n+ < +Rkn( )).
0

n=

—1)" (N> 2r

Likewise, since 7/t = coA we have j(t) = 2i152 ZZO:O Bt 1)

. By Lemma D.8

§ — (=1)"(coN)>" ! [cos(rx
*21'/ j(t)sin(tx) dt = 4 /\)‘ (=1)"(co) ( (rz)

2n +1)] + B ("”)) :

T
n=

Note that |Rg,n(z)|V|R;(z)| < C(lv") V =5 for a universal positive constant C' by Lemmas D.7 and
D.8. Therefore, it follows that

LA 1= A s (2D (oA
2r A = (2n+1)!

Az) = (Bin(z) + Rj(2))

and so |A(z)| < f;g for a large universal constant C' > 0. Therefore, selecting co sufficiently small
depending only on C' ensures |A(z)| < po(z) for [z| > 1 and so p1 is nonnegative here. Now let us
show p1 is nonnegative on |z| < L. First, consider I := [ & sin(tz)dt satisfies |[I| < 2 [T tdt = 3

Hence, | — 2= (1 — A)col| < 2co7. Further, consider that

0

’A(m) - (-%(1 - A)cd)’

T T 27
=2 [ k(t)sin(tz)dt —4(1 — Nco / L sin(tx) dt’ + L ‘—22’/ j(t) sin(tx) dt’
0 0o T 2w

Y (co)? T /QT 27 —t .
tx) dt
)\ Z 2n s TR M G

IN

prs

‘4? / (sin(tp) — tp) sin(tx) dt‘ + |4
0

IN

where we have used 7 = QL—A to obtain the first term. Examining the first term, consider that
|tu| < co for |t| < 7 since p = <. Therefore, |sin(tu) — tu| < cgA®/6. Thus,

‘42/ (sin(tu) — tp) sin(tx) dt‘ < 42/ |sin(tp) — tu|dt < écoT.
Ao A Jo 6

Here, we have used cj < cp (as we can take co < 1) and A?(1 — ) < 1 just to simplify expressions.

Examining the second term, provided ¢y < 1 we have

o e 2n+1 27 o S 2n+1 27
1 Z (co )\ / 2 sm(t:v) dt —A Z (co . l/ |27 — t| dt
— 2n +1 - T oyrd (2n + n o/
- i CoA) 2ntl T
2n+1)! 2

n=0

1
S
o (2n+1)!
= 2¢o sinh(1)7.

Therefore, |A(z) — (—3=(1— A)col)| < 2cor + 2cosinh(1)7 < 4cor. Therefore, from the bound
‘,%(1 - )\)C()I‘ < 2cor, it follows that A > —6coT > —7 provided we have taken co < 2—14. Thus, it
immediately follows that p; is nonnegative for |z| < %, which concludes the proof of the claim that
p1 is a nonnegative function.

It remains to show p; integrates to one, and to do so it suffices to show [ A = 0. Note A is
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uniformly bounded and |A(z)| < f—;g as established earlier. Hence, A, and also h, is integrable.
Therefore, A(t) = -+ fﬁ(m)e_m” dx = —h(—t) = h(t) since h is an odd function. Therefore,
J A(z)dz = A(0) = h(0) = 0. Thus p; is a probability density function as claimed. |

Proposition B.2. Suppose 0 < & < % and n € N. For any ¢ > 0, there ezists a large B. > 0
depending only on c¢ such that the following holds. Let u,po, and p1 be given as in the statement of
o2z and T =1V Bc V/log (ene2(1 — 2¢)2). Define the probability
measures g1 = 2e0—, + (1 — 2e)p1 and go = 2€0,, + (1 — 2¢)po and the probability densities

Proposition B.1 with the choice A =

fo=((1—¢)do +e(go * du)) * ¢,
Ji=((1—¢e)dau +e(g1%du)) x ¢

where ¢ denotes the probability density function of the standard Gaussian distribution and * denotes

convolution. Then x*(f1 || fo) < <.

Proof. Note that fo > (1 —¢)¢. Since ¢~ '(z) = V21> 2, ;kiz!, we have

U fo) = /“ fo)

< Mo Sy ER TGRS
2 /I

—i®w[ a.

—_

\TMS I MS \

Since the Fourier transform of a convolution of densities is the product of the Fourier transforms of

the densities, we have

% =(1-¢) (e*”“‘*l) +ee” ™ (G1(t) — Go(t))

1—e¢) (672“# - 1) + ge” (26(6”“ —e )+ (1— 25)A(t))

=(
(1—e—2e%)(e 2™ — 1) +e(1 — 2e)e” "A(1)
=(1—28)(14¢e)(e ™ —1) +e(1 —2e)e ""A(t)

= (1—2¢)(1 +2)e "™ ((1 — N (e ety 4 )\A(t))

where A = p1 — po is the function from Proposition B.1. Recall, as argued in Proposition B.1, we

have A(t) = h(t). Consequently, we have

0 if lt| <,
Fit) = fot) = { (1= 26)(1 + 2¢)eitm ((1 (et — eith) 4 )\A(t)) G(t) if T <|t| <o
(1 —2e)(1 + &) (e™ 2" — 1)p(t) if |t] > 2.

Since fi(t) — fo(t) vanishes for |t| < 7, our bound for the x? divergence simplifies

2 - 1
X (fi1l fo) < Ew/

The remainder of the proof is concerned with bounding this integral by splitting it across two different

FOw - 19| at. (42)
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regions. Let us first consider the region [¢t| > 27. For such ¢, observe that

k
f-l(k)(t) _ Aék)(t) _ (1 1+6 Z < ) A(Z) ( —2itp 1)(k £)
=0
k-1
=(1-2)(1+¢) (672“# (k) ) + < ) QZu)kflefw“
=0

< 2(1 = 2)(1 + ¢)|ut|

§® (1) +2(1 = 26)(1 + ¢)ul 5 < ) 6]

=0
where we have used 2|u| <1 (as ¢o in the definition of i can be taken sufficiently small and we have
7> 1) implies [2u[*~¢ < 2|u| for k — £ > 1. Note also we have used |e Zitp 1L§ |2tp| to obtain the
first term. Consider ¢(t) =e -5 and that Corollary D.10 gives |39 (t)] < e~ T /0. Therefore,

(000 - 10 o) d

50l g S 5O d
o] (G

k—1 2
2 2 L2 2,2 —12
S(1—2e)u’e (1-2¢) E 2kkl<§ <> > /\t‘>27—6 z dt

=0

T+e)? o 1 2
sa-zpr LS
1—¢ kz:02kk| [t]|>2r

<(1- 25)2M26—L72

<(1- 26)26267LT2 (43)

where L > 0 is a universal constant whose value may change from line to line. We have applied
Lemma D.11 to obtain the penultimate line and p? = C" < ¢3e? to obtain the final line. Let us
now consider the region 7 < |t| < 27. Recalling A(t) = h( ) as argued at the end of Proposition B.1,
on this interval we have

dk

FO® - P <20+ 2020 - 220 - N2 | S5 e~ 1600

dk

+2(1 4 2¢)%(1 — 2¢)°\? we*““]‘(t)gp(t) (44)

where j(t) = 2i152 sin(rp
similar to that yielding (43), the first term in (44) yields the bound

)@ is the function from Proposition B.1. By repeating an argument

o] 2

1 dt < (1-2¢)%e2e L™ (45)

d* o
201 _ 201_1\2 —2itp ~
> 2(142¢)"(1-2¢)"(1-X) 0 (e 1)(t)

T<|t| <271

It remains to bound the second term in (44). Consider that j*(t) = 0 for all k > 2. Further consider
3% ()] < 32 |sin(tp)| < § - |ru| = Ceo for all 7 < ¢ < 27 and k = 0, 1. Here, C' > 0 is a universal
constant whose value may change from instance to instance. Therefore, for any k € NU {0} we have
dk —ztu - —itp © A(k: 2) : —itp O
e 00| =3 (§) () 60| <30 i)

6% ).

Consider that

[GETNE

£()

r=

4
<> < )Iul D(t)] < Ceo Jqax, (f) < Ceo(EV1).

r=0



We have used |u| < 1. Thus, we have
[ k
awe e ‘<CCOZ<£>
k
< Ceo(kv1)) < )
=0
k
< Ceo(kv1)) < )
=0

Arguing similarly to before, we have via Corollary D.10

1\/3_7; Z 2k Kl /<\t\<2 (142e)*(1 - 2¢)°A*? —67”“j(t)¢(t)

k 2
kv k
< 2 . (0)
Ceall = 26" Z 20k! /rgmgw <; <E> 7 (t)‘ “
2
kv k 2
< CA(1 - 20))? Z - <Z<£>m> [ eEa
=0 T<|t|<2T1

< Och(1 — 2€) 6267[‘7— . (46)

24w v

kl) )‘

Here, we have used A\? < 2 and Lemma D.11. Plugging (45) and (46) into the corresponding integral
of (44) yields

Fw - P at s (1 - 2022 (47)

1*52 2k k! /<m<27

where we have used p = €2 < ¢, Combining (47) and (43) and taking B. sufficiently large depending

only on ¢, we have

X2 (fill fo) < C(1 = 26)2% 717 < O(1 — 26)2e2eLBE og(ens(1-29)%)

IN

c
e
Note the choice of B. depends only on ¢ since C' and L are some universal constants. The proof is

complete. O

B.2 Proof of Theorem 5.2

In this section, we give a proof of Theorem 5.2. Unlike in the proof of Theorem 4.1, we do not
consider the related mixture formulation. Passing to the mixture formulation is only useful when
kE < & — Cy/n since the number of outliers behaves like k£ + O (/n) in the mixture formulation when
k = n. Instead, we work directly with the model (1). The lower bound construction is quite similar
to that found in [38]. However, since the context of [38] is quite different, we give a full proof for

completeness and for the reader’s clarity.

Proof of Theorem 5.2. Recall we take 0> = 1 without loss of generality. For ease of notation, set
P? =log (1 + m) For further ease, let us assume without loss of generality n/2 is an integer.
Define the sets Fy := {1,..., %} and F := {% +1, ,n} Let C' > 0 be a suitably small constant.
Let mg denote the prior in which 0 is equal to C'y and v = —2C%1s, where Sy C Ejy is a subset of size
k drawn uniformly at random. Likewise, let 71 denote the prior in which § = —Cvy and v = 2Cy1g,
where S1 C E1 is a subset of size k drawn uniformly at random. Observe that if (6o, 7o) ~ 7 and
(01,71) ~ m1, then |6 — 61| = 2C. With this separation in hand, an invocation of Proposition D.3
yields
1nf sup Py, {|0 0| > Cw} > =(1 —dov(Prgy, Pry))

H’YHo<k
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where Py, = [ Pym;(df,dy) for j = 0,1 denotes the corresponding mixture measures. It remains to
show the total variation is small to obtain the desired result.

Consider the random vector X € R™ drawn from the mixture induced from the prior X ~ Py,
for j =0,1. Let us write Xg,, Xg, € R™? to denote the random vectors of dimension n/2 obtained
by taking the coordinates in Fo and E; respectively. Note Xg, and Xg, are independent due to the
construction of the priors. Let us write P,{j and P! JI to denote the marginal distributions of Xg, and

X, respectively. By the independence, we have
drv(Prg, Pry) < d1v(Pyy, Pr,) + drv(Pry, Pr) = 2drv (PR, Pr,). (48)

The equality follows from the fact the marginal distributions P,{U and PT{II , likewise P,{[f and P,{l, are
the same up to a deterministic sign flip; hence the two total variation terms are equal in the above
display.

It remains to bound drv(Py,, PL,). For ease of notation, set Y = Xg,, Qo = Pf,, and Q1 = P},

Observe that
Qo = /N(—Cwlso + CPlsg, Iny2)mo(dSo)
Ql = N(_C¢1%7 n/2)4

By Neyman-Pearson lemma, the quantity 1 — dTV(PT{07 PT{I) is the optimal Type I plus Type II error
for the testing problem

Ho:Y ~ Qo,
H12YNQ14

Equivalently, one can shift the data and consider the problem

HO:)}N

O

0,

O

lef/'w 1

where Y = Y + Cy¢ln and Qo, Q1 are the corresponding distributions of ¥ for when Y ~ Qq or
Y ~ Q1 respectively. Consider that

Qo :/N(2C1/1155Jn/2)70(d80)

@

N(0, I, /2).

In summary, dTv(P,me,fl) = dTV(QmQQ < % XQ(QO [l (:21) By the Ingster-Suslina method, we
have

X*(Qo | Q1) = E (exp ((p, 1)) — 1 (49)
where p = 2C¢1sg and p' = 2C¢Y1(gy)c for So, Sy independent and uniformly drawn from the

collection of size k subsets of Ey. For ease of notation, denote To = S§ and Ty = (S5)¢. Noting that
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|To N T3] is a hypergeometric random variable, Lemma D.5 yields

(exp (4C**|To N Ty)))

n/Q —k n n/2 — k6402w2 n/2—k
n/2 n/2

E (exp (1, 1)) = E
(

B <1 e (1 & —n2k>2)402>
(

n/2—k

202 n/2—k
n/2— k)

where we have used 202 < 1 (since C'is taken sufficiently small) along with the inequality (1 +z)° <
1+ 6z for 0 <6 <1 and x> 0. Therefore, from (49) we have x*(Qo || Q1) < 2% 1, and so we can
conclude drv (P}, Pl,) < $1/€26? — 1. From (48) it thus follows

inf sup Py {It‘)fél > cw} > %(1 —Ve2e? —1).
0  0OeR

,
[I7llo<k

Taking C sufficiently small, the right hand side can be bounded below by some positive universal

constant ¢. The proof is complete. O

C Adaptation to £

Recall the setup of Section 5.3. The notation of Section 5.3 is freely used in the following.

Proof of Theorem 5.5. Define the event
9 N
—1 ag |9k — 9'
= {L,, <% < Ln} n N {T < C§pe(k,n)

Consider that

0—0 .
sup P@,'y,o { | | > 20:5’77[/7,6(]?7 ,n)}
OER, o
[Ivllo<k™,
a>0
< |é — al ! * c
< sup Pone — > 2C5,Lye(k",n) p NG | + sup Py ,0(G°). (50)
6€ER, g 6€ER,
[lvllo<k™, [lvllo<k™,
o>0 o>0

Consider that by Corollary C.1 we have Py~ »(G°) < n+ d. It remains to bound the first term of
(50). Consider that

— 0'2 ~ -
Gc {L,,l <Z< Ln} n N {|9k —9| < acg,n\/Lne(k,n)}.
keK,
k>k*

Consequently, on G it follows from the definition of k" in (28) that k* > k’. Importantly, we thus

have 6 € Ji+, and so it immediately follows by triangle inequality

2
gc {L;l <Z < L,,} N {|9 —9 < 2&0(';,,,\/Lne(k*,n)} c {|9 -0 < 2acg,nLne(k*,n)}.

o
Therefore, the first term of (50) is zero. We have the desired result by taking Cs,, sufficiently large. O

Corollary C.1. Fiz § € (0,1). There exist constants C’, C,c> 0 depending only on 8 such that the
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Jollowing holds. If n is sufficiently large depending only on 6 and 1 < k™ < 5 — C’\/ﬁ, then

O — 0 'k
sup  Py.o U 10 =01 ¢ )
O€ER, ™ g k2 (n—2k)2
Illo k", hr<k<g-Cvm ny/1og (1 + T)

where O, is given by (22).

Proof. The proof is largely the same as the proof of Theorem 3.4. Let £ be the event from the proof
of Theorem 3.4 with the choice L depending on § such that for any 0 € R, ||y|lo < k", and o > 0, we
have Pp .o (£°) < 6/2. For each k, let Evar,e = {02 € [0 4,07 4]} where 0® ;07 , are the quantities

associated to 0 in (22). We claim

PG,'y,o' m gvar,k 2 1- é

2
k*<k<Z

uniformly over § € R, ||v|lo < k*, and o > 0. As argued in Theorem 3.2, we have Eyar i D € where
£ is the event £N &’ in the proof of Theorem 3.2 (except now at confidence level /2 instead of
8). Importantly, £ does not depend on k and we have Py ,(£) > 1 — §/2 uniformly over 6 € R,
[I7]lo < k¥, and o > 0. Thus, the claim is proved. Then, as argued in Theorem 3.4, we have

0 — 0 C'k
en () &wmrxc ) 6 1
k*<k<Z . n_& g k2 (n—2k)2
Sk<3 k*<k<Z-Cyn ny /log (1 + T)

since C is sufficiently large. Thus, we have the desired result since the probability of the event on
the left hand side is at least 1 — d by union bound. O

The following results pertain to the construction of the variance estimator for the purposes of adaptive
null estimation in Section 5.2. Recall the setup of Section 5.2 as we will use that notation freely in

what follows.

Proof of Theorem 5.6. The proof proceeds in the same manner as the proof of Theorem 5.5. As in

that argument, define the event

2 ~2 2 ok
= {L‘lga—gLn}m N ok — o7l o
k* <k< 7 nlog (1+%)

Analogous to (50), we have

|6% — o - 2C5 , Lok*

sup P ,o

! = g (1422
lllo<k*, nlog\1+ =
a>0
~2 2 ! 2 7.%
o —o 205 Lik
< sup Py > s : 6’: < N9 |+ sup - Poyo (G°)- (51)
€R, €R,
110 <k*, " Og( + ﬁ) lllg<k™,
o>0 o>0

Consider that by Corollary C.2 we have Py ~.-(G°) < n+ 4. To bound the first term in (51), consider
that
CsyLink

2
gc{L?éf—QéLn}m N {6k -o% < 8* —r———
c k* <k< B nlog (1+ﬁ)

Consequently, on G it follows from the definition of &’ in (30) that k* > &’ and so 6 € Ji«. It
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immediately follows by triangle inequality that

62— o _ 2C5 , Lak*

G C

o? N nlog (1 + k—\/%)
and so the first term of (51) is zero. Thus, we have proved the desired result. O

Corollary C.2. Fiz§ € (0,1). There exists C > 0 depending only on & such that the following holds.
If n is sufficiently large depending only on § and 1 < k™ < %, then

~2 2
0; — 0o Ck
wp P | U BT L
OER, . " k
lIvlo<k*, kr<k<y nlog (1+ ﬁ)
o>0

where 3% is the variance estimator from Theorem 3.2.

Proof. The proof is the same as the proof of Theorem 3.2, and the argument’s structure is the same
as that of the proof of Corollary C.1. In particular, let £NE’ be the event from the proof of Theorem
3.2, having made choices L, L’ depending only on § such that for any 6 € R, ||y|lo < k*, and o > 0,
we have Py ,,(£°UE®) < §. The arguments of the proof of Theorem 3.2 show

|62 — o? - Ck

Ené' c = -
nlog (1+ ﬁ)

for k > k*. Since £ N &’ does not depend on k, it follows

A2 2
eng'c N o olc c 7
k* <k< 2 nlog (1+%)

and so we have the desired result. O

D Auxiliary results

Proof of Proposition 3.3. Let p(z) = )\e_’\x]l{x>0} denote the Exponential(\) distribution with A =

ﬁ. Note this distribution has mean % and variance % Let W ~ p and consider from Lemma D.6

k k 2
1 1 A
BUOV) =3 [ costornplrds = ¢ > 2o
For ease of notation, denote 8 = 100«. Let p denote the conditional density of W conditional on
W € [a, B]. Note p is supported on [a, 8]. Then

max_f(w) > / F(@)p(w)de
E

wela,B]
(fW)Lwela,p13)
P{W € [a, A]}
_ EGW)) - EGW)Liwefo.p)e})
P{W € [a, B}
_P{W € [o, B]°}
- P{Welapl}

Consider that
P{WelwB]t=1—e4eM=1- ¢T3 42 <0.16

Therefore,
_P{We [, BI°} - 0.16 - 1

e @) 2 —par e B 2 TT=016 2 5
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The proof is complete. O

Lemma D.1 (Lemma 1 [39]). For any positive integer d and t > 0, we have
P{xi > d+2x/%+2t} <et
Lemma D.2 (Lemma 11.1 [61]). For any positive integer d and t > 0, we have
P{Xg < efldtwd} <t

Proposition D.3 (Method of two fuzzy hypotheses [59]). Suppose P is a collection of distributions
on a sample space X indexed by © and (Y,p) is a metric space. Let 7 : © — T be a function,
¢ : Ry — R4 be a non-decreasing function with ¢(0) = 0. If ©9,01 C © and mo,m are two priors
supported on O, O1 respectively, then

(1 - dTV(PT\'m 7\'1))

N | =

inf sup Py {6 (p(7(X), 7(0))) > ¢(9)} =

where 26 := infg,co, p(7(00),7(01)) and Pr; = [ Pym; for j =0,1.
0,€01

Proposition D.4 (Ingster-Suslina method [34]). Suppose ¥ € R™*™ is a positive definite matriz and
O C R" is a parameter space. Let Py denote the distribution N(0,X). If w is a probability distribution
supported on ©, then

XC(PelIPo) = B (exp (6,570)) ) =1
where 0,0 %S 7. Here, Py = J, Pom(d) and x*(:||-) denotes the x*-divergence.
Lemma D.5 ([15]). Suppose 1 < k < n. IfY is distributed according to the hypergeometric distri-
k\(n—k
bution with probability mass function P{Y = (} = % for 0 <4<k, then
k

k
E() < (1 _k + EJ‘)
non

for A > 0.

Lemma D.6. For A\ > 0, define the probability density function f(x) = )\e_m]l{xzo} for the
Ezponential(\) distribution. If X ~ Ezponential(\), then

A2
E(COS(tX)) = m
Proof. Consider that E(cos(tX)) is the real part of the characteristic function E(e"¥) = 2.
Calculating directly,
A " itA
—it 2 2 2"
A—idit A4+ tT A2+t
Therefore,
A 0
E(COS(tX)) = @ = m
O

Lemma D.7. If 7 > 0 and n is a nonnegative integer, then

Tt cos(Tz)
/ m sm(tm) dt = —T + R(ac)

with |R(x)] < % where C' > 0 is a universal constant.
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Proof. The proof follows by applying integration by parts twice. Suppose n > 1. Consider

T 412n+1 on
/ L sin(tz) dt = — cos(72) + / (2n + 1)t ) Cos(tm)
0 0

T2n+1 x T2n+1 x

dt.

cos Tac) (2n+ 1) sin(7x) /T 2n(2n + 1)t*"~ ! sin(tx)
0

T 7—2n+1 72

<Cn

Likewise, consider

Clearly (2n+1);21n(7'x)

T 2n—1 T 42n—1
/ 2n(2n + 1)t _ sm(t:v) dt‘ 2n(2n + 1) / t gt < Cn
0

F2n+1 ) 2

B )
and so we have the desired result. If n = 0, the same calculation gives [ £ sin(tz)dt = —M +
w, which yields the desired result. |

Lemma D.8. If 7 > 0, then

2T _
/ 2Tt sin(tx) dt = cos(re) + R(x)
- T x

where |R(z)| < 5.

Proof. The proof is a simple application of integration by parts. Consider

/727 20—t e bt — cos:(ETx) - /TQT cos(tz) ,, _ cos(ra) _ <sm(2m) - sin(m)) 4

T TT T T2

sin(27z)—sin(rx)
Tx?

Clearly < 7—9262 and so we have the desired result. O

z?
3

Theorem D.9 (Cramer’s inequality [33]). Define the nth Hermite polynomial He,(z) = (—1)"e

d‘inn 2 . Further define the Hermite function

Un(@) = (2"nl/m) 25 22 Hep (v2a).

Then sup,cp [¢n(x)] < a4,
2

xz 12
Corollary D.10. Let h(z) = e~ = . Then |h\™ (z)| < e~ T /n! for all z € R.
Lemma D.11. We have

oo k k 2
S (3 (0)) <~

Further, for any fized positive integer s, we have

oo k 2
1V E® k
k=0 =0

Proof. Expanding the square gives us

() £ 5 ()

Examining the first term, consider that

k k 2 k i k
Q%k!Z(Z) E!—%ZQ)( —%Z()@—%Lk(l)

tx

where Ly is the kth Laguerre polynomial. By the generating function ﬁeiﬁ =32 o t"Ln(z),

we have



Thus the first term is handled and it remains to bound the cross term. Consider that for any =,y € R,

we have zy < 2? V y?. Therefore,

k 2 k
s, 2, () 0/ = () - o= ()

T 0<t#j<k =0

where we have used k < (%)k for all K > 0. Employing the generating function as before, we have

| k\ [k _ &3\ 5
o, 3, () () g ) wer-ee
k=0 0<t#£j<k

k=0

2
Thus, we have Y22 ) i (ZLO *) \/E) < 2e + 4e® < 00 as desired. The second claim follows by

a similar argument. O

Lemma D.12 ([59]). For probability measures P, ..., Pn, Q1, ..., Qn, we have

X <®Qi ®Pi> = (H(1+x2(Q¢IIPi))> -1

i=1
Theorem D.13 (Bounded differences - Theorem 6.2 [6]). Suppose f : X" — R satisfies the bounded

differences inequality for some nonnegative du, ..., dn, that is
/
sup |f(@1, e Tim1, Tiy Tig1 o, Tn) — [(21, oy Tim1, Th, Tig1,s ooy Tn)| < s
Ty,..., TpEX,
zhex

foralll <i<mn. Let Z = f(Xu,..., Xn) where X1, ..., X, are independent X -valued random variables.

If u > 0, then
PUZ - B(Z)| > u} < 2exp -2
STPUTn e )

Theorem D.14 (Bernstein’s inequality - Theorem 2.8.4 [60]). Let Yi,...,Y:, be independent mean
zero random variables such that |Y;| <1 for all i. If u> 0, then

P{ ZR:YZ- >u} < 2exp G%)

i=1

where 7> =31 E(Y?).

E Location estimation in Huber’s contamination model

Recall Huber’s contamination model (2), which is the same, from the perspective of conclusions about
in-probability minimax estimation rates, as the Bayesian version (3). In [13], it has been shown that

if e = % < %7 then the sample median achieves the optimal rate

2
|median (X1, ..., X,,) — 0]° < 0° <% + 52> = o2 (l + k ) )

n  n?

In Remark 1 of Section 1.3, we claimed that for ¢ <k < 3,

1 en
. g2 < 2 _ 2
|median (X1, ..., Xn) — 0|° < o’ log (1_25> = o log (n—2k>'

and that this is the optimal rate. In this section, we give proofs for these two assertions. For
convenience, the upper bound will be proved in the context of the frequentist model (2) while the
lower bound will be proved in the context of the Bayes model (3) using the modulus of continuity
concept of [13, 12].

The following proposition states the error achieved by sample median for ¢ < k < 5. The proof is
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exactly the same as the proof of [38] in this regime, which we reproduce here with notational changes
for the reader’s convenience.

Proposition E.1. Consider data X1,..., Xn from the model (2). Suppose ¥ <k < 5. If 6 € (0,1)
and n sufficiently large depending only on §, then

O€R,
neER™,
a>0

sup Pop,o {|median (X1,....,X,) — 0] > Coy/log ( en )} <5

where C' > 0 is a universal constant.

Proof. Without loss of generality we can assume o = 1 otherwise we can simply work with the normal-
ized data {X;/o}]_, because median(X1/o, ..., Xn/0) = median(X1.:Xn) | [t § := median(X1, ..., X,,)

o

We split into two cases.

Case 1: Suppose n — 2k < y/n. Since |Z| > %, it follows that

Py .~ {|c§ -0 > \/4log(en)} < Py oy {maIx|X]~ -0 > \/410g(en)} < 2nexp(—2log(en)) < L <40
i€ n

en
n—2k

for n > %. Since log ( ) = log(en) because n — 2k < v/n, we have the claimed result.

Case 2: Suppose n — 2k > y/n. Define the interval

A7 47
0— 210g<n )70+\/210g<n
\/ 5 10| 5 — 10|

n
< Pe,n,a {Z ]l{XjQE‘} > 5 — |O|}

JjET

FE =

Consider

|3

Py o {é Z E} < Poyo {Z Lix,¢my >
j=1

n
< Pyno {Z Lix;¢py — P> 3~ |O] — |I|P}

JjET

where p = P {|Z| > 4 /2log (ﬂ4_\1‘(\9‘ )} with Z ~ N(0,1). By Bernstein’s inequality (Theorem D.14),
2

we have for a universal constant ¢ > 0

n (510~ 1TIp)" n
Py .o {Z Lix,¢r}y — P> 5~ O] — |I|p} < exp <cm1n <W7 5 ol —1|Zlp | |

J€T

Consider that p < 2exp (f - 2log ( = )) = %_‘O‘. Therefore,

5 —10] 2|Z]

Po.n.0 {é ¢ E} <exp (—% : (g - |O|)) < exp <—@) < exp (—#) <45

for n sufficiently large depending on §. Consider that log ( 4‘2(‘9‘) < log (ni’;k)7 and so the proof is

Z-]
2

complete. O
For the discussion of the lower bound, let us consider the Bayesian model (3). The lower bound is
proved through the use of a modulus of continuity [12, 13] which specializes in the context of our

problem to

w(g) = Sup{"glo_;e2| : dTV(N(917O'2)7N(0270'2)) < 1 i and 91,02 eER,o > 0} .
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Theorem E.2 (Theorem 5.1 [13]). Ife € [0,1], then

. 10 —0 1
inf sup P-. . — Vw(e >c
nf sup P { > Tn (e)

o>0,
Q

\Y

for some universal constant ¢ > 0.
A minimax lower bound thus follows by bounding the modulus of continuity from below.

Proposition E.3. Ifs € [0, 1], then

(1-¢)/2
> /21 — ).
w(s)_\/ og( —oe
Proof. From a well-known relationship between total variation and Kullback-Leibler divergence (e.g.

[59]), we have 2thaut drv(N(61,0%),N(02,0%)) < 1 — 2exp (=KL (N(01,0%)[| N(02,07))) = 1 —
Lexp (—%) where KL(-||-) denotes the Kullback-Leibler divergence.

_ R
w(s)zsup{uzlf%exp <7|91 izl ) < 7 °_ and 01,02 GR,J>0}
o

202 —

_ _ RP

= sup 101 — 02| : 2(1 - 2¢) < exp ,M and 01,02 € R,oc >0
o 1—¢ 202
(1—¢)/2

= 4/21 ).

\/ 8 < 1— 2
The proof is complete. |
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