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Abstract. Deep neural networks (DNNs) have been widely deployed in
real-world, mission-critical applications, necessitating effective approaches
to protect deep learning models against malicious attacks. Motivated by
the high stealthiness and potential harm of backdoor attacks, a series of
backdoor defense methods for DNNs have been proposed. However, most
existing approaches require access to clean training data, hindering their
practical use. Additionally, state-of-the-art (SOTA) solutions cannot si-
multaneously enhance model robustness and compactness in a data-free
manner, which is crucial in resource-constrained applications.

To address these challenges, in this paper, we propose Clean & Compact
(C&C), an efficient data-free backdoor defense mechanism that can bring
both purification and compactness to the original infected DNNs. Built
upon the intriguing rank-level sensitivity to trigger patterns, C&C co-
explores and achieves high model cleanliness and efficiency without the
need for training data, making this solution very attractive in many real-
world, resource-limited scenarios. Extensive evaluations across different
settings consistently demonstrate that our proposed approach outper-
forms SOTA backdoor defense methods.

1 Introduction

The widespread adoption of Deep Neural Networks (DNNs) in critical AT applica-
tions has necessitated a thorough investigation into their security vulnerabilities.
Backdoor attack, a common and significant training-time attack strategy, has re-
cently garnered a lot of attention [1,4,7,10,18,20,21,23,25,28,33,34,40,42] due to
its stealthy nature and potential for significant harm. Specifically, an adversary
can embed a backdoor in the DNN model by poisoning a small proportion of the
training data or change the optimization objective. Then, during inference, the
infected model is manipulated to incorrectly respond to inputs containing hidden
trigger patterns, while it behaves normally in the presence of benign inputs.

To address this emerging security challenge, several defense methods have
been proposed to remove the backdoor effect from suspicious models. Among
these existing efforts, the state-of-the-art (SOTA) and practical solutions are
based on a defense after training strategy [3,5, 15, 16,22, 35, 39, 43]. The key
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philosophy of this line of work is to first identify the sensitive parts (e.g., neu-
rons/channels) of the network and then mitigate the effects of these infected
components via pruning and knowledge distillation. Compared with their coun-
terparts adopting a defense during training mechanism [6,8,12,13,29,31], modern
post-training defense approaches do not require any access to the model training
process, making them more practical and affordable in realistic scenarios.

Despite their attractive potential, current post-training backdoor defenses
still face significant challenges in terms of data efficiency and model efficiency.

To be specific, first, although existing methods do not necessitate complete
control over the training process, they still require 1% to 5% of benign training
data for post-processing [3,5,15,16,22,35,39]. This presents two challenges: 1)
training data, particularly in sensitive areas such as finance or healthcare, is
often inaccessible to defenders; 2) even when training datasets are accessible,
identifying and selecting clean samples from a poisoned dataset is a challenging
task. Consequently, the need for available legitimate training data remains overly
restrictive and unrealistic in many real-world scenarios.

Second, the pruning/knowledge distillation used in existing post-training
backdoor defense efforts cannot achieve considerable reduction in computational
cost, a crucial advantage that modern model compression techniques aim to
provide. As reported in [3,35,43], their proposed pruning process can only be
applied to a very small number of neurons/channels to mitigate the backdoor
effect, and the corresponding clean accuracy (ACC) will significantly drop even
if only pruning 10% of neurons. Consequently, achieving both backdoor robust-
ness and model efficiency without the knowledge of training data, a practical
demand for real-world DNN deployment, remains a challenging task.

We propose Clean & Compact (C&C), an efficient backdoor defense solu-
tion that enables both model purification and compactness without access to
the training data. Different from the SOTA works that focus on pruning a small
amount of neurons/channels to remove backdoor, C&C explores the model sen-
sitivity from the lens of singular value, and discovers that the rank components
associated with the high normalized singular values are the sensitive part of
the infected DNN model to trigger patterns. By leveraging this intriguing phe-
nomenon, the defender can simply constrain the impacts of those sensitive ranks
components to realize efficient data-free backdoor defense. Beyond that, the ex-
tracted singular value information can be used to perform low-rank compression,
still in a data-free way, bringing a purified and compact model with high clean
accuracy, high backdoor robustness and high model compactness simultaneously.

We evaluate C&C using different datasets and model architectures. Com-
pared with the SOTA data-demanded backdoor defense methods, C&C shows
better defense performance without requiring any original training data. Mean-
while, our solution also consistently outperforms the existing data-free defense
in a variety of backdoor attack scenarios. In addition, C&C is the only approach
that preserves high clean accuracy when both model robustness and compactness
are required, making it very attractive for real-world applications.
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2 Related Work

Backdoor Attack. By poisoning training data or change the optmization ob-
jective, backdoor attack injects the pre-defined backdoor to the victim DNN
during training phase. The poisoned data can be relabelled as single target class
[4,10,17], different target classes [21]| or even still with the clean labels [27,33].
After training, the infected model behaves normally with the presence of benign
inputs, but gives incorrect response to the input data containing trigger patterns,
such as white square [10] and sinusoidal strip [1]. To improve the stealthiness,
several works [4,18,20,21,34] have proposed a set of trigger generation methods,
including trigger blending, subtle image wrapping and input-aware design, to
make the trigger patterns more nature and imperceptible to human detection.
Backdoor Defense. Defense methods can be roughly categorized to defense
during or after training. When the defenders have access to the training pro-
cess, by leveraging the different distributions of poisoned data and clean data,
various methods [6,8,12,13,29,31] can be used to filter the poisoned data out.
In more realistic setting that the control of training process is lost, e.g., the
suspicious model is downloaded from the third-party platforms, post-training
defense methods become very necessary and practical. To that end, some meth-
ods [17,38] utilize the clean data to rectify the infected parts of the models.
Another line of work [3, 15, 16, 35, 43| focuses on identify the sensitive parts of
model, e.g., some neurons or channels, and then remove them via using pruning
or knowledge distillation. A common assumption adopted by these efforts is the
availability of portion of clean training data, e.g., 1% — 5%. Consider in many
practical applications such requirement on the amount and cleanness of training
data cannot be satisfied, the reliance on using the benign labelled data poses
severe challenges for deploying these solutions in real-world scenarios.

Recently, [22] uses unlabelled data collected from other sources to relax such
constraints. However, this solution assumes the cleanness of the unlabelled data,
which cannot be guaranteed in practice. Currently only [43] proposes a true
data-free post-training defense method without using any data. One limitation
of this work (and also other pruning-based backdoor defense approaches [3,35]),
is that their pruning process can only be used for improving robustness instead
of model efficiency (i.e., lower storage and computational costs), a main benefit
that pruning technique should bring. As reported in their experiments, even
removing 10% neurons already causes huge ACC drop. Consequently, making the
DNN simultaneously backdoor robust and model efficient, a practical demand
in many real-world scenarios, especially in resource-constrained applications, is

Table 1: Requirements and advantages of C&C versus previous backdoor defenses.

[5,15,22,39]  [3,16,35,43] CLP [43] C&C (Ours)

Data-Free X X v v
Comp. Performance X X X v
Comp. Type N/A Unstructured Channel Low-rank
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still a challenging task and not realized yet. We summarize the requirements and
advantages of our C&C method in against previous works in Table 1.

3 Preliminaries

Notation. We denote tensor using bold calligraphic script letters, e.g., A. Ma-
trices are represented by bold capital letters, e.g., A, and vectors are denoted
as bold lowercase letters, e.g., a. Non-bold letters w. indices A(i1 : iq), A(1, J),
and a(i) refer to the entries of tensor A, matrix A, and vector a, respectively.
We denote the tensor as A € RIVxXexXIN where Ih, I, . .., In represent the
dimensions along each mode. The mode-n matricization of A is denoted as
Ay € RIn > (Isoxln—1slngas#IN) The entry (i; : iy) of tensor LA maps to
entry (in,j) of unfolded matrix A, i.e., A(i1 :in) = Ag)(in,j), where

N k—1
j=14 Y (k—DJwithJy= [[ In (1)
k=1,k#n m=1,m#n

Tucker-2 Decomposition. We denote the weight tensor of a convolutional
layer as W € ROXXEXE "where O, I and K are the number of output chan-
nels, the number of input channels and kernel size, respectively. Without loss of
generality, in this paper we use Tucker-2 decomposition [32] as the factorization
method. In such scenario, WV can be represented with a core tensor G and two
matrices (Uy and Us) along each mode as W = G x1 U; X3 Ug, where “x,,"
denotes n-mode product, U; € RO*™ denotes the left singular vectors of the sin-
gular value decomposition (SVD) of Wy, i.e., W (1) = U121V{, U, € RI*™
denotes the left singular vectors of SVD of Wy, i.e., W(a = UgEgV?,
G =Wxg UlT X9 Ug € RrXraxExK and r and 7o are the Tucker-2 ten-
sor ranks. The sing. val. o and its normalized version o, can be obtained:

o =[21(i,1), X2(4,7)] st. i <r1,j<r9, and Onorm = (0 — Us)/Se, (2)

where X(i,1) is the i-th largest singular value in ¥, and u, and s, denotes
the mean and standard deviation of the vector o, respectively.
Attack Model. We address an attack scenario where the adversary controls the
training phase, including access to the training dataset, model architecture, and
loss function. Specifically, with benign inputs & and their corresponding labels
y, f(-) denoting the classifier’s function, B(-) representing the trigger injection
function, and t being the attack targets, the attacker aims to poison the training
data, alter the loss function, or modify the original model weights {W}. The
goal is to produce an infected DNN model {W,;} such that:

fowpt (@) =y, and  frw, 3 (B(x)) — ¢, (3)
Defense Goal. Our focus is on post-training defense in a deployment scenario
where the defender possesses only the suspicious model, devoid of any knowl-
edge regarding the training process or access to the training data. Moreover,
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Fig. 1: (1st Row) Decreasing Tscale makes more high-valued normalized singular values
being scaled down. (2nd Row) As Tscale decreases, Ririgger shrinks to approach hciean-
The model architecture is ResNet-18 on CIFAR-10 and the backdoor attack is WaNet.

unlabeled benign data external to the training dataset is unavailable. The de-
fense’s objective is to cleanse the model of backdoor vulnerabilities, obtaining
sanitized model weights {Weican}, and to compress the model for deployment
on resource-constrained devices, ensuring:

fWaeny(®) =y, and fow,,.3 (B(@)) = y. (4)

4 Proposed Method

4.1 Key Idea: Explore Model Sensitivity From Singular Values

As described in Sections 1 and 2, post-training backdoor defense identifies parts
of the infected DNN models sensitive to the trigger pattern of the inputs. Thus,
various measurement metrics, such as neuron-level adversarial perturbations and
channel-level Lipschitz constant, have been proposed [3, 35, 43]. Different from
these existing efforts, we propose utilizing rank-level singular values to examine
model sensitivity. Our rationale is that singular values, containing rich struc-
tural information of the weight matrices/tensors, can act as a powerful lens for
analyzing model sensitivity to the trigger pattern.

Motivated by this philosophy, we study the relationship between the normal-
ized singular values o yorm” (defined in Eq. 2) of all the layers and the activation
of the last convolutional layer with and without the presence of triggers (denoted
as heiean and hipigger). As shown in Fig. 1 (a), the strength of feature map
Ririgger is significantly higher that of hcjeqn. This phenomenon, also reported
in [41,44], is a clear marker demonstrating the existence of backdoor effect, since
the activation incurred by trigger-embedded inputs must be strong enough to

4 We use onorm instead of o because it normalizes the sing. values of all layers to same
range, hence impact of threshold 7Tscale can be applied on each layer in a fair way.
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Fig. 2: The overall process of obtaining a data-free, clean and compact DNN.

surpass the benign case to cause misclassification. Therefore, a key to repair the
backdoored model is to minimize the discrepancy between htrigger and heiean.
To that end, considering the existence of very large entries of oporm (see Fig.
1), we hypothesize that such huge activation difference is attributed to the rank
components of the DNN models with high-valued oy, (2)’s.

Hypothesis: With the poisoned input, the rank components assoc. w. the high
normalized singular values, i.e., U1(i) and the i-th vector of G1)(i,:) corre-
sponding to the large 0 norm(i), and Uz(j) and the j-th vector of G ()(j,:) corre-
sponding to the large 0 norm(r1+3), cause high discrepancy between hipigger and
heiean- Simply put, these rank components are sensitive to the backdoor triggers.

To verify this hypothesis, we analyze the change of h¢pigger and heiean when
constraining the impacts of the rank components with very high normalized
singular values. To that end, we use a threshold 7cae to control the effect of

each rank component of the weight tensors. More specifically, when a weight

tensor W e ROXIXKEXK g factorized to Uy € RO*™, Uy € RI*™ and G €
RT1*12XKXE ysing Tucker-2 decomposition, we first unfold G to obtain its mode-

1 matricization as G (1), and then adjust its entries as follows:

g e Rn xrax K xK uufold} G(l) = erx(rz*K*K),

5
5 = G(1) © min(7scale * s¢/T'1, 1), )

where T; € R™*(r2*K+*K) i5 obtained via broadcasting oporm(l : ™) €
R™*1 to the second dimension, i.e., each column vector of Ty is Oporm(1 : 71),
and © is the element-wise multiplication. Notice that here the mechanism of
min(Tscale * S¢/T'1,1) operation is to scale down the effect of rank component
with normalized singular value oporm(Z) larger than Tycale, while keeping the ef-
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fect of other rank components as before. Then, considering the multidimensional
nature of G, we further scale its entries along another dimension:

GSCale (S RTIX(TZ*K*K) ES}jBe_) Gtemp S RTQX(H*K*K)
ses ) ’ (6)
G?;?le = GE;;HP © min(Tscale * SG'/TQ’ 1)’

where 2P consists of two consecutive operations — first folding back to
4-D format, and then performing mode-2 matricization. Similar to the procedure
for Ty, Ty € R72*("*K+K) j5 generated via broadcasting oporm (71 @ 72) € R72%1
to the second dimension. Then the weight tensor after constraining the impact
of rank components with large oy,0;m(7)’s is obtained as:

scale fold 1 X1 X KX K
G(Q) — gscale S R™ "2 ) and Wconstrain = gscale X1 U1 X2 U2~ (7>

Fig. 1 shows the change of hirigger and Rciean With using different 7ycale. It
is seen that as the threshold (7scae) gradually decreases, which essentially im-
poses more constraints on the impacts of rank components with high normalized
singular values, the strength of hirigger is steadily reduced, while hcjearn does
not exhibit significant change. This phenomenon strongly supports our proposed
hypothesis that the rank components with large oy,0,m (2)’s are the sensitive parts
of the infected DNN models to the backdoor triggers.

Model Purification via Constraining Sensitive Rank Components.
By identifying rank component-wise sensitivity, the corresponding post-training
backdoor removal scheme can be then naturally developed. As illustrated in Fig.
1 (d), when Tscale is low, hirigger can be significantly suppressed and approach to
hclean, implying that the backdoor is removed. Hence, properly constraining the
sensitive rank components can effectively purify the backdoor infected model.

Fig. 3 shows results that support this argument. The attack success rate
(ASR) of a backdoor ResNet-18 steadily decreases when lowering 7ycale, mean-
while clean accuracy (ACC) can still be largely preserved, indicating that sup-
pressing the impacts of sensitive rank components is an effective backdoor re-
moval strategy. Notice that as shown in this figure, some ACC drop is observed
when aiming to very low ASR. This potential issue will be addressed via using
the recovery mechanism described in Section 4.2.

Enable Model Robustness and Efficiency Simultaneously. Our above
analysis shows that the singular values, which are obtained via Tucker-2 de-
composition, serve as the key to building the proposed backdoor defense mech-
anism. Consider these information can also be used for low-rank model com-
pression [11,14,26, 37|, it is nature for us to further explore the attractive op-
portunity of co-achieving high model robustness and efficiency simultaneously.
To that end, we propose to further compress the purified model {Weonstrain } t0

low-rank Tucker-2 format {We"? . 1 as follows:
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ggs:f: = gscale(l : R171 : R2)7
Wegnstrain = Gecare X101 xoUL™, where Uy = Uy (1: Ry),
U™ =U,(1: Ry).
(8)
Here R = [Ry, Ro] is the target Tucker-2 rank setting for one layer with
R; < r;y and Ry < ry. Due to the huge space of combinatorial search across
multiple layers, it would be very time-consuming to determine the suitable layer-
wise [R1, Ro] for all the layers with manual trials. To address this challenge, we
propose to use a global singular value threshold to select the ranks automatically.
More specifically, given a pre-set compression ratio cr, we sort all the singular
values {o} for all the layers, and select the largest ones and their corresponding
rank components that meet the target compression budget requirement. Then all
the rest rank components with singular values smaller than the cutoff threshold
Ttrune are truncated. Here following the convention in low-rank compression, the
singular values used for sorting and guiding rank truncation are o(i)’s instead
of the normalized version op,o,m(2)’s (see Eq. 2).

4.2 Boosting Performance via Synthetic Data-Aided Fine-Tuning

As described in Sec. 4.1 and in Fig. 3, constraining the sensitive rank compo-
nents can effectively remove the injected backdoor, i.e., significantly reducing
ASR; but meanwhile it causes some ACC drop. In particular, such performance
degradation for benign inputs may be considerable when further compressing
the purified model, motivating us to perform fine-tuning to recover the ACC.
Use Synthetic Data for Fine-tuning. Considering the unavailability of
training dataset in the realistic data-free setting, we propose to generate syn-
thetic data for efficient fine-tuning. Notice that in order to 1) minimize the effect
of backdoor on the synthetic data; and 2) make the data distribution satisfy the
dual demands of defense and compression, instead of the original backdoored
model {W,.i} and the only purified model {Weonstrain}, the compressed and
purified model {Wgon ...} is used to prepare the synthetic dataset Dgy,. More
specifically, we apply a modified version of ZeroQ method [2] via adding an extra
inception loss term to incorporate class information, and then the synthetic data
generation process is formulated as the following optimization problem:

L
Iglnz 15 = w3l 13 + 1165 = 05113 + LFpyeome (@), 9), (9)

=
where || - [|2 is the f-norm, @, is the to-be-generated synthetic data, p$, 0%

are the mean and standard deviation of the synthetic data distribution output
at the j-th layer, and p;,0; are the mean and standard deviation stored in the
batch normalization layer of L-layer {Wgoperain }-

Use Synthetic Adversarial Data to Mitigate Backdoor Transfer.
Considering the original backdoor model {Wy;} has the highest ACC with the
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fying ResNet-18 w. diff. Tcale. noise, most are labeled to target (class-0), implying
they can serve as surrogates for real poisoned data.

presence of benign inputs, we use this model to fine-tune {Wgon» .} via knowl-

edge distillation w. synthetic data. Due to the embedded backdoor contained in
{Whpoi}, directly using the synthetic data Dy to perform knowledge distillation
causes the backdoor transfer from {Wpoi} to {Woneerain}- 10t other words, the
ACC increase is at the cost of reducing model robustness.

To avoid this trade-off and simultaneously enable high ACC and low ASR,
we propose to maximize the response difference between the backdoor teacher
model and student model to the poisoned inputs, thereby minimizing the poten-
tial backdoor transfer. However, a challenging issue is the unavailability of the
poisoned training data in this practical data-free setting. To solve this problem,
we propose to generate synthetic adversarial examples as the surrogate for real
poisoned data containing trigger patterns. As reported in [19], the adversarial
examples [9,24,30,36] are capable of exploiting the backdoor shortcut embedded
within the poisoned model, and our experiment demonstrates that the synthetic
adversarial examples also exhibit the similar interesting behavior — a consider-
able proportion of these examples are classified as the backdoor class (see Fig.
4). Therefore, synthetic adversarial examples can serve as the good proxy of real
poisoned data and be used in the knowledge distillation-based fine-tuning pro-
cess. Hence, the final clean and compact {W .t } that can achieve high ACC,

clean
backdoor robustness and model compactness is obtained as:

. 2
argmin ||Fpwy,,}(zs) — Fppyeeme 3(26)|]2
{wzgzlslzrain

=7 | FiWyar) (s +8) = Fypeeme 3 (x4 +6)|[3, (10)

constrain

st. 6= g}g&g{ﬁ(F{wcom yzs +6),9),

constrain

where 4 is adversarial perturbation and A is maximum allowed perturbation.
Here only the batch norm layers of the student model are updated during the
distillation. The overall process is summarized in Figure 2 and Algorithm 1.
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Algorithm 1: Enhancing Security and Efficiency: The Clean & Com-
pact Algorithm for Data-Free Backdoor Defense and Model Compression

Input: Poisoned model {W,.}, threshold 7ycale, compression ratio cr.
Output: Final clean & compact weights {W .0}
{97 IJ17 U2, 217 22} <— Tucker-2({Wpoi})
o [X1,X3], Onorm + (0 — us)/S0
{T'1} <+ broadcast(onorm (1 : 1))
{T'2} + broadcast(onorm(r1 : 72))
{G?i?le} + unfold({G}) ® min(7scate * so/{T1},1)
(G5} 15((GE")) © minrcat * 50/ (T2}, 1)
Grcate  fold({GZ531°})
Terune < truncate({Gscale, U1, U2}, 0, cr)
W oaint = truncate({Gecate, U1, U2}, 0, Torunc) > via Equation 8
Dgyn  synthesize _data({Weonerain}) > via Equation 9
for (z,y) in Dsyn do > knowledge distillation
Taav <+ adv_attack({Wionsirain 1+ & Y)

L= | Fewpesy (@) = Frwy @113 = Y Fiwpe} (®ady) — Frypeome 3 (@aav)[]3

constrain

update({Weer'? .}, L) > update only batch norm layers

constrain

17 {Wzi)erzg} — {ng;ns]zrain}

© 0 N O A W N -

[ o T e
R W N RO

fury
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5 Experiments

Backdoor Attack Settings. We evaluate our proposed C&C defense approach
in six backdoor attack scenarios, i.e., BadNets [10], Blended [4], InputAware [21],
WaNet [20], CLA [33], Trojan [17] with both all-to-one and all-to-all target label
configurations. The attack and defense performance is evaluated on CIFAR-
10, CIFAR-100 and GTSRB datasets using ResNet-18, ResNet-34, VGG-19 and
MobileNetV2. All attacks are trained for 100 epochs using SGD optimizer with
learning rate of 0.01 and batch size of 128. The poison ratio is set at 0.1. We
designate the attack target as ‘0’ for the all-to-one setting. In all-to-all configura-
tion, we choose an attack target offset by one from the correct class, represented
as t = (y + 1) mod C, where ‘C’ denotes the total number of classes. For the
BadNet attack, we utilize a 3 x 3 white square positioned at the bottom right as
the trigger. In the case of the Blended attack, in line with the original research,
we employ the Hello Kitty pattern as the trigger with a blending strength of
a = 0.1. Regarding the InputAware and WaNet attacks, we maintain the attack
settings consistent with the original works. All attacks are trained using the SGD
optimizer with a learning rate of 0.01, a batch size of 128 for 200 epochs.

Backdoor Defense Settings. At the model purification stage of C&C de-
fense, Tscale 1S set as 4 to constrain the sensitive rank components. Then 5-epoch
fine-tuning process is performed via using Adam optimizer with learning rate of
0.0003, batch size of 128 and v = 1. 5120 synthetic data points are generated
via 500-step Adam optimizer with a learning rate of 0.1. To prepare synthetic
adversarial data, we use Lo adversarial attack with a maximum allowable per-
turbation budget A = 0.5 and 10 optimization steps. C&C is compared with
four baseline backdoor defense methods: NAD [15], ANP [35], I-BAU [39] and
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Table 2: Performance for jointly purifying and compressing ResNet-18 on CIFAR-10.
ACC of ANP/CLP drops to 10% with 2x compression. C&C maintains high ACC from
2X to 4Xx compression, showing superior performance at higher ratios, being data-free.
Inference time is measured on a NVIDIA RTX 3090 GPU.

Defense Methods - Compression Ratio

No Defense ANP 2x CLP 2x C&C 2x C&C 3x C&C 4x

Attacks| ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
BadNet 94.13 97.96 10.00 0.00 10.00 0.00 92.16 2.88 91.25 1.30 90.77 0.71
Blended 93.45 99.67 10.00 0.00 11.30 0.00 91.01 4.02 90.48 2.49 89.13 2.54
InputAware 94.33 99.60 23.05 25.78 10.00 0.00 92.93 0.90 92.84 0.70 92.70 0.60
WaNet 93.71 99.32 10.00 0.00 10.00 0.00 92.38 1.41 92.72 2.40 92.28 1.10

BadNet A2A 93.70 91.12 12.38 10.21 10.00 10.00 92.42 3.87 91.85 3.66 91.27 3.36
Blended A2A 93.59 92.59 10.00 10.00 10.00 10.00 90.78 5.62 90.00 4.81 90.14 4.52
InputAware A2A 94.01 91.79 10.00 10.00 13.68 11.72 93.46 1.80 93.06 2.30 91.19 2.49
WaNet A2A 93.74 92.18 10.00 10.00 10.00 10.00 93.16 2.03 92.82 1.81 91.83 1.84

Data Req. N/A 1% clean Data-free Data-free Data-free Data-free
Comp. Type N/A Unstructured Channel Low-rank Low-rank Low-rank
Parameters 11.17M 5.58M 5.58 M 5.58M 3.72M 2.78M
Inference Time 0.201ms 0.201ms 0.150ms  0.143ms 0.125ms 0.110ms
Speed Up N/A None 1.34x 1.41x 1.61x 1.83x

CLP [43]. Here except CLP adopting data-free defense strategy, NAD, ANP and
I-BAU are set to have access to the same 1% clean training data.

Evaluation Metrics. We use two metrics to assess the defense performance:
the accuracy on benign data (ACC) and the backdoor attack success rate (ASR),
which is calculated as the ratio of the poisoned data samples that are misclassified
as the target label. Notice that following the protocol used in [35], the samples
with ground-truth labels belonging to the target class in the all-to-one attack
setting are filtered out before calculating the corresponding ASR.

5.1 Experimental Results

Defense Performance with Model Compactness. Table 2 compares C&C
with other pruning-based defense methods when jointly exploring model robust-
ness & compactness. Regardless of the availability of training data, the existing
solutions cannot effectively purify and compress the backdoored DNNs without
affecting model performance. For instance, the ACC of the model directly drops
to 10% when using ANP or CLP even with only 2x compression ratio. On the
other hand, our proposed C&C can consistently provide high-quality cleaning
and compression service (high ACC and low ASR) for the infected models with
different compression ratios (2x — 4x) and under various attack settings. Such
unique 2-in-1 capability, i.e., serving as backdoor defender and model compressor
simultaneously, together with its data-free feature, positions C&C a very useful
and attractive solution for a variety of practical applications, especially those
with strict constraints on training data access and storage/computing budgets.
Defense Performance against SOTA methods. Table 3 summarizes the
performance of different backdoor defense methods. Compared with the solu-
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Table 3: Performance of different backdoor defence methods for ResNet-18 model on
CIFAR-10. A2A denotes all-to-all target labelling. The unit of ACC and ASR is %.

No Defense NAD I-BAU ANP CLP C&C (Ours)

Data Req.— N/A 1% clean 1% clean 1% clean Data-free Data-free
Attacks]| ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
BadNet 94.13 97.96 90.1013.53 81.16 97.16 88.25 0.00 88.45 3.29 92.27 4.52
Blended 93.45 99.67 90.55 1.30 84.5211.19 88.55 2.28 87.79 4.42 90.62 2.64
InputAware 94.33 99.60 93.02 6.08 88.3599.1391.97 1.52 90.55 1.27 93.14 0.94
WaNet 93.71 99.32 93.17 0.90 81.60 0.63 91.55 0.34 89.68 1.64 91.51 1.79
Trojan 93.58 99.99 90.01 4.42 82.1413.3892.64 2.25 90.34 1.42 91.39 1.08
CLA 93.22 99.99 91.71 1.85 81.45 9.47 90.27 7.18 89.18 2.04 92.01 2.13
Average 93.74 99.42 91.43 4.68 83.20 38.4990.53 2.26 89.33 2.35 91.82 2.18

BadNet A2A 93.70 91.12 92.32 3.31 85.19 6.64 91.61 0.88 86.67 1.88 92.50 1.13
Blended A2A 93.59 92.59 89.49 1.02 84.38 2.30 85.50 7.99 88.15 2.01 91.37 1.83
InputAware A2A 94.01 91.79 94.10 2.63 89.55 1.42 92.46 1.27 92.22 1.41 93.45 1.87
WaNet A2A 93.74 92.18 93.33 1.85 85.95 1.77 90.64 0.92 89.98 1.37 92.49 1.72
Average 93.76 91.92 92.31 2.20 86.27 3.03 90.05 2.77 89.26 1.67 92.45 1.64

tions requiring 1% clean labelled training data (NAD, ANP and I-BAU), our
proposed C&C does not need any access to training dataset with at least 2%
ACC increase and similar or lower ASR performance against different types of
backdoor attack, making it very attractive in real-world scenarios where training
data is often unavailable for defenders. In addition, compared with the SOTA
data-free backdoor defense method CLP, C&C consistently shows higher ACC
(at least 2.5% increase) and lower ASR, demonstrating its outstanding protec-
tion capability against the poisoned inputs while still preserving high accuracy
with the presence of benign data.

Generalization Across Different Datasets and Models. To demonstrate
the generality of C&C, we evaluate the performance across different datasets and
network architectures. As shown in Table 4, for purifying the poisoned ResNet-18
models on GTSRB and CIFAR-100 datasets against different backdoor attacks,
C&C achieves strong defense performance with higher ACC and similar/lower
ASR than the SOTA data-free CLP method. Also, as shown in Table 5, when
aiming to clean the backdoor injected into a variety of DNN models, our approach
consistently outperforms CLP with respect to preserving high ACC and low
ASR, demonstrating its strong potential in a many applications.

Effect of synthetic data and adv. fine-tuning. Existing pruning-based de-
fenses (CLP/ANP) do not benefit from our proposed adversarial fine-tuning
with synthetic data. As shown in Table 6, when also applying synthetic data-
based adversarial fine-tuning, both ANP and CLP still show inferior performance
compared to C&C, especially, CLP even has significant performance drop. We
hypothesize that it may be attributed to CLP’s pruning of the batch norm layers,
which are indispensable for data synthesis and adversarial fine-tuning.
Performance Against Adaptive Attack. We also evaluate the performance
of C&C defense against adaptive attack, where the attackers are assumed to
have full knowledge of defense mechanism. In such scenario, because the attackers
cannot directly control oo, due to its non-differentiability, the practical way to
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Table 4: Backdoor defense performance across different datasets using ResNet-18.

No Defense CLP C&C (Ours)
Datasets Attacks ACC ASR ACC ASR AcCcC ASR
BadNet 97.17 97.20 98.70 8.52 97.70 2.96
BadNet A2A 98.97 95.40 97.65 0.48 96.32 5.76
GTSRB InputAware 98.99 98.81 98.85 7.72 98.94 0.00
InputAware A2A 98.45 96.97 95.87 15.61 98.59 0.14
Average 98.40 97.10 97.77 8.08 97.89 2.22
BadNet 74.35 96.71 44.78 0.81 70.27 1.83
BadNet A2A 74.15 69.40 53.20 0.88 73.28 0.95
CIFAR-100  InputAware 65.49 93.92 53.92 6.59 60.58 6.19
InputAware A2A 66.19 57.13 53.57 0.87 64.12 5.22
Average 70.05 79.29 51.37 2.29 67.06 3.55

Table 5: Backdoor defense performance across different model architectures.

CIFAR-10 GTSRB

No Defense CLP C&C No Defense CLP C&C
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNet Attack
ResNet-34 90.13 97.94 83.61 0.58 89.34 0.94 97.84 98.20 97.70 7.61 97.95 0.48

VGG-19 89.68 95.83 83.25 1.38 89.15 3.08 97.42 94.91 96.67 5.62 97.55 0.35
MobileNet-V2 89.56 86.26 83.61 0.58 87.10 1.10 96.86 96.52 92.41 0.03 97.16 1.23
Average 89.79 93.34 83.49 0.85 88.53 1.71 97.37 96.54 95.59 4.42 97.55 0.69

InptutAware Attack
ResNet-34 91.67 86.98 85.64 2.12 89.46 0.95 98.59 94.40 98.76 0.50 98.54 0.15

VGG-19 89.01 82.39 85.64 2.12 89.03 1.30 97.28 91.60 95.76 0.28 97.14 0.06
MobileNet-V2 89.45 82.38 80.53 2.93 88.93 1.42 97.64 93.78 95.86 1.29 96.89 1.58
Average 90.04 83.92 83.94 2.39 89.14 1.22 97.84 93.26 96.79 0.69 97.52 0.60

launch adaptive attack against C&C defense is to perform C&C-aware adaptive
backdoor training. To be specific, at the end of each training epoch, the attacker
can choose to apply the first step of C&C to constrain sensitive rank components
of the model being trained, aiming to make the rank components of the final
backdoored model do not exhibit sensitivities to the backdoor triggers. Our
experiments show that C&C can still provide strong model protection under
such powerful adaptive attack, e.g., bringing less than 5% ASR (see Table 7).

5.2 Ablation Studies

Impact of Scaling & Fine-Tuning. We conducted an ablation study to ex-
amine the role and impact of the scaling and fine-tuning stages. As shown in
Table 8, using synthetic data for fine-tuning results in additional performance
improvements, including higher ACC and lower ASR, for the purified and com-
pressed model. Considering that the fine-tuning process requires only 5 epochs
of updates on the batch normalization layers, this operation is a cost-efficient
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Table 6: Defense performance of pruning based defenses with and without adversarial
fine-tuning using synthetic data (ResNet-18 on CIFAR-10).

ANP ANP-+AFT CLP CLP+AFT C&C
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNet 88.25 0.00 88.18 0.23 88.45 3.29 80.27 5.18 92.27 4.52
Blended 88.55 2.28 87.69 0.59 87.79 4.42 81.82 4.89 90.62 2.64
InputAware 91.97 1.52 92.01 1.32 90.55 1.27 70.28 1.48 93.14 0.94
WaNet 91.55 0.34 91.09 0.58 89.68 1.64 72.61 3.38 91.51 1.79

Table 7: Performance of original attacks without defense and adaptive attack with
C&C defense for ResNet-18 on CIFAR-10.

No Defense Defense using our C&C

Orig. Att. Adap. Att.
Attacks ACC ASR ACC ASR ACC ASR

BadNet 94.13 97.96 92.27 4.52 92.58  3.79
Blended 93.45 99.67 90.62 2.64 89.78 294
InputAware 94.33 99.60 93.14 0.94 9222  3.29
WaNet 93.71 99.32 91.51 1.79 91.58 1.64

Table 8: The impact of scaling & fine-tuning steps for purifying infected ResNet-18
on CIFAR-10 against different attacks.

Scaling Only F.T. Only Full C&C

Attacks ACC ASR ACC ASR ACC  ASR
BadNet 92.01 14.29 9393  96.70  92.27 4.52
Blended 88.58 10.83  93.41  85.01  90.62 2.64
InputAware  92.40 1.50 93.70  99.88 93.13 0.94
WaNet 88.14 3.04 94.01 78.88  91.51 1.79

method to further enhance model robustness and accuracy. However, fine-tuning
alone, without scaling, is not sufficient to effectively remove backdoors.

6 Conclusion

We propose C&C, a significant advancement in backdoor defense, offering a data-
free solution that enhances both robustness and efficiency of DNNs. Its ability
to outperform SOTA methods without requiring clean training data makes it
a promising approach for real-world applications, especially in settings where
resources are limited or training data is unavailable. Overall, the Clean & Com-
pact (C&C) method addresses critical gaps in backdoor defense, paving the way
for more secure and efficient deployment of DNNs across various applications.
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