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Abstract

Motion planning, which aims to find a high-quality collision-free path in the
configuration space, is a fundamental task in robotic systems. Recently, learning-
based motion planners, especially the graph neural network-powered, have shown
promising planning performance. However, though the state-of-the-art GNN
planner can efficiently extract and learn graph information, its inherent mechanism
is not well suited for graph search process, hindering its further performance
improvement. To address this challenge and fully unleash the potential of GNN in
motion planning, this paper proposes GraphMP, a neural motion planner for both
low and high-dimensional planning tasks. With the customized model architecture
and training mechanism design, GraphMP can simultaneously perform efficient
graph pattern extraction and graph search processing, leading to strong planning
performance. Experiments on a variety of environments, ranging from 2D Maze
to 14D dual KUKA robotic arm, show that our proposed GraphMP achieves
significant improvement on path quality and planning speed over state-of-the-art
learning-based and classical planners; while preserving competitive success rate.

1 Introduction

Motion planning aims to find a high-quality collision-free path connecting the start and goal states
in the configuration space of a robot. As a fundamental cognitive task in robotic systems, motion
planning plays a critical role in many practical applications, such as autonomous driving, in-warehouse
package handling and assisted surgery, etc. A motion planning problem can be solved from different
perspectives. Sampling-based solutions, e.g., RRT and its variants [1, 2] randomly sample the
configuration space to build a space-filling tree, which grows towards connecting the start and goal
configurations. Search-based approaches, such as A* and Dijkstra [3, 4], interpret the planning as a
graph search problem, and they then find the feasible path via traversing the graph.

Recently, learning-based planners have obtained substantial attention because of their comparable
or superior performance to classical planners. In general, such data-driven strategy can efficiently
learn the patterns in the configuration space and/or the behaviors of the oracle planners, optimizing
the important operation (e.g., sampling mechanism) in the planning process, and thus reducing
the unnecessary collision check with the improved path quality. To date, various neural network-
powered motion planners, including multilayer perceptron (MLP)-based [5], convolutional neural
networks (CNN)-based [6], recurrent neural network (RNN)-based [7] and graph neural network
(GNN)-based [8, 9], have been proposed in the literature. Among these different choices, the GNN-
based neural planner is the most promising approach because of its unique advantages in processing
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Figure 1: The comparison between the key ideas of GNN-Explorer and our GraphMP. The finally
identified paths are marked as green lines. The GNN-Explorer first predicts the exploration priority
of all edges and then incrementally expands the exploration tree with collision-free edges in sorted
order. On the other hand, our GraphMP predicts both the collision status of edges and the heuristic
values of all nodes using two neural networks, and utilizes the edge weights to perform the A* search.
For each step of the A* search, we mark the connection to the candidate nodes with red lines. It is
seen that our method fully leverages the information of real accumulated costs during the search
procedure, leading to a higher quality of the searched path.

challenging high-dimensional planning tasks. By sampling the continuous configuration space and
generating the random geometric graph (RGG), the equipped GNN, which is naturally powerful
for learning graph patterns, can be applied to predict the priority of nodes (configurations) [9] or
edges (robot movement) [8], improving the efficiency and quality of path exploration. In particular,
GNN- Explorer [8], as the most recent and representative GNN planner, has demonstrated superior
performance in a series of low and high-dimensional planning tasks than various learning-based and
classical planners.

However, we believe the potential of GNN-based motion planners is not fully unleashed and the
state-of-the-art solution can be further improved. Our key observation is that the edge priority-based
path exploration, by its nature, is not the optimal choice for solving graph search problems. For
instance, as illustrated in Figure 1, neither the edge priority generation nor the path construction
process fully considers the impact on the total path cost when selecting a new edge to the current
path. In other words, the critical information of the accumulated cost is not properly represented,
leveraged or maintained in the existing GNN-based planners, thereby limiting the quality of the finally
searched path. On the other hand, the classical graph search approaches, such as A*, can provide the
near-optimal solution for finding the shortest path over the weighted graph, if the suitable heuristic
function can be identified. Essentially, the key factors for the success of A*-like approaches in the
graph search task are 1) they fully explore the graph structure via routinely visiting the neighboring
nodes; and 2) they formally consider the impact of the accumulated cost during path exploration; and
these two features are exactly what the existing GNN and most of other learning-based planners lack.

Motivated by these insights, in this paper we propose to simultaneously leverage the advantages of
GNN and graph search algorithm, leading to an efficient neural motion planner, namely GraphMP.
GraphMP first effectively extracts and learns the important patterns in the configuration space via its
GNN modules, and then identifies the near-optimal path over the processed RGG using its low-cost
graph search component. More specifically, to enable this processing pipeline, a GNN-based neural
collision checker and a neural heuristic estimator are proposed to extract key graph information
from input RGG and provide it to A* module, which is also reformulated in the differentiable way
to facilitate end-to-end training. More details of GraphMP is shown in Figure 2 and described in
Section 3. We evaluate GraphMP and other learning-based and classical planners in a variety of
environments, ranging from 2D Maze to 14D dual KUKA robotic arm. Experimental results show
that our proposed GraphMP achieves significant improvement on various planning performance
metrics (i.e., path quality and planning speed) over the state-of-the-art planning methods; while
preserving the competitive success rate.

2 Related Work

Classical Planners. Today’s most popular motion planners are either search-based or sampling-based.
Search-based planners, including BFS [10], Dijkstra [4], and A* [3], are typically used for finding
optimal paths in low-dimensional environments. Different from BFS and Dijkstra that are significantly
slow in large maps, A* is an informed search algorithm that uses a heuristic function to guide the
search towards the goal, significantly reducing the search space and improving the search efficiency.
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Figure 2: (Left): The architectures of neural collision checker (NCC) and neural heuristic estimator
(NHE). The neural collision checker takes a raw RGG and obstacles as input and predicts the collision
status of all edges. The neural heuristic estimator takes the collision-free RGG and the goal as input
and predicts the heuristic values of all nodes. (Top right): The independent training phases of NCC
and NHE. Notice that here we design and utilize a differentiable graph-based A* concatenated to
NHE, enabling their joint training in an end-to-end manner. (Bottom right): The main steps of the
inference phase to solve the planning task. Once a valid solution is found, we perform the lazy node
removal to further reduce the path cost.

Motivated by this benefit, many variants of A* have been developed, such as D* [11], WA* [12] and
Hybrid-A* [13]. The heuristic functions adopted in these methods are typically admissible hand-craft
versions, such as Euclidean distance and Manhattan distance.

Unlike search-based planners, sampling-based planners probe the high-dimensional configuration
space with random sampling, alleviating the exponential complexity growth incurred by the increasing
number of dimensions. In general, this type of planner first constructs a randomly sampled graph,
and then explores the feasible path over the sampled graph. One important sub-category of sampling-
based planner is tree-based solution, including RRT [1], RRT* [14] and Informed-RRT* [15], etc.
Some other popularly used sampling-based planners include PRM [16], BIT* [2] and LazySP [17].

Learning-based Planners. Recently, a series of learning-based methods further extend the search-
based planners by producing better heuristics to guide the search. For instance, SAIL [18] trains
heuristic policies by imitating clairvoyant oracles and demonstrates the capability of reducing
search effort. [19] and [20] learn the heuristic functions using the U-Net [21] and transformer [22]
architecture, respectively. On the other hand, VIN [23] and SPT [24] learn the planning policy directly,
and [25] develops the differentiable solvers for integer linear optimization problems by treating them
as black boxes. Furthermore, Neural Weighted A* [26] learns the image-format graph costs and
heuristics simultaneously via being supervised under the planning examples. Neural A* [27] proposes
to reformulate the entire procedure of the canonical A* search algorithm to be differentiable, enabling
the end-to-ending training of a guidance map for 2-D path planning tasks. However, this method
still relies on a hand-crafted heuristic function and can only be applied to 2D images, hindering its
applications.

In addition, a variety of deep learning-powered sampling-based planners have also been proposed
in the literature. Fastron [28] and ClearanceNet [29] learn the function approximators to facilitate
collision detection. On the other hand, LEGO [30] and [31] predict the high-quality sampling
distribution using conditional variational auto-encoder (CVAE), reducing the exploration effort.
MPNet [5] and STP-Net [7] predict the next sample directly by encoding the environments together
with the configurations via the contractive auto-encoder (CAE) and convolutional layers, respectively.
In particular, motivated by their powerful capability of learning the topology of environments of any
dimension, the application of GNNs in motion planning has gained popularity in recent years. [9]
introduces a GNN-based sampler to predict the critical node in a randomly generated graph, showing
promising performance for identifying the optimal samples in high-dimensional tasks. [8] proposes
GNN-Explorer, which prioritizes the exploration of graph edges in the planning process. Since the
planner can now focus on the most promising paths first, the planning efficiency of GNN-Explorer is
significantly improved, outperforming various classical and learning-based planners.
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3 Our Approach: GraphMP

3.1 Preliminaries

Consider a motion planning problem defined in the d-dimensional continuous configuration space X,
where X, is the obstacle space and Xppee = X'\ Xgps i the free space. Given an RGG G = (V, €)
V), where V is the set of nodes sampled from X,.. and £ is the set of weighted edges constructed
by K-nearest neighbors (KNN). A motion planner aims to find a collision-free path that connects
the source node v, and goal node v, by a collision-free path. The prior work GNN-Explorer [8]
initializes an exploration tree 7 rooted from v, and visits edges e € & sorted by their predicted
priorities. Each visit performs the accurate collision check on the edge and tries to append it into 7,
until vy is reached. Here the search of GNN-Explorer relies on the predicted edge priorities without
fully exploring graph structure and formally consider the impact of accumulated path cost during the
path exploration, thereby hampering the path quality. On the other hand, graph-based A* computes
the path from v, by iteratively selecting the best candidate v, = arg min, ¢ (g(v) + f(v)) from the
open list O. Here, g(v) accumulates the actual cost from v to v and f(v) estimates the heuristic value
of the cost from v to v4. Once vy is selected, each of ites reachable neighboring nodes vy, € Vser is
checked and updated. By using this way, A* can better explore graph stcuture and perform cost-aware
search, but it requires manual design of high-quality heuristic function i (v), which is a challenging
task for high-dimensional tasks. Also, visiting the neighboring nodes can be time-consuming because
the accurate collision check must be performed on each edge e, ., 4,,,. To overcome these limitations
of prior works, GraphMP proposes to use GNN to extract and learn the important patterns of RGG,
and then identifies the near-optimal path using learnable graph search component. More specifically, a
neural collision checker and a neural heuristic estimator are proposed to extract key graph information
from input RGG and provide it to the proposed reformulated differentiable A* module for end-to-end
training. Therefore, the path planning is now a graph structure-aware and cost-aware process with
powerful graph pattern extraction capability and learnable heuristics function, making it can achieve
high planning performance and suitable for both low and high-dimensional tasks.

3.2 Overall Framework

Fig. 2 shows the overall architecture of the proposed GraphMP. In the training phase, a neural
collision checker takes the raw RGG and obstacle information as input and predicts the collision
status of all edges. The difference between the estimated and ground-truth collision-free RGGs serves
as the training loss to improve the prediction quality of the neural collision checker. Meanwhile, a
neural heuristic estimator is also individually trained to assign the proper heuristic value to each node
in the ground-truth collision-free RGG, making the graph search-based planning become possible.
Here in order to make the neural heuristic estimator learnable, its predicted heuristic values are sent
to A* module to generate a list of nodes that should be visited. The difference between this predicted
node list and the optimal path is then calculated as the training loss, guiding the update of neural
heuristic estimator. Notice that the A* module in the training phase is designed in a differentiable
way to enable the backward propagation of gradients. More details will be described in Section 3.5.

After individually training neural collision checker and neural heuristic estimator, these two modules
are then concatenated in the inference phase. More specifically, neural collision checker first
predicts the potential collisions existed in the RGG and generates a predicted collision-free RGG.
The neural heuristic estimator then assigns the estimated heuristic value to each node of this roughly
collision-free RGG, enabling the graph search-based planning via a A* module. Notice that because
in the inference phase the input RRG of A* is only approximately collision-free without guarantee,
a non-differentiable classical A* is adopted here to incorporate the potentially additional collision
check during the search procedure. After the nodes of a collision-free path are finally identified, a
lazy node removal (details in Section 3.5) is performed to further improve path quality.

3.3 Neural Collision Checker

Because detecting the potential collision of an edge, by it nature, can be interpreted as a binary
classification problem, we build a neural network-based collision checker to roughly predict the
collision status of the edge e;; in the input RGG G = (V, £) with obstacle information X,p,:

True if prie..y > 0.5
pI( lJ) (])

e;4 1s collision-free = ;
False otherwise,
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Figure 3: An example of performmg the differentiable graph-based A* to find a path from node O to
node 4. Given a weighted graph, A, W and by,e, are the corresponding binary adjacency matrix,
weighted adjacency matrix and the heuristic values, respectively. At each step, we first compute the
lowest-cost candidate v according to Eq. 3 and explore its neighboring nodes vy, via Eq. 5. The
accumulated cost b, is updated via Eq. 7. Besides, we keep track of the nodes to be visited and
have been visited by updating o and c via Eq. 4 and Eq. 8. Once the goal is reached, all the visited
nodes are recorded in the closed list vector c.

where Z(e;;) is the function that gives the index of e;; in the edge set £, and p = (po, p1, ...p|g|-1)
is the collision-free probability vector that can be calculated as: p = fprob(foe(V, E, Xops)). Here
foe 1s the attention-based iterative obstacle encoder [8] that encodes the information of input RGG

and obstacles to a concatenated embedding vector u = (x (l), gl), El) gl), y(l))

where x(l) and y(l) denote the node embedding of v; and edge embedding of e;; at the [-th iteration
of obstacle encodmg, respectively. u is then processed by a three-layer MLP f,,.;, to calculate the
collision-free probability for each edge e;;. More details of f,. and f,,. are in the Appendix.

for each edge e;;,

Training Procedure. In the training phase the neural collision checker is individually trained on

batches of collision check problem instances {(V(?, £®), X} where the collision-free probabili-
ties of all the collision-free edges in the ¢-th problem instance is set as 1, otherwise 0. The accurate
labeling on the training data is provided by the oracle collision checker. The difference between
the estimated collision-free probability vector p and the binary representation of the ground-truth
label, is measured via calculating binary cross-entropy (BCE) loss and minimized during the training
procedure to improve the prediction quality of neural collision checker.

3.4 Neural Heuristic Estimator

Given the input collision-free RGG Gfree = (V,Efree) and goal node v, the neural heuristic
estimator is constructed as a graph neural network (GNN)-based module to predict the heuristic value
bheu,; for each v; € V. To that end, two MLPs (detailed in the Appendix) are first used to embed the

information of v; and e;; to latent space as qf ) € Rén and r(J) € R respectively, where d, is the
embedding size, and then the GNN iteratively updates the node and edge embeddings via aggregating

the local information of each node from its neighbors N (v;) = {vjle;; € Efrec} as follows:

(l)—maX({fq(qz),qj(”,qj(” g\ rilo; e N}, ¢ = g(a”,mY), vu; € v,

rY = max(r £(a”, 6 Y — a)). Ve; € Epree. @)

Here, g, f, and f; are two-layer MLPs with output dimension as dj,. After L iterations, the heuristic

value of node ¢ is calculated via encoding the node embedding qi(L) as bheu,i = foal (qu)), where

fuval 1s a three-layer MLP.



3.5 Differentiable Graph-based A*

In order to ensure that the neural heuristic estimator can provide good estimation of heuristic value
for graph search-based planning, in the training phase it is concatenated to the A* module, allowing
the final planning result to directly guide the training procedure. However, a challenging issue for
enabling such end-to-end learning is the non-differentiability of A*, incurred by the discrete nature
of its incremental search procedure. Notice that though [27] proposes a differentiable grid-based
A*, this existing solution can only work for 2-D grid search and planning; while addressing the
non-differentiability of the more general graph-based A*, which is used for our proposed GraphMP
towards high-dimensional planning, is non-trivial and not explored yet.

Next we describe the key reformulation for differentiable graph-based A*, which is illustrated
in Fig. 3. Recall that the essence of A* on Grree = (V, Efree) is to iteratively select and move
the node associated with the lowest path cost from open list O, which contains all the currently
candidate nodes, to the closed list C that stores the visited nodes, and explore the neighbors of the
selected nodes to expand O (More details of A* are described in the Appendix). To make this
procedure differentiable, we first use two binary vectors o € [0, 1]V and ¢ € [0, 1]IV! to represent
the nodes information in O and C, respectively, where the 1 entries indicate the contained nodes.
Also, the accumulated costs and the estimated heuristic values of all the nodes in V are denoted
as real-valued bace = (bacc,(b bacc,la ) bacc,\V\—l) and bpey = (bheu,O; bheu,la ) bheu,\V\—l) P
respectively, where by, ; is predicted by the neural heuristic estimator. Then, the operations of
selecting the lowest-cost node in O and moving it from O to C can be vectorized via using a one-hot
vector Vel € [0, 1]"" as follows:

eXp(_(bacc + bheu)/)‘) ©o
exp(—(bacec + Pheu)/A)0

O = 0 — Vgel; € = C + Vgel. 4

)s 3)

Vsel = Imax(

Here similar to [27], element-wise product ® is used to mask the nodes in C, and A and Zy,ax(.) are
the pre-set parameter and the function returns a one-hot vector with the 1" entry associated with the
lowest path cost (bgcc,i + bhew,i)- Vsel is then further used to vectorize the neighborhood exploration
process. To be specific, let A € {0,1}/VI*IVI and W € RIVI*IVI denote the unweighted and the
weighted adjancency matrix of £¢,..., respectively. Accordingly, the neighboring nodes that should
be explored can be represented as

Vnbr = Avsel ® (]]- - C)7 (5)

where vupy € [0,1] VI is the binary vector marking the entries corresponding to the neighboring
nodes as ones, and 1 is the all-one vector. Notice that here the indices of the neighboring nodes that
are already in the closed list C are masked out via using (1 — ¢). Upon the identification of these
newly explored neighboring nodes, the accumulated costs g and the vectorized open list o are further
updated as:

’

bacc = bacec © Vsel + Wgel, 6)
P = ((]1 - 0) +00 (bacc > b;cc)) ® Vnbr, bacc = bacc © (]1 - ‘I’) + b;cc © (1)7 (7)
o=0+ (1—0)vnpr, ®)

where b;cc denotes the accumulated costs of the nodes that are associated the path containing the

selected node. The operation bace > b;cc compares the node-wise accumulated costs and yields
a binary vector of length |V|. More specifically, bace ® Vgel extracts the accumulated cost of the
currently selected node, and Wy represents the distance from the selected node to each of its
neighbors. Notice that as shown in Eq. 7, the accumulated cost of neighboring nodes are updated in
two cases: (1) the nodes do not exist in O; and (2) the nodes are in O but its current accumulated cost
is already smaller than the updated one. The identification of such two types of nodes are realized
by a binary vector ®. After updating the accumulated costs, the open list O is expanded by adding
newly explored neighboring nodes (Eq. 8).

End-to-End Training. With the differentiability of graph-based A*, neural heuristic estimator and
graph search planning can be now jointly trained in an end-to-end way, providing better guidance of
learning heuristic values. Algorithm 1 describes the overall training procedure.



Algorithm 1 End-to-End Training Framework

Input: Full training set Dhe.,, neural heuristic estimator frew (V, €, Vg, Oneu) With weights Oneu, the max
iteration 77,44, learning rate ~y

1: for (V@ 0 0 0 @) in Dy, do

free» s

2:  Predict bpeu fheu(V(i) , e vgi), Ohneu). # Predict the heuristic values.

3 bacc<—0,o<—v5,c<—0.f

4 fort =1,2,..., Thax do

5 Select vger via Eq. 3.

6: if vse1 == v then Break # v is the one-hot vector representing the goal vff).
7: if sum (o) == 0 then Break # Early stopping when the open list is empty.

8 0 < O — Vge], C < C + Vsel.

9: Vinbr < AVgel ® (Jl — C). )

10: bace + bace @ (1 — @) + by © P (Eq. 6-7).

11: 0+ 0+ (1 —0)Vnbr.

12:  end for

13: #¢Wisa length-|V| binary vector that marks all nodes along the optimal path as ones.

14:  Compute the 1oss Lyer, + |[¢7) c||1.
15:  Update weights @neu < Oneu — YVeo,0y Lheu-
16: end for

® ®
o L/ gl

@ ——@
@ @Lazy node Path cost = 4.37 Path cost =4.10 Path cost = 13.54 Path cost = 8.90
(a) Key idea of LNR. (b) 2D maze. (c) 7D KUKA.

Figure 4: The key idea of the lazy node removal (LNR) and the examples of applying LNR on 2D
maze and 7D KUKA environments. We compare the paths before LNR (left) and after LNR (right).

3.6 Inference Procedure for Online Planning

As illustrated in Fig. 2, when GraphMP performs online planning (detailed in the Appendix) for
the new task, a non-differentiable classical A* module is adopted to perform graph search on the
approximated collision-free RGG prepared by the neural collision checker. Here the heuristic values
desired in the search procedure is predicted by the neural heuristic estimator. Notice that in order to
reduce the computational cost and path cost, the following two optimization operations are adopted
in the inference procedure.

In-Search Collision Check. Due to the approximation property of neural networks, some edges
in the approximated collision-free RGG may collide with the obstacles. We integrate the accurate
collision check into A* search that only occurs on necessary edges with low prediction confidence.
specifically, we perform the time-consuming accurate collision check only when (1) the neighbor
of one selected node is explored, and (2) the collision-free probability of the corresponding edge is
lower than a threshold 6. Such operation balances the trade-off between the planning efficiency and
the path safety.

Lazy Node Removal. After A* finishes the path search, lazy node removal is performed to further
reduce path cost. As illustrated in Fig. 4, within the planned path, the pairs of the nodes that are
not directly connected are iteratively checked to see whether if the potential direct connection (as
new edge) is collision-free and brings shorter path. If so, the two nodes can be connected and the
nodes between them are removed as “lazy nodes". In general, the worst time complexity of lazy node
removal is O(T?), where T is the number of nodes in the path found by A*. Since the searched path
typically contains only few nodes (7" is small), this technique effectively reduces the path cost with
minor computing overhead.
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Figure 5: (Left): The performance of neural collision checker (NCC) on 1000 raw RGGs with 300
nodes and K -value of 10 (K-NN). (Right): The comparison between A* with the heuristic function of
neural heuristic estimator (NHE) and vanilla A*, with respect to the mean path cost. More numerical
results are in the Appendix.

4 Results

4.1 Dataset and Experimental Setup

We demonstrate the effectiveness of our algorithm in six types of planning tasks as the same in [8]:
(1) Maze2: a 2 DoF point-robot in 2D maze workspace of dense obstacles, (2) Ur5: a 6 DoF URS
robot in 3D workspace, (3) Snake7: a 7 DoF snake robot in 2D workspace, (4) Kuka7: a 7DoF KUKA
arm in 3D workspace, (5) Kukal3: a 13 DoF Kuka arm in 3D workspace, and (6) Kukal4: a pair of
7DoF KUKA arms in 3D workspace.

For each environment, we prepare two different training datasets each of which consists of 2000
different workspaces, to train the neural collision checker and heuristic estimator separately. For each
workspace, we randomly construct 20 RGGs by sampling a random number of nodes ([100, 200, 300,
400]) and a random value of KNN ([5, 10, 15, 20]). Specifically, for the neural collision checker, each
problem contains the raw RGG built on a set of randomly sampled free states and the different set of
obstacles, while the ground-truth is the collision-free RGG obtained by the oracle collision checker.
For the neural heuristic estimator, each problem contains a feasible pair of v and v, the exactly
collision-free graph, and the ground-truth is the optimal path computed by Dijkstra. We also use 500
problem instances as the validation set. We keep the weights of heurisitic estimator which yields
the smallest average path cost on the validation set. After the training, GraphMP is evaluated in an
end-to-end manner on 1000 problem instances with unseen workspaces. Each input of the testing
problems contains a pair of v, and v,, and a set of obstacles.

Our neural collision checker adopts 3 iterations of obstacle encoding with an output dimension of 64,
and the neural heuristic estimator has 5 loops of message passing in Eq. 2 with the output dimension
of 32. For both training of these two models, we select ADAM [32] as the optimizer and set the
learning rate as 1e~3. The training epoch is 400 and the batch size is set as 8. We set the threshold ¢
in the in-search collision check as 80%. The number of graph nodes per sampling is 100 and the K
value of K-NN is 10. The experiments are conducted on a computere quipped with an AMDEPYC
74202P24-Core Processor and an NVIDIA RTXA6000 GPU.

Baselines. We evaluate the performance of GraphMP by comparing it with three classical planners
(BIT*, RRT* and LazySP) and one state-of-the-art learning-based planner (GNN-Explorer). In
addition, the Smoother proposed in [8] serves as an additional step to reduce the path cost of the

Table 1: The overall success rate on 1000 testing problems for each environment. GraphMP archives
nearly 100% success rate across all environments, being competitive with other baseline planners.

| Maze2 | URS | Snake7 | KUKA7 | KUKAI3 | KUKA14

BIT* 1.00 1.00 1.00 1.00 1.00 1.00

RRT* 0.54 0.39 0.69 0.83 0.67 0.70

LazySP 1.00 0.99 1.00 1.00 0.99 0.99
GraphMP 1.00 0.99 1.00 0.99 1.00 0.99
GNN-Explorer 1.00 0.98 1.00 0.99 1.00 0.99
GraphMP with Smoother 1.00 0.99 1.00 0.99 1.00 0.99
GNN-Explorer with Smoother 1.00 0.98 1.00 0.99 1.00 0.99




Table 2: Mean path cost on 1000 testing problems for each environment. GraphMP with Smoother
achieves the lowest path cost across all environments, compared to the baselines with a similar
success rate. (The success rate of RRT* on Maze?2 is 54%.)

| Maze2 | URS | Snake7 | KUKA7 | KUKAI3 | KUKAIl4

BIT* 2.52 11.20 5.96 7.59 12.07 12.05

RRT* 1.82 10.35 5.06 7.07 10.03 10.65

LazySP 2.63 11.81 6.52 9.49 16.72 16.82
GraphMP 2.33 8.09 5.68 7.01 13.57 12.22
GNN-Explorer 2.80 12.61 6.50 9.15 16.75 16.50
GraphMP with Smoother 1.96 7.73 5.02 6.27 9.26 9.89
GNN-Explorer with Smoother 2.36 8.87 5.31 6.55 9.92 10.01

Table 3: The mean time cost (ms). GraphMP demonstrates the fastest planning speed, among 4 of 6
environments.

| Maze2 | UR5 | Snake7 | KUKA7 | KUKAI3 | KUKAl4

BIT* 125.2 | 5412 | 161.1 407.0 352.6 205.2

RRT* 200.4 | 432.0 | 436.5 1753 506.4 423.7

LazySP 334.0 | 921.8 | 144.7 401.8 224.5 404.9
GraphMP 1245 | 192.6 | 211.6 59.3 116.3 95.5
GNN-Explorer 1555 | 3329 | 2229 93.3 101.9 120.3
GraphMP with Smoother 1409 | 363.0 | 268.1 65.6 142.7 120.4
GNN-Explorer with Smoother | 175.7 | 529.3 | 293.0 107.3 136.2 150.7

computed path. Therefore, we also compare the performance of GraphMP with Smoother and
GNN-Explorer with Smoother.

Ablation study. Details are reported in the Appendix.

4.2 Comparison With Baselines

Experimental results show that our GraphMP achieves 98.6% - 100% success rate across all the
environments, being competitive to the state-of-the-art planners (Table 1). Table 2 shows that
GraphMP achieves 16.79%, 35.84%, 12.62%, 23.39%, 18.99% and 25.94% shorter paths than GNN-
Explorer, on Maze2, URS, Snake7, KUKA7, KUKA13 and KUKA 14, respectively. Furthermore,
the GraphMP with the path smoother has the lowest path cost compared to all baselines with a
competitive success rate. Table 3 compares the time cost of all the motion planners. Compared to
GNN-Explorer, GraphMP finds valid solutions with 19.94%, 42.14%, 5.07%, 36.44% and 20.62%
lower time cost on Maze2, URS, Snake7, KUKA7 and KUKA 14, respectively. Overall, the results
indicate that GraphMP outperforms all baseline planners by producing high-quality paths with the
fastest planning speed and nearly 100% success rate in most of the planning tasks from 2D to 14D.

4.3 Study of Individual Modules of GraphMP

The Performance of Neural Collision Checker. We first evaluate the neural collision checker
by reporting the mean prediction accuracy, confidence score and time cost. Specifically, the mean
prediction accuracy and confidence are measured by averaging over all the edges from the test graphs,
and the mean time cost represents the latency of predicting all edges per testing graph. Fig. 5 shows
that our neural collision checker can perform super fast and accurate prediction on the graph-level
collision check with high prediction confidence, in all the environments.

The Performance of Neural Heuristic Estimator. We then evaluate the performance of the neural
heuristic estimator by comparing the A* with different heuristic functions. To be specific, we equip
A* with our neural heuristic estimator and the Euclidean function which serves as the commonly used
heuristic function to solve planning tasks, respectively. From Fig. 5, it is shown that the A* with our
neural heuristic predictor significantly outperforms the vanilla A*, by producing solutions of lower
path cost. The advantage of our neural heuristic predictor also grows quickly with the increasing
dimensions of the planning tasks. The results illustrate that the neural heuristic estimator learns and
performs better search guidance, especially in the configuration space of higher dimensions.

The Impact of In-Search Collision Check (ICC) and Lazy Node Removal (LNR). We further
analyze the impact of the ICC and LNR modules on GraphMP, to justify their necessity in improving



Table 4: The comparison of the path cost and time cost (ms) between different versions of GraphMP.
To be specific, the GraphMP w/o ICC uses accurate collision check only. GraphMP achieves the
significantly lower path cost compared to the one without LNR with a limited time increase, and
achieves reduced time cost compared to the one without ICC.

Maze2 URS Snake7 KUKA7 KUKA13 KUKA14

Path Time Path Time Path Time Path Time Path Time Path Time

GraphMP w/o LNR ~ 2.82 106.75  9.76 183.84 594 20827 883 54.57 15.82 104.29 14.32 88.18
GraphMP w/o ICC 2.33 167.85 8.09  258.27 5.68 286.54  7.01 104.94 13.57 162.44 12.24 137.70
GraphMP 2.33 12447  8.09 19255 5.68  211.66 7.01 59.34 13.57 11629  12.24 95.47

the planning performance. Table 4 compares GraphMP with the version without ICC and the one
without LNR, with respect to the path cost and time cost, respectively. While all these planners
achieve 98.6% - 100% success rate across different environments, GraphMP outperforms the version
without LNR by yielding 17.38%, 17.11%, 4.38%, 21.92%, 14.22% and 14.53% shorter paths with
a limited increase of the time cost, on Maze2, URS, Snake7, KUKA7, KUKA13 and KUKA14,
respectively. Besides, compared to the one that uses accurate collision check (GraphMP w/o ICC),
GraphMP achieves the same path quality with a significantly smaller time cost. Overall, it is seen
that ICC and LNR are effective in improving planning speed and path optimality, respectively.

5 Limitations

Despite its good empirical performance across different tasks, GraphMP still has some limitations.
First, it does not provide probabilistic completeness when the collision check threshold 6 < 100%.
That means, if the collision status of some edges is determined by the neural collision checker (NCC),
even if the prediction accuracy of NCC is high and a collision-free path exists in the input RGG,
GraphMP still cannot guarantee to find the feasible solution asymptotically. Notice that though
the probabilistic completeness can be achieved when setting = 100%, the planning time will
accordingly increase due to the extra costs incurred by performing accurate collision check on all
the explored edges. Second, it does not offer asymptotical optimality. GraphMP performs the graph
search on an implicit RGG which is incrementally expanded with more batches of nodes. Once a path
is found, GraphMP validates its legality and returns the solution. Because 1) this mechanism naturally
leads that the quality of the sampled RGGs has a heavy impact on the path cost — the waypoints
along the paths are restricted to be a subset of the existing nodes of RGG, but RGG itself cannot be
guaranteed to contain the optimal path; and 2) the search process will be terminated once the path
is found, without further seeking better solutions, GraphMP cannot theoretically guarantee to find
the optimal path asymptotically. Third, its efficiency is still limited by inefficient RGG construction.
More specifically, 1) the uniform sampling of nodes disregards the environmental topology, causing
some unnecessary node exploration; and 2) the construction of raw edges is also involved with
unnecessary edge generation, thereby limiting the further runtime speedup provided by the proposed
approach.
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7 Conclusion

This paper proposes GraphMP, a neural motion planner for both low and high-dimensional planning
tasks. With the customzied model architecture and training mechanism design, GraphMP can
efficiently learn the graph pattern and process graph search, enabling strong planning performance.
Experiments on a variety of environments show that GraphMP achieves significant planning speed-up
and higher path quality than the state-of-the-art learning-based and classical planners.
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