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Abstract

Modern machine learning paradigms, such as deep learning, occur in or close to
the interpolation regime, wherein the number of model parameters is much larger
than the number of data samples. In this work, we propose a regularity condition
within the interpolation regime which endows the stochastic gradient method with
the same worst-case iteration complexity as the deterministic gradient method,
while using only a single sampled gradient (or a minibatch) in each iteration. In
contrast, all existing guarantees require the stochastic gradient method to take small
steps, thereby resulting in a much slower linear rate of convergence. Finally, we
demonstrate that our condition holds when training sufficiently wide feedforward
neural networks with a linear output layer.

1 Introduction

Recent advances in machine learning and artificial intelligence have relied on fitting highly overparam-
eterized models, notably deep neural networks, to observed data; e.g. [39, 37, 16, 23]. In such settings,
the number of parameters of the model is much greater than the number of data samples, thereby re-
sulting in models that achieve near-zero training error. Although classical learning paradigms caution
against overfitting, recent work suggests ubiquity of the “double descent” phenomenon [3], wherein
significant overparameterization actually improves generalization. The stochastic gradient method is
the workhorse algorithm for fitting overparametrized models to observed data and understanding its
performance is an active area of research. The goal of this paper is to obtain improved convergence
guarantees for SGD in the interpolation regime that better align with its performance in practice.

Classical optimization literature emphasizes conditions akin to strong convexity as the phenomena
underlying rapid convergence of numerical methods. In contrast, interpolation problems are almost
never convex, even locally, around their solutions [24]. Furthermore, common optimization problems
have complex symmetries, resulting in nonconvex sets of minimizers. Case in point, standard
formulations for low-rank matrix recovery [4] are invariant under orthogonal transformations while
ReLU neural networks are invariant under rebalancing of adjacent weight matrices [9]. The Polyak-
Łojasiewicz (PŁ) inequality, introduced independently in [26] and [34], serves as an alternative
to strong convexity that holds often in applications and underlies rapid convergence of numerical
algorithms. Namely, it has been known since [34] that gradient descent convergences under the
PŁ condition at a linear rate O(exp(−t/κ)) , where κ is the condition number of the function.1 In
contrast, convergence guarantees for the stochastic gradient method under PŁ—the predominant
algorithm in practice—are much less satisfactory. Indeed, all known results require SGD to take

1In particular, for a smooth function with β-Lipschitz gradient satisfying a PŁ inequality with constant α , the
condition number is κ = β/α .
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Figure 1: Convergence plot of SGD when training a fully connected neural network with 3 hidden
layers and 1000 neurons in each on MNIST (left) and a ResNet-28 on CIFAR-10 (right). MNIST has
60k images and the convergence behavior stabilizes with small batchsize of m = 64; CIFAR-10 has
60k images and the convergence behavior stabilizes with batchsize of m = 512 , although early on in
training (first 20k iterations) convergence behavior looks identical for all batchsizes.

shorter steps than gradient descent to converge at all [2, 12], with the disparity between the two
depending on the condition number κ . The use of the small stepsize directly translates into a slow rate
of convergence. This requirement is in direct contrast to practice, where large step-sizes are routinely
used. As a concrete illustration of the disparity between theory and practice, Figure 1 depicts the
convergence behavior of SGD for training a neural network on the MNIST data set. As is evident
from the Figure, even for small batch sizes, the linear rate of convergence of SGD is comparable to
that of GD with an identical stepsize η = 0.1. Moreover, experimentally, we have verified that the
interval of stepsizes leading to convergence for SGD is comparable to that of GD; indeed, the two are
off only by a factor of 20. Using large stepsizes also has important consequences for generalization.
Namely, recent works [19, 5] suggest that large stepsizes bias the iterates towards solutions that
generalize better to unseen data. Therefore understanding the dynamics of SGD with large stepsizes
is an important research direction. The contribution of our work is as follows.

In this work, we highlight regularity conditions that endow SGD with a fast linear
rate of convergence exp(−t/κ) both in expectation and with high probability, even
when the conditions hold only locally. Moreover, we argue that the conditions we
develop are reasonable because they provably hold on any compact region when
training sufficiently wide feedforward neural networks with a linear output layer.

1.1 Outline of main results.

We will focus on the problem of minimizing a loss function L under the following two assumptions.
First, we assume that L grows quadratically away from its set of global minimizers S:

L(w) ≥
α

2
· dist2(w, S) ∀w  B∈ r (w0), (QG)

where B r (w0) is a ball of radius r around the initial point w0. This condition is standard in the
optimization literature and is implied for example by the PŁ-inequality holding on the ball B r (w0);
see Section A.2. Secondly, and most importantly, we assume there there exist constants θ, ρ > 0
satisfying the aiming condition:2

⟨∇L(w), w − proj S (w)  ≥ θ · L⟩ (w) ∀w  B∈ r (w0). (Aiming)

Here, proj S (w) denotes a nearest point in S to w and dist(w, S) denotes the distance from w to
S. The aiming condition ensures that the negative gradient −∇L(w) points towards S in the sense
that −∇L(w) correlated nontrivially with the direction proj S (w) − w . At first sight, the aiming
condition appears similar to quasar-convexity, introduced in [14] and further studied in [15, 22, 20].
Namely a function L is quasar-convex relative to a fixed pointw̄  S∈ if the estimate (Aiming) holds
with proj S (w) replaced by w̄. Although the distinction between aiming and quasar-convexity may

2If proj S (w) is not a singleton, proj S (w) in the expression should be replaced with any elementw̄ from
proj S (w) .
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appear mild, it is significant. As a concrete example, consider the function L(x, y) = 1
2 (y − ax 2)2

for any a > 0 . It is straightforward to see that L satisfies the aiming condition on some neighborhood
of the origin. However, for any neighborhood U of the origin, the function L is not quasar-convex on
U relative to any point (x, ax2)  U∈ ; see Section C. More generally, we show that(Aiming) holds
automatically for any C3 smooth function L satisfying (QG) locally around the solution set. Indeed,
we may shrink the neighborhood to ensure that θ is arbitrarily close to 2. Secondly, we show that
(Aiming) holds for sufficiently wide feedforward neural networks with a linear output layer.

Our first main result can be summarized as follows. Roughly speaking, as long as the SGD iterates
remain in B r (w0), they converge to S at a fast linear rate O(exp(−tαθ 2/β)) with high probability.

Theorem 1.1 (Informal). Consider minimizing the function L(w) = Eℓ(w, z) , where the losses
ℓ(·, z) are nonnegative and have β-Lipschitz gradients. Suppose that the minimal value of L is zero
and both regularity conditions (QG) and (Aiming) hold. Then as long as the SGD iterates wt remain
in B r (w0), they converge to S at a linear rate O(exp(−tαθ 2/β)) with high probability.

The proof of the theorem is short and elementary. The downside is that the conclusion of the theorem
is conditional on the iterates remaining in B r (w0). Ideally, one would like to estimate this probability
as a function of the problem parameters. With this in mind, we show that for a special class of
nonlinear least squares problems, including those arising when fitting wide neural networks, this
probability may be estimated explicitly. The end result is the following unconditional theorem.

Theorem 1.2 (Informal). Consider the loss L(w) = 1
n

P n
i=1 (f (w, x i ) − y i )2, where f (w, ·) is

a fully connected neural network with l hidden layers and a linear output layer. Let λ∞ be the
minimal eigenvalue of the Neural Tangent Kernel of an infinitely wide neural network. Then with
high probability both conditions (QG) and (Aiming) hold on a ball of radius r around the initial
point w0  ∼ N (0, I) with θ = 1 and α = λ ∞ /2 , as long as the network width m satisfies m =
Ω̃(nr 6l+2 /λ 2

∞ ). If in addition r = Ω(1/δ
√

λ∞ ), with probability 1 − δ, SGD with stepsize η = Θ(1)
converges to a zero-loss solution at the fast rate O(exp(−tλ ∞ )) . This parameter regime is identical
as for gradient descent to converge in [24], with the only exception of the inflation of r by 1/δ .

A key part of the argument is to estimate the probability that the iterates remain in a ball B r (w0).
A naive approach is to bound the length of the iterate trajectory in expectation, but this would then
require the radius r to expand by an additional factor of 1/λ ∞ , which in turn would increase m
multiplicatively by λ−6l−2

∞ . We avoid this exponential blowup by a careful stopping time argument
and the transition to linearity phenomenon that has been shown to hold for sufficiently wide neural
networks [24]. While Theorem 1.2 is stated with a constant failure probability, there are standard ways
to remove the dependence. One option is to simply set δ1 = Ω(1) and rerun SGD logarithmically
many times from the the same initialization w0 and return the final iterate with smallest function
value. Section 4 outlines a more nuanced strategy based on a small ball assumption, which entirely
avoids computation of the function values of the full objective.

1.2 Comparison to existing work.

We next discuss how our results fit within the existing literature, summarized in Table 1. Setting
the stage, consider the problem of minimizing a smooth function L(w) = Eℓ(w, z) and suppose
for simplicity that its minimal value is zero. We say that L satisfies the Polyak-Łojasiewicz (PŁ)
inequality if there exists α > 0 satisfying

∥∇L(w)∥ 2 ≥ 2α · L(w), (PŁ)

for all w ∈ R d . In words, the gradient ∇L(w) dominates the function value L(w) , up to a power.
Geometrically, such functions have the distinctive property that the gradients of the rescaled functionp

L(w) are uniformly bounded away from zero outside the solution set. See Figures 2a and 2b for an
illustration. Using the PŁ inequality, we may associate to L two condition numbers, corresponding to
the full objective and its samples, respectively. Namely, we define κ̄ ≜ β̄/α and κ ≜ β/α , where β̄
is a Lipschitz constant of the full gradient ∇L and β is a Lipschitz constant of the sampled gradients

ℓ∇ (·, z) for all z. Clearly, the inequality κ̄ ≤ κ holds and we will primarily be interested in settings
where the two are comparable.

The primary reason why the PŁ condition is useful for optimization is that it ensures linear con-
vergence of gradient-type algorithms. Namely, it has been known since Polyak’s seminal work
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[34] that the full-batch gradient descent iterates wt+1 = w t − 1
β̄ ∇L(w t ) converge at the linear rate

O(exp(−t/¯κ)) . More recent papers have extended results of this type to a wide variety of algorithms
both for smooth and nonsmooth optimization [27, 7, 21, 30, 1] and to settings when the PŁ inequality
holds only locally on a ball [24, 32].

For stochastic optimization problems under the PŁ condition, the story is more subtle, since the rates
achieved depend on moment bounds on the gradient estimator, such as:

E[ ℓ∥∇ (w, z)∥ 2] ≤ AL(w) + B L∥∇ (w)∥ 2 + C, (1.1)

for A, B, C ≥ 0 . In the setting where C > 0 —the classical regime– stochastic gradient methods
converge sublinearly at best, due to well-known lower complexity bounds in stochastic optimiza-
tion [31]. On the other hand, in the setting where C = 0 —interpolation problems—stochastic
gradient methods converge linearly when equipped with an appropriate stepsize, as shown in [2,
Theorem 1], [22, Corollary 2], [38], and [13, Theorem 4.6]. Although linear convergence is assured,
the rate of linear converge under the PŁ condition and interpolation is an order of magnitude worse
than in the deterministic setting. Namely, the three papers[2, Theorem 1], [22, Corollary 2] and
[13, Theorem 4.6] obtain linear rates on the order of exp(−t/¯κκ) . On the other hand, in the case
A = C = 0 , which is called the strong growth property, the paper [38, Theorem 4] yields the
seemingly better rate exp(−t/B¯κ) . The issue, however, is that B can be extremely large. As an
illustrative example, consider the loss functions ℓ(w, z) = 1

2 dist2(w, Qz ) where Qz are smooth
manifolds. A quick computation shows that equality ℓ∥∇ (w, z)∥ 2 = 2ℓ(w, z) holds. Therefore,
locally around the intersection of ∩zQz , the estimate (1.1) with A = C = 0 is exactly equivalent to
the PŁ-condition with B = 1/α . As a further illustration, Figure 3 shows the possible large value
of the constant B along the SGD iterates for training a neural network on MNIST. Another related
paper is [36]: assuming so-called small gradient confusion and requiring a stronger version of PL
condition (i.e., each individual loss l i is µ-PL), the paper [36] showed a slow rate of convergence
exp(−t/n 2κ) , where n is the dataset size.

Figure 3: We train a fully-connected neural network on the MNIST dataset. The network has 4 hidden
layers, each with 1024neurons. We optimize the MSE loss using SGD with a batch size 512and a
learning rate 0.5. The training was run over 1k epochs, and the ratio E[ ℓ∥∇ (w, z)∥ 2]/ L∥∇ (w)∥ 2 is
evaluated every 100epochs. The ratio grows almost linearly during training, suggesting that strong
growth is practically not satisfied with a constant coefficient B .

4



Reference Bound on E[ ℓ∥∇ (w, z)∥ 2] Quasar
Convex? Rate

[2, Theorem 1] 2β(L(w) − L ∗ ) No exp − t
κ κ̄

[38, Theorem 4] B L∥∇ (w)∥ 2 No exp − t
B κ̄

[22, Corollary 2] AL(w) + B L∥∇ (w)∥ 2 No exp − t
κ̄ max{B,A/α}

[13, Theorem 4.6] 2β(L(w) − L ∗ ) + L∥∇ (w)∥ 2 No exp −t
κ κ̄

[11, Corollary 3.3] σ2 + 2α w − w∥ ⋆ ∥ 2 Yes Sublinear
[20, Theorem 4.4] σ2 + L∥∇ (w)∥ 2 Yes Sublinear

This work 2β(L(w) − L ∗ ) (Aiming) exp −tθ 2

κ

Table 1: Comparison to recent work on nonconvex stochastic gradient methods under the α-PŁ and
smoothness conditions. We define κ̄ = β̄/α and κ = β/α , where β̄ is a Lipschitz constant of the full
gradient ∇L and β is a Lipschitz constant of the sampled gradients ℓ∇ (·, z) for all z.

The purpose of this work is to understand whether we can improve stepsize selection and the
convergence rate of SGD for nonconvex problems under the (local) PŁ condition and interpolation.
Unfortunately, the PŁ condition alone appears too weak to yield improved rates. Instead, we take
inspiration from recent work on accelerated deterministic nonconvex optimization, where the recently
introduced quasar-convexity condition has led to improved rates [15]. We note that quasar-convexity
is a very restrictive assumption in the interpolation regime because it requires the solution set to
be an affine subspace; see the discussion in Appendix E. Recent work has also shown that quasar
convexity can lead to accelerated sublinear rates of convergence for certain stochastic optimization
problems [20, Theorem 4.4] (and the concurrent work [11, Corollary 3.3]), but to the best of our
knowledge, there are no works that analyze improved linear rates of convergence. Thus, in this work,
we fill the gap in the literature, by providing a rate that matches that of deterministic gradient descent
and allows for a large stepsize. Moreover, in contrast to most available results, we only assume that
regularity conditions hold on a ball—the common setting in applications. The local nature of the
assumptions requires us to bound the probability of the iterates escaping.

2 Main results

Throughout the paper, we will consider the stochastic optimization problem

min
w

L(w) ≜ E
z P∼

ℓ(w, z),

where P is a probability distribution that is accessible only through sampling and ℓ(·, z) is a differen-
tiable function on Rd . We let S denote the set of minimizers of L . We impose that L satisfies the
following assumptions on a set W . The two main examples are when W is a ball B r (w0) and when
W is a tube around the solution set:

Sr ≜ {w ∈ R d : dist(w, S) ≤ r}.

Assumption 1 (Running assumptions). Suppose that there exist constants α, β, θ ≥ 0 and a set
W ⊂ R d satisfying the following.

1. (Interpolation) The losses ℓ(w, z) are nonnegative, the minimal value of L is zero, and the set of
minimizers S ≜ argmin L is nonempty.

2. (Smoothness) For almost every z  P∼ , the loss ℓ(·, z) is differentiable and the gradient ℓ∇ (·, z)
is β-Lipschitz continuous on W .

3. (Quadratic growth) The estimate holds:

L(w) ≥ α
2 · dist2(w, S) ∀w  W.∈ (2.1)

4. (Aiming) For all w  W∈ there exists a point w̄ ∈ proj(w, S) such that

⟨∇L(w), w − ¯w  ≥ θ · L⟩ (w). (2.2)
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We define the condition number κ ≜ β/α .

As explained in the introduction, the first three conditions (1)-(3) are classical in the literature. In
particular, both quadratic growth (3) on a ball W = B r (w0) and existence of solutions in W follow
from a local PŁ-inequality. In order to emphasize the local nature of the condition, following [24]
we say that L is α-PŁ∗ on W if the inequality (PŁ) holds for all w  W∈ . We recall the proof of the
following lemma in Section A.2.

Lemma 2.1 (PŁ∗ condition implies quadratic growth). Suppose that L is differentiable and is α-PŁ∗

on a ball B2r (w0). Then as long as L(w 0) < 1
2
αr 2, the intersection S ∩ Br (w0) is nonempty and

L(w) ≥
α

8
dist2(w, S) ∀w  B∈ r (w0).

The aiming condition (4) is very closely related to quasar-convexity, which requires (2.2) to hold for
all w ∈ R d and a distinguished point w̄  S∈ that is independent of w. This distinction may seem
mild, but is in fact important because aiming holds for a much wider class of problems. As a concrete
example, consider the function L(x, y) = 1

2 (y − ax2)2 for any a > 0 . It is straightforward to see that
L satisfies the aiming condition on some neighborhood of the origin. However, for any neighborhood
U of the origin, the function L is not quasar-convex on U relative to any point (x, ax2)  U∈ ; see
Section C. We now show that (4) is valid locally for any C3-smooth function satisfying quadratic
growth, and we may take θ arbitrarily close to 2 by shrinking r . Later, we will also show that
problems of learning wide neural networks also satisfy the aiming condition.

Theorem 2.2 (Local aiming). Suppose that L is C2-smooth and ∇ 2L is L -Lipschitz continuous on
the tube Sr . Suppose moreover that L satisfies the quadratic growth condition (2.1) and r < 6α

5L .
Then the aiming condition (2.2) holds with parameter θ = 2 − 5Lr

3α . An analogous statement holds if
Sr is replaced by a ball B r ( w̄0) for some w̄0  ∈ S .

Algorithm 1 SGD(w0, η, T )

Initialize: Initial w0 ∈ R d , learning rate η > 0 , iteration counter T ∈ N .
For t = 1, . . . , T − 1do:

Sample zt  ∼ P

Set wt+1 = w t − η ℓ∇ (w t , zt ).

Return: wT .

2.1 SGD under regularity on a tube Sr

Convergence analysis for SGD (Algorithm 1) is short and elementary in the case W = S r and
therefore this is where we begin. We note, however, that the setting W = B r (w0) is much more
realistic, as we will see, but also more challenging.

The converge analysis of SGD proceeds by a familiar one-step contraction argument.

Lemma 2.3 (One-step contraction on a tube). Suppose that Assumption 1 holds on a tube W = S 2r
and fix a point w  S∈ r . Define the updated point w+ = w − η f∇ (w, z) where z  P∼ . Then for any
stepsize η < θ

β , the estimate holds:

E
z P∼

dist2(w+ , S) ≤ (1 − αη(θ − βη)) dist 2(w, S). (2.3)

Using the one step guarantee of Lemma 2.3, we can show that SGD iterates converge linearly to S
if Assumption 1 holds on a tube W = S 2r . The only complication is to argue that the iterates are
unlikely to leave the tube if we start in a slightly smaller tube Sr ′ for some r ′ < r . We do so with a
simple stopping time argument.

Theorem 2.4 (Convergence on a tube). Suppose that Assumption 1 holds relative to a tube W = S 2r

for some constant r > 0 . Fix a stepsize η > 0 satisfying η < θ
β . Fix a constant δ1 > 0 and a point
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w0  ∈ S√
δ1 r . Then with probability at least 1 − δ1, the SGD iterates {w t } t≥0 remain in W . Moreover,

with probability at least 1 − δ1 − δ2, the estimate dist2(w t , S) ≤ ε · dist 2(w0, S) holds after

t ≥ 1
αη(θ − βη)

log
1

δ2ε iterations.

Thus as long SGD is initialized at a point w0  ∈ S √
δ1 r , with probability at least 1 − δ1 − δ2, the

iterates remain in Sr and converge at linear rate O( 1
δ2

exp(−tθ 2α/β)) . Note that the dependence
on δ2 is logarithmic, while the dependence on δ1 appears linearly in the initialization requirement
w0  ∈ S√

δ1 r . One simple way to remove the dependence on δ1 is to simply rerun the algorithm from
the same initial point logarithmically many times and return the point with the smallest function
value. An alternative strategy that bypasses evaluating function values will be discussed in Section 4.

2.2 SGD under regularity on a ball B r (w0)

Next, we describe convergence guarantees for SGD when Assumption 1 holds on a ballW = B r (w0).
The key complication is the following. While wt are in the ball, the distance dist2(w t , S) shrinks
in expectation. However, the iterates may in principle quickly escape the ballB r (w0), after which
point we lose control on their progress. Thus we must lower bound the probability that the iterates wt

remain in the ball. To this end, we will require the following additional assumption.
Assumption 2 (Uniform aiming). The estimate

⟨∇L(w), w − v  ≥ θL⟩ (w) − ρ · dist(w, S) (2.4)

holds for all w  B∈ r (w0) and v  B∈ r (w0) ∩ S.

The intuition underlying this assumption is as follows. We would like to replace w̄ in the aiming
condition (2.2) by an arbitrary point v  B∈ r (w0) ∩ S, thereby having a condition of the form
⟨∇L(w), w − v  ≥ θ · L⟩ (w) . The difficulty is that this condition may not be true for the main
problem we are interested in— training wide neural networks. Instead, it suffices to lower bound the
inner product by θL(w) − ρ · dist(w, S) where ρ is a small constant. This weak condition provably
holds for wide neural networks, as we will see in the next section. The following is our main result.
Theorem 2.5 (Convergence on a ball). Suppose that Assumptions 1 and 2 hold on a ball W =
B3r (w0). Fix constants δ1 ∈ (0, 1

3 ) and δ2 ∈ (0, 1) , and assume dist2(w0, S) ≤ δ 2
1 r 2. Fix a

stepsize η < θ
β and suppose ρ ≤ (θ − βη)αr . Then with probability at least 1 − 5δ1, all the SGD

iterates {w t } t≥0 remain in B r (w0). Moreover, with probability at least1 − 5δ1 − δ2, the estimate
dist2(w t , S) ≤ ε · dist 2(w0, S) holds after

t ≥ 1
αη(θ − βη)

log
1

εδ2
iterations.

Thus as long as ρ is sufficiently small and the initial distance satisfies dist2(w0, S) ≤ δ 2
1 r 2, with

probability at least 1 − 5δ1 − δ2, the iterates remain in B r (w0) and converge at a fast linear rate
O( 1

δ2
exp(−tθ 2α/β)) . While the dependence on δ2 is logarithmic, the constant δ1 linearly impacts

the initialization region. Section 4 discusses a way to remove this dependence. As explained in
Lemma 2.1, both quadratic growth and the initialization quality holds if L is α-PŁ∗ on the ball
B r (w0), and r is sufficiently big relative to 1/α .

3 Consequences for nonlinear least squares and wide neural networks

We next discuss the consequences of the results in the previous sections to nonlinear least squares and
training of wide neural networks. To this end, we begin by verifying the aiming(2.2) and uniform
aiming (2.4) conditions for nonlinear least squares. The key assumption we will make is that the
nonlinear map’s Jacobian ∇F has a small Lipschitz constant in operator norm.
Theorem 3.1. Consider a function L(w) = 1

2 ∥F (w)∥ 2, where F : Rd → Rn is C1-smooth. Suppose
that there is a point w0 satisfying dist(w 0, S) ≤ r and such that on the ball B2r (w0), the gradient
∇L is β-Lipschitz, the Jacobian ∇F is L -Lipschitz in the operator norm, and the quadratic growth
condition (2.1) holds. Then as long as L ≤ 2α

r
√

β , the aiming (2.2) and uniform aiming (2.4) conditions

hold on B r (w0) with θ = 2 −
rL

√
β

α and ρ = 8r 2L
√

β.
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We next instantiate Theorem 3.1 and Theorem 2.5 for a nonlinear least squares problem arising from
fitting a wide neural network. Setting the stage, an l-layer (feedforward) neural network f (w; x) ,
with parameters w, input x , and linear output layer is defined as follows:

α (0) = x,

α (i) = σ 1√
m i−1

W (i) α (i−1) , ∀i = 1, . . . , l − 1

f (w; x) = 1√
m l−1

W (l) α (l−1) .

Here, m i is the width (i.e., number of neurons) of i -th layer, α (i) ∈ R m i denotes the vector
of i -th hidden layer neurons, w := {W (1) , W(2) , . . . , W(l) , W(l+1) } denotes the collection of
the parameters (or weights) W (i) ∈ R m i ×m i−1 of each layer, and σ is the activation function,
e.g., sigmoid , tanh , linear activation. We also denote the width of the neural network as m :=
min i∈[l] m i , i.e., the minimal width of the hidden layers. The neural network is usually randomly
initialized, i.e., each individual parameter is initialized i.i.d. following N (0, 1). Henceforth, we
assume that the activation functions σ are twice differentiable, L σ -Lipschitz, and βσ -smooth. In what
follows, the order notation Ω(·) and O(·) will suppress multiplicative factors of polynomials (up to
degree l) of the constants C, L σ and βσ .

Given a dataset D = {(x i , yi )} n
i=1 , we fit the neural network by solving the least squares problem

min
w

L(w) ≜ 1
2 ∥F (w)∥ 2 where 1

2 ∥F (w)∥ 2 =
1
n

nX

i=1

(f (w, x i ) − y i )2.

We assume that all the the data inputs x i are bounded, i.e., ∥x i  ≤ ∥ C for some constant C.

Our immediate goal is to verify the assumptions of Theorem 3.1, which are quadratic growth and
(uniform) aiming. We begin with the former. Quadratic growth is a consequence of the PŁ-condition.
Namely, define the Neural Tangent KernelK(w 0) = F∇  (w 0) F∇  (w 0)⊤ at the random initial point
w0  ∼ N (0, I) and let λ0 be the minimal eigenvalue of K(w 0). The value λ0 has been shown to be
positive with high probability in [10, 8]. Specifically, it was shown that, under a mild non-degeneracy
condition on the data set, the smallest eigenvalue λ∞ of NTK of an infinitely wide neural network is

positive (see Theorem 3.1 of [10]). Moreover, if the network width satisfiesm = Ω( n 2 ·2O(l)

λ 2
∞

log nl
ϵ ),

then with probability at least 1 − ϵ the estimate λ0 > λ ∞

2 holds [8, Remark E.7]. Of course, this is
worst case bound and for our purposes we will only need to ensure thatλ0 is positive. It will also be
important to know that ∥F (w0)∥ 2 = O(1) , which indeed occurs with high probability as shown in
[18]. To simplify notation, let us lump these two probabilities together and define

p ≜ P{λ 0 > 0, F∥  (w 0)∥ 2 ≤ C}.

Next, we require the following theorem, which shows two fundamental properties on B r (w0) when
the width m is sufficiently large: (1) the function w 7→ f(w, x) is nearly linear and (2) the function
L satisfies the PŁ condition with parameter λ0/2 .
Theorem 3.2 (Transition to linearity [25] and the PŁ condition [24]). Given any radius r > 0 , with
probability 1 − p − 2 exp(− ml

2 ) − (1/m) Θ(ln m) of initialization w0  ∼ N (0, I) , it holds:

∥∇ 2f (w, x)∥ op = Õ r 3l
√

m
∀w  B∈ r (w0), ∥x  ≤ C.∥ (3.1)

In the same event, as long as the width of the network satisfies m = Ω̃ nr 6l+2

λ 2
0

, the function L is

PŁ∗ on B r (w0) with parameter λ0/2 .

Note that (3.1) directly implies that the Lipschitz constant of ∇F is bounded by Õ r 3l
√

m on B r (w0),

and can therefore be made arbitrarily small. Quadratic growth is now a direct consequence of the
PŁ∗ condition while (uniform) aiming follows from an application of Theorem 3.1.
Theorem 3.3 (Aiming and quadratic growth condition for wide neural network). With probability at
least 1 − p − 2 exp(−ml

2 ) − (1/m) Θ(ln m) with respect to the initialization w0  ∼ N (0, I) , as long as

m = Ω̃
nr 6l+2

λ2
0

and r = Ω
1√
λ0

,

the following are true:
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1. the quadratic growth condition (2.1) holds on B r (w0) with parameter λ0/2 and the intersection
B r (w0) ∩ S is nonempty,

2. aiming (2.2) and uniform aiming (2.4) conditions hold in B r (w0) with θ = 1 and ρ = Õ r 3l+2
√

m ,

3. the gradient of each function ℓ i (w) ≜ (f (w, x i ) − y i )2 is β-Lipschitz on B r (w0) with β = O(1) .

Please see Appendix D for a numerical verification of an estimate of the aiming condition. It remains
to deduce convergence guarantees for SGD by applying Theorem 2.5.

Corollary 3.4 (Convergence of SGD for wide neural network). Fix constants δ1 ∈ (0, 1
3 ), δ2 ∈ (0, 1),

ε > 0 and t ∈ N . There is a stepsize η = Θ(1) such that the following is true. With probability at
least 1 − p − δ1 − δ2 − 2 exp(− ml

2 ) − (1/m) Θ(ln m) , as long as

m = Ω̃
nr 6l+2

λ2
0

and r = Ω
1

δ1
√

λ0
,

all the SGD iterates {w t } t≥0 remain in B r (w0) and the estimate dist2(w t , S) ≤ ε · dist 2(w0, S)
holds after t ≥ 1

λ 0
log 1

εδ2
iterations.

Thus, the width requirements for SGD to converge at a fast linear rate are nearly identical to those for

gradient descent [24], with the exception being that the requirement r = Ω 1√
λ 0

is strengthened to

r = Ω 1
δ1

√
λ 0

. That is, the radius r needs to shrink by the probability of failure.

4 Boosting to high probability

A possible unsatisfying feature of Theorems 2.4 and 2.5 and Corollary 3.4 is that the size of the
initialization region shrinks with the probability of failure δ1. A natural question is whether this
requirement may be dropped. Indeed, we will now see how to boost the probability of success to be
independent of δ1. A first reasonable idea is to simply rerun SGD a few times from an initialization
region corresponding to δ1 = 1/2 . Then by Hoeffding’s inequality, after very trials, at least a third of
them will be successful. The difficulty is to determine which trial was indeed successful. The fact
that the solution set is not a singleton rules out strategies based on the geometric median of means
[31, p. 243], [29]. Instead, we may try to estimate the function value at each of the returned points.
In a classical setting of stochastic optimization, this is a very bad idea because it amounts to mean
estimation, which in turn requires O(1/ε 2) samples. The saving grace in the interpolation regime
is that ℓ(w, ·) is a nonnegative function of the samples. While estimating the mean of nonnegative
random variables still requires O(1/ε 2) samples, detecting that a nonnegative random variable is
large requires very few samples! This basic idea is often called the small ball principle and is the
basis for establishing generalization bounds with heavy tailed data [28]. With this in mind, we will
require the following mild condition, stipulating that the empirical average 1

m

P m
i=1 ℓ(w, z i ) to be

lower bounded by L(w) with high probability over the iid samples zi .

Assumption 3 (Detecting large values). Suppose that there exist constants c1 > 0 and c2 > 0 such
that for any w ∈ R d , integer m ∈ N , and iid samples z1, . . . , zm  ∼ P , the estimate holds:

P

 
1
m

mX

i=1

ℓ(w, z i ) ≥ c 1L(w)

!

≥ 1 − exp(−c 2m).

Importantly, this condition does not have anything to do with light tails. A standard sufficient
condition for Assumption 3 is a small ball property.

Assumption 4 (Small ball). There exist constants τ > 0 and p ∈ (0, 1) satisfying

P ℓ(w, z) ≥ τ · L(w) ≥ p ∀w ∈ Rd.

The small ball property simply asserts that ℓ(w, ·) should not put too much mess on small values rela-
tive to its mean L(w) . Bernstein’s inequality directly shows that Assumption 4 implies Assumption 3.
We summarize this observation in the following theorem.
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Lemma 4.1. Assumption 4 implies Assumption 3 with c1 = pτ
2 and c2 = p

4 .

A valid bound for the small ball probabilities is furnished by the Paley-Zygmund inequality [33]:

P ℓ(w, z) ≥ τ L(w) ≥ (1 − τ ) 2 L(w) 2

[Eℓ(w, z) 2]
∀τ ∈ [0, 1].

Thus if the ratio Eℓ(w,z) 2

L(w) is bounded by some D > 0 , then the small ball condition holds with

p = (1 − τ ) 2/D where τ ∈ [0, 1] is arbitrary.

The following lemma shows that under Assumption 3, we may turn any estimation procedure for
finding a minimizer of L that succeeds with constant probability into one that succeeds with high
probability. The procedure simply draws a small batch of samplesz1, . . . , zm  ∼ P and rejects those
trial points wi for which the empirical average 1

m

P m
j=1 ℓ(w i , zj ) is too high.

Lemma 4.2 (Rejection sampling). Let w1, . . . , wk be independent random variables satisfying

P(L(w i ) ≤ ϵ) ≥ 1/2 . For each i = 1, . . . , k draw m samples z1, . . . , zm
i.i.d. ∼ P . For any

λ > 1 , define admissible indices I =
n

i ∈ [k] : 1
m

P m
j=1 ℓ(w i , zj ) ≤ λϵ

o
. Then with probability

1 − exp(− k
16 ) − k exp(−c 2m) − λ −k/4 , the set I is nonempty and L(w i ) ≤ λϵ

c1
for any i  I∈ .

We may now simply combine SGD with rejection sampling to obtain high probability guarantees.
Looking at Lemma 4.2, some thought shows that the overhead for high probability guarantees is
dominated by c−1

2 . As we saw from the Paley-Zygmond inequality, we always havec−1
2 ≲ D where

D upper bounds the ratios Eℓ(w,z) 2

L(w) . It remains an interesting open question to investigate the scaling
of small ball probabilities for overparametrized neural networks.

5 Conclusion

Existing results ensuring convergence of SGD under interpolation and the PŁ condition require the
method to use a small stepsize, and therefore converge slowly. In this work we isolated conditions that
enable SGD to take a large stepsize and therefore have similar iteration complexity as gradient descent.
Consequently, our results align theory better with practice, where large stepsizes are routinely used.
Moreover, we argued that these conditions are reasonable because they provably hold when training
sufficiently wide feedforward neural networks with a linear output layer.

6 Acknowledgements

The work of Dmitriy Drusvyatskiy was supported by the NSF DMS 1651851 and CCF 1740551
awards. The work of Damek Davis is supported by an Alfred P. Sloan research fellowship and
NSF DMS award 2047637. Yian Ma is supported by the NSF SCALE MoDL-2134209 and the
CCF-2112665 (TILOS) awards, as well as the U.S. Department of Energy, Office of Science, and the
Facebook Research award. Mikhail Belkin acknowledges support from National Science Foundation
(NSF) and the Simons Foundation for the Collaboration on the Theoretical Foundations of Deep
Learning (https://deepfoundations.ai/ ) through awards DMS-2031883 and #814639 and the
TILOS institute (NSF CCF-2112665). This work used the programs (1) XSEDE (Extreme science
and engineering discovery environment) which is supported by NSF grant numbers ACI-1548562,
and (2) ACCESS (Advanced cyberinfrastructure coordination ecosystem: services & support) which
is supported by NSF grants numbers #2138259, #2138286, #2138307, #2137603, and #2138296.
Specifically, we used the resources from SDSC Expanse GPU compute nodes, and NCSA Delta
system, via allocations TG-CIS220009.

References

[1] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. “Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized Gauss–Seidel methods”. In: Mathematical Programming 137.1-2 (2013), pp. 91–
129.

10



[2] Raef Bassily, Mikhail Belkin, and Siyuan Ma. “On exponential convergence of sgd in non-
convex over-parametrized learning”. In: arXiv preprint arXiv:1811.02564 (2018).

[3] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. “Reconciling modern machine-
learning practice and the classical bias–variance trade-off”. In: Proceedings of the National
Academy of Sciences 116.32 (2019), pp. 15849–15854.

[4] Samuel Burer and Renato DC Monteiro. “A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization”. In: Mathematical Programming 95.2 (2003),
pp. 329–357.

[5] Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. “Gradient
descent on neural networks typically occurs at the edge of stability”. In: arXiv preprint
arXiv:2103.00065 (2021).

[6] Dmitriy Drusvyatskiy, Alexander D Ioffe, and Adrian S Lewis. “Curves of descent”. In: SIAM
Journal on Control and Optimization 53.1 (2015), pp. 114–138.

[7] Dmitriy Drusvyatskiy and Adrian S. Lewis. “Error Bounds, Quadratic Growth, and Linear
Convergence of Proximal Methods”. In: Math. of Oper. Res. 43.3 (2018), pp. 919–948. DOI :
10.1287/moor.2017.0889 . eprint: https://doi.org/10.1287/moor.2017.0889 . URL :
https://doi.org/10.1287/moor.2017.0889 .

[8] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. “Gradient Descent Finds
Global Minima of Deep Neural Networks”. In: International Conference on Machine Learning.
2019, pp. 1675–1685.

[9] Simon S Du, Wei Hu, and Jason D Lee. “Algorithmic regularization in learning deep homo-
geneous models: Layers are automatically balanced”. In: Advances in neural information
processing systems 31 (2018).

[10] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. “Gradient Descent Provably
Optimizes Over-parameterized Neural Networks”. In: International Conference on Learning
Representations. 2018.

[11] Qiang Fu, Dongchu Xu, and Ashia Wilson. “Accelerated Stochastic Optimization Methods
under Quasar-convexity”. In: arXiv preprint arXiv:2305.04736 (2023).

[12] Guillaume Garrigos and Robert M Gower. “Handbook of convergence theorems for (stochastic)
gradient methods”. In: arXiv preprint arXiv:2301.11235 (2023).

[13] Robert Gower, Othmane Sebbouh, and Nicolas Loizou. “Sgd for structured nonconvex func-
tions: Learning rates, minibatching and interpolation”. In: International Conference on Artifi-
cial Intelligence and Statistics. PMLR. 2021, pp. 1315–1323.

[14] Moritz Hardt, Tengyu Ma, and Benjamin Recht. “Gradient descent learns linear dynamical
systems”. In: arXiv preprint arXiv:1609.05191 (2016).

[15] Oliver Hinder, Aaron Sidford, and Nimit Sohoni. “Near-Optimal Methods for Minimizing
Star-Convex Functions and Beyond”. In: Proceedings of Thirty Third Conference on Learning
Theory. Ed. by Jacob Abernethy and Shivani Agarwal. Vol. 125. Proceedings of Machine
Learning Research. PMLR, Sept. 2020, pp. 1894–1938. URL : https://proceedings.mlr.
press/v125/hinder20a.html .

[16] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. “Gpipe: Efficient training of giant
neural networks using pipeline parallelism”. In: Advances in neural information processing
systems 32 (2019).

[17] Aleksandr Davidovich Ioffe. “Metric regularity and subdifferential calculus”. In: Russian
Mathematical Surveys 55.3 (2000), p. 501.

[18] Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks”. In: Advances in neural information processing systems 31
(2018).
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[31] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. “Problem complexity and
method efficiency in optimization”. In: (1983).

[32] Samet Oymak and Mahdi Soltanolkotabi. “Overparameterized nonlinear learning: Gradient
descent takes the shortest path?” In: International Conference on Machine Learning. PMLR.
2019, pp. 4951–4960.

[33] Raymond EAC Paley and Antoni Zygmund. “A note on analytic functions in the unit circle”.
In: Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 28. 3. Cambridge
University Press. 1932, pp. 266–272.

[34] B. T. Poljak. “Gradient methods for minimizing functionals”. In: Ž. Vy čisl. Mat i Mat. Fiz. 3
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A Missing proofs

A.1 Proof of Theorem 2.2

The proof relies on the following elementary lemma.
Lemma A.1 (Aiming for smooth functions). Let L: R d → R be a differentiable function. Fix two
points w, w̄ ∈ R d satisfying ∇L( w̄) = 0 and L( w̄) = 0 . Suppose that the Hessian ∇ 2L exists and
is L -Lipschitz continuous on the segment [w, w̄]. Then we have

L(w) +
1
2
⟨∇L(w), w̄ − w⟩ ≤ 5L

12
∥w − w̄∥ 3.

Proof. Define the function g(t) = L(w + t( ¯w − w)) . The theorem is evidently equivalent to

g(0) +
1
2

g′ (0) − g(1) ≤ 5L
12

∥w − w̄∥ 3.

In order to establish this estimate, we first note that g′′ is Lipschitz continuous with constant
L̂ := L w −∥  ¯ w∥ 3, as follows from a quick computation. Taylor’s theorem with remainder applied to
g and g′ , respectively, then gives

g(1) = g(0) + g ′ (0) +
1
2

g′′ (0) + E 1

0 = g ′ (1) = g ′ (0) + g ′′ (0) + E 2,

where |E1| ≤ L̂
6 and |E2| ≤ L̂

2 . Combining the two estimates yields

g(1) = g(0) +
1
2

g′ (0) +
1
2

g′ (0) +
1
2

g′′ (0) + E 1

= g(0) +
1
2

g′ (0) −
1
2

(g′′ (0) + E 2) +
1
2

g′′ (0) + E 1

= g(0) +
1
2

g′ (0) + E 1 −
E2

2
.

thereby completing the proof.

Turning to the proof of Theorem 2.2, an application of Lemma A.1 guarantees

⟨∇L(w), w − ¯w  ≥⟩  2L(w) −
5Lr

6
∥w − w̄∥ 2,

for all w  S∈ r and any w̄ ∈ proj S (w) . If the quadratic growth condition (3) is satisfied on the tube
Sr , then we have the upper bound 5Lr

6 ∥w − w̄∥ 2 ≤ 5Lr
3α L(w). Theorem 2.2 follows. It remains to

prove Lemma A.1.

A.2 Proof of Lemma 2.1

In this section, we verify the classical result that the PŁ∗ condition on a ball implies quadratic growth.
We begin with the following lemma estimating the distance of a single point to sublevel set of a
function; this result is a special instance of the descent principle [6, Lemma 2.5], whose roots can be
traced back to [17, Basic Lemma, Chapter 1].
Lemma A.2 (Descent principle). Fix a differentiable function L: R d → [0, ∞) and a ball B r (w0)
and define S = {w : L(w) = 0} . Suppose that L satisfies the PŁ ∗ condition on B r (w0) with
parameter α . Then as long as L(w 0) < 1

2
r 2α , the intersection S ∩ Br (w0) is nonempty and the

estimate holds:
L(w 0) ≥

α

2
dist2(w0, S).

Proof. Define the function f(w) =
p

L(w) and observe that for any w  B∈ r (w0) with L(w) > 0
we have ∥∇f(w)∥ 2 = ∥∇L(w)∥ 2

4L(w)
≥ α

2 . Therefore an application of the descent principle [6, Lemma

2.5] implies that the set S ∩ Br (w0) is nonempty and the estimate dist(w 0, S) ≤ 1√
α/2

· f (w0)
holds. Squaring both sides completes the proof.
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We may now complete the proof of Lemma 2.1 by extending from a single pointw0 to a neighborhood
of w0 as follows. First, Lemma A.2 ensures that B r (w0) intersects S at some point w̄0 and the
inequality L(w 0) ≥ α

2 dist2(w0, S) holds. Fix a point w  B∈ r (w0). Then clearly L satisfies the
PŁ∗ condition on B r (w) with parameter α . Let us now consider two cases: L(w) < 1

2
r 2α and

L(w) ≥ 1
2
r 2α . In the former case, Lemma A.2 implies the claimed estimate L(w) ≥ α

2 · dist2(w, S).
In the remaining case L(w) ≥ 1

2
r 2α , we compute

dist2
S (w) ≤ w −∥  ¯ w0∥

2 ≤ 4r 2 ≤ 8L(w)/α.

Rearranging completes the proof of Lemma 2.1 .

A.3 Proof of Lemma 2.3

Fix a point w  S∈ r and let w̄ ∈ proj S (w) be a point satisfying the aiming condition (2.2). Observe
that Lipschitz continuity of ℓ∇ (·, z) and interpolation ensures

ℓ∥∇ (w, z)∥ = ℓ∥∇ (w, z) − ℓ∇ ( ¯ w, z)  ≤ β ·∥  dist(w, S) ≤ βr.

Therefore for every τ ∈ [0, 1/β] , the point wτ := w − τ ℓ∇ (w, z) satisfies

dist(w τ , S) ≤ dist(w, S) + τ ℓ∥∇ (w, z)  ≤∥  2r.

Therefore the gradient ℓ∇ (·, z) is β-Lipschitz on the entire line segment {w τ : 0 ≤ τ ≤ 1/β} . The
descent lemma therefore guarantees ℓ∥∇ (w, z)∥ 2 ≤ 2βℓ(w, z) . Therefore upon taking expectations
we obtain the second moment bound: E ℓ∥∇ (w, z)∥ 2 ≤ 2βL(w) . Next, we compute

E dist2(w+ , S) ≤ E w∥ + − w̄∥ 2 = E ∥(w − ¯w) − η L∇ (w, z)∥ 2

= w −∥  ¯w∥ 2 − 2η L⟨∇ (w), w − ¯w⟩ + η 2E L∥∇ (w, z)∥ 2

≤ dist 2(w, S) − 2ηθ · L(w) + 2η 2βL(w) (A.1)

= dist 2(w, S) − 2η(θ − βη)L(w)
≤ (1 − αη(θ − ηβ))dist 2(w, S), (A.2)

where (A.1) follows from (2.2) while (A.2) follows from (2.1). The proof is complete.

A.4 Proof of Theorem 2.4

Define the stopping time τ = inf{t ≥ 1 : w t /  ∈ S r } and set Ut = dist 2(w t , S). Note that we may
equivalently write τ = inf{t ≥ 1 : U t > r 2} . Now, multiplying (2.3) through by 1τ>t yields the
estimate

E[Ut+1 1τ>t | w1:t ] ≤ (1 − αη(θ − βη)) U t 1τ>t . (A.3)

An application of Theorem B.2 with q = (1 − αη(θ − βη)) completes the proof.

A.5 Proof of Theorem 2.5

We begin with the following simple lemma that bounds the second moment of the gradient estimator.

Lemma A.3. For any point w  B∈ r (w0), we have E ℓ∥ (w, z)∥ 2 ≤ 2β · L(w) .

Proof. Let w̄0 ∈ proj S (w0) be arbitrary. Observe that Lipschitz continuity of ℓ∇ (·, z) on B3r (w0)
and interpolation ensure

ℓ∥∇ (w, z)∥ = ℓ∥∇ (w, z) − ℓ∇ ( ¯ w0, z)  ≤ β · w −∥ ∥  ¯w0  ≤∥  2βr.

Therefore for every τ ∈ [0, 1/β] , the point wτ := w − τ ℓ∇ (w, z) satisfies

∥w τ − w 0  ≤ ∥ ∥w − w 0∥ + τ ℓ∥∇ (w, z)  ≤∥  3r.

Therefore the gradient ℓ∇ (·, z) is β-Lipschitz on the entire line segment {w τ : 0 ≤ τ ≤ 1/β} . The
descent lemma therefore guarantees ℓ∥∇ (w, z)∥ 2 ≤ 2βℓ(w, z) . Taking the expectation of both sides
completes the proof.
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Next we prove the following lemma that simultaneously estimates (1) one step progress of the iterates
towards S and (2) how far the iterates move away from the the center w0.

Lemma A.4. Fix a point w  B∈ r/3 (w0) and choose w̄0 ∈ proj S (w0) ∩ Br/3 (w0). Assume η ≤ θ
β

and define w+ = w − η ℓ∇ (w, z) where z  P∼ . Then the following estimates hold:

E[dist2(w+ , S)] ≤ (1 − η(θ − βη)α)dist 2(w, S) (A.4)

E[ w∥ + − w̄0∥
2] ≤ w −∥  ¯w0∥

2 + 2ηρ · dist(w, S) (A.5)

Proof. Fix any point v  S∈ and observe that

∥w + − v∥ 2 = w − v∥ ∥ 2 − 2η ℓ⟨∇ (w, z), w − v⟩ + η 2 ℓ∥∇ (w, z)∥ 2.

Taking the expectation with respect to z and using Lemma A.3, we deduce

E ∥w + − v∥ 2 ≤ ∥w − v∥ 2 − 2η L⟨∇ (w), w − v⟩ + 2βη 2L(w). (A.6)

We will use this estimate multiple times for different vectors v.

Choose any point w̄ ∈ proj S (w) satisfying the aiming condition (2.2). Define U := dist 2(w, S) and
U+ := dist 2(w+ , S). Then setting v := w̄ in (A.6), we deduce

E[U+ ] ≤ U − 2η L⟨∇ (w), w − ¯ w⟩ + 2βη 2L(w).

Using the aiming condition (2.2) we therefore deduce

E[U+ ] ≤ U − 2ηθL(w) + 2βη 2L(w)
= U − 2η (θ − βη) L(w)
≤ (1 − η(θ − βη)α)U,

where the last inequality follows from quadratic growth. This establishes (A.4).

Next, set v := w̄0 in (A.6). Defining V = w −∥  ¯w0∥ 2, V+ = w∥ + − w̄0∥ 2, and using Assumption 2
we therefore deduce

E[V+ ] ≤ V − 2η(θL(w) − ρ
√

U) + 2βη 2L(w).

= V − 2η (θ − ηβ) L(w) + 2ηρ
√

U

= V + 2ηρ
√

U

where the last estimate follows from the inequality βη ≤ θ . This establishes (A.5).

For each t ≥ 0 , let 1t denote the indicator of the event E t := {w 0, . . . , wt  ∈ B r/3 (w0)} . Define
the random variables Ut = dist 2(w t , S) and Vt = w∥ t − w̄0∥ 2. We may now multiply (A.4) by 1E t .
Noting that 1E t+1 ≤ 1 E t we may iterate the bound yielding

E[1t Ut ] ≤ (1 − η(θ − βη)α) t U0 (A.7)

Similarly, multiplying (A.4) by 1E t and using (A.7), we deduce

E[1t+1 Vt+1 ] ≤ E[1 t Vt ] + 2ηρE
p

1t Ut

≤ E[1 t Vt ] + 2ηρ(1 − η(θ − βη)α) t/2
p

U0

Iterating the recursion gives

E[1t Vt ] ≤ U 0 +
2ρη

√
U0

1 −
p

(1 − η(θ − βη)α)

≤ U 0 +
4ρ

√
U0

(θ − βη)α
. (A.8)

We now lower bound the probability of escaping from the ball. Note that within event E t , we have

Vt ≤ ( w∥ t − w 0∥ + w∥ 0 − w̄0∥) 2 ≤ (1 + δ 1)2r 2.

15



Therefore,

P(E c
t ) ≤ P[V t > (1 + δ 1)2r 2]

≤ P[V t > (1 + δ 1)2r 2 | E t ] · P(Et )

≤ E[1E t
Vt | E t ]P(E t )

(1 + δ1)2r 2 (A.9)

≤ E[1E t
Vt ]

(1 + δ1)2r 2

≤
U0 + 4ρ

√
U0

(θ−βη)α

(1 + δ1)2r 2 (A.10)

≤ 1 +
4ρ

(θ − βη)αr
δ1,

where (A.9) follows from Markov’s inequality and (A.10) follows from (A.8).

Next, we estimate the probability that Ut remains small within the event E t . To that end, let define
the constant Ct := (1 − η(θ − βη)α) t U0/δ 2. Then Markov’s inequality yields

P(Ut > C t | E t ) ≤
E[Ut | E t ]

Ct
≤ E[1E t

Ut ]
Ct P(E t )

≤
δ2

P(E t )
.

Finally, we unconditionally bound the probability that Ut remains small:

P (Ut ≤ C t ) ≥ P (U t ≤ C t | E t )P (Et )

≥ 1 −
δ2

P(E t )
P(E t ),

= P(E t ) − δ2.

as desired.

A.6 Proof of Theorem 3.1

We first prove the following lemma, which does not require quadratic growth and relies on the
Lipschitz continuity of the Jacobian ∇L .

Lemma A.5. Consider a function L(w) = 1
2 ∥F (w)∥ 2 where F : Rd → Rn is C1-smooth and the

Jacobian ∇F is L -Lipschitz on the ball B r (w0). Then the following estimates

| L⟨∇ (w), u − v | ≤⟩  8r 2L
p

2L(w) (A.11)

| L⟨∇ (w), w − u  −⟩  2L(w)| ≤ L
p

L(w)/2 · w − u∥ ∥ 2, (A.12)

hold for all w, u, v  B∈ r (w0) satisfying F (u) = F (v) = 0 .

Proof. Fix any w  B∈ r (w0) and u, v  B∈ r (w0) satisfying F (u) = F (v) = 0 . We first prove (A.11).
To this end, we compute

| L⟨∇ (w), u − v |⟩  = | F⟨∇  (w) ⊤ F (w), u − v |⟩

= | F⟨  (w), F∇  (w)(u − v) |⟩

≤
p

2L(w) · F∥∇  (w)(u − v) ,∥

where the last estimate follows from the Cauchy-Schwarz inequality. Next, the fundamental theorem
of calculus and Lipschitz continuity of ∇F yields

0 = F (v) − F (u) =
Z 1

0
∇F (u + t(v − u))(v − u) dt

= F∇  (w)(v − u) + E,
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where ∥E  ≤ L v − u∥ ∥ ∥( u − w∥ ∥ + v − u∥ ∥) ≤ 8r 2L . Thus we have proved (A.11). In order to see
(A.12), we compute

| L⟨∇ (w), w − u  − F⟩ ∥  (w)∥ 2| = | F⟨  (w), F∇  (w)(w − u) − F (w) |⟩

≤
L

2
∥F (w) w − u∥∥ ∥ 2,

where the last inequality follows from Cauchy-Schwarz and Lipschtiz continuity of the Jacobian ∇F .
Thus (A.12) holds.

Lemma A.5 quickly yields the following corollary.
Corollary A.6. Consider a function L(w) = 1

2 ∥F (w)∥ 2 where F : Rd → Rn is C1-smooth and the
Jacobian ∇F is L -Lipschitz on the ball B r (w0). Suppose moreover that

L(w) ≥
α

2
· dist2(w, S)

where S = {w : F (w) = 0} . Then the estimates

⟨∇L(w), w − ¯w  ≥⟩  2L(w) − L
√

2
α · L(w) 3/2 . (A.13)

⟨∇L(w), w − v  ≥⟩  2L(w) − L
√

2
α · L(w) 3/2 − 8r 2L

p
2L(w), (A.14)

hold for all w  B∈ r (w0), v  B∈ r (w0) ∩ S, and w̄  B∈ r (w0) ∩ projS (w) .

Proof. We will apply Lemma A.5. Setting u := w̄ in Lemma A.12 and using quadratic growth yields
the estimate:

⟨∇L(w), w − ¯w  ≥⟩  2L(w) − L
p

L(w)/2 · w −∥  ¯w∥ 2

≥ 2L(w) −
L
α

p
2L(w) · L(w),

which establishes (A.13). Adding this estimate to (A.12) with u = w̄ yields (A.14).

Theorem 3.1 follows immediately from the corollary. Indeed, note that let w̄ ∈ proj S (w) satisfies
∥w − w̄  ≤∥  2r . Therefore we may apply Corollary A.6 and use the estimate L(w) ≤ β

2 ∥w − w̄∥ 2.

A.7 Proof of Theorem 3.3

Theorem 3.2 implies that with probability at least 1 − p − 2 exp(−ml
2 ) − (1/m) Θ(ln m) , the Jacobian

of ∇F is Lipschitz with constant L = Õ r 3l
√

m on B r (w0) and the PŁ-condition holds on B2r (w0)
with parameter λ0/2 . Using the assumption r = Ω( 1√

λ 0
), we may apply Lemma 2.1 to deduce

quadratic growth. Next, we will apply Theorem 3.1 in order to deduce (uniform) aiming with
parameters θ = 1 . To this end, it suffices to ensure 2rL

√
β/λ 0 ≤ 1 , which follows from the

prerequisite assumption m = Ω( r 6l+2

α 2 ).

To see the last claim, for any w  B∈ r (w0) we compute the Hessian

∇ 2ℓ i (w) = f∇ (w, x i ) f∇  (w, x i )T + (f (w, x i ) − y i )∇ 2f (w, x i ).
Therefore,

∥∇ 2ℓ i (w)∥ op ≤ ∥∇f(w, x i )∥ 2 + |f (w, x i ) − y i | · ∥∇ 2f (w, x i )∥ op . (A.15)

Setting w̄0 ∈ proj S (w0) ∩ Br (w0), observe that

∥∇f(w, x i )∥ = f∥∇ (w, x i ) − f∇ ( ¯w0, xi )  ≤∥  2r sup
v B∈ r (w 0 )

∥∇ 2f (v, x i )∥ op = Õ
r 3L+1
√

m
,

where the last inequality follows from transition to linearity (3.1). Thus f (·, xi ) is Lipschitz continu-
ous on the ball B r (w0). Therefore, we may also bound

|f (w, x i ) − y i | = |f (w, x i ) − f ( w̄, xi )| = Õ
r 3L+2
√

m

Returning to (A.15), we thus have ∥∇ 2ℓ i (w)∥ op = Õ r 6L+2

m . Taking into account that m =

Ω̃ nr 6l+2

λ 2
0

we deduce r 6L+2

m = O(1) thereby completing the proof.
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A.8 Proof of Corollary 3.4

The goal is to apply Theorem 2.5. To this end, we begin by applying Theorem 3.3. We may then be
sure that with high probability Assumptions 1 and 2 hold on a ballB r (w0) with α = λ 0/2 , θ = 1 , and

ρ = Õ r 3l+2
√

m . We may then choose η = 1
2β = Θ(1) . In order to make sure that ρ ≤ (θ − βη)αr ,

it suffices to be in the regime m = Ω( r 6l+2

λ 2
0

). Finally it remains to ensure that dist2(w0, S) ≤ δ 2
1 r 2.

To do so, using quadratic growth, we have dist2(w0, S) ≤ 4
λ 0

L(w 0) = O( 1
λ 0

). Thus it suffices to let

r = Ω( 1
δ1

√
λ 0

). An application of Theorem 2.5 completes the proof.

A.9 Proof of Lemma 4.2

Define the set J = {i ∈ [k] : f (w i ) ≤ ϵ} . Then Hoeffding inequality ensures that the inequality
|J | ≥ k

4 holds with probability at least 1 − exp(−k/16) . Conditioned on this event, consider
any index i ∈ [k] satisfying L(w i ) > λϵ

c1
. Then from (3), we know that with probability at least

1 − exp(−c 2m) , we have
1
m

mX

i=1

ℓ(w i , zi ) ≥ c 1L(w i ) > λϵ,

and therefore i /  ∈ I . Let us now estimate the probability that I is nonempty conditioned on |J | ≥ k
4 .

To this end, by Markov’s inequality for any i  J∈ , we have

P



 1
m

mX

j=1

ℓ(w, z j ) > λϵ



 ≤ P



 1
m

mX

j=1

ℓ(w i , zj ) ≥ λL(w i )



 ≤ L(w i )
λf(w i )

=
1
λ

.

Consequently, the probability that the set I is empty is at most λ−k/4 .

B Auxiliary results on stopping times

Theorem B.1 (Stopping time argument). Let {U t } t≥0 be a sequence of nonnegative random variables
and define the stopping time τ = inf{t ≥ 0 : U t > u} for some constant u > 0 . Suppose that

E[Ut+1 1τ>t | U1:t ] ≤ U t 1τ>t + ζ t ∀t ≥ 0. (B.1)

Then the estimate P[τ ≤ t] ≤ EU0 +
P t−1

i=0
ζ i

u holds for all t ≥ 1 .

Proof. Observe that by Markov’s inequality, we have

P[τ ≤ t] = P[U t τ∧ > u] ≤
E[Ut τ∧ ]

u
.

Let us therefore bound the expectation of the stopped random variable Vt := U t τ∧ . Letting Et [·]
denote the conditional expectation E[· | U1:t ], we successively compute

Et [Vt+1 ] = E t [Ut+1 τ∧ ]
= E t [Ut+1 τ∧ 1τ>t ] + E t [Ut+1 τ∧ 1τ≤t ]
= E t [Ut+1 1τ>t ] + E t [Ut τ∧ 1τ≤t ]
= E t [Ut+1 1τ>t ] + U t τ∧ 1τ≤t

≤ U t 1τ>t + U t τ∧ 1τ≤t + ζ t

= V t + ζ t .

Taking the expectation with respect toU1:t , applying the tower rule, and iterating the recursion we
deduce E[Vt ] ≤ E[U 0] +

P t−1
i=0 ζi , thereby completing the proof.

Theorem B.2 (Stopping time with contractions). Let {U t } t≥0 be a sequence of nonnegative random
variables and define the stopping time τ = inf{t ≥ 0 : U t > u} for some constant u > 0 . Suppose
that there exists q ∈ (0, 1) such that

E[Ut+1 1τ>t | U1:t ] ≤ q · Ut 1τ>t ∀t ≥ 0. (B.2)
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Then as long as EU0 ≤ δ 1u, the event {τ = ∞} occurs with probability at least 1 − δ1. Moreover,

with probability at least 1 − δ1 − δ2, the estimate Ut ≤ εU 0 holds after t ≥ 1
1−q log 1

δ2 ε iterations.

Proof. Define the stopping time τ = inf{t ≥ 1 : U t > u} . An application of Lemma B.1 therefore
implies P[τ < t] ≤ EU0

u
≤ δ 1. Taking the limit as t → ∞ , we deduce that the event {τ = ∞} occurs

with probability at least 1 − δ1. Next taking the expectation with respect to U1:t in (B.2) and applying
the tower rule gives

E[Ut+1 1τ>t ] ≤ q · E[Ut 1τ>t ].
Taking into account that 1τ>t ≥ 1 τ>t+1 we may iterate the recursion thereby yielding

E[Ut 1τ>t ] ≤ q t U0.

Now, setting ε′ := εU 0, Markov’s inequality yields

P[Ut 1τ>t ≥ ε ′ ] ≤
E[Ut 1τ>t ]

ε′
≤

qt U0
ε′

≤ δ 2.

Finally observe

P[Ut ≥ ε ′ | τ = ∞] =
P(Ut ≥ ε ′ , τ = ∞)

P[τ = ∞]
≤ P(Ut 1τ>t ≥ ε ′ )

P[τ = ∞]
.

Therefore we deduce

P[Ut < ε ′ ] ≥ P[U t < ε ′ | τ = ∞] · P[τ = ∞]
= (1 − P[U t ≥ ε ′ | τ = ∞]) · P[τ = ∞]
≥ P[τ = ∞] − P[U t ≥ ε ′ | τ = ∞] · P[τ = ∞]
≥ P[τ = ∞] − P(U t 1τ>t ≥ ε ′ )
≥ 1 − δ 1 − δ2,

as claimed.

C A bad example

Lemma C.1. Consider the objective L(x, y) = 1
2 (y − ax 2)2 for any a > 0 . Then L is C∞ near

(0, 0) and the function L satisfies the PŁ inequality (PŁ) with constant α = 1 . Therefore L satisfies
the aiming condition on some neighborhood of the origin. However, for any neighborhood U of the
origin, the function L is not quasar-convex on U relative to any point (x, ax2)  U∈ .

Proof. To see the validity of the PŁ-condition, observe that

∥∇L(x, y)∥
2
p

L(x, y)
= ∥∇

p
L(x, y)∥ = 1√

2
∥∇|y − ax 2|  ≥∥ 1√

2
.

It follows immediately from Lemma 2.2 that L satisfies the aiming condition (2.2) on some neigh-
borhood of the origin. Next we verify the failure of quasar convexity. Consider an arbitrary point
(x, ax2) on the parabola. For any (u, v) ∈ R 2, we compute

⟨∇L(u, v), (u, v) − (x, ax 2)⟩ = ⟨(−2au, 1), (u − x, v − ax 2)  ·⟩  (v − au2)
= (−2au(u − x) + v − ax 2)(v − au 2).

In particular, setting zγ = (0, γ) we obtain

⟨∇L(z γ ), zγ − (x, ax 2)⟩ = γ 2 − γax 2.

Note the right hand side is negative for any 0 < γ < ax 2. Thus, letting γ > 0 tend to zero, we
deduce that L is not quasar-convex relative to (x, ax2)  U∈ with x ̸= 0 . Let us consider now the
setting x = 0 . Then we compute

⟨∇L(u, v), (u, v) − (0, 0)⟩ = (v − 2au 2)(v − au 2).
The right side is negative if au2 < v < 2au 2 and therefore ∇L is not quasar-convex relative to (0, 0)
on any neighborhood of (0, 0).
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Figure 4: Verifying aiming condition. Left: MNIST on fully-connected neural network; Right:
CIFAR-10 on CNN.

D Numerical verification of aiming condition on neural networks

In principle, the aiming condition is difficult to verify, as it involves proj S (w) – the nearest point
of w to the solution set S, which we have no way of computing. Instead, we replace proj S (w) by
the last iterate w̄ of an SGD run, and compute an estimate of the aiming condition coefficient by the
quotients θ̂t ≜ ⟨∇L(w t ), wt − w̄ /L⟩ (w t ) along the iterate path. Note that this quotient is not the
same quotient as would appear in the definition of quasar-convexity because w̄ is a random point that
depends on the iterate path taken by SGD.

Settings: We conduct the experiments on two datasets, MNIST and CIFAR-10. For MNIST, we
trained a 3-hidden layer fully-connected neural network (width= 1000). First, we train the network
until convergence (loss function value smaller than 10−4 ), and record the parameters of this trained
network as the optimal solution w̄. For CIFAR-10, we train a two-layer CNN for 4000iterations,
and record the final parameter setting as w̄. Then, for each experiment, we took a second run, and
at each iteration wt we compute the estimate of the aiming condition coefficient using the equation
mentioned above.

Results: Figure 4 show the plots of against the iteration number. In both cases, we observe that the
estimate stays positive, which suggests that aiming condition holds.

E Aiming Condition vs. quasar-convexity

Following [15], a nonnegative function L is called quasar-convex relative to a pointw̄ with L( w̄) = 0
if the inequality ⟨∇L(w), w − ¯w  ≥ θ · L⟩ (w) holds for all w near w̄. Aiming, in contrast, stipulates
the analogous inequality but with w̄ crucially replaced by proj S (w) , where S is the set of zero loss
solutions. We argue that in the interpolation setting, quasar-convexity is a very restrictive condition
because it requires the set of zero-loss solutions to be an affine subspace, which is usually not the
case (see for example [24]). To see this, note that quasar-convexity implies that S is star-convex
relative to w̄ (Observation 3 in [15]). That is, there exists ϵ > 0 such that for any w  B∈ ϵ( w̄) ∩ S, the
line segment joining w and w̄ is fully contained in S. This is a very strong conclusion. For example,
a smooth-manifold S is star convex near w̄ if and only if it coincides with a linear subspace around
w̄. The PL-condition in turn implies by Theorem 2.16 in [35] that S is a smooth manifold. Therefore,
if loss functions for training wide neural networks were quasar-convex, then the set of interpolating
solutions would form a linear space on any compact set, which is certainly not true. In contrast, as
we have proved, any C3-smooth function satisfying PL automatically satisfies the aiming inequality
near a point w̄  S∈ . In summary, quasar-convexity does not hold when training wide neural networks
(since otherwise it would imply that interpolating solutions form a linear subspace), while aiming
provably holds—one of our main results.
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