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Abstract

In this paper, we focus on the important yet understudied problem of Continual Federated
Learning (CFL), where a server communicates with a set of clients to incrementally learn
new concepts over time without sharing or storing any data. The complexity of this problem
is compounded by challenges from both the Continual and Federated Learning perspectives.
SpeciĄcally, models trained in a CFL setup suffer from catastrophic forgetting which is
exacerbated by data heterogeneity across clients. Existing attempts at this problem tend
to impose large overheads on clients and communication channels or require access to
stored data which renders them unsuitable for real-world use due to privacy. In this paper,
we attempt to tackle forgetting and heterogeneity while minimizing overhead costs and
without requiring access to any stored data. We study this problem in the context of Vision
Transformers and explore parameter-efficient approaches to adapt to dynamic distributions
while minimizing forgetting. We achieve this by leveraging a prompting based approach
(such that only prompts and classiĄer heads have to be communicated) and proposing a
novel and lightweight generation and distillation scheme to consolidate client models at the
server. We formulate this problem for image classiĄcation and establish strong baselines for
comparison, conduct experiments on CIFAR-100 as well as challenging, large-scale datasets
like ImageNet-R and DomainNet. Our approach outperforms both existing methods and our
own baselines by as much as 7% while signiĄcantly reducing communication and client-level
computation costs. Code available at https://github.com/shaunak27/hepco-fed.

1 Introduction

Federated Learning (FL) is a privacy-preserving learning paradigm that enables learning a global model
through communication with a distributed set of clients. These clients have exclusive access to private data,
and collaborate with a central server to learn a shared task by communicating parameters such as model
weights, gradients, or learning statistics. For example, the popular FedAvg McMahan et al. (2023) method
works by iteratively aggregating client models by averaging their model weights. Classical FL methods such
as FedAvg have garnered signiĄcant attention due to the increasing demand for user privacy and the growth
of edge computing.

However, currently most federated learning methods focus on learning statically, that is across a Ąxed set of
categories determined a-priori. In non-federated works, on the other hand, there has been a great deal of
progress on learning an increasing number of categories incrementally, referred to as continual learning (and
more speciĄcally class-incremental learning) Hsu et al. (2018); van de Ven & Tolias (2019). In addition to the
problem of catastrophic forgetting, incremental learning introduces challenges to typical federated learning
(FL) scenarios by inherently involving non-Independent and Identically Distributed (non-IID) data, which
has been shown to cause issues of model divergence Zhao et al. (2018); Li et al. (2020b). While heterogeneous
federated learning Li et al. (2020b) approaches have been developed, they do not support the dynamic data
distributions that occur in continual learning and the real-world. For example, such a setting has immense
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Figure 1: In Continual Federated Learning (CFL), clients learn from unique, continual data. We propose a
prompt-based CFL approach, paired with a lightweight generation and distillation scheme, to consolidate
client models at the server in a communication-efficient manner.

practical impact to applications such as healthcare, autonomous vehicles, and chat-bots Rieke et al. (2020);
Nguyen et al. (2022).

Therefore, in this paper we look at the understudied problem of Continual Federated Learning (CFL) Yoon et al.
(2021); Ma et al. (2022); Qi et al. (2023). While a few CFL methods exist, they address the issue of forgetting
using approaches such as: reducing inter-client interference, knowledge distillation, and image-level generative
replay Yoon et al. (2021); Dong et al. (2022); Zhang et al. (2023). SpeciĄcally, they often communicate full
model weights, real/synthesized image-level data, or gradients. Additionally, some methods store old data in
memory buffers or train a generative model to mimic local data; at the very least, all methods share complete
models parameters with the server which can lead to privacy leaks with advancements in model inversion
and other extraction techniques Carlini et al. (2023). As a result, many of these methods fail to effectively
uphold the principles of CFL, such as communication efficiency, computational efficiency, and privacy.

To mitigate forgetting while adhering to the core principles of CFL, we propose HePCo: Heterogeneous
Prompt Consolidation (Fig. 1). Our method is driven by the goals of (i) minimizing communication costs, (ii)
improving client privacy, and (iii) client-level computation efficiency. We Ąrst propose to leverage prompting-
based methods, which have shown successful results in the rehearsal-free continual learning setting Wang
et al. (2022c;b). This also has the beneĄt of utilizing frozen Vision Transformer backbones, meaning that
only prompts and classiĄers have to be transmitted, reducing communication. The key contribution of our
approach is then to answer the question of how to merge prompts from different clients in a scalable manner.
Towards this end, we propose a lightweight method for generating pseudo-data in the latent space and distilling
client model information. Importantly, we distill data from both the past task label distribution as well as
the current task label distribution, preventing both catastrophic forgetting and performance degradation due
to client heterogeneity. In summary, we make the following key contributions:

1. We modify and extend popular continual prompting based approaches to the setting of Continual
Federated Learning (CFL), implementing a range of methods that we will open-source.

2. We introduce a light-weight pseudo-latent knowledge distillation mechanism to aggregate client mod-
els trained on non-IID data partitions. Importantly, our approach incurs no additional client-side
computation and does not store or generate training data.

3. We outperform both existing methods and contributed baselines by as much as 7% while drastically
reducing communication costs by only sharing a small set of model parameters, which constitutes only
~9.5% of the total parameters.

2 Related Work

Prompting for Continual Learning. Continual learning algorithms fall into several primary groups.
Some methods involve expanding the modelŠs architecture as new tasks arise Ebrahimi et al. (2020); Lee
et al. (2020); Lomonaco & Maltoni (2017); Maltoni & Lomonaco (2019); Rusu et al. (2016), while others
regularize the model with prior task knowledge either in the weight space or the prediction space Ahn et al.
(2021); Aljundi et al. (2018); Hou et al. (2018); Kirkpatrick et al. (2017); Li & Hoiem (2017); Zenke et al.
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(2017). Additionally, rehearsal-based methods leverage stored data or samples from a generative model Bang
et al. (2021); Chaudhry et al. (2019b); Hayes et al. (2019); Hou et al. (2019); Lopez-Paz & Ranzato (2017);
Ostapenko et al. (2019); Rebuffi et al. (2017b); Shin et al. (2017); von Oswald et al. (2019); van de Ven et al.
(2020). Despite their efficacy, these methods might compromise data privacy and impose substantial memory
costs, which justiĄes the need for rehearsal-free strategies. In the realm of rehearsal-free continual learning,
some studies focus on an online learning perspective utilizing a pre-trained model Hayes & Kanan (2019);
Lomonaco et al. (2020), or explore prototype-based techniques to avert catastrophic forgetting Yu et al.
(2020); Wu et al. (2021); Zhu et al. (2021). Other work proposes deep-model inversion to produce images for
rehearsal, yet the computational expense and data-privacy issues render this approach challenging Choi et al.
(2021); Kaissis et al. (2021); Smith et al. (2021); Yin et al. (2020). NCDwF Joseph et al. (2022) performs
classiĄer inversion and pseudo-replay in the latent-space to reduce forgetting in a novel class-discovery
setting. Recent works have demonstrated that prompting within a static, pre-trained transformer model for
continual learning achieves state of the art performance without any rehearsal data Smith et al. (2022); Wang
et al. (2022d;a). Our work builds on the foundations of these prompting methods, but in a federated setting.

Heterogeneous Federated Learning. Federated learning involves a number of clients learning over local
data, to be aggregated by a global server. One of the earliest methods for this is FedAvg McMahan et al.
(2023), which simply averages the parameters of the clients weighted by the relative amount of data they
were trained on. The most investigated challenge in federated learning (FL) is client heterogeneity, which can
cause local models to diverge and the aggregated global model to perform sub-optimally Li et al. (2020b).
In this work, we discuss FL works tackling this issue in two categories: parameter-averaging methods and
knowledge distillation methods. To combat high heterogeneity in local data, methods like FedProx Li et al.
(2020a), FedPD Zhang et al. (2020), FedDyn Acar et al. (2021), and SCAFFOLD Karimireddy et al. (2019)
are used, out of which FedProx is a stateless algorithm useful in settings where the number of clients is
very large which prevents the server from keeping a track of all participating clients. The rest are stateful
algorithms that maintain client states. Knowledge-distillation-based methods Mora et al. (2022); Lin et al.
(2020); Sattler et al. (2021) usually use additional data to perform distillation on the server or client side to
robustly aggregate local models. FedFTG Zhang et al. (2022a) operates in a data-free setting by generating
pseudo-data through inversion in the image space. In contrast, we achieve knowledge distillation using
pseudo-data generated in latent space to 1) reduce computation overhead stemming from inversion in a
higher-dimensional space and 2) Ąne-tune both the classiĄer and the prompt components simultaneously
which is essential to mitigate forgetting.

Continual Federated Learning. Most of the current CFL methods suffer from various limitations in
terms of performance, efficiency and privacy. FedWeiT Yoon et al. (2021) aims to learn better client models
by leveraging indirect experience of other client models. The objective introduced in this work minimizes
interference across client weights. A knowledge base of previous task parameters for all seen clients is
maintained at both the server and client side and is updated during each round through client-server
communication. Each client selectively utilizes the parameters in this knowledge base through attention masks
to gain indirect experience. FedWeiT incurs considerable overheads in terms of communication, computation
and storage stemming from maintaining and updating this knowledge base. GLFC Dong et al. (2022) uses a
prototype based approach with a memory buffer to store old data. This poses a threat to privacy of client
data. CFed Ma et al. (2022) proposes a distillation based approach that makes use of an unlabelled dataset
to aggregate client models as well as to rehearse old tasks. CFeD performs distillation at both client and
server side. However the requirement for a curated dataset can severely impact real-world applicability.
TARGET Zhang et al. (2023) attempts to combat forgetting through replay of old tasks driven by generated
images. FedCIL Qi et al. (2023) leverages an Auxiliary ClassiĄer GAN (ACGAN) to alleviate forgetting by
synthesizing old images for replay. However, generating images to mimic local datasets can be viewed as a
privacy risk especially in light of recent research on model inversion attacks Carlini et al. (2023). In contrast,
our approach prioritizes client privacy by generating in the latent space, thereby eliminating the need to
generate in the image space. Further, this beneĄts communication and compute efficiency. GAL Wang et al.
(2023) introduces the task of Federated Continual Novel Class Learning, where FL methods are expected to
discover and learn unlabelled novel class data. In contrast, our work explores a supervised continual learning
setup where new labeled instances are incrementally introduced. The recent work Fed-CPrompt Bagwe et al.
(2023), investigates the use of prompting for federated class-incremental learning. To combat client divergence,
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their approach introduces a contrastive loss at the client side. Client aggregation is performed at the server
using the standard FedAvg algorithm. Our work differs in that we do not introduce additional objectives at
the client side. Instead, we propose a novel method for combining client models at the server to mitigate
forgetting.

3 Problem Formulation

In this section, we describe the formulation by introducing the class-incremental learning and heterogeneous
federated learning aspects in our CFL setting.

Class-Incremental Federated Learning. We focus on the class-incremental learning scenario, where a
model is tasked with learning new classes over time. Under this setting, a global model is learned through a
sequence of N global tasks T = ¶T 1, T 2, ..., T N♢. Following the standard assumption in continual learning, the
sets of categories1seen across distinct global tasks are mutually exclusive. As this is done in a federated setup,
each task is learned through R independent rounds by randomly sampling a set of stateless clients C = {c1,
c2, c3, ..., cS} in each round. In a stateless setting, the total number of clients is kept very large to simulate
real-world FL applications (like mobile devices). The server does not keep track of clients as new clients are
visited in each round. Further, previously seen data cannot be accessed at any time during the training.

Heterogeneous Federated Learning. To simulate a real-world heterogeneous federated learning scenario,
we use three conĄguration parameters to control the level of heterogeneity with increasing granularity: split
ratio, category ratio, and imbalance ratio. At the top level, the most common heterogeneity is varying local
dataset sizes across the clients. A speciĄc client ci can be exposed to a subset of the current task dataset
Dt as their local dataset Dt

i , and the size ♣Dt
i ♣ varies from each other. We denote this as the split ratio

γ = ♣Dt
i ♣/♣D

t♣. At a lower level, the local dataset Dt
i consists of a subset of the categories from those in the

current global task. SpeciĄcally, a global task T t consists of categories Kt, where ♣Kt♣ denotes the number of
unique categories. In a given round r, each client ci sees data containing Kt

i ∈ Kt categories. We denote
κ = ♣Kt

i ♣/♣K
t♣ as the category ratio which is a value between 0 and 1. At the lowest level, each category can

have a different amount of data. We follow Cao et al. (2019) to also create a long-tail distribution for local
data which is different for each client. This distribution is governed by an imbalance ratio β. If β = 1, each
client ci is allocated samples uniformly from Kt

i categories. In summary, a smaller split ratio γ, a smaller
category ratio κ, or a smaller imbalance ratio β increases heterogeneity thereby increasing the complexity of
the task. Formalizing the setting in this manner enables us to methodically vary the parameters, thereby
simulating a heterogeneous setting. This formalization uniĄes the setups previously employed separately
across federated and continual learning landscapes Li et al. (2020a); Rebuffi et al. (2017a) combining their
distinct characteristics.

As discussed before, combining client models in a heterogeneous setting causes the obtained model to
forget global knowledge from the previous rounds as shown by Lee et al. (2022); Hsu et al. (2019). Also,
training clients on locally-available datasets induces forgetting of global knowledge outside the local
distributions. Intra-task forgetting Ma et al. (2022) measures such performance drops induced by the data
heterogeneity (non-IIDness) across clients. Inter-task forgetting measures the drop in performance on old
tasks ¶T 1, T 2, ..., T t−1♢ after learning a new task T t.

4 Background: L2P

L2P (Learning to Prompt) Wang et al. (2022d) is a continual learning method that learns a set of model
embeddings (prompts) that can be dynamically inserted into a pretrained vision transformer. (ViT) Dosovitskiy
et al. (2020). Prompts hold task-speciĄc information that instructs the model to solve the corresponding tasks.
L2P maintains a prompt pool P = ¶P1, P2, · · ·, PM♢ of size M, where Pi ∈ R

Lp×D are prompt parameters
with Lp as the prompt length (chosen as a hyperparameter) and D the embedding dimension. Each prompt

1We use the terms ŚcategoryŠ, ŚclassŠ, and ŚlabelŠ interchangeably to refer to the target classiĄcation label.
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Figure 2: Latent generation and distillation with underlying decomposed prompting scheme.

Pi has an associated key ki ∈ R
D. An input image x is converted into a visual query q(x) ∈ R

D by passing
it through the frozen vision transformer encoder θpt. Prompts are selected from the pool by measuring
the cosine similarity between associated keys and the visual query. Top N prompts that have the highest
key-query similarity are chosen to be inserted into the transformer. Here, the ViT encoder is frozen and the
prompts and keys are learned using two separate optimization losses.

5 Method

In this section, we describe our novel approach called HePCo (Heterogenous Prompt Consolidation) which
tackles forgetting and heterogeneity using a data-free distillation strategy applied in the modelŠs latent space.
Knowing the limitations of FedAvg under non-IID data partitioning, we propose to Ąne-tune the global model
at server side by distilling knowledge from client models. However, unlike prior CFL works, we Ąrst propose
to leverage the current state of art prompting methods in continual learning. Such methods optimize learnable
parameters that augment the input to a transformer model (prompt tuning) or its underlying attention
mechanism (preĄx tuning). These methods have been shown to obtain strong performance in traditional
rehearsal-free continual learning settings. These prompting-based approaches Wang et al. (2022d); Smith
et al. (2022) can be thought of implicit mechanisms to isolate model parameters across tasks. Implementing
a prompting scheme at the client level can thus prevent forgetting of past tasks while efficiently adapting to
new tasks.

Despite these advantages, there is a key challenge in applying prompting to a federated setting: It is not obvious
how the server should combine prompts learned by the individual clients on heterogeneous sources of data.
Naively averaging the prompt weights is suboptimal (as we show in Sec. 6) and simply maintaining a growing
prompt pool scales poorly with the number of clients. Our key novelty is therefore to propose a lightweight
distillation method, applied to the latent-space of the model, which greatly mitigates intra-task and inter-task
forgetting. Crucially, rather than averaging different client prompts, we perform distillation of these prompts
in a data-free manner by generating pseudo-data. Importantly, the generation and distillation operations
are computationally cheap as they are carried out in the latent space of the model. This design prioritizes
privacy and efficiency, which are crucial for federated learning. In summary, with our method, communication
costs between clients and the server are low, heterogeneous information is effectively aggregated, and the
method achieves state-of-art performance. Below we detail our method and depict it in Fig. 2.
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5.1 Client Side: Decomposed Prompting

While L2P is quite successful in protecting against forgetting, its performance is limited by certain design
choices, as noted by Smith et al. (2022). We therefore adapt L2P to side-step these issues, including for
our baselines, resulting in better accuracy across the board. SpeciĄcally, rather than using discrete prompts
obtained via a hard maximum function which restricts capacity and introduces an additional hyperparameter
(N , corresponding to top-N prompts), we form our Ąnal prompt p by taking sum of the Pi weighted by
their cosine scores. Such a prompt is inserted into a subset of the self attention layers of the ViT encoder.
This subset of layers is determined by hand as in Smith et al. (2022).

In the federated learning setting, each client hosts the aforementioned prompting scheme and learns the key
and prompt matrices along with the classiĄer in an end-to-end fashion while keeping the ViT backbone frozen.
After learning the local task, in our method, the clients transfer the key, prompt and classiĄer weights to the
server. By sending only a limited number of parameters to the server, the overall communication load is
signiĄcantly reduced compared to sharing the entire model. Our approach requires clients to share only the
prompt and classiĄer weights. The server lacks knowledge of the exact locations for inserting the prompts, as
this information is known only to the respective clients. To reconstruct the exact client model, the server
would need to conduct an exhaustive search over the number of layers in the transformer and try various
combinations to determine the precise insertion positions. This method represents a positive step towards
enhancing client privacy compared to approaches that share complete model weights.

5.2 Server Side: Latent Generation

At the end of each round, the server receives ♣C♣ prompt and classiĄer weights collected from the active
clients. Let wc indicate a weight parameter that encompasses key, prompt and classiĄer weights. In the Ąrst
stage, we obtain the server model by averaging client weights as: w = 1

C

∑
c∈C wc. We call these as the

provisional server weights.

Due to data heterogeneity, the local model weights diverge which degrades the performance of this aggregated
model. We therefore propose to Ąne-tune the server model using data-free distillation in the latent space to
prevent this degradation. We generate pseudo data in the latent space of the visual query q(x) ∈ R

D which is
essentially the output space of the vision encoder. The advantage of generating in this space is that it allows us
to Ąne-tune both the classiĄer and the key-prompt weights without needing a forward-pass through the encoder.
We use a lightweight feedforward neural network as our conditional generator with a D dimensional output.
This generator takes as input a class label (from categories in current task t) and a noise vector of dimension
Dnoise sampled from the standard normal distribution N (0, 1). We encode the class label using an embedding
layer and concatenate the obtained class embedding with the noise vector to form the input of the generator.
From the generator, we obtain a pseudo latent of dimension D conditioned on the class label as follows:

z = G(ϵ, y; θgen), (1)

where z ∈ R
D is the generated pseudo latent and ϵ ∈ R

Dnoise ∼ N (0, 1) is the noise vector. For effective
knowledge distillation, pseudo data should conform to the latent space of the client models. We optimize
for a classiĄcation loss which is a weighted sum of classiĄcation losses for each individual client, similar to
Zhang et al. (2022b). The total classiĄcation loss can be given as:

Lcls =
∑

c∈C

Lc
cls and, (2)

Lc
cls =

∑

c∈C

LCE(ϕ(z; wc), y) (3)

where Lc
cls is the cross-entropy loss between the prediction of local model c given latent z and sampled class

label y. Here, ϕ denotes the classifer (last layer). However, optimizing for just the classiĄcation loss encourages
the generator to produce pseudo latents which are easy to be classiĄed and hence less effective for distillation.
Our goal is to generate latents that create a discrepancy between the provisional server model and clients,
thereby providing a learning opportunity for the server. To promote the generation of such hard samples, we
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maximize two disagreement losses (one for prompts and one for classiĄer) between server and client models. As
stated earlier, latents in this space can be forwarded through both prompting and classiĄer mechanisms. Hence,
to measure the disagreement with respect to the classiĄer, we compute the Kullback-Leibler (KL) divergence
between the predictions of the classiĄer corresponding to the provisional server model and each individual
client. Next, to measure the disagreement with respect to the prompting module, we introduce a Mean-Squared
Error (MSE) loss between the Ąnal prompts generated by the server and all clients. By training the generator
to maximize these losses, we increase the potency of pseudo-latents for distillation in both parts of the network.

LKL =
∑

c∈C

σ(ϕ(z; w))||σ(ϕ(z; wc)) (4a) LMSE =
∑

c∈C

LMSE(ρ(z; w), ρ(z, wc)) (4b)

where σ denotes the softmax function and ρ denotes the prompting mechanism described in 5.1. We train
the generator by optimizing for these losses jointly as:

min
θgen

Eϵ∼N (0,1) [Lcls−λKLLKL−λMSELMSE ] (5)

The trained generator is then used to perform data-free knowledge distillation which helps combat intra-task
forgetting and allows the server model to achieve a high accuracy on the global data distribution of the
current task. However, as the generator is trained to generate pseudo-data corresponding to the current task
distribution only, a model Ąne-tuned with this pseudo-data suffers from inter-task forgetting as shown in our
ablation experiments in Section 6.2.1. To prevent this, we train a separate copy of the generator (θ̂gen) to
generate latents corresponding to the previously seen tasks. At the server side, we assume access to the key,
prompt and classiĄer weights corresponding to the previous taskŠs global model which is the Ąne-tuned global
model after the Rth round of the task t−1. Similar to above, we optimize for the classiĄcation and disagreement
losses jointly. Here the classiĄcation loss Lcls is computed for the previous task server model and LKL and
LMSE are computed between this and the provisional server model. We empirically show that using pseudo-
data corresponding to past tasks for knowledge distillation helps mitigate inter-task forgetting to a great extent.

5.3 Server Side: Latent Space Knowledge Distillation

Once the generator is trained to generate pseudo-latents corresponding to the current and previous tasks,
we use it to efficiently Ąne-tune the provisional server model w. We use the pseudo-latents obtained from the
generator to Ąne-tune both the classiĄer head and key-prompt weights (K and P) without requiring a forward
pass through the full model. We use the key, prompt and classiĄer weights corresponding to the current
round client models and the last-task server model to Ąne-tune the server model. As it operates in a low
dimensional latent space and updates a small subset of parameters, this distillation process is much cheaper
in terms of computation compared to training the entire model. Also, this design does not require clients
to share entire models with the server which reduces the client-server communication costs to a great extent
and improves privacy of the client model. While we introduce additional server overhead, it is important
to note that, in the context of CFL, clients are typically edge devices with limited computing power, while
servers have ample computational resources. We prioritize client-level efficiency while making efficient use
of the serverŠs resources. In Section 6.2.2, we compute this overhead and show that it is competitive to that
incurred by existing state-of-the-art (SOTA) methods.

To perform knowledge distillation, we Ąrst generate a batch of pseudo-data from the generators corresponding
to the current round and previous task. We mix the current and previous task batches to form a single
composite batch according to a hyperparameter named replay ratio which determines the size of the previous
task batch relative to the current round batch. We use this composite batch of pseudo-latents to Ąne-tune
the key-prompt weights and the classiĄer weights separately.

To Ąne-tune the key-prompt weights, we Ąrst obtain distillation targets in the form of Ąnal prompts p by
passing the pseudo latents through the prompting mechanism of the teacher models (clients and previous-task
server model). Notably, we do not require full models to generate these targets, as having only the key-prompt
and classiĄer weights is sufficient. Now, to Ąne-tune the key-prompt weights of server model, we optimize
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for the Mean Squared Error (MSE) loss between the Ąnal prompts predicted by the provisional server model
and each individual teacher model (clients and previous-task server).

Lprompt =
∑

c∈C

Lc
MSE + ζ

y
t−1

L
t−1

MSE , (6)

where Lc
MSE denotes the MSE loss between client c and the provisional server model and Lt−1

MSE denotes the
MSE loss between the provisional model and the previous task server model. Further, ζy

t−1 is an indicator
variable which is set to 1 if y was seen in previous tasks and 0 if present in current task.
Next, we Ąne-tune the classiĄer layer of the provisional server model. As discussed in Section 5.2,
pseudo-latents were obtained from the generator by conditioning on randomly sampled class labels. The
composite batch of pseudo-latents used in the previous step is employed here again as input to the classiĄer,
and the cross-entropy loss is computed between the predictions of the provisional server and the class labels
upon which the pseudo-latents were conditioned. This approach allows us to Ąne-tune the classiĄer weights
using the same batch of pseudo-latents used to Ąne-tune the key-prompt weights. Operating in the latent
space allows us to efficiently Ąne-tune the key-prompt and classiĄer modules without requiring forward passes
through the entire model. Our ablation studies in Section 6.2.1 highlight the efficacy of this approach.

6 Experiments

Model Architecture. We use the ViT-B/16 backbone Dosovitskiy et al. (2020) pretrained on Imagenet-1K
Russakovsky et al. (2015) as the encoder for our method and all baselines. We use a prompt pool size (M) of
100 and a prompt length (Lp) of 20 with dimension (D) being 768 and insert prompts into 1-5 Multi-head
Self Attention (MSA) layers of the ViT encoder following the standard practice Wang et al. (2022b) and
perform preĄx-tuning as done in Smith et al. (2022), by prepending prompts to the keys and values of the
MSA layers. The classiĄer (ϕ) is a fully-connected layer with input dimension D and output dimension equal
to the number of classes. We implement the generator θgen using a three layer fully-connected network and
train it for 100 epochs. We encode the class label using an embedding matrix and concatenate the class
embedding to the sampled noise vector before feeding into the generator.

Datasets. We conduct our experiments on three image classiĄcation datasets. First, we adapt CIFAR-100
Krizhevsky et al. (2009) to our formulation as it is a commonly used benchmark in CFL. Additionally,
we evaluate our methods on the larger-scale ImageNet-R Hendrycks et al. (2021) and DomainNet Peng
et al. (2019) which have been used in recent continual learning works Smith et al. (2022) but havenŠt been
explored in a continual federated learning setting. These datasets capture real-world distribution shifts
that can be challenging for models pre-trained on ImageNet to generalize to. The total number of classes
for CIFAR-100, ImageNet-R and DomainNet are 100, 200 and 345 respectively. We divide these datasets
into 10-task (CIFAR-100, ImageNet-R) and 5-task (DomainNet) benchmarks. The 10-task setups contain
a longer task sequence with small number of classes per task whereas the 5-task setup has a shorter task
sequence with more classes per task. CIFAR and ImageNet have 10 and 20 classes, while DomainNet has
69 classes per task. Following Wang et al. (2022a), we use 20% of the training set as our validation dataset
to determine hyperparameters for our approach and all competing baselines.

ConĄguration. We learn each task through R = 10 communication rounds by selecting C = 5 stateless clients
per round. Thus, we have 100 total rounds for a 10-task setup and 50 for a 5-task setup. For all experiments
reported in Tables 1-3, we use a category ratio κ = 0.6 which means that if a task contains 10 categories,
each active client is randomly assigned 6 of these categories. We analyze the affect of different category ratios
in Sec. 6.2.1. Overall, HePCo outperforms existing methods across all category ratios, particularly excelling
in scenarios with smaller category ratios, which signify higher heterogeneity and, consequently, a higher level
of task complexity. Further, we use a split ratio γ = 0.1 which allows a client to be assigned 10% of the
images corresponding to the subset of categories. We train local models for 10 epochs per round.

We include additional implementation details in Appendix B.

Metrics. We evaluate all methods using the standard continual learning metrics of (1) Ąnal average accuracy
AN which is the accuracy averaged over all N tasks after learning the N th task and (2) average forgetting
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Table 1: Results (%) for the class-balanced setups reported over 3 independent trials. AN gives the accuracy
averaged over tasks and FN gives the average forgetting.

Datasets (β = 1) CIFAR-100 ImageNet-R DomainNet

Method AN (↑) FN (↓) AN (↑) FN (↓) AN (↑) FN (↓)
Prompting (Centralized) 85.35 - 72.28 - 71.33 -

FedAvg-FT 10.23± 1.10 31.74± 0.80 12.03± 0.75 29.07± 0.66 18.76± 0.44 32.81± 1.22
FedLwF.MC Rebuffi et al. (2017a) 59.08± 1.06 12.39± 0.76 52.87± 0.61 13.34± 0.38 62.39± 1.12 10.76± 0.50

FedAvg-Prompt 67.34± 1.42 8.38± 0.42 51.15± 0.68 8.84± 0.52 51.03± 2.23 12.03± 0.45
Fed-CPrompt Bagwe et al. (2023) 69.38± 1.39 7.18± 0.65 52.24± 0.66 8.21± 0.56 60.38± 0.78 8.22± 0.46

CFed Ma et al. (2022) 72.26± 1.56 8.82± 0.64 45.64± 1.32 11.74± 1.22 63.32± 0.78 7.12± 0.66
TARGET Zhang et al. (2023) 73.56± 1.42 6.83± 0.91 52.38± 1.16 8.88± 0.96 61.84± 1.66 7.94± 0.52

HePCo (Ours) 76.54 ± 1.14 6.61 ± 0.73 59.96 ± 0.94 7.08 ± 0.40 64.01 ± 0.36 6.83 ± 0.31

Table 2: Results (%) for class-imbalanced setup reported over 3 independent trials. AN gives the accuracy
averaged over tasks.

Datasets CIFAR-100 ImageNet-R DomainNet

Method AN (↑) AN (↑) AN (↑)
Imbalance ratio (β) β = 0.05 β = 0.01 β = 0.05 β = 0.01 β = 0.05 β = 0.01

FedAvg-FT 8.81± 1.53 9.18± 1.26 9.26± 1.02 8.88± 1.24 13.02± 1.29 11.65± 1.84
FedLwF.MC Rebuffi et al. (2017a) 50.40± 0.88 40.39± 1.06 19.94± 0.78 13.34± 1.41 57.34± 0.84 52.46± 0.72

FedAvg-Prompt 62.72± 1.79 54.43± 1.57 36.51± 0.86 28.16± 1.12 47.73± 1.25 43.23± 1.03
Fed-CPrompt Bagwe et al. (2023) 65.42± 1.12 56.85± 1.79 39.03± 1.04 30.14± 1.16 54.44± 0.80 49.96± 0.74

CFed Ma et al. (2022) 70.26± 1.20 62.04 ± 1.62 34.62± 1.41 25.74± 1.08 59.89± 0.68 55.22± 0.80
TARGET Zhang et al. (2023) 66.47± 1.22 58.13± 1.54 30.20± 1.35 19.84± 1.41 56.44± 0.45 51.82± 0.58

HePCo (Ours) 70.34 ± 1.08 61.70± 1.48 45.45 ± 0.98 41.68 ± 1.44 61.10 ± 0.76 58.82 ± 0.84

Chaudhry et al. (2019a); Lopes et al. (2017) FN which measures the drop in performance on previous tasks
after learning a new task averaged over all N tasks. As noted by Smith et al. (2022), AN is the more
informative metric as it encompasses both forgetting and plasticity (new task performance). Our approach
provides parameter efficiency which is reĆected by reduced communication and local computation costs; albeit
at the expense of a small overhead at the server. We quantify this communication efficiency by specifying the
number of parameters shared by our approach relative to the original model size in 6.2.2.

Baselines. We compare our method against existing state-of-the-art approaches: TARGET Zhang et al.
(2023), CFed Ma et al. (2022) and Fed-CPrompt as well as two strong baselines that we introduce. TARGET
and CFeD mitigate forgetting by replaying old task data through generative methods or by assuming access
to surrogate datasets. Fed-CPrompt uses a prompting-based approach similar to ours but introduces a
contrastive loss at the client side. This additional loss aims to mitigate forgetting by alleviating heterogeneity
across clients and tasks. At the server side, Fed-CPrompt aggregates clients using the standard FedAvg
algorithm. In contrast, our approach does not introduce any additional computation at the clientŠs end.
Instead, we focus on altering the aggregation procedure at the server to combat forgetting. For fair comparison,
we adapt Fed-CPrompt to our experimental setup and use the same Vision Transformer (ViT) architecture as
in our method. Similarly for all other methods, we adapt their implementations to use the same ViT backbone
with proper modiĄcations. We tune hyperparameters for our proposed method and all compared baselines.
We observe that the FedLwF method Ma et al. (2022) used in prior CFL work performs poorly owing to the
complexity of our setting. As the heterogeneity across clients increases, coupled with an increase in the length
of the global task sequence, the performance of FedLwF deteriorates catastrophically. We instead adapt
LwF.MC with sigmoid binary cross-entropy loss as described in Smith et al. (2023) which is a strong continual
learning baseline to our setting. We call this method FedLwF.MC which achieves a much better performance
than its vanilla counterpart. Additionally, we introduce a simple yet strong prompting-based methods which
we call FedAvg-Prompt. FedAvg-Prompt differs from our method in the model aggregation part at the server
side where the clients are simply averaged to obtain the server model. Additionally for completeness, we
report the performance of FedAvg-FT where the entire client models are sequentially Ąnetuned on new task
data (as opposed to learning only prompts and classiĄer) and aggregated using FedAvg. Finally, we report
the performance of our decomposed prompting scheme in a centralized, traditional continual learning setting.
This can be thought of as an upper bound performance for all prompt-based methods included here.
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Figure 3: Comparison of the methods under
different category ratios.

Method AN (↑) FN (↓)

HePCo (Ours) 76.54 ± 1.14 6.61 ± 0.73

Ablate previous server model 61.15± 2.13 11.18± 0.76

Ablate LKL & LMSE 70.22± 1.45 8.86± 0.66
Ablate LKL 71.39± 1.34 8.28± 0.74

Ablate LMSE 74.11± 1.31 6.96± 0.68

Ablate prompt distillation 74.42± 1.22 7.02± 0.88
Ablate classiĄer distillation 68.46± 0.91 8.28± 0.52

Table 3: Ablation Results (%) on 10-task CIFAR
100. AN gives the accuracy averaged over tasks and
FN gives the average forgetting.

6.1 Main Results

The results presented in Tables 1 and 2 demonstrate the dominant performance of our method in terms of
average accuracy and forgetting across across all datasets and setups. The gains achieved by our method
are more pronounced in the ImageNet-R setup which has longer task sequences and offer a signiĄcant shift
from the pretrained distribution. Our approach achieves absolute improvements of up to 7% in average
accuracy compared to the best baseline. All baselines that Ąne-tune the entire model are seen to struggle with
longer sequences (CIFAR, Imagenet-R), showing signiĄcant forgetting. Under the class-balanced setting of
Table 1, our approach achieves absolute improvements of more than 7% on ImageNet-R in average accuracy
compared to TARGET Zhang et al. (2023), which is the current SOTA. For the class-imbalanced settings in
Table 2, our approach outperforms the competition by even wider margins. The notable performance drops
observed across all methods highlight the complexity of this setting. Most importantly, HePCo achieves these
solid results while enjoying low communication costs and without introducing any additional costs at the
client-side. Furthermore, our approach faithfully aligns with the principles of Federated Learning (FL) by not
assuming access to any storage, be it surrogate datasets or generated images, in contrast to methods like
CFed Ma et al. (2022), TARGET Zhang et al. (2023) and GLFC Dong et al. (2022).

6.2 Additional Analysis

6.2.1 Ablation Studies

We perform ablations experiments on CIFAR-100 in the No Imbalance setting from Table 1.

Ablating distillation of previous server model. By removing the previous task server model from
the distillation and generation steps, we highlight its importance in alleviating forgetting. By ablating this
component, we observe a signiĄcant drop in performance indicated by a rise in forgetting (FN ) and a drop in
average accuracy (AN ). The underlying intuition is that without the replay of past task data, the method
strongly prioritizes learning of the current task leading to a loss of knowledge from previously seen tasks. In
other words, using past task latents for replay mitigates inter-task forgetting.

Ablating disagreement losses in generation. To demonstrate the effectiveness of disagreement losses in
generation, we set the lambda coefficients λKL and λMSE to zero and observe a 6% drop in accuracy. As
discussed before, the intuition here is that in absence of the disagreement losses, the generator is prone to
generate easily discriminable examples that lead to low classiĄcation loss but are less effective in distillation.
To further highlight the importance of the individual losses, i.e LMSE and LKL, we individually ablate them
and observe performance drops.

Ablating distillation sites. Our approach uses pseudo-latents to Ąne-tune the key-prompt and classiĄer
weights of the server model. In this experiment, we ablate the decision of Ąne-tuning the prompt components
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Method Communication Cost (↓) Computation Overhead (↓) Storage Overhead (↓)

Server-side Client-side Server-side Client-side
CFed Ma et al. (2022) 330.3 MB 98s 68s 1433.6 MB 1433.6 MB

TARGET Zhang et al. (2023) 714.7 MB 128s 62s 384.1 MB 384.1 MB
HePCo (Ours) 31.37 MB 220s N/A 31.37 MB N/A

Table 4: Overhead costs incurred by our method against top performing baselines.

and the classiĄer separately and observe a decline in accuracy in both cases. The drop in performance
is more pronounced when we do not perform distillation for the classiĄer. This experiment highlights our
decision to Ąne-tune both prompt components and classiĄers by operating in the latent space.

Varying the category ratio. Figure 3 shows the performance of all methods for different values of
category ratio. We observe that HePCo consistently outperforms competing methods without requiring
any hyperparameter or design changes. The performance gap between HePCo and the competing methods
widens with decreasing category ratio, indicating its effectiveness in high heterogeneity settings.

6.2.2 Overhead Cost Analysis

Memory & Communication Overhead. Our method introduces additional parameters forming the
prompting mechanism. The additional parameters amount to ~9.4% of the original size of the ViT encoder.
Our method only needs to communicate the learnable parameters in the model which are the classiĄer and
key-prompt components amounting to ~9.5% of the original model size. Methods that Ąnetune the entire
model need to learn and communicate all parameters in the encoder and classiĄer. Hence, our approach
requires only 9.5% of the communication costs compared to all other methods that share complete models.
Furthermore, the current state-of-the-art methods like CFed and TARGET require communicating a dataset
of images (obtained from the surrogate dataset or a generative mechanism) after every round or task which
signiĄcantly increases the communication overhead in addition to sharing complete models! For a ViT-B/16
architecture, sharing a complete model amounts to 330.3 MB of information. In addition to complete model
weights, TARGET sends a buffer of 8k synthesized image-level data from server to clients to perform
distillation leading to a communication volume of 714.7 MB. In contrast, our approach, only sends 31.37 MB
of data in each client-server exchange. We report this information shared (in MB) during each client-server
communication in Table 4.

Computation Overhead. Our method does not require any extra computation at the client side but
introduces an overhead at the server side. This overhead includes the time required to train the generators
and perform knowledge distillation. To quantify this overhead, we conducted benchmarking using 2 NVIDIA
TITAN RTX GPUs in a 5 client setup, as described in the experiments section. We report results in Table 4
in terms of overhead time in seconds (s) per round. Our method adds an extra 220 seconds of computational
time at the server side per round, in contrast to the 98 seconds introduced by CFed and the 128 seconds
incurred by TARGET. It is crucial to emphasize that our method does not impose any additional overhead on
the client side, unlike CFed and TARGET which incur 68 seconds and 62 seconds per client respectively. In
those methods, the client is responsible for learning the current task as well as distilling knowledge from past
tasks. By transferring the computation load from the client to the server, we prioritize client-level efficiency.
In most practical federated learning scenarios, edge devices have limited computational capacity compared to
the server. Our approach prioritizes client-level efficiency, even if it entails a slight trade-off in server-level
efficiency.

Storage Overhead. As our method operates in a stateless FL setup, we do not require clients to maintain
any state information or additional storage. Our approach requires the server model to store the classiĄer and
prompt components corresponding to the last task model which is used in distillation resulting into a storage
cost equal to ~9.5% of the base encoder model size. Other baselines Rebuffi et al. (2017a) incur extra storage
costs at the client side equal to the size of entire encoder and classiĄer i.e ~86M parameters. Additionally,
CFed and TARGET incur costs equivalent to storing an entire image dataset at both server and individual
client levels. We report the storage costs incurred by these methods (in MB) at both server and client side in
Table 4. The storage cost does not include the space needed to store the current round model itself. For
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CFed, we use the Caltech-256 Griffin et al. (2007) as the surrogate dataset as prescribed in Ma et al. (2022).
The storage overhead in Table 4 accounts for storing this dataset at both client and server sides.

In summary, our approach attains state-of-the-art performance while imposing lower overheads compared to
existing methods.

7 Conclusion

In conclusion, we propose HePCo (Heterogeneous Prompt Consolidation) for continual federated learning.
We formalize the setting and provide a methodical approach to simulate real-world conditions combining
perspectives from continual and federated landscapes. Our method harnesses the prompt learning capabilities
of foundation models to facilitate an efficient distillation framework for consolidating heterogeneous clients.
By generating pseudo-data in a low-dimensional latent space, our approach enables parameter-efficient and
data-free distillation of information from clients to server. We demonstrate the superior performance of
our method compared to existing state-of-the-art methods through a series of experiments that emulate
challenging real-world scenarios. By requiring clients to share parts of their models, we signiĄcantly reduce
communication costs and enhance privacy. Importantly, our approach does not impose any additional
overheads on the client side, making it highly valuable for real-world deployment.

8 Discussion

Limitations. It is worth noting that prompting-based methods are still relatively new and not extensively
studied, making the explainability of these prompts challenging. Therefore, future work should focus on
testing the robustness of these methods in diverse setups to ensure their effectiveness in different scenarios.
Considering the typical asymmetry in the availability of computational resources across servers and clients,
our approach prioritizes client-level efficiency. Yet, the computation overhead introduced at the server, may
be an issue for some use-cases. Although the generation and distillation procedures are relatively lightweight,
they still rely on availability of server-side compute resources, which may not be universally accessible in
all scenarios. Additionally, our approach necessitates clients to use pretrained vision transformers, leaving
open the question of how this framework can be extended to accommodate other architectures. These are
interesting avenues for future research.

Broader Impact. The machine learning community is increasingly leaning towards the adoption of large-
scale models for various applications. However, updating these models with new data poses a signiĄcant
challenge. Retraining models from scratch each time new data arrives is computationally expensive and
can have substantial Ąnancial Justus et al. (2018) and environmental Patterson et al. (2021); Lacoste et al.
(2019) implications. Our approach offers a solution by enabling incremental learning on new data without
the need for complete model retraining. Additionally, our use of prompting techniques allows for signiĄcant
reductions in communication and local computation costs while enhancing privacy, which is especially critical
for on-device edge computing applications.
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Appendix

A Algorithm

To better illustrate our proposed method, we present a whole picture of the method in Algorithm 1. The
algorithm describes our complete procedure for a global task T i, where i ∈ [1, N ].

B Experimental Details

Implementation Details. For fair comparison, we use the ViT-B/16 backbone pretrained on Imagenet-1K
as the encoder for all methods. We implement our methods in PyTorch and use the PyTorch Image Models
library Wightman (2019) to obtain pretrained checkpoints. We use 2 NVIDIA A40 GPUs for all experiments.
For each result reported in this paper, we calculate the mean and standard deviation over separate runs.

Training Details. For all methods, we use the Adam Kingma & Ba (2017) optimizer with β1 = 0.9 and
β2 = 0.999. We resize images to 224× 224 and normalize to [0,1].

Hyperparameter Search. Following DualPrompt Wang et al. (2022b), we use 20% of the training dataset
as our validation data and conduct a hyperparameter search. We tune hyperparameters for both our approach
and all competing baselines. We use a batch size of 64 for both local and server-side training, determined
after searching over values of 16, 32, 64, 128. For our method and the prompting-based baselines, we use a
learning rate of 1e-3, while for baselines that tune the entire model (FedAvg, FedLwF.MC), we use 5e-5. We
search for learning rates among {1e−6, 5e−5, 1e−5, 5e−4, 1e−4, 5e−3, 1e−3, 5e−2, 1e−2}. Our method employs
a three-layer fully-connected network as the generator. We encode class labels using an embedding matrix of
length 64 and concatenate it with a 64-dimensional noise vector. This dimension was chosen after searching
over 32, 64, 128, 256. While our approach is robust to various values, 64 performs best. The generator
architecture has input sizes of [128, 256, 1024] per layer, with an output size of 768 which is the dimension
of the visual query. We opt for a three-layer architecture to maintain lightweight generation and training.
We train the generator for 100 epochs using a batch size of 64 and a learning rate of 1e−4 using the Adam
optimizer. After a logarithmic scale search, we Ąnd a learning rate in the range [5e-5, 1e-4] to provide optimal
results.

We Ąne-tune the server model using a learning rate of 1e−4 for 200 epochs. Through grid search, we Ąnd
that the model is robust to various learning rate and epoch combinations, with these values providing the
best average accuracy on the validation set. We use a replay ratio of 0.5 for our method, which means we
mix 50 pseudo-latents corresponding to previous tasks for every 100 pseudo-latents corresponding to the
current task. We conduct a search over values like [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1] and Ąnd
0.5 to result into the best average accuracy AN . We observe a stability-plasticity trade-off controlled by
this hyperparameter with larger values leading to lower forgetting (FN ) but lower current task accuracies
(plasticity) and smaller values yielding the opposite effect. Through a hyperparameter search within [0, 5]
at 0.1 increments, we choose λKL and λMSE values to be 1 and 0.1 respectively. We Ąnd these values to
work best across all datasets reported in the paper. Overall, λKL values between [0.6, 3] yield similarly good
results, with too low (close to 0) and too high (close to 5) values leading to poor performance.
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Algorithm 1 HePCo: Heterogeneous Prompt Consolidation

Task: For each task T i, the server is trained through R communication rounds
Input: Set of C clients with trainable parameters wc = ¶Pc, Kc♢, ϕc, pretrained ViT parameters θpt,
trainable server parameters ws = ¶Ps, Ks♢, ϕs, local epochs E, generator training epochs Eg, distillation
epochs Ed

Output: ws, ϕs

1: Server executes:
2: Send the pretrained model parameters θpt to clients.
3: for r ∈ ¶1, · · · , R♢ do
4: for each client c ∈ C do
5: wc ← ws

6: ϕc ← ϕs

7: wc, ϕc ← Client Update(wc, ϕc)
8: end for
9: θgen ← Train Generator

10: Obtain provisional server model weights ws and ϕs by averaging client weights.
11: ws, ϕs ← Latent Distillation(ws, ϕs, θgen)
12: end for

1: Train Generator:
2: for e ∈ Eg do
3: Lcls ← Calculate Cross Entropy loss in equation 2
4: LKL ← Calculate Kullback-Leibler divergence in equation 4a
5: LMSE ← Calculate Mean-Squared Error in equation 4b
6: Update θgen using equation 5
7: end for
8: return θgen

1: Latent Distillation (ws, ϕs, θgen):
2: for e ∈ Ed do
3: ϵ ∼ N (0, 1)
4: Sample class labels y randomly from current and past task categories
5: Obtain pseudo-latents z = G(ϵ, y; θgen) from generator
6: Obtain distillation target prompts from clients and previous server model
7: Lprompt ← Calculate Mean-Squared Error in equation 6
8: Update ws

9: Calculate cross-entropy loss between sampled class labels y and predictions ϕs(z)
10: Update ϕs

11: end for
12: return ws, ϕs

1: Client Update (wc, ϕ):
2: Freeze ViT backbone θpt

3: for e ∈ E do
4: Calculate visual query feature q(x) for image x
5: Obtain Ąnal prompt p from q(x) using Pc and Kc

6: Insert p into selected layers of ViT θpt

7: LCE ← Calculate cross entropy loss LCE

8: Update wc, ϕc

9: end for
10: return wc, ϕc
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