
Improved Roundtrip Spanners, Emulators, and
Directed Girth Approximation∗

Alina Harbuzova† Ce Jin‡ Virginia Vassilevska Williams§ Zixuan Xu¶

Abstract
Roundtrip spanners are the analog of spanners in directed graphs, where the roundtrip metric is used as

a notion of distance. Recent works have shown existential results of roundtrip spanners nearly matching the
undirected case, but the time complexity for constructing roundtrip spanners is still widely open.

This paper focuses on developing fast algorithms for roundtrip spanners and related problems. For any
n-vertex directed graph G with m edges (with non-negative edge weights), our results are as follows:

• 3-roundtrip spanner faster than APSP: We give an Õ(m
√
n)-time algorithm that constructs a

roundtrip spanner of stretch 3 and optimal size O(n3/2). Previous constructions of roundtrip spanners of
the same size either required Ω(nm) time [Roditty, Thorup, Zwick SODA’02; Cen, Duan, Gu ICALP’20],
or had worse stretch 4 [Chechik and Lifshitz SODA’21].

• Optimal roundtrip emulator in dense graphs: For integer k ≥ 3, we give an O(kn2 log n)-time
algorithm that constructs a roundtrip emulator of stretch (2k−1) and size O(kn1+1/k), which is optimal
for constant k under Erdős’ girth conjecture. Previous work of [Thorup and Zwick STOC’01] implied a
roundtrip emulator of the same size and stretch, but it required Ω(nm) construction time. Our improved
running time is near-optimal for dense graphs.

• Faster girth approximation in sparse graphs: We give an Õ(mn1/3)-time algorithm that 4-
approximates the girth of a directed graph. This can be compared with the previous 2-approximation
algorithm in Õ(n2,m

√
n) time by [Chechik and Lifshitz SODA’21]. In sparse graphs, our algorithm

achieves better running time at the cost of a larger approximation ratio.

∗The full version of the paper can be accessed at https://arxiv.org/abs/2310.20473
†Massachusetts Institute of Technology. hadought@mit.edu
‡Massachusetts Institute of Technology. cejin@mit.edu. Partially supported by NSF Grant CCF-2129139.
§Massachusetts Institute of Technology. virgi@mit.edu. Supported by NSF Grants CCF-2129139 and CCF-2330048 and BSF

Grant 2020356.
¶Massachusetts Institute of Technology. zixuanxu@mit.edu.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4641

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2310.20473

1 Introduction
A t-spanner of a graph is a subgraph that approximates all pairwise distances within a factor of t. Spanners are
useful in many applications since they can be significantly sparser than the graphs they represent, yet are still a
good representation of the shortest paths metric. As many algorithms are much faster on sparse graphs, running
such algorithms on a spanner rather than the graph itself can be significantly more efficient, with only a slight
loss in approximation quality.

For undirected graphs, the spanner question is very well understood. It is known that for all integers k ≥ 2,
every n-vertex undirected (weighted) graph contains a (2k − 1)-spanner on O(n1+1/k) edges [ADDJS93] and this
is optimal under Erdős’ girth conjecture [TZ01].

For directed graphs, however, there can be no non-trivial spanners under the usual shortest paths metric:
consider for instance a complete bipartite graph, with edges directed from one partition to the other. Omitting
a single edge (u, v) would cause the distance d(u, v) to go from 1 to ∞.

Nevertheless, one can define a notion of a spanner in directed graphs based on the roundtrip metric defined
by Cowen and Wagner [CW04]: d(u ⇋ v) = d(u, v) + d(v, u). A roundtrip t-spanner of a directed graph is a
subgraph that preserves all pairwise roundtrip distances within a factor of t.

Cen, Duan and Gu [CDG20] showed that basically the same existential results are possible for roundtrip
spanners as in undirected graphs: for every integer k ≥ 2 every n-vertex directed graph contains a (2k − 1)-
roundtrip spanner on O(kn1+1/k log n) edges. For the special case of k = 2, it was known earlier that every
n-vertex graph contains a 3-roundtrip spanner on O(n

√
n) edges [RTZ08].

The known results on algorithms for constructing spanners and roundtrip spanners differ drastically however.
Baswana and Sen [BS07] presented a randomized linear time algorithm for computing an O(kn1+1/k)-edge (2k−1)-
spanner of any n-vertex weighted graph (which was later derandomized [RTZ05]). Meanwhile, the algorithms for
constructing roundtrip spanners are much slower.

The first construction of roundtrip spanners was given by Roditty, Thorup and Zwick in [RTZ08], where they
gave the construction of (2k + ε)-roundtrip spanners on Õ((k2/ε)n1+1/k) edges for any graph with edge weights
bounded by poly n (log nW dependence in the size otherwise) in O(mn) time. Later, Zhu and Lam [ZL18]
derandomized this construction and improved the sparsity of the spanner to contain Õ((k/ε)n1+1/k) edges. Most
recently, Chechik and Lifshitz constructed a 4-roundtrip spanner on O(n3/2) edges in Õ(n2) time. All currently
known results on constructions of roundtrip spanners are summarized in Table 1.

Notice that for all cases with running time faster than mn, the stretch is suboptimal for the used sparsity.
This motivates the following:

Question: What is the best construction time for roundtrip spanners of optimal stretch-sparsity tradeoff?

Alongside the construction of roundtrip spanners, another closely related problem is approximating the girth
(i.e. the length of the shortest cycle) in directed graphs. The first nontrivial algorithm is by Pachocki, Roditty,
Sidford, Tov, Vassilevska Williams [PRSTV18], who gave an O(k log n) approximation algorithm running in
Õ(mn1/k) time. Further improvements by [CLRS20; DV20] followed. Most recently, Chechik and Lifshitz [CL21]
obtained a 2-approximation in Õ(min{n2,m

√
n}) time, which is optimal for dense graphs. The current known

results are summarized in Table 2.
While the 2-approximation result is optimal for dense graphs, and while a 2−ε-approximation is (conditionally)

impossible in O((mn)1−δ) time [DV20], it is unclear what other approximations (2.5? 3?) are possible with faster
algorithms. This motivates the following question:

Question: what is the best running time-approximation tradeoff for the girth of directed graphs?

1.1 Our Results Throughout this paper, we consider directed graphs on n vertices and m edges with non-
negative edge weights. We use Õ(·) to hide poly log(n) factors. All our algorithms are Las Vegas randomized.

Theorem 1.1. There is a randomized algorithm that computes a 3-roundtrip spanner of O(n3/2) size in Õ(m
√
n)

time.

This can be compared with the 4-roundtrip spanner of O(n3/2) size constructable in O(n2 log n) time from
[CL21].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4642

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Citation Stretch Sparsity Time

Roditty, Thorup, Zwick [RTZ08] △ 2k + ε Õ
(

k2

ε n1+1/k
)

O(mn)

Pachocki, Roditty, Sidford, Tov, Vas-
silevska W. [PRSTV18] O(k log n) Õ(n1+1/k) Õ(mn1/k)

Chechik, Liu, Rotem, Sidford [CLRS20] O(k log k) Õ(n1+1/k) Õ(m1+1/k)

Cen, Duan, Gu [CDG20] 2k − 1 Õ(kn1+1/k) Õ(mn logW)

Chechik, Liu, Rotem, Sidford [CLRS20]
△ 8 + ε Õ(n3/2/ε2) Õ(m

√
n)

Dalirrooyfard and Vassilevska
W. [DV20] △ 5 + ε Õ(n3/2/ε2) Õ(m

√
n)

Chechik and Lifshitz [CL21] 4 O(n3/2) Õ(n2)

New 3 O(n3/2) Õ(m
√
n)

Table 1: Known results on constructions of roundtrip spanners on a weight directed graph on n vertices and m
edges with edge weight bounded by W . Results marked with △ are subsumed by other results.

Alongside spanners, another important object of study are emulators: sparse graphs that approximate all
pairwise distances; the difference here is that emulators are not required to be subgraphs, and can be weighted
even if the original graph was unweighted. Similar to roundtrip spanners being analogs of spanners in directed
graphs, we consider roundtrip emulators which are the analogs of emulators in directed graphs. While emulators
are very well studied in undirected graphs [ACIM99; DHZ96; Woo06; Pet09; BKMP10; BV15; BV16; AB17;
HP18; LVWX22; KP23], the authors are not aware of any results, for the roundtrip metric. The only known
construction of roundtrip emulators is implied from using the roundtrip metric in Thorup-Zwick’s distance oracle
in [TZ01], which has (2k − 1)-stretch and O(kn1+1/k) edges but requires Õ(mn) construction time.

We obtain a very fast algorithm that constructs essentially optimal roundtrip emulators (up to the Erdős
girth conjecture).

Theorem 1.2. For integers k ≥ 3, there is a randomized algorithm that computes a (2k− 1)-roundtrip emulator
of O(kn1+1/k) size in O(kn2 log n) time.

While the result is only for roundtrip emulators, rather than spanners, it achieves a much faster running time
than any result on roundtrip spanners with optimal approximation-size tradeoff. This is the first algorithm that
achieves a sub-mn running time for the problem.

We next focus on the closely related question of girth approximation. We prove:

Theorem 1.3. There is a randomized algorithm that computes a 4-multiplicative approximation of the girth of a
directed graph in Õ(mn1/3) time.

Let us compare with the previous known directed girth approximation algorithms. Compared with the 2-
approximation in Õ(n2,m

√
n) time from [CL21], Theorem 1.3 achieves a better running time for m ≤ o(n5/3)

while raising the approximation ratio to 4. Dalirrooyfard and Vassilevska W. [DV20] gave for every constant
ε > 0, a (4 + ε)-approximation algorithm running in Õ(mn

√
2−1) time. Our algorithm removes the ε from the

approximation factor and further improves the running time.

1.2 Paper organization After introducing useful notations and terminologies in Section 2, we give a high
level overview of our techniques in Section 3. Then, in Section 4 we describe our 3-roundtrip spanner algorithm
(Theorem 1.1). In Section 5 we describe our roundtrip emulator algorithm. In Section 6 we describe our girth
approximation algorithm. We conclude with a few open questions in Section 7.

2 Preliminaries
We use Õ(·) to hide poly log(n) factors, where n is the number of vertices in the input graph.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4643

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Citation Approximation Factor Time
Pachocki, Roditty, Sidford, Tov,
Vassilevska W. [PRSTV18] O(k log n) Õ(mn1/k)

Chechik, Liu, Rotem, Sidford
[CLRS20] △ 3 Õ(m

√
n)

Chechik, Liu, Rotem, Sidford
[CLRS20] O(k log k) Õ(m1+1/k)

Dalirrooyfard and Vassilevska
W. [DV20] △ 4 + ε Õ(mn

√
2−1)

Dalirrooyfard and Vassilevska
W. [DV20] △ 2 + ε Õ(m

√
n)

Dalirrooyfard and Vassilevska
W. [DV20] △ 2 Õ(mn3/4) (unweighted)

Chechik and Lifshitz [CL21] 2 Õ(min{n2,m
√
n})

New 4 Õ(mn1/3)

Table 2: Known results on girth approximation on a weight directed graph on n vertices and m edges with edge
weight bounded by W . Results marked with △ are subsumed by other results.

In this paper, the input graph G = (V,E) is always a weighted directed graph with vertex set V of size
|V | = n and edge set E of size |E| = m with non-negative edge weights. Without loss of generality, we assume
G does not have parallel edges. We use wt(u, v) to denote the weight of the directed edge (u, v) ∈ E. For any
two vertices u, v ∈ V , we use dG(u, v) to denote the distance (length of the shortest path) from u to v in G, and
we use dG(u⇋ v) := dG(u, v) + dG(v, u) to denote the roundtrip distance between u and v. When the context is
clear, we simply use d(u, v) and d(u⇋ v). For a subset of vertices W ⊆ V , we use G[W] to denote the subgraph
of G induced by the vertex set W .

The girth of G is the length (total edge weight) of the shortest cycle in G. We say a graph H = (V,E′) is an
α-roundtrip emulator of graph G = (V,E), if for every two vertices u, v ∈ V it holds that dG(u ⇋ v) ≤ dH(u ⇋
v) ≤ α · dG(u⇋ v). Furthermore, if H is a subgraph of G, we say H is an α-roundtrip spanner of G.

Without loss of generality, we may assume G is strongly-connected, since otherwise we can run the algorithm
for girth approximation (or roundtrip spanner/emulator) on each strongly-connected component. In addition, we
may assume the maximum degree of G is bounded by O(m/n). This is due to the following regularization lemma
shown in [CLRS20]. This assumption will be used in Section 6.

Lemma 2.1. (Regularization [CLRS20]) Given a directed weighted graph G = (V,E) on n vertices and m
edges, one can construct a graph H on O(n) vertices and O(m) edges with non-negative edge weights and maximum
degree O(m/n) in O(m) time such that all of the following holds:

1. All roundtrip distances between pairs of vertices in G are the same in H as in G.

2. Given a cycle in H, one can find a cycle of the same length in G in O(m) time.

3. Given a subgraph H ′ in H, one can find in O(m) time a subgraph G′ of G such that |E(G′)| ≤ |E(H ′)| and
the roundtrip distances in G′ are the same as in H ′.

In our algorithms, we often use Dijkstra’s algorithm to compute single-source distances. On a weighted
directed graph G = (V,E), we use out-Dijkstra from a source s ∈ V to refer to Dijkstra algorithm computing
distances d(s, ·) from s, and use in-Dijkstra from s to refer to Dijkstra algorithm computing distances d(·, s) into
s.

3 Technical Overview
3.1 Previous Work Throughout this paper, our techniques are based on the following key observation
introduced in [CL21].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4644

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 3.1. (Key Observation [CL21]) Let G = (V,E) be a weighted directed graph with nonnegative edge
weights. For vertices u, v, r ∈ V , if

(3.1) 2 · d(v, r) + d(r, u) ≤ 2 · d(v, u) + d(u, r),

then
d(u⇋ r) ≤ 2 · d(u⇋ v).

v

ur

Figure 1: A illustration of Lemma 3.1 with u, v, r ∈ V satisfying Eq. (3.1). The red cycle u ⇝ v ⇝ u can be
2-approximated by the cycle u⇝ v ⇝ r ⇝ u highlighted green.

An important property of the above observation is that Eq. (3.1) is symmetric with respect to the roles of u
and r. This symmetry is crucial to the analysis of the applications of Lemma 3.1 in the previous work [CL21] as
well as in our new algorithms, so we first describe it in more details as follows.

The Symmetry Argument Consider the following routine that sparsifies a graph G = (V,E) on n vertices
using a random sample S ⊆ V . For every vertex v ∈ V , we check for every vertex s ∈ S ∩ N(v) and u ∈ N(v)
where N(v) denotes the out neighborhood of v, if 2d(v, s)+d(s, u) ≤ 2d(v, u)+d(u, s) then remove the edge (v, u).
We say that we use the set S as eliminators to perform the sparsification since we are comparing the distance
d(v, u) using the distance information involving s ∈ S.

For any two neighbors u, u′ ∈ N(v) (possible u = u′), notice that the condition involving v, u, u′ compares
the distances 2d(v, u)+d(u, u′) against 2d(v, u′)+d(u′, u), which is the same as if we switch the roles of u and u′.
This means that either u eliminates u′ or u′ eliminates u. (We say “u eliminates u′” meaning that, if u ∈ S, then
the edge (v, u′) will be removed, namely u′ is eliminated from N(v).) So given a random u ∈ N(v), in expectation
half of the pairs (u, u′) falls in the case where u can eliminate u′ and additionally u can eliminate u itself. Thus, if
N(v)∩S ̸= ∅, then in expectation the procedure will remove at least |N(v)|/2 edges. This implies that the graph
sparsification can effectively remove a constant fraction of the edges adjacent to the vertices with high out-degree.
More specifically, since on expectation, the sample S can hit vertex sets with size Ω(n/|S|), this procedure can
remove a constant fraction of the outgoing edges adjacent to vertices with degree Ω(n/|S|). So if we repeat this
process Θ(log n) rounds, on expectation we can reduce the out-degree of every vertex to at most O(n/|S|).

Applications of the key observation Now we are ready to explain how the above Lemma 3.1 is useful
for constructing roundtrip spanners and approximating directed cycles.

1. Girth approximation: reduce search space. Suppose we can take a small random subset of vertices
S ⊆ V and for each vertex s ∈ S and set the current girth estimate as the length of the shortest cycle
passing through any vertex in S. Then if r ∈ S, Lemma 3.1 shows that we no longer have to consider
the shortest cycle passing through v and u satisfying Eq. (3.1). This is because the shortest cycle passing
through u and v can already be 2-approximated by the shortest cycle passing through r. Then if we want
to search for cycles passing through v that cannot be 2-approximated, we would not need to consider the
vertex u. Thus, using the sample S, we can compute a pruned vertex set B(v) ⊆ V that contains all the
vertices u ∈ V such that Eq. (3.1) does not hold for any r ∈ S. By the symmetry argument, each sample
that hits the set B(v) can reduce the size of B(v) by a constant fraction. So over Θ(log n) rounds, we can
obtain a pruned set of size roughly O(n/|S|). This technique is used in the 2-approximation in [CL21] and
will be used in our algorithm for computing a 4-approximation of the girth in Section 6.

2. Roundtrip spanners: graph sparsification. Suppose we take a random subset S ⊆ V and add all the
in/out shortest path tree from S to our spanner H. We apply Lemma 3.1 to the vertices u, v, r ∈ V where

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4645

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

u, r are out-neighbors of v. If r ∈ S, Lemma 3.1 implies that we can delete the edge (v, u) since the shortest
cycle containing (v, u) can be 2-approximated by the cycle passing through r and u, which is already added
to the spanner H. As explained previously by the symmetry argument, in expectation we can reduce the
out-degree of every vertex to roughly O(n/|S|) if we repeat this process for Θ(log n) rounds. This technique
was used in the construction of 4-roundtrip spanners in [CL21] and will be used in our construction of
3-roundtrip spanner in Section 4 and our (2k − 1)-roundtrip emulator in Algorithm 2.

3.2 Our Techniques Our techniques consist of a collection of extensions to the techniques introduced in
[CL21]. We now highlight the novel components in each of our algorithms.

3-Roundtrip Spanner in Õ(m
√
n) Time Our algorithm follows from a modification of Chechik and

Lifshitz’s [CL21] 4-roundtrip spanner algorithm, which was based on the graph sparsification approach mentioned
earlier. Our new idea lies in a more careful analysis of the stretch of the spanner: instead of directly bounding the
roundtrip distance dH(u⇋ v) between vertices u, v in the spanner H as Chechik and Lifshitz did, we separately
bound the one-way distances dH(u, v), dH(v, u) and add them up. After a slight change in their algorithm (namely,
by computing distances in the original graph rather than in the sparsified graph in each round), this analysis
enables us to improve the stretch from 4 to 3.

(2k−1)-Roundtrip Emulator in Õ(n2) Time The celebrated approximate distance oracle result of Thorup
and Zwick [TZ01] immediately yields (2k−1)-emulators of O(kn1+1/k) size for any metric. But a straightforward
implementation of their generic algorithm in the roundtrip metric would require computing single source shortest
paths from all vertices, in Õ(mn) total time. For the easier case of undirected graphs, [TZ01] reduced the
construction time to O(kmn1/k), but unfortunately these techniques based on balls and bunches do not yield a
speedup in our roundtrip distance setting.

Our faster roundtrip emulator algorithm combines Thorup and Zwick’s technique [TZ01] with the graph
sparsification approach of [CL21]. The intuition is that, since the bottleneck of the generic Thorup-Zwick algorithm
lies in computing single source shortest paths, a natural idea is to use [CL21]’s approach to gradually sparsify the
graph so that Dijkstra’s algorithm can run faster. More specifically, recall that the Thorup-Zwick algorithm takes
a sequence of nested vertex samples S1 ⊆ · · · ⊆ Sk = V which serve as intermediate points for routing approximate
shortest paths. In our case, these vertex samples also play the same role as in the graph sparsification approach
described earlier, where short cycles going through these vertex samples can approximate the cycles we care
about. This results in a multi-round algorithm that interleaves graph sparsification steps and running Dijkstra
from vertices of Si (with gradually increasing size) in Õ(n2) total time. It is not obvious that the (2k− 1)-stretch
of Thorup-Zwick still holds after adding these graph sparsification steps, but it turns out the stretch analysis of
Thorup-Zwick fits nicely with the cycle approximation arguments, and with a careful analysis we are still able to
show (2k − 1) stretch when k ≥ 3.

For some technical reason related to the sampling argument of Thorup-Zwick, we had to slightly simplify the
graph sparsification techniques of [CL21], in order to avoid an undesirable extra logarithmic factor in the sparsity
bound of our roundtrip emulator. See the discussion in Remark 4.1 and the proof of Lemma 5.2.

4-Approximation of Girth in Õ(mn1/3) Time Our algorithm vastly extends the technique of the 2-
approximate girth algorithm in Õ(min{n2,m

√
n}) time by Chechik and Lifshitz [CL21]. In the 2-approximation

algorithm, one takes a sample S of size O(
√
n) and uses in/out Dijkstra’s to exactly compute the shortest cycle

going through every s ∈ S. Then using S as eliminators, compute for every vertex v ∈ V a pruned vertex set
B(v) of size O(

√
n), and search for short cycles from v on G[B(v)]. A natural attempt to improve the running

time is to generalize this framework to multiple levels: take a sequence of vertex samples of increasing sizes
S1, . . . , Sk−1, Sk = V and compute a sequence of pruned vertex subsets V = B1(v), B2(v), . . . , Bk(v) of decreasing
sizes for every v, so that one can run Dijkstra from/to every vertex in Si on G[Bi(v)] in Õ(mn1/k) time. However,
it is unclear how to do this since one can no longer check the condition Eq. (3.1) due to not having all the distance
information from/to every vertex s ∈ Si, and thus we cannot compute the sets Bi(v) as desired.

In this work we are able to implement the above plan for k = 3, obtaining a 4-approximation girth algorithm
in Õ(mn1/3) time. We deal with the problem of not having enough distance information to compute B3(v) by
using a certain distance underestimate obtained from the distance information from S1, and enforcing a stricter set
of requirements on the vertices that we explore, so that we always have their distance information available. We
also apply more novel structural lemmas about cycle approximation that extend the key observation Lemma 3.1
of [CL21] in various ways, which may be of independent interest. As a result, our 4-approximation algorithm

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4646

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

becomes more technical than the previous 2-approximation algorithm in Õ(m
√
n) time.

Here, we highlight the key structural lemma (Lemma 6.15) that enabled us to overcome the above described
difficulty. It is illustrated in the following Fig. 2, which can be viewed as an extension of Lemma 3.1 from 3
vertices to 4 vertices. As illustrated, if there exists some vertex r2 that is in a short cycle with v but not in a
short cycle with u, then we can find some vertex r1 such that the cycle v ⇝ r2 ⇝ r1 ⇝ u ⇝ v (highlighted in
green) can approximate the shortest cycle passing through u and v (the cycle in red). Then similar to how we
can use Lemma 3.1, we can ignore the vertex u in our search for the shortest cycle passing through v.

v

ur2

r1

Figure 2: If there exists a vertex r2 that is in a short cycle with v but not in a short cycle with u, then we can find
a vertex r1 such that the cycle passing through v ⇝ r2 ⇝ r1 ⇝ u (the cycle highlighted in green) can approximate
the shortest cycle passing through u and v (the cycle in red).

Furthermore, we note that we had to introduced a number of technicalities and a new structural theorem
just to implement our proposed generalization for k = 3. So it is entirely unclear how to further generalize this
approach for k ≥ 4. Moreover, even if one successfully implements the proposed generalization naively, one would
only obtain a 2k−1-approximation in Õ(mn1/k) time, which is far from being desirable.

4 3-Roundtrip Spanner
In this section, we present our algorithm for constructing a 3-roundtrip spanner with O(n3/2) edges in time
Õ(m

√
n) (Theorem 1.1). Our algorithm closely follows the previous Õ(n2)-time 4-roundtrip spanner algorithm

by Chechik and Lifshitz [CL21], but we use a more careful analysis to improve the stretch from 4 to 3.

4.1 Algorithm and stretch analysis Our algorithm (see pseudocode in Algorithm 1) has a similar structure
as in [CL21]: We iteratively sample vertex subsets Si ⊆ V with geometrically increasing expected sizes E[|Si|] up
to
√
n. In each iteration i, we add the shortest path trees from/to every s ∈ Si into the spanner, and sparsify the

input graph G using the method of [CL21] based on Si (Line 8 – Line 11). Finally, we are able to sparsify the
graph to contain only O(n3/2) edges in expectation, and we will add these remaining edges to the spanner. Over
all iterations, we add a total of 2n ·O(

√
n) = O(n3/2) edges to the spanner, and we only run O(

√
n) instances of

Dijkstra which take Õ(m
√
n) total time.

The main difference from [CL21] lies in the sparsification rule at Line 10. Our rule is based on comparing
distances in the original input graph G, while Chechik and Lifshitz’s rule was based on distances in the sparsified
graph Gi.

Remark 4.1. Readers familiar with [CL21] may notice some other technical differences between Algorithm 1 and
[CL21]: in order to remove a log n factor from the spanner size, Chechik and Lifshitz [CL21] had to resample
Si in case it is “unsuccessful” (i.e., Line 11 did not remove sufficiently many edges), whereas our Algorithm 1
achieves the same goal without resampling. Another difference is that we fix the sample rate of each iteration i at
Line 5, while [CL21] determines sample rate based on the current size |E(Gi)|.

These modifications are not essential for obtaining this 3-spanner result. In particular, our algorithm is
equivalent to simply sampling

∑∆−1
i=0 |Si| = O(

√
n) vertices all at once. Nonetheless, we present it in this way

because it leads to cleaner implementation and analysis. Furthermore, it will be useful later for our emulator
algorithm in Section 5 (where we require Si to be uniformly and independently sampled).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4647

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1: 3-roundtrip-spanner(G)

Input: A weighted directed graph G = (V,E)
Output: a 3-roundtrip spanner H ⊆ G

1 H ← (V (G),∅)
2 G0 ← G

3 Let ∆ := ⌈log3/2
√
n⌉, and α := (

√
n)1/∆. // α ∈ [5/4, 3/2] when

√
n ≥ 2

4 for i← 0, 1, . . . ,∆− 1 do
5 Sample Si ⊆ V by including each vertex with probability αi/n independently
6 Compute dG(s, v), dG(v, s) for all s ∈ Si and v ∈ V using Dijkstra
7 Add to H the shortest path trees in G from/to every vertex in s ∈ Si

8 Gi+1 ← Gi

9 for (x, y), (x, s) ∈ E(Gi) such that s ∈ Si do
10 if 2dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s) then
11 Remove the edge (x, y) from Gi+1

12 H ← H ∪ E(G∆)
13 return H

Now we prove the stretch of the spanner constructed by Algorithm 1. Our proof mostly follows [CL21]; the
key difference is that [CL21] estimated dH(u ⇋ v) as a whole, while our improvement comes from separately
estimating dH(u, v) and dH(v, u) and combine them to obtain an upper bound for dH(u⇋ v).

Lemma 4.2. For any two vertices u, v ∈ V ,

dH(u, v) ≤ 2dG(u, v) + dG(v, u).

As a consequence, dH(u⇋ v) ≤ 3dG(u⇋ v) for any u, v ∈ V .

Proof. Let P denote the shortest path from u to v in G. If P is completely contained in the final G∆, then by
Line 12 clearly dH(u, v) = dG(u, v) and we are done. For the remaining case, consider any iteration i in which
some edge (x, y) of P is removed from Gi+1 at Line 11. By Line 10, there is a vertex s ∈ Si such that

2dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s),

which means

dG(x, s) + dG(s, y) ≤ 2wt(x, y) + dG(y, s)− dG(x, s)

≤ 2wt(x, y) + dG(y, x).(4.2)

Since H contains the shortest path trees in G from s and to s (by Line 7), we have

dH(u, v) ≤ dH(u, s) + dH(s, v)

= dG(u, s) + dG(s, v)

≤ dG(u, x) + dG(x, s) + dG(s, y) + dG(y, v)

≤ dG(u, x) + 2wt(x, y) + dG(y, x) + dG(y, v).(by Eq. (4.2))

Then, using dG(y, x) ≤ dG(y, v) + dG(v, u) + dG(u, x), we immediately obtain

dH(u, v) ≤ 2
(
dG(u, x) + wt(x, y) + dG(y, v)

)
+ dG(v, u)

= 2dG(u, v) + dG(v, u).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4648

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.2 Analysis of sparsity and running time Now we analyze the expected size of H and the running time
of Algorithm 1. We first prove the following lemma that bounds the expected number of edges in Gi. From now
on we use mi := |E(Gi)|. Recall from Line 3 that ∆ = ⌈log3/2

√
n⌉, α = (

√
n)1/∆, and note that α ∈ [5/4, 3/2]

when
√
n ≥ 2.

Lemma 4.3. For i = 0, . . . ,∆, we have
E[mi] ≤ 2n2/αi.

Proof. In the i-th iteration, we sample Si ⊆ V by including each vertex independently with probability pi := αi/n.
In the following, we focus on a particular vertex x ∈ V , and let degi(x) = |NGi

(x)| denote the out-degree of x in
Gi.

For any two out-neighbors vs, vy ∈ NGi(x), we say vs eliminates vy, if the inequality at Line 10 holds for
(s, y) := (vs, vy). Observe that the inequality at Line 10 is (essentially) symmetric with respect to y and s, and
one immediately observes that for any two v, v′ ∈ NGi

(x) (possibly v = v′), either v eliminates v′, or v′ eliminates
v.1 Then, Line 11 indicates that, for any vs, vy ∈ NGi

(x), if vs ∈ Si and vs eliminates vy, then vy /∈ NGi+1
(x).

Therefore, degi+1(x) is the number of out-neighbors of x that are not eliminated by anyone from Si.
For every v ∈ NGi(x), let ev denote the number of v′ ∈ NGi(x) that eliminates v (including v itself). We have

(4.3) 1 ≤ ev ≤ degi(x)

and

(4.4)
1

|NGi(x)|
∑

v∈NGi
(x)

ev =
degi(x) + 1

2
.

Then, over a uniformly independently sampled set Si of eliminators, we analyze the expected number of out-
neighbors of x that are not eliminated, as follows:

E
Si

[degi+1(x) | Gi] =
∑

v∈NGi
(x)

(1− pi)
ev

≤ |NGi
(x)|
2

· (1− pi)
1 +
|NGi

(x)|
2

· (1− pi)
degi(x)(by convexity of f(x) = (1− pi)

x, and Eqs. (4.3) and (4.4))

=
degi(x)

2
· (1− pi + (1− pi)

degi(x))

≤ degi(x)

2
· (1 + e−pi degi(x)).

Multiplying both sides by pi+1,

E
Si

[pi+1 degi+1(x) | Gi] ≤
pi+1 degi(x)

2
· (1 + e−pi degi(x))

=
α

2
(pi degi(x) + pi degi(x)e

−pi degi(x))(by pi = αi/n)

<
α

2
(pi degi(x) + 1).

Hence,

E[pi+1 degi+1(x)] ≤
α

2
(E[pi degi(x)] + 1).

Since 0 ≤ p0 deg0(x) ≤ 1
n · (n − 1) < 1, by induction we obtain E[pi degi(x)] < α/(2 − α) for all i (recall

α ≤ 3/2 < 2). Summing over all x ∈ V , we obtain

E[mi] =
1

2

∑
x∈V

E[degi(x)] ≤
n

2
· α/(2− α)

pi
=

α

4− 2α
n2/αi < 2n2/αi.

1In more detail, by symmetry we can pick (s, y) := (v, v′) or (v′, v) to satisfy 2dG(x, s) + dG(s, y) ≤ 2dG(x, y) + dG(y, s). Then,
the inequality at Line 10 holds due to dG(x, y) ≤ wt(x, y).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4649

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Now we are ready to present the analysis of the sparsity of H and the running time of our algorithm.
Sparsity For each iteration i of Algorithm 1, by definition (Line 5) we have expected sample size

E[|Si|] = αi,

and we add the shortest path trees from / to every vertex in s ∈ Si in G, which contain |Si| · 2(n− 1) edges. So
summing over all iterations, the number of edges we add in expectation is at most (recall α ≥ 5/4)

E

[
∆−1∑
i=0

|Si| · 2(n− 1)

]
= 2(n− 1) ·

logα

√
n−1∑

i=0

αi =
(2n− 1)(

√
n− 1)

α− 1
< 8n3/2.

In the last step (Line 12), we add all the edges in G∆ to H. By Lemma 4.3, we have

E[|E(G∆)|] ≤ 2n2/α∆ = 2n3/2.

Thus, in expectation we add O(n3/2) edges to H in total as desired.
Running Time In each iteration i, the bottleneck is at Line 6 where we run |Si| instances of Dijkstra

on G, each taking O(m + n log n) time. The sparsification steps (Line 8 – Line 11) can be implemented in
O(|Si| · |E(Gi)|) ≤ O(|Si| ·m) time. So in expectation the total time taken by the algorithm is bounded by

E

[
∆−1∑
i=0

|Si| ·O(m+ n log n)

]
= O(m+ n log n)

logα

√
n−1∑

i=0

αi = O(m
√
n+ n

√
n log n).

5 (2k − 1)-roundtrip emulator in nearly quadratic time
In this section, we give the construction of a (2k − 1)-roundtrip emulator on O(kn1+1/k) edges running in
O(kn2 log n) time for k ≥ 3 (Theorem 1.2). Our algorithm does not work for k = 2. (For k = 2, our 3-
roundtrip spanner algorithm from Section 4 has Õ(m

√
n) time complexity, which is slower than Õ(n2) for any

nontrivial input size m≫ n1.5.)

5.1 Algorithm Our algorithm carefully combines ideas from Thorup-Zwick distance oracle [TZ01] and the
graph sparsification technique introduced in [CL21]. The pseudocode of our algorithm is given in Algorithm 2.
The main body contains (k − 1)∆ = Θ(log n) iterations (indexed by i = r∆ + t), divided into (k − 1) rounds
(indexed by r ∈ {0, . . . , k − 2}), where each round consists of ∆ iterations (indexed by the inner loop variable
t ∈ {0, . . . ,∆− 1}). The i-th iteration samples a vertex subset Si, whose expected size E[|Si|] gradually increases
from 1 in the 0-th iteration to Θ(n(k−1)/k) in the last iteration. In each iteration we run in/out-Dijkstra from
every sampled vertex s ∈ Si on the current (sparsified) graph Gi ⊆ G. Using the obtained distance information
from/to Si, we not only perform the graph sparsification steps (Line 14–Line 17) as in [CL21], but also compute
pivots pi(u) ∈ Si and bunches Bi(u) ⊆ Si used in Thorup and Zwick’s algorithm [TZ01] (in the roundtrip metric)
and adds edges to the emulator H accordingly (Line 10 – Line 13). The main complication compared to [TZ01]
is that we now have a sequence of (gradually sparsified) graphs Gi involved rather than a single graph G, and the
pivots pi(u) are defined using the distances on the current graph Gi, while the bunches Bi(u) are defined with
respect to the pivot pr∆−1(u) on the graph Gr∆−1 from the previous round of the outer loop r.

By our parameter setting, we expect each round in the outer loop to roughly decrease the size of the current
graph by a factor of n1/k. After running all (k − 1) rounds, we can show the remaining graph G(k−1)∆ has
O(n1+1/k) edges in expectation, and we add all of them to the emulator H.

5.2 Analysis of sparsity and running time We can without loss of generality assume k ≤ log n, since
otherwise we can run the algorithm for k = ⌊log n⌋ and still satisfy all the requirements. Recall from Line 3 that
∆ = ⌈log3/2 n1/k⌉, α := (n1/k)1/∆, and note that α ∈ [5/4, 3/2].

Algorithm 2 has (k − 1)∆ = logα n1−1/k iterations. It has a similar structure as our earlier Algorithm 1 for
3-roundtrip spanner (except for the additional Line 10 – Line 13 here). For each iteration i = r · ∆ + t where
r ∈ {0, . . . , k − 2} and t ∈ {0, 1, . . . ,∆− 1}, by Line 8 we have

E[|Si|] = αi.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4650

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2: (2k − 1)-Emulator(G) (for k ≥ 3)
Input: A weighted directed graph G = (V,E)
Output: A (2k − 1)-roundtrip emulator H of G

1 H ← (V (G),∅)
2 G0 ← G

3 Let ∆ := ⌈log3/2 n1/k⌉, and α := (n1/k)1/∆. // α ∈ [5/4, 3/2] when n1/k ≥ 2

4 Let G−1 = empty graph and p−1(u) := ⊥ for all u ∈ V . // dG−1
(u⇋ p−1(u)) = +∞.

5 for r ← 0, . . . , k − 2 do
6 for t← 0, . . . ,∆− 1 do
7 Let i := r∆+ t
8 Sample Si ⊆ V by including each vertex with probability αi/n independently
9 Compute dGi

(s, v), dGi
(v, s) for all s ∈ Si and v ∈ V using Dijkstra

10 Define pivot pi(u) := argmins∈Si
dGi

(u⇋ s) for all u ∈ V
11 Define bunch Bi(u) := {s ∈ Si : dGi

(u⇋ s) < dGr∆−1
(u⇋ pr∆−1(u))}.

12 for u ∈ V, s ∈ {pi(u)} ∪Bi(u) do
13 Add edge (u, s) with weight dGi(u, s) and edge (s, u) with weight dGi(s, u) to H

14 Gi+1 ← Gi

15 for (x, y), (x, s) ∈ E(Gi) such that s ∈ Si do
16 if 2dGi

(x, s) + dGi
(s, y) ≤ 2wt(x, y) + dGi

(y, s) then
17 Remove the edge (x, y) from Gi+1

18 H ← H ∪G(k−1)∆

19 return H

Similar to the analysis of our 3-roundtrip spanner algorithm, we have the following lemma on the expected number
edges mi := |E(Gi)|.

Lemma 5.1. In Algorithm 2, for 0 ≤ i ≤ (k − 1)∆ we have

E[mi] ≤ 2n2/αi.

The proof of Lemma 5.1 is identical to the proof of Lemma 4.3 for Algorithm 1, and is omitted here. Note
that in Algorithm 2, Line 10 – Line 13 do not affect edges of Gi, and the remaining part of the algorithm is
almost identical to Algorithm 1 except that the number of iterations is changed from ∆ to (k − 1)∆ (and α is
changed accordingly), and the sparsification rule (Line 16) now depends on distances of Gi instead of G. These
modifications do not affect the proof of Lemma 4.3.

Running Time Over all iterations of the inner for loop, for every i = 0, . . . , (k− 1)∆− 1, the bottleneck is
to run |Si| instances of in/out-Dijkstras on Gi (Line 9), each taking O(mi+n log n) time. The sparsification steps
(Line 14 – Line 17) can be implemented in O(|Si| ·mi) time. Thus by Lemma 5.1, the expected total running
time of our algorithm can be bounded by (note that Si and mi are independent random variables)

E[
(k−1)∆−1∑

i=0

|Si| ·O(mi + n log n)] ≤
(k−1)∆−1∑

i=0

αi ·O
(
2n2/αi + n log n

)
=

(k−1)∆−1∑
i=0

αi ·O
(
2n2/αi

)
= O(n2 · (k − 1)∆)

= O(n2 log n).

Sparsity Similar to in [TZ01], we first bound the expected size of the bunches defined in Line 11. As
mentioned earlier in Remark 4.1, here we rely on the property that the vertex samples Si are uniform and
independent.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4651

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.2. For each i = r ·∆+ t (where r ∈ {0, . . . , k− 2}, t ∈ {0, . . . ,∆− 1}) and each vertex u ∈ V , we have

E[|Bi(u)|] = αt+1.

Proof. By definition of Bi at Line 11, since Gi ⊆ Gr∆−1 and thus dGr∆−1
(·, ·) ≤ dGi

(·, ·), we have

|Bi(u)| = |{s ∈ Si : dGi(u⇋ s) < dGr∆−1(u⇋ pr∆−1(u))}|
≤ |{s ∈ Si : dGr∆−1(u⇋ s) < dGr∆−1(u⇋ pr∆−1(u))}|.

Sort all v ∈ V in increasing order of dGr∆−1(u⇋ v). Then pr∆−1(u) = argmins∈Sr∆−1 dGr∆−1(u⇋ s) is the first
vertex in this ordering that is included in Sr∆−1, and |Bi(u)| is bounded by the number of vertices included in
Si that occur before pr∆−1(u) in this ordering. Since Sr∆−1 and Si are sampled uniformly and independently
(conditioned on this ordering determined by Gr∆−1), the expected number of vertices included by Bi(u) is at
most

n∑
j=1

αi

n
·
(
1− αr∆−1

n

)j

≤ αi/n

αr∆−1/n
= αt+1.

As a direct corollary, we can bound the expected total bunch size.

Corollary 5.3.

E

(k−1)∆−1∑
i=0

∑
u∈V

|Bi(u)|

 ≤ O(kn1+1/k).

Proof. For each r ∈ {0, . . . , k − 2}, by Lemma 5.2 and linearity of expectation, we have

E

[
∆−1∑
t=0

|Br∆+t(u)|

]
=

logα n1/k −1∑
t=0

αt+1 = O(n1/k)

for each u ∈ V . Summing over all r ∈ {0, . . . , k − 2} and u ∈ V ,

E

(k−1)∆−1∑
i=0

∑
u∈V

|Bi(u)|

 =
∑
u∈V

k−2∑
r=0

E

[
∆−1∑
t=0

|Br∆+t(u)|

]
≤ O(kn1+1/k).

Now we can analyze the size of the emulator constructed by Algorithm 2.

Lemma 5.4. The emulator H returned by Algorithm 2 has expected size

E[|H |] ≤ O(kn1+1/k).

Proof. By Corollary 5.3, the total number edges added at Line 13 has expectation at most

(k−1)∆−1∑
i=0

∑
u∈V

2(|Bi(u)|+ 1) ≤ O(kn1+1/k).

In the end at Line 18, we add all the edges in G(k−1)∆ to H. By Lemma 5.1, we know that

E[m(k−1)∆] ≤ 2n2/α(k−1)∆ = 2n2/α(k−1) logα n1/k

= 2n1+1/k.

Thus the expected size of H is O(kn1+1/k) as desired.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4652

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

5.3 Stretch analysis By construction, it is clear that dH(u, v) ≥ dG(u, v) for all u, v ∈ V .
From now on we fix a pair of u, v ∈ V and consider the shortest cycle C of length g := dG(u⇋ v) containing

the vertices u, v. We will prove dH(u⇋ v) ≤ (2k − 1)dG(u⇋ v).
If C is included in the final sparsified graph G(k−1)∆, then by Line 18 we know C is included in the emulator

H and thus dH(u⇋ v) = dG(u⇋ v). Hence, in the following we assume C ̸⊆ G(k−1)∆, and let 0 ≤ i < (k − 1)∆
be the first iteration in which C is destroyed by the sparsification steps, that is, C ⊆ E(Gi) but C ̸⊆ E(Gi+1).

We first prove the following Lemma 5.5 (which is essentially from [CL21]), which shows that when C is
destroyed in iteration i, it can be 2-approximated by a cycle going through some sampled vertex in iteration i.

Lemma 5.5. Then there exists some s ∈ Si such that

(5.5) dGi
(v ⇋ s) ≤ 2g, and dGi

(u⇋ s) ≤ 2g.

Proof. By definition of i, dGi(u⇋ v) = g = dG(u⇋ v). Let (x, y) ∈ C \E(Gi+1) be an edge on the cycle that is
removed. Assume without loss of generality that (x, y) lies on the shortest path from u to v (otherwise, we can
swap the roles of u and v). By Line 16, this means that there exists some s ∈ Si where

(5.6) 2dGi
(x, s) + dGi

(s, y) ≤ 2wt(x, y) + dGi
(y, s),

which implies the following estimate on the length of the shortest cycle going through u, s, v in Gi:

dGi
(u, s) + dGi

(s, v) + dGi
(v, u)

≤ dGi
(u, x) + dGi

(x, s) + dGi
(s, y) + dGi

(y, v) + dGi
(v, u)(triangle inequality)

≤ dGi
(u, x) + 2wt(x, y) + dGi

(y, s)− dGi
(x, s) + dGi

(y, v) + dGi
(v, u)(by Eq. (5.6))

≤ dGi
(u, x) + 2wt(x, y) + (dGi

(y, v) + dGi
(v, u) + dGi

(u, x) + dGi
(x, s))

− dGi(x, s) + dGi(y, v) + dGi(v, u)
(expanding dGi(y, s) using triangle inequality)

= 2dGi(u, x) + 2wt(x, y) + 2dGi(y, v) + 2dGi(v, u)

= 2dGi
(u, v) + 2dGi

(v, u)
((x, y) lies on shortest path from u to v)

= 2g.

Thus
dGi(u⇋ s) ≤ dGi(u, s) + dGi(s, v) + dGi(v, u) ≤ 2g

and the same holds for dGi(v ⇋ s) as desired.

By Lemma 5.5 and the definition of the pivots pi(u) := argmins∈Si dGi(u⇋ s), pi(v) := argmins∈Si dGi(v ⇋
s) (Line 10), we have

(5.7) dGi
(u⇋ pi(u)) ≤ 2g, and dGi

(v ⇋ pi(v)) ≤ 2g.

We first consider the case when both s ∈ Bi(u) and s ∈ Bi(v) hold (where s is defined in Lemma 5.5). In
this case, we have

dH(u⇋ v) ≤ dH(u⇋ s) + dH(s⇋ v)

≤ dGi(u⇋ s) + dGi(s⇋ v)(by Line 13)
≤ 4g(by Eq. (5.5))
≤ (2k − 1)g(since k ≥ 3)

as desired.
Hence it remains to consider the case when either s /∈ Bi(u) or s /∈ Bi(v). In the following we only consider

s /∈ Bi(v), and the other case where s /∈ Bi(u) follows from an analogous argument.
By definition of bunches at Line 11, s /∈ Bi(v) implies

(5.8) dGi
(v ⇋ s) ≥ dGr∆−1

(v ⇋ pr∆−1(v)),

where i = r∆+ t (r ∈ {0, . . . , k − 2}, t ∈ {0, . . . ,∆− 1}). Now we use an induction similar to [TZ01].

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4653

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.6. Suppose integer J ≥ 0 satisfies

• p(r−j)∆−1(v) /∈ B(r−j)∆−1(u) for all even 0 ≤ j < J , and

• p(r−j)∆−1(u) /∈ B(r−j)∆−1(v) for all odd 0 ≤ j < J .

Then,

• If J is even, then
d(r−J)∆−1(v ⇋ p(r−J)∆−1(v)) ≤ (J + 2)g.

• If J is odd, then
d(r−J)∆−1(u⇋ p(r−J)∆−1(u)) ≤ (J + 2)g.

Proof. We prove by induction on J . The base case J = 0 follows from

dGr∆−1(v ⇋ pr∆−1(v)) ≤ dGi(v ⇋ s)(by Eq. (5.8))
≤ 2g.(by Eq. (5.5))

To prove the inductive case J ≥ 1, we first consider the case with odd J . By the assumption for j = J − 1, we
have p(r−J+1)∆−1(v) /∈ B(r−J+1)∆−1(u). By definition of bunches at Line 11 (at iteration i = (r− J + 1)∆− 1 =
(r − J)∆ + (∆− 1)), this means

(5.9) dG(r−J+1)∆−1
(u⇋ p(r−J+1)∆−1(v)) ≥ dG(r−J)∆−1

(u⇋ p(r−J)∆−1(u)).

Then,

dG(r−J)∆−1
(u⇋ p(r−J)∆−1(u)) ≤ dG(r−J+1)∆−1

(u⇋ p(r−J+1)∆−1(v))(by Eq. (5.9))

≤ dG(r−J+1)∆−1
(v ⇋ p(r−J+1)∆−1(v)) + dG(r−J+1)∆−1

(v ⇋ u)(triangle inequality)

≤ (J − 1 + 2)g + dG(r−J+1)∆−1
(v ⇋ u)(by induction hypothesis)

≤ (J − 1 + 2)g + g(since C ⊆ E(Gi) ⊆ E(G(r−J+1)∆−1))
= (J + 2)g,

as desired.
The inductive proof for even J is similar, by switching the role of u and v.

Lemma 5.7. Let J ≥ 0 be the maximum integer for which the assumption in Lemma 5.6 holds. Then,
dH(u⇋ v) ≤ (2J + 5)g.

Proof. We prove the case where J is odd. The even case can be proved similarly by switching the role of u and v.
By the maximality of J , we have

(5.10) p(r−J)∆−1(u) ∈ B(r−J)∆−1(v).

By the conclusion of Lemma 5.6, we have

(5.11) dG(r−J)∆−1
(u⇋ p(r−J)∆−1(u)) ≤ (J + 2)g.

Then,

dH(u⇋ v) ≤ dH(u⇋ p(r−J)∆−1(u)) + dH(p(r−J)∆−1(u)⇋ v)

≤ dG(r−J)∆−1
(u⇋ p(r−J)∆−1(u)) + dH(p(r−J)∆−1(u)⇋ v)(by Line 13)

≤ dG(r−J)∆−1
(u⇋ p(r−J)∆−1(u)) + dG(r−J)∆−1

(p(r−J)∆−1(u)⇋ v)(by Line 13 and Eq. (5.10))

≤ 2dG(r−J)∆−1
(u⇋ p(r−J)∆−1(u)) + dG(r−J)∆−1

(u⇋ v)(triangle inequality)

≤ 2(J + 2)g + dG(r−J)∆−1
(u⇋ v)(by Eq. (5.11))

= (2J + 5)g.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4654

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 5.8. dH(u⇋ v) ≤ (2k − 1)g.

Proof. By Line 4 and Line 11, we know B∆−1(u) = B∆−1(v) = S∆−1. In particular, this means J cannot satisfy
the assumption of Lemma 5.6 if J ≥ r.

Hence, the maximum J that could possibly satisfy the assumption of Lemma 5.6 is at most r − 1 ≤ k − 3.
Then, by Lemma 5.7, we have dH(u⇋ v) ≤ (2J + 5)g ≤ (2(k − 3) + 5)g = (2k − 1)g.

6 4-Approximation of girth in Õ(mn1/3) time
In this section, we present our algorithm for computing a 4-approximation of the girth in a weighted directed
graph (Theorem 1.3).

In general, we follow the approach of Chechik and Lifshitz [CL21] which uses uniformly random vertex samples
and certain elimination rules to prune the search space for each vertex v ∈ V . Our running time improvement
comes from extending the framework of [CL21] by one more layer, using several novel structural and algorithmic
ideas.

Throughout this section, d(u, v) always means dG(u, v), where G = (V,E) is the input directed graph.

6.1 Main Algorithm By Lemma 2.1, we assume each vertex in G has degree at most O(m/n).
Before describing our algorithm in detail, we first give a high-level overview of the structure of our algorithm.

Our algorithm runs in three phases:

1. Phase I. Take a random sample S1 ⊆ V of O(n1/3) vertices.

For each s1 ∈ S1 use Dijkstra to find the shortest cycle going through s1.

2. Phase II. Take a sample S2 ⊆ V of O(n2/3) vertices. Based on the distance information from S1 obtained
in Phase I, for every s2 ∈ S2 we use the elimination rule from [CL21] (Lemma 3.1) to compute the pruned
sets B

(2)
out(s2), B

(2)
in (s2) ⊆ V of size Õ(n2/3).

For each s2 ∈ S2 use Dijkstra to find the shortest cycle going through s2 and some u ∈ B
(2)
out(s2)∩B

(2)
in (s2).

3. Phase III. Based on the distance information obtained from Phase I and II, use our novel elimination rules
(Definition 6.16 and Definition 6.19, which are more technical than [CL21]) to compute for every vertex
v ∈ V a pruned set B̃′(v) ⊆ V of size Õ(n1/3).

For each v ∈ V use Dijkstra to find the shortest cycle going through v in the induced subgraph G[B̃′(v)].

Finally output the length of the shortest cycle encountered in the three phases as the girth estimate.
We present our main algorithm in Algorithm 3 as follows. It follows the three-phase structure described above

(indicated by the comments), but involves more definitions and subroutines that will be explained in the following
sections. The main statements for the correctness and running time of Algorithm 3 will be given in Theorem 6.23
and Theorem 6.25.

6.2 Phase I and II In this subsection we describe Phase I and II of our Algorithm 3, which mostly follow the
2-approximation algorithm of [CL21] (with sample size |S1| changed from O(

√
n) to O(n1/3)). One piece missing

from [CL21] but necessary for us is a certain closedness property of the pruned sets B
(2)
out(v), which allows us to

find all vertices in B
(2)
out(v) by simply running Dijkstra from v (Lemma 6.6).2

Phase I (Line 2–Line 5) uniformly samples a set S1 of O(n1/3) vertices, and runs O(n1/3) Dijkstra instances
on G to find the shortest cycle going through any vertex in S1.

Observation 6.1. Phase I of Algorithm 3 runs in Õ(mn1/3) total time.

In Phase II we try to find other short cycles in G that are not 2-approximated by the estimate obtained in
Phase I. The first step (Line 6) computes eliminators R1,out(v), R1,in(v) ⊆ S1 of small size |R1,out(v)|, |R1,in(v)| ≤
O(log n) for all v ∈ V . Intuitively these eliminators retain the usefulness of the sample S1 in effectively pruning

2We need to compute these pruned sets B
(2)
out(v) in order to prepare for the later Phase III, which was not required in [CL21]’s

two-phase algorithm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4655

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3: 4-Approximation-Girth(G)

Input: A strongly connected directed graph G = (V,E) with maximum degree O(m/n)
Output: An estimate g′ such that g ≤ g′ ≤ 4g, where g is the girth of G

1 Initialize g′ ←∞
// Phase I

2 Sample S1 ⊆ V of size |S1| = O(n1/3)
3 for s1 ∈ S1 do
4 From s1 run in- and out-Dijkstra on G
5 g′ ← minu∈V \{s1} d(s1 ⇋ u)

// Phase II
6 Compute eliminators R1,out(v), R1,in(v) ⊆ S1 of size |R1,out(v)|, |R1,in(v)| = O(log n) for all v ∈ V using

Algorithm 4
7 Sample S2 ⊆ V of size |S2| = O(n2/3)
8 for s2 ∈ S2 do
9 From s2 run modified out-Dijkstra on G[B

(2)
out(s2)] and modified in-Dijkstra on G[B

(2)
in (s2)]

(Lemma 6.6), where B
(2)
out(·), B

(2)
in (·) are defined in Definition 6.2 // B

(2)
out(·) and B

(2)
in (·) depend

on R1,out and R1,in respectively.
10 g′ ← min{g′,min

u∈B
(2)
out(s2)∩B

(2)
in (s2)\{s2}

(
d(s2, u) + d(u, s2)

)
}

// Phase III
11 Compute eliminators R2,in(v) ⊆ S2 of size |R2,in(v)| = O(log n) for all v ∈ V using Algorithm 5.
12 for v ∈ V do
13 From v run modified in-Dijkstra on G[B̃′(v)], where B̃′(v) is defined in Definition 6.19 // B̃′(·)

depends on R2,in (and also R1,out).
14 g′ ← min{g′,minu∈G[B̃′(v)] and (v,u)∈E

(
dG[B̃′(v)](u, v) + wt(v, u)

)
}

15 return g′

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4656

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the search space, while being small enough for the benefit of time efficiency. We defer the algorithm for computing
eliminators (Algorithm 4) to the end of this subsection; instead we first present the following important definition
that relies on these eliminators R1,out(v), R1,in(v) ⊆ S1.

Definition 6.2. (B(2)
out(v) and B

(2)
in (v), [CL21]) For v ∈ V , given R1,out(v), R1,in(v) ⊆ V , we define vertex

subsets
B

(2)
out(v) = {u ∈ V : 2d(v, r1) + d(r1, u) > 2d(v, u) + d(u, r1) for all r1 ∈ R1,out(v)},

and symmetrically,

B
(2)
in (v) = {u ∈ V : 2d(r1, v) + d(u, r1) > 2d(u, v) + d(r1, u) for all r1 ∈ R1,in(v)}.

Definition 6.2 is motivated by the following lemma, which follows from the key observation (Lemma 3.1) of
[CL21]. Intuitively it says B

(2)
out(·) captures cycles that cannot be 2-approximated by the estimate in phase I. 3

Lemma 6.3. (2-approximation [CL21]) If u /∈ B
(2)
out(v), then there exists r1 ∈ R1,out(v) ⊆ S1 such that

d(r1 ⇋ u) ≤ 2d(u⇋ v).
The same statement holds if we replace “out” by “in”.

Proof. By Definition 6.2, since u /∈ B
(2)
out(v), there exists r1 ∈ R1,out(v) such that

2d(v, r1) + d(r1, u) ≤ 2d(v, u) + d(u, r1).

Then applying Lemma 3.1 to u, v, r1, we have d(r1 ⇋ u) ≤ 2d(u⇋ v).
The statement with “out” replaced by “in” can be proved symmetrically by reversing the edge directions.

The following corollary of Lemma 6.3 shows that cycles passing through some s2 ∈ S2 are 2-approximated by
Phase I and II of Algorithm 3. This is essentially how [CL21] obtained their 2-approximation.

Corollary 6.4. ([CL21]) Let s2 ∈ S2 and C be the shortest cycle in G going through s2. Then, the girth
estimate g′ obtained by the end of Phase II of Algorithm 3 satisfies g′ ≤ 2g, where g denotes the length of C.

Proof. We can assume S1 ∩ C = ∅, since otherwise the Phase I of Algorithm 3 can find C and hence g′ ≤ g.
If C ̸⊆ B

(2)
out(s2), let u ∈ C \B(2)

out(s2). Then by Lemma 6.3 there exists r1 ∈ S1 such that d(r1 ⇋ u) ≤ 2d(u⇋
s2) = 2g, so Phase I of Algorithm 3 will update g′ with d(r1 ⇋ u) ≤ 2g (since r1 ∈ S1 and u ̸= r1).

Similarly, if C ̸⊆ B
(2)
in (s2), we also have g′ ≤ 2g.

The remaining case is C ⊆ B
(2)
out(s2) ∩B

(2)
in (s2). Then, Line 10 in Phase II of Algorithm 3 updates g′ with g.

The following key lemma (which will be proved later) states that the sets B
(2)
in (v), B

(2)
out(v) defined using

R1,in(v), R1,out(v) returned by compute-eliminators-1(G,S1) (Algorithm 4) have small sizes. Intuitively, this
is due to the symmetry of the elimination rule in Definition 6.2 and the sample size being |S1| = O(n1/3).

Lemma 6.5. (Sizes of B
(2)
in (v), B

(2)
out(v), [CL21]) With high probability4 over the random sample S1 ⊆ V , we

have |B(2)
in (v)|, |B(2)

out(v)| ≤ Õ(n2/3) for all v ∈ V .

Then, the next step of Phase II is to uniformly sample a set S2 of O(n2/3) vertices (Line 7). We then run
out-Dijkstra from every s2 ∈ S2 on the induced subgraph G[B

(2)
out(s2)], and update the girth estimate g′ with the

found cycles going through s2 (Line 8–Line 10).
In order to implement the out-Dijkstra on G[B

(2)
out(s2)] at Line 9, we need the following Lemma 6.6 which

states that the set B
(2)
out(s2) (as well as distances d(s2, u) for all u ∈ B

(2)
out(s2)) can be efficiently computed given

the eliminators R1,out(v) due to its special structure. Recall that d(·, ·) always denotes distances in the input
graph G.

3We use superscript (2) in the notation of B(2)
out(v) for this reason, to distinguish it from the set B

(4)
out(v) that will be introduced

later in Section 6.3.
4We use “with high probability” to mean probability 1− 1/nc for arbitrary given constant c ≥ 1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4657

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 6.6. (Compute B
(2)
out(v)) For any vertex v ∈ V , given R1,out(v) of size O(log n), there exists an algorithm

running in Õ(mn · |B
(2)
out(v)|) time that computes the set B(2)

out(v), and the distances d(v, u) for all u ∈ B
(2)
out(v).

The same statement holds if we replace “out” by “ in” and replace d(v, u) by d(u, v).

Proof. We run a modified out-Dijkstra from v on graph G, and let D[u] denote the length of the shortest path
from v to u found by this out-Dijkstra. The modification is that whenever we pop a vertex u from the heap, we
relax the out-neighbors of u only if u satisfies

(6.12) 2d(v, r1) + d(r1, u) > 2D[u] + d(u, r1), for all r1 ∈ R1,out(v).

Comparing Eq. (6.12) with the definition of B(2)
out (Definition 6.2), the difference is that we use D[u] in place of

d(v, u). Note that the other three terms in Eq. (6.12) are already computed in Phase I because r1 ∈ S1.
To show the correctness of the modified out-Dijkstra, the key claim is the following closedness property of

B
(2)
out(v):

Claim 6.7. If u ∈ B
(2)
out(v), then for every vertex x on the shortest path from v to u in G, it holds that x ∈ B

(2)
out(v).

Proof. For all r1 ∈ R1,out(v), we have

2d(v, r1) + d(r1, x) ≥ 2d(v, r1) + d(r1, u)− d(x, u)(by triangle inequality)

> 2d(v, u) + d(u, r1)− d(x, u)(by u ∈ B
(2)
out(v))

= 2d(v, x) + 2d(x, u) + d(u, r1)− d(x, u)(by assumption on x)
≥ 2d(v, x) + d(x, r1).(by triangle inequality)

Hence, we have x ∈ B
(2)
out(v) by definition.

By Claim 6.7, it is clear that our modified out-Dijkstra visits exactly all the vertices u ∈ B
(2)
out(v), and correctly

computes distances D[u] = d(v, u) for all u ∈ B
(2)
out(v).

Since |R1,out(v)| = O(log n), checking the condition Eq. (6.12) for all r1 ∈ R1,out(v) only takes O(log n) time
per vertex u ∈ V . By our assumption that the degree of every vertex is at most O(mn), it follows that the modified
Dijkstra runs in time Õ(mn · |B

(2)
out(v)|).

Hence, we observe the following corollary:

Corollary 6.8. Line 8–Line 10 of Algorithm 3 take total time Õ(mn1/3).

Proof. By Lemma 6.6, the modified out-Dijkstra from all s2 ∈ S2 takes total time

Õ(
m

n

∑
s2∈S2

|B(2)
out(s2)|) ≤ Õ(

m

n
· |S2| · n2/3) ≤ Õ(mn1/3),

where we used |B(2)
out(s2)| ≤ Õ(n2/3) from Lemma 6.5. The update step at Line 10 takes O(m/n) · |B(2)

out(s2)| time
for each s2 ∈ S2, which also sums up to Õ(mn1/3).

Computing eliminators. Finally, we describe how to compute the eliminators R1,out(v), R1,in(v) ⊆ S1

(Line 6 of Algorithm 3). This subroutine is basically the same as in [CL21], but we present it here using our
notation for completeness. See the pseudocode of compute-eliminators-1(G,S1) in Algorithm 4, which takes
the uniform vertex sample S1 ⊆ V , and returns R1,out(v) ⊆ S1 for all v. The algorithm for computing R1,in(v)
is analogous: we simply run Algorithm 4 on the graph obtained by reversing the edge orientations of G, and we
omit the detailed descriptions here.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4658

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 4: compute-eliminators-1(G,S1)

Input: The input graph G = (V,E), and S1 = {s1, s2, . . . , s|S1|} ⊆ V of size |S1| = O(n1/3) sampled
uniformly and independently (with replacement)

Output: Sets R1,out(v) ⊆ S1 of size O(log n) for every vertex v ∈ V

1 T (0)(v), R(0)(v)← ∅ for every v ∈ V
2 for i ∈ {1, . . . , k} where k = 10 log n do
3 S(i) ← the next 10n1/3/ log n samples from S1

4 Run in- and out-Dijkstra from every s ∈ S(i) on G
5 for v ∈ V do
6 T (i)(v)← {s ∈ S(i) | ∀t ∈ R(i−1)(v), 2d(v, s) + d(s, t) < 2d(v, t) + d(t, s)}
7 if T (i)(v) ̸= ∅ then
8 t← a random vertex t ∈ T (i)(v)

9 R(i)(v)← R(i−1)(v) ∪ {t}
10 else
11 R(i)(v)← R(i−1)(v)

12 return R1,out(v)← R(k)(v) for each v ∈ V

Algorithm 4 runs in k = 10 log n iterations. In each iteration, it takes 10n1/3/ log n fresh vertex samples (from
S1), and runs Dijkstra from them on G. Then, based on the obtained distance information, it possibly adds one
sampled vertex t to each R1,out(v). By inspecting Algorithm 4, one immediately observes the following properties.

Observation 6.9. Algorithm 4 runs in time Õ(mn1/3), and outputs sets R1,out(v) ⊆ S1 for all v ∈ V of size
|R1,out(v)| = O(log n).

Proof. First note that the total number of vertex samples required at Line 3 is |S(1)⊎· · ·⊎S(k)| = k·10n1/3/ log n =
100n1/3 ≤ |S1|. In each iteration 1 ≤ i ≤ k, the algorithm only adds at most one sampled vertex t ∈ S1 to
the set R(i)(v) for each v ∈ V (Line 7–Line 11), so each output set R1,out(v) = R(k)(v) ⊆ S1 and has size
|R1,out(v)| ≤ k ≤ O(log n).

In each iteration, the Dijkstra instances at Line 4 take time |S(i)| · O(m + n log n) ≤ Õ(mn1/3). Then, to
compute T (i)(v) ⊆ S(i) at Line 6 for each v ∈ V , we check for every s ∈ S(i) whether s ∈ T (i)(v), by simply going
over all t ∈ R(i−1)(v) and checking the condition 2d(v, s) + d(s, t) < 2d(v, t) + d(t, s). Note that all four terms in
this inequality have already been computed by the in- and out-Dijkstras since s ∈ S(i) and t ∈ S(1) ∪ · · · ∪S(i−1).
So T (i)(v) can be computed in time O(|S(i)| · |R(i−1)(v)|) = O((n1/3/ log n) · log n) = O(n1/3) for each v ∈ V .
Thus each iteration runs in time O(mn1/3) time and over all k = O(log n) iterations, Algorithm 4 runs in total
time Õ(mn1/3).

Now we prove the key Lemma 6.5, which states that Algorithm 4 guarantees B
(2)
out(v) and B

(2)
in (v) to have

small size with high probability.

Proof. [Proof of Lemma 6.5] The proof more or less follows from Section 6 in [CL21]. For purpose of the proof,
we define the sets

Bi(v) = {u ∈ V | 2d(v, u) + d(u, r) < 2d(v, r) + d(r, u) ∀r ∈ R(i)(v)}.

Then note that by definition B
(2)
out(v) = {u ∈ V | 2d(v, u) + d(u, r) < 2d(v, r) + d(r, u) ∀r ∈ R1,out(v)} = Bk(v).

We want to show that

Pr
[
|Bk(v)| > n2/3 log n

]
≤ 1

n2
.

We first show that if |Bi(v)| > n2/3 log n, then

E
[
|Bi(v)|

∣∣∣ |Bi−1(v)|
]
≤ 3

4
|Bi−1(v)|.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4659

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

By symmetry 5 of the condition 2d(v, u) + d(u, s) < 2d(v, s) + d(s, u) with respect to u ∈ Bi−1(v) and
s ∈ S(i) ∩ Bi(v), for any pair of vertices u, u′ ∈ Bi−1(v), either u can eliminate u′ or u′ can eliminate u. Thus
given a random s ∈ S(i) ∩Bi(v), on expectation s can eliminate half of the vertices in Bi−1(v). So conditioned on
the event that S(i)∩Bi(v) ̸= ∅, we have the expected size of Bi(v) is at most half the size of Bi−1(v). Specifically
we have

E
[
|Bi(v)|

∣∣∣S(i) ∩Bi(v) ̸= ∅
]
≤ 1

2
|Bi−1(v)|.

Now since |S(i)| = 10n1/3/ log n is a uniform random sample, we can compute Pr[S(i) ∩Bi(v) = ∅] as

Pr
[
S(i) ∩Bi(v) = ∅

]
=

(
1− |Bi(v)

n

)10n1/3/ logn

≈ exp

(
−|Bi(v)| · 10n1/3

n log n

)

≤
(
1

4

) |Bi(v)|
n2/3 log n

≤ 1

4
.

Thus we have

E
[
|Bi(v)|

∣∣∣ |Bi−1(v)|
]
= E

[
|Bi(v)|

∣∣∣ |Bi−1(v)|, S(i) ∩Bi(v) ̸= ∅
]
· Pr

[
S(i) ∩Bi(v) ̸= ∅

]
+ E

[
|Bi(v)|

∣∣∣ |Bi−1(v)|, S(i) ∩Bi(v) = ∅
]
· Pr

[
S(i) ∩Bi(v) = ∅

]
≤ 1

2
|Bi−1(v)|+

1

4
|Bi−1(v)| =

3

4
|Bi−1(v)|

as desired.
Now we can easily finish the proof by applying Markov’s inequality.

Pr
[
|Bk(v)| > n2/3 log n

]
≤ E[|Bk(v)]

n2/3 log n
≤

(
3
4

)k
n

(n2/3 log n)
≤

(
3

4

)k

n1/3 ≤ 1

n2
.

Proposition 6.1. Phase II of Algorithm 3 runs in Õ(mn1/3) total time.

Proof. Follows from Observation 6.9 and Corollary 6.8.

6.3 New lemmas for 4-approximation In this section we describe our new structural lemmas that are useful
for 4-approximation.

We start with the following Lemma 6.10, which naturally extends the 2-approximation lemma (Lemma 6.3)
for B

(2)
in (v) from one layer to two layers by exploiting the second sample set S2.

Lemma 6.10. Let u, v ∈ V (u ̸= v) and r2 ∈ S2. Suppose

2d(r2, v) + d(u, r2) ≤ 2d(u, v) + d(r2, u).

Then, the girth estimate g′ obtained by the end of Phase II of Algorithm 3 satisfies g′ ≤ 4d(u⇋ v).

Proof. Apply Lemma 3.1 (with edge direction reversed) to u, v, r2, and obtain

d(r2 ⇋ u) ≤ 2d(u⇋ v).

If u /∈ B
(2)
out(r2), then by Lemma 6.3 there exists r1 ∈ R1,out(r2) ⊆ S1 such that

d(r1 ⇋ u) ≤ 2d(u⇋ r2) ≤ 4d(u⇋ v).

5For more details, refer to the proof of Lemma 3.3 in [CL21]

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4660

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

This implies g′ ≤ 4d(u⇋ v) due to the update at Line 5 in Phase I of Algorithm 3 for r1 ∈ S1.6

Similarly, if u /∈ B
(2)
in (r2), then we also have g′ ≤ 4d(u⇋ v).

It remains to consider the case where u ∈ B
(2)
in (r2)∩B(2)

out(r2). In this case, Line 10 of Algorithm 3 updates g′
with d(r2 ⇋ u) ≤ 2d(u⇋ v) (here we need to assume u ̸= r2; the u = r2 case is already covered by Corollary 6.4).

Hence, we always have g′ ≤ 4d(u⇋ v).

In light of Lemma 6.10, a natural attempt for a 4-approximation algorithm is to imimate Phase II and focus on
for each v ∈ V the pruned vertex set {u ∈ V : 2d(r2, v) + d(u, r2) > 2d(u, v) + d(r2, u) for all r2 ∈ R(v)} for
some suitably defined R(v) ⊆ S2. As mentioned in the technical overview, this attempt would require distance
information for all r2 ∈ S2, which is infeasible to compute efficiently enough due to the large size |S2| = O(n2/3).
Thus, we need to use more structural lemmas for our algorithm, described as follows.

First, we generalize the key observation (Lemma 3.1) of [CL21] to the following Lemma 6.11. Note that
Lemma 3.1 corresponds to the k = 2 case of Lemma 6.11. See Fig. 1 (the same figure as Lemma 3.1) for an
illustration.

Lemma 6.11. (Generalized key observation) For any k ≥ 1 and vertices u, v, r, if

k · d(v, r) + d(r, u) ≤ k · d(v, u) + (k − 1) · d(u, r),

then
d(r ⇋ u) ≤ k · d(u⇋ v).

Proof. Note that by triangle inequality, we have d(u, v) ≥ d(u, r)− d(v, r), so

k · d(v, u) + k · d(u, v) ≥ k · d(v, u) + k · d(u, r)− k · d(v, r)
≥

(
k · d(v, r) + d(r, u)− (k − 1) · d(u, r)

)
+ k · d(u, r)− k · d(v, r)

= d(r, u) + d(u, r).

Lemma 6.11 inspires the following definition of B(4)
out(v) and a 4-approximation lemma (Corollary 6.13), which are

analogous to B
(2)
out(v) (Definition 6.2) and the 2-approximation lemma (Lemma 6.3).

Definition 6.12. (B(4)
out(v)) For v ∈ V , given R1,out(v) ⊆ V , we define vertex subsets

B
(4)
out(v) = {u ∈ V : 4d(v, r1) + d(r1, u) > 4d(v, u) + 3d(u, r1) for all r1 ∈ R1,out(v)}.

Corollary 6.13. (4-approximation) If u /∈ B
(4)
out(v), then there exists r1 ∈ R1,out(v) such that d(r1 ⇋ u) ≤

4d(u⇋ v).

Proof. By Definition 6.12, since u /∈ B
(4)
out(v), there exists r1 ∈ R1,out(v) such that

4d(v, r1) + d(r1, u) ≤ 4d(v, u) + 3d(u, r1).

Then applying Lemma 6.11 with k = 4 to u, v, r1, we have d(r1 ⇋ u) ≤ 4d(u⇋ v).

We also have the following relationship between B
(4)
out(v) and B

(2)
out(v).

Lemma 6.14. For all v ∈ V , B(4)
out(v) ⊆ B

(2)
out(v).

As a consequence, the algorithm of Lemma 6.6 for computing B
(2)
out(v) can also compute B

(4)
out(v) in the same

running time.

6This argument requires r1 ̸= u. This can be ensured by assuming u /∈ S1 without loss of generality: if u ∈ S1, then Phase I of
Algorithm 3 will update g′ using d(u⇋ v).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4661

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Proof. If u ∈ B
(4)
out(v), then by Definition 6.12 for all r1 ∈ R1,out(v),

2d(v, r1) + d(r1, u) > 4d(v, u) + 3d(u, r1)− 2d(v, r1)

= 2d(v, u) + d(u, r1) + 2
(
d(v, u) + d(u, r1)− d(v, r1)

)
≥ 2d(v, u) + d(u, r1).

So u ∈ B
(2)
out(v) by Definition 6.2.

Now we state and prove our main novel technical lemma, which is a key ingredient of our 4-approximation
algorithm.

Lemma 6.15. (4-Approximation Filtering Lemma) Consider vertices r2, v, u ∈ V such that v ∈ B
(4)
out(r2)

and u ̸∈ B
(2)
out(r2). Then there exists r1 ∈ R1,out(r2) such that d(v ⇋ r1) ≤ 4d(v ⇋ u).

v ∈ B
(4)
out(r2)

u ̸∈ B
(2)
out(r2)

r2

r1 ∈ R1,out(r2)

long

short

Figure 3: Illustration of the relationship between the vertices involved in Lemma 6.15. The two bold black cycle
is relatively short and the dashed cycle is relatively long, the goal is to approximate the red cycle using the cycle
highlighted green. As labeled, v ∈ B

(4)
out(r2) meaning that v and r2 are in a short cycle, u ̸∈ B

(2)
out(r2) meaning

that u and r2 are in a relatively long cycle. Then we can find some r1 in the set of eliminators for r2 such that
the cycle passing through v and r1 (highlighted green) approximate the red cycle passing through v and u.

Proof. Since u ̸∈ B
(2)
out(r2), by Definition 6.2 there exists r1 ∈ R1,out(r2) such that

(6.13) 2d(r2, u) + d(u, r1) ≥ 2d(r2, r1) + d(r1, u).

Since v ∈ B
(4)
out(r2) and r1 ∈ R1,out(r2), by Definition 6.12 we have

(6.14) 4d(r2, r1) + d(r1, v) > 4d(r2, v) + 3d(v, r1).

Adding Eq. (6.13) multiplied by 2 with Eq. (6.14), and cancelling 4d(r2, r1) on both sides, we get

4d(r2, u) + 2d(u, r1) + d(r1, v) > 2d(r1, u) + 4d(r2, v) + 3d(v, r1).

Combining with 4d(r2, v) + 4d(v, u) ≥ 4d(r2, u) (triangle inequality), this implies

4d(v, u) + 2d(u, r1) + d(r1, v) > 2d(r1, u) + 3d(v, r1).

Adding 4d(u, v) to both sides gives

4d(u⇋ v) + 2d(u, r1) + d(r1, v) >
(
2d(r1, u) + 2d(u, v)

)
+

(
2d(u, v) + 2d(v, r1)

)
+ d(v, r1)

≥ 2d(r1, v) + 2d(u, r1) + d(v, r1),

which immediately simplifies to

4d(u⇋ v) > d(r1, v) + d(v, r1) = d(v ⇋ r1).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4662

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

6.4 Phase III Now we are ready to describe Phase III, the most technical part of our Algorithm 3. It has a
similar structure as Phase II: we first compute eliminators R2,in(v) ⊆ S2 of size |R2,in(v)| = O(log n) for all v ∈ V ,
and then use these eliminators to define pruned vertex sets B̃′(v) (which is a subset of B′(v) ∪ {v} which we will
define shortly) to search for short cycles. In light of the 4-approximation filtering lemma (Lemma 6.15), we will
ensure the eliminators satisfy the following property (it will be later shown in Observation 6.24):

(6.15) For every v ∈ V and r2 ∈ R2,in(v), we have v ∈ B
(4)
out(r2).

Again, we defer the algorithm for computing the eliminators R2,in(v) to the end of this subsection.
We first make the following technical definition of pruned vertex sets B′(v), which is directly motivated by

the structural lemmas from Section 6.3.

Definition 6.16. (B′(v)) For v ∈ V , let B′(v) denote the set of vertices s ∈ V that satisfy all the following
conditions:

1. v ∈ B
(4)
out(s), and

2. s ∈ B
(2)
out(r2) for all r2 ∈ R2,in(v), and

3. 2d(s, v) + d(r2, s) < 2d(r2, v) + d(s, r2) for all r2 ∈ R2,in(v). (where d is defined in Lemma 6.17)

In this definition, condition 1 is motivated by the 4-approximation lemma (Corollary 6.13), condition 2 is motivated
by our 4-approximation filtering lemma (Lemma 6.15) and Eq. (6.15), and condition 3 is motivated by Lemma 6.10.
For technical reason, condition 3 involves a certain distance underestimate that is easier to compute, defined as
follows (readers are encouraged to think of the underestimate as the original distance, and skip this definition at
first read):

Lemma 6.17. (Under-estimate of d(u, r2)) For all u ∈ V and r2 ∈ V , define d(u, r2) as follows:

• Case u ∈ B
(2)
in (r2):

Let d(u, r2) := d(u, r2).

• Case u /∈ B
(2)
in (r2):

Let

(6.16) d(u, r2) :=
1

2
min

r1∈R1,in(r2)
(2d(r1, r2) + d(u, r1)− d(r1, u)).

Then, d(u, r2) ≤ d(u, r2) holds.

Proof. In order to prove d(u, r2) ≤ d(u, r2), it suffices to focus on the second case, u /∈ B
(2)
in (r2). By definition of

B
(2)
in (r2) (Definition 6.2), there exists r1 ∈ R1,in(r2) such that

2d(r1, r2) + d(u, r1) ≤ 2d(u, r2) + d(r1, u).

This immediately implies d(u, r2) as defined in Eq. (6.16) satisfies 2d(u, r2) ≤ 2d(u, r2).

The following key lemma (analogous to Lemma 6.5 from Phase II) bounds the size of B′(v).

Lemma 6.18. (size of B′(v)) With high probability over the random samples S1, S2 ⊆ V , we have |B′(v)| ≤
Õ(n1/3) for all v ∈ V .

Intuitively, this is due to the symmetry of the elimination rule (Condition 3 in Definition 6.16 of B′(v)), and
because the sample size is |S2| = O(n2/3). We will prove Lemma 6.18 later after describing the algorithm
computing eliminators R2,in(v).

Our actual algorithm performs a modified in-Dijkstra from every v ∈ V on the induced subgraph G[B̃′(v)]
(Line 13), where B̃′(v) is a slight variant of B′(v), which we shall define shortly. The reason for not using B′(v)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4663

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

is because our modified in-Dijkstra algorithm does not know the true distance d(s, v) needed for checking the
condition 1 and 3 in the definition of B′(v).7 Instead, we use the current distance found by the in-Dijkstra to
replace d(s, v). The formal definition is as follows (again, readers are encouraged to skip this definition at first
read, and think of B̃′(v) as the same as B′(v) for intuition):

Definition 6.19. (Modified in-Dijkstra and B̃′(v)) For v ∈ V , consider the following modified in-Dijkstra
algorithm starting from v on graph G, where we let D[u] denote the length of the shortest path from u to v found
by this in-Dijkstra.

The modification is that whenever we pop a vertex s ̸= v from the heap, we relax the in-neighbors of s only if
s satisfies all the following three conditions:

1. 4d(s, r1) + d(r1, v) > 4D[s] + 3d(v, r1) for all r1 ∈ R1,out(s), and

2. s ∈ B
(2)
out(r2) for all r2 ∈ R2,in(v), and

3. 2D[s] + d(r2, s) < 2d(r2, v) + d(s, r2) for all r2 ∈ R2,in(v).

Let B̃′(v) denote the set of vertices s that are popped out from the heap and satisfy all the three conditions
above, and additionally we also let v ∈ B̃′(v). (Note that the source vertex v always relaxes all its in-neighbors in
the beginning of in-Dijkstra)

Observation 6.20. B̃′(v) ⊆ B′(v) ∪ {v} for all v ∈ V .

Proof. Note that the three conditions in Definition 6.19 are the same as the three conditions in Definition 6.16
except that the terms d(s, v) in condition 1 and 3 are replaced by D[s]. Since the distance D[s] found by the
in-Dijkstra from v must be greater than or equal to the true distance d(s, v), we see that both condition 1 and 3
are strengthened. Hence, B̃′(v) ⊆ B′(v).

Phase III of our algorithm (Line 13) is implemented by the modified in-Dijkstra described in Definition 6.19. It
remains to show that we can implement it efficiently. In particular, we need to show that checking the three
conditions in Definition 6.19 is efficient. We first show that the underestimate d(u, r2) from Lemma 6.17 can be
computed efficiently.

Lemma 6.21. (Compute d(u, r2)) For r2 ∈ V , assume we know B
(2)
in (r2) and d(x, r2) for all x ∈ B

(2)
in (r2). Then

d(u, r2) can then be computed for any u ∈ V in O(log n) time.

Proof. According to the definition in Lemma 6.17, we first check whether u ∈ B
(2)
in (r2). In the first case where

u ∈ B
(2)
in (r2), the answer is d(u, r2), which we know by assumption. In the second case where u /∈ B

(2)
in (r2),

we need to compute Eq. (6.16) by going over all O(log n) many r1 ∈ R2,in(r2). The expression of Eq. (6.16)
only involves distances d(r1, ·) and d(·, r1) for r1 ∈ R1,in(r2) ⊆ S1, which are already computed in Phase I of
Algorithm 3. So we can compute the answer in O(log n) time.

Now we show B̃′(v) can be computed efficiently.

Lemma 6.22. The modified in-Dijkstra of Definition 6.19 computes B̃′(v) in Õ(mn · |B̃
′(v)|) time.

Proof. Suppose the modified in-Dijkstra pops vertex s from the heap.

• The condition 1 of Definition 6.19 can be checked in O(1) time because we already know d(r1, ·), d(·, r1) for
all r1 ∈ S1 from Phase I of Algorithm 3.

• The condition 2 can be checked in O(|R2,in(v)|) ≤ O(log n) time since we already computed B
(2)
out(r2) for all

r2 ∈ S2 in Phase II of Algorithm 3.

• For condition 3, we need to check 2D[s] + d(r2, s) < 2d(r2, v) + d(s, r2) for all r2 ∈ R2,in(v).

7Note that we introduced the under-estimate d(s, r2) in condition 3 of Definition 6.16 for the same reason.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4664

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

– Since the check for condition 2 has passed, we have s ∈ B
(2)
out(r2). So we know the value of d(r2, s) from

Phase II of Algorithm 3 (note that r2 ∈ S2).

– Since r2 ∈ R2,in(v), we have v ∈ B
(4)
out(r2) ⊆ B

(2)
out(r2) by Eq. (6.15). So we know the value of d(r2, v)

from Phase II of Algorithm 3.

– We can compute d(s, r2) in O(log n) time due to Lemma 6.21 and Phase II of Algorithm 3.

Hence, we can check whether s ∈ B̃′(v) in O(log2 n) time.

Now we are ready to prove that our Algorithm 3 achieves 4-approximation.

Theorem 6.23. (Correctness of Algorithm 3) Algorithm 3 returns g′ satisfying g ≤ g′ ≤ 4g, where g is
the girth of the input directed graph G.

Proof. Let C be the shortest cycle of G with length g. Consider an arbitrary vertex v on C. If v ∈ S1, then C is
found in Phase I of Algorithm 3 and hence g′ = g. If all vertices on C are contained in B̃′(v), then it is eventually
found at Line 14 in Algorithm 3, and g′ = g. Hence, in the following we assume v /∈ S1, and there is some vertex
u ∈ C that is not included in B̃′(v). We choose u to be the first ancestor of v on the cycle that is not in B̃′(v)
(in particular, u is a minimizer of d(u, v) among u ∈ C \ B̃′(v)). Note that u ̸= v because v ∈ B̃′(v) by definition.

Let x ∈ C denote the out-neighbor of u on the cycle C. By our definition of u, we know the entire shortest
path from x to v on C are contained in B̃′(v). Then, x must have relaxed its in-neighbor u during the modified
in-Dijkstra, which makes D[u] equal to the true distance d(u, v). The fact that u /∈ B̃′(v) then means some of
the three conditions in Definition 6.19 is violated for u, which then implies u /∈ B′(v), as these conditions are
equivalent to the three conditions in the definition of B′(v) (Definition 6.16) due to D[u] = d(u, v).

As u /∈ B′(v), we now divide into three cases depending on which condition in Definition 6.16 fails for u.

• Condition 1 fails, i.e., v /∈ B
(4)
out(u).

Then by Corollary 6.13, there exists r1 ∈ R1,out(u) such that 4d(u ⇋ v) ≥ d(r1 ⇋ v) ≥ g′ (due to the
update at Line 5 for r1 ∈ R1,out(u) ⊆ S1 during Phase I of Algorithm 3; note that v ̸= r1 since v /∈ S1).

• Condition 2 fails, i.e., u /∈ B
(2)
out(r2) for some r2 ∈ R2,in(v).

Since r2 ∈ R2,in(v), by Eq. (6.15) we have v ∈ B
(4)
out(r2). Then, by the 4-approximation filtering lemma

(Lemma 6.15), there exists r1 ∈ R1,out(r2) such that 4d(v ⇋ u) ≥ d(v ⇋ r1) ≥ g′ (due to the update at
Line 5 in Phase I of Algorithm 3).

• Condition 3 fails, and Conditions 1,2 hold. This is saying that there exists r2 ∈ R2,in(v) such that

(6.17) 2d(u, v) + d(r2, u) ≥ 2d(r2, v) + d(u, r2).

And, we have v ∈ B
(4)
out(u) (by Condition 1) and u ∈ B

(2)
out(r2) (by Condition 2).

We further divide into two cases:

– Case u ∈ B
(2)
in (r2):

In this case we have d(u, r2) = d(u, r2) by Lemma 6.17. So we apply Lemma 6.10 to Eq. (6.17) and
obtain g′ ≤ 4d(u⇋ v).

– Case u ̸∈ B
(2)
in (r2):

Plugging the definition d(u, r2) = minr1∈R1,in(r2)
1
2 (2d(r1, r2) + d(u, r1)− d(r1, u)) (from Lemma 6.17)

into Eq. (6.17), we obtain that there exists r1 ∈ R1,in(r2) such that

2d(u, v) + d(r2, u) ≥ 2d(r2, v) +
1

2
(2d(r1, r2) + d(u, r1)− d(r1, u)).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4665

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Multiplying both sides by 2, and then adding 4d(v, u)− 2d(r2, u) to both sides, we get

4d(u, v) + 4d(v, u) ≥ 4d(r2, v) + 2d(r1, r2) + d(u, r1)− d(r1, u) + 4d(v, u)− 2d(r2, u)

≥ 2d(r2, v) + 2d(r1, r2) + d(u, r1)− d(r1, u) + 2d(v, u)
(by triangle inequality d(r2, u) ≤ d(r2, v) + d(v, u))

≥ d(r2, v) + d(r1, r2) + d(u, r1) + d(v, u)
(by triangle inequality d(r1, u) ≤ d(r1, r2) + d(r2, v) + d(v, u))

≥ d(v ⇋ r1).

Hence, 4d(v ⇋ u) ≥ d(v ⇋ r1) ≥ g′ (due to the update at Line 5 in Phase I of Algorithm 3).

Hence we have established g′ ≤ 4d(v ⇋ u) in all three cases.

Computing eliminators. Finally, we describe how to compute the eliminators R2,in(v) ⊆ S2 (Line 11 of
Algorithm 3). The algorithm has a similar overall structure as the eliminator computation in Phase II (and
[CL21]) described earlier (Algorithm 4). The main idea is to exploit the symmetry in the definition of B′(v)
(Definition 6.16), but here it involves more conditions and we need to be slightly more careful to make sure the
running time is Õ(mn1/3). See the pseudocode of compute-eliminators-2(G,S2) in Algorithm 5, which takes
the uniform vertex sample S2 ⊆ V , and returns R2,in(v) ⊆ S2 for all v.

Algorithm 5: compute-eliminators-2(G,S2)

Input: The input graph G = (V,E), and S2 = {s1, s2, . . . , s|S2|} ⊆ V of size |S2| = O(n2/3) sampled
uniformly and independently (with replacement)

Output: The sets R2,in(v) ⊆ S2 of size O(log n) for every vertex v ∈ V

1 T (0)(v), R(0)(v)← ∅ for every v ∈ V
2 for i ∈ {1, . . . , k} where k = 10 log n do
3 S(i) ← the next 10n2/3/ log n samples from S2.
4 for s ∈ S(i) do
5 Compute B

(2)
out(s), B

(2)
in (s) and B

(4)
out(s), and distances d(s, v) for all v ∈ B

(2)
out(s), d(v, s) for all

v ∈ B
(2)
in (s), using Lemma 6.6

6 for v ∈ V do
7 T (i)(v)← {s ∈ S(i) | v ∈ B

(4)
out(s) and ∀t ∈ R(i−1)(v), s ∈ B

(2)
out(t) and

2d(s, v) + d(t, s) < 2d(t, v) + d(s, t)}, where d(·, ·) is defined in Lemma 6.17.
8 if T (i)(v) ̸= ∅ then
9 t← a random vertex t ∈ T (i)(v)

10 R(i)(v)← R(i−1)(v) ∪ {t}
11 else
12 R(i)(v)← R(i−1)(v)

13 return R2,in(v)← R(k)(v) for each v ∈ V

By inspecting Algorithm 5, we observe the following properties (analogous to Observation 6.9 for Algorithm 4
from Phase II).

Observation 6.24. Algorithm 5 runs in time Õ(mn1/3), and outputs sets R2,in(v) ⊆ S2 of size |R2,in(v)| =
O(log n) for all v ∈ V . Moreover, for every v ∈ V and s ∈ R2,in(v), we have v ∈ B

(4)
out(s).

Proof. First note that the total number of vertex samples required at Line 3 is |S(1)⊎· · ·⊎S(k)| = k·10n2/3/ log n =
100n2/3 ≤ |S2|. In each iteration 1 ≤ i ≤ k, the algorithm only adds at most one sampled vertex t ∈ S2 to the
set R(i)(v) for each v ∈ V , so each output set R2,in(v) = R(k)(v) ⊆ S2 and has size |R2,in(v)| ≤ k ≤ O(log n).

To prove the moreover part, note that by definition of T (i)(v) at Line 7, v ∈ B
(4)
out(s) holds for all s ∈ T (i)(v)

and thus for all s ∈ R2,in(v).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4666

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

It remains to bound the running time. In each iteration, Line 5 takes time Õ(mn · n
2/3) for each s ∈ S(i) by

Lemma 6.6 (recall that |B(2)
out(s)|, |B

(2)
in (s)|, |B(4)

out(s)| ≤ Õ(n2/3) by Lemma 6.5 and Lemma 6.14), which sums to
Õ(n2/3) · Õ(mn · n

2/3) = Õ(mn1/3) in total.
To implement Line 7 efficiently, for any given v ∈ V we want to quickly go over all s ∈ S(i) such that

v ∈ B
(4)
out(s). This can be achieved by a preprocessing stage that iterates over s ∈ S(i) and inserts s to the v-th

bucket for every v ∈ B
(4)
out(s), in Õ(n2/3 · n2/3) = Õ(n4/3) total time. Then, we show that all four terms in the

inequality at Line 7 are known from the computation at Line 5 or can be computed efficiently from there: d(s, v)

is known because v ∈ B
(4)
out(s), s ∈ S(i), d(t, s) is known because s ∈ B

(2)
out(t) and t ∈ S2, d(t, v) is known because

v ∈ B
(4)
out(t) and t ∈ S2, and d(s, t) can be computed by Lemma 6.21 in O(log n) time because we know B

(2)
in (t)

and d(x, t) for all x ∈ B
(2)
in (t).

Thus overall k = O(log n) iterations, Algorithm 5 takes Õ(mn1/3) time.

Now we prove the key Lemma 6.18, which states that Algorithm 5 guarantees B′(v) to have small size with
high probability.

Proof. [Proof of Lemma 6.18]
The proof is based on symmetry of elimination, which is similar to the earlier proof of Lemma 6.5.
Fix the v ∈ V from Definition 6.16. Due to Item 1 of Definition 6.16, here we only need to consider

vertices from Cv := {s ∈ V : v ∈ B
(4)
out(s)}. We make the following definition motivated by Item 2 and Item 3 of

Definition 6.16: for two vertices s, t ∈ Cv, we say t eliminates s, if s /∈ B
(2)
out(t) or 2d(s, v)+d(t, s) ≥ 2d(t, v)+d(s, t).

Then, observe that B′(v) consists of exactly the vertices s ∈ Cv that are not eliminated by any vertex in R2,in(v).
Now we show that for any s, t ∈ Cv, either s eliminates t or t eliminates s. Suppose to the contrary that s

does not eliminate t, and t does not eliminate s. Then we have inequalities

2d(s, v) + d(t, s) < 2d(t, v) + d(s, t) ≤ 2d(t, v) + d(s, t)

and
2d(t, v) + d(s, t) < 2d(s, v) + d(t, s) ≤ 2d(s, v) + d(t, s),

which are contradicting each other.
Having proved this symmetry property, the rest of the arguments is the same as in Lemma 6.5, and we omit

it here.

Finally, we can state the time complexity of the entire Algorithm 3.

Theorem 6.25. (Running time of Algorithm 3) Algorithm 3 runs in Õ(mn1/3) time with high probability.

Proof. The running time of Phase I is Õ(mn1/3) by Observation 6.1. The running time of Phase II is Õ(mn1/3)
by Proposition 6.1.

For Phase III, Line 11 (computing eliminators R2,in(v) for all v ∈ V) takes Õ(mn1/3) time by Observation 6.24.
Then, the for loop takes Õ(mn · |B̃

′(v)|) time for each v ∈ V . Since B̃′(v) ⊆ B′(v) ∪ {v} (by Observation 6.20)
and |B′(v)| ≤ Õ(n1/3) (by Lemma 6.18), the total time for this loop is n · Õ(mn · n

1/3) = Õ(mn1/3).
Thus, the overall running time of Algorithm 3 is Õ(mn1/3).

7 Conclusion
We conclude with a few open questions:

1. Can we compute 3-roundtrip spanner in Õ(n2) time (or even faster)?

2. Can we compute (2k − 1)-approximate roundtrip emulators faster on sparse graphs?

3. For the O(mn1/k)-time roundtrip spanner (or directed girth) algorithm of [CLRS20], can we improve its
O(k log k) approximation ratio to O(k)? Can our technique be combined with the divide-and-conquer
techniques of [PRSTV18; CLRS20; DV20]?

4. Can we show fine-grained lower bounds for the task of computing roundtrip spanners? In particular, can
we rule out Õ(m)-time algorithms for computing (2k − 1)-roundtrip spanners of sparsity O(n1+1/k)?

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4667

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

References
[AB17] Amir Abboud and Greg Bodwin. “The 4/3 Additive Spanner Exponent Is Tight”. J. ACM 64.4

(Sept. 2017). issn: 0004-5411. doi: 10.1145/3088511. url: https://doi.org/10.1145/3088511.

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. “Fast Estimation of Diameter and Shortest
Paths (Without Matrix Multiplication)”. SIAM Journal on Computing 28.4 (1999), pp. 1167–1181.
doi: 10.1137/S0097539796303421. eprint: https://doi.org/10.1137/S0097539796303421. url:
https://doi.org/10.1137/S0097539796303421.

[ADDJS93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. “On Sparse
Spanners of Weighted Graphs”. Discret. Comput. Geom. 9 (1993), pp. 81–100.

[BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. “Additive Spanners and
(α,β)-Spanners”. ACM Trans. Algorithms 7.1 (Dec. 2010). issn: 1549-6325. doi: 10.1145/1868237.
1868242. url: https://doi.org/10.1145/1868237.1868242.

[BS07] Surender Baswana and Sandeep Sen. “A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs”. Random Struct. Algorithms 30.4 (2007), pp. 532–563.

[BV15] Gregory Bodwin and Virginia Vassilevska Williams. “Very Sparse Additive Spanners and Emulators”.
In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science. ITCS ’15.
Rehovot, Israel: Association for Computing Machinery, 2015, pp. 377–382. isbn: 9781450333337.
doi: 10.1145/2688073.2688103. url: https://doi.org/10.1145/2688073.2688103.

[BV16] Greg Bodwin and Virginia Vassilevska Williams. “Better Distance Preservers and Additive Span-
ners”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SODA ’16. Arlington, Virginia: Society for Industrial and Applied Mathematics, 2016,
pp. 855–872. isbn: 9781611974331.

[CDG20] Ruoxu Cen, Ran Duan, and Yong Gu. “Roundtrip Spanners with (2k-1) Stretch”. In: 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, 24:1–24:11. doi: 10.4230/LIPIcs.ICALP.2020.24. url: https:
//doi.org/10.4230/LIPIcs.ICALP.2020.24.

[CL21] Shiri Chechik and Gur Lifshitz. “Optimal Girth Approximation for Dense Directed Graphs”. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021. SIAM, 2021, pp. 290–300. doi: 10.1137/1.9781611976465.19.
url: https://doi.org/10.1137/1.9781611976465.19.

[CLRS20] Shiri Chechik, Yang P. Liu, Omer Rotem, and Aaron Sidford. “Constant girth approximation
for directed graphs in subquadratic time”. In: Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM,
2020, pp. 1010–1023. doi: 10.1145/3357713.3384330. url: https://doi.org/10.1145/3357713.
3384330.

[CW04] Lenore Cowen and Christopher G. Wagner. “Compact roundtrip routing in directed networks”.
J. Algorithms 50.1 (2004), pp. 79–95. doi: 10 . 1016 / j . jalgor . 2003 . 08 . 001. url: https :
//doi.org/10.1016/j.jalgor.2003.08.001.

[DHZ96] Dorit Dor, Shay Halperin, and Uri Zwick. “All Pairs Almost Shortest Paths”. In: vol. 29. Aug. 1996,
pp. 452–461. doi: 10.1137/S0097539797327908.

[DV20] Mina Dalirrooyfard and Virginia Vassilevska Williams. “Conditionally Optimal Approximation
Algorithms for the Girth of a Directed Graph”. In: 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 35:1–35:20.
doi: 10.4230/LIPIcs.ICALP.2020.35. url: https://doi.org/10.4230/LIPIcs.ICALP.2020.35.

[HP18] Shang-En Huang and Seth Pettie. “Lower Bounds on Sparse Spanners, Emulators, and Diameter-
reducing shortcuts”. In: Proceedings of the 16th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT). 2018.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4668

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1145/3088511
https://doi.org/10.1145/3088511
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/1868237.1868242
https://doi.org/10.1145/2688073.2688103
https://doi.org/10.1145/2688073.2688103
https://doi.org/10.4230/LIPIcs.ICALP.2020.24
https://doi.org/10.4230/LIPIcs.ICALP.2020.24
https://doi.org/10.4230/LIPIcs.ICALP.2020.24
https://doi.org/10.1137/1.9781611976465.19
https://doi.org/10.1137/1.9781611976465.19
https://doi.org/10.1145/3357713.3384330
https://doi.org/10.1145/3357713.3384330
https://doi.org/10.1145/3357713.3384330
https://doi.org/10.1016/j.jalgor.2003.08.001
https://doi.org/10.1016/j.jalgor.2003.08.001
https://doi.org/10.1016/j.jalgor.2003.08.001
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.4230/LIPIcs.ICALP.2020.35
https://doi.org/10.4230/LIPIcs.ICALP.2020.35

[KP23] Shimon Kogan and Merav Parter. “New Additive Emulators”. In: 50th International Colloquium
on Automata, Languages, and Programming (ICALP 2023). Ed. by Kousha Etessami, Uriel Feige,
and Gabriele Puppis. Vol. 261. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 85:1–85:17. isbn: 978-3-95977-
278-5. doi: 10 . 4230 / LIPIcs . ICALP . 2023 . 85. url: https : / / drops . dagstuhl . de / opus /
volltexte/2023/18137.

[LVWX22] Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. “Better Lower Bounds for
Shortcut Sets and Additive Spanners via an Improved Alternation Product”. In: Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA). 2022, pp. 3311–3331.

[Pet09] Seth Pettie. “Low distortion spanners”. ACM Transactions on Algorithms (TALG) 6.1 (2009), pp. 1–
22.

[PRSTV18] Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.
“Approximating Cycles in Directed Graphs: Fast Algorithms for Girth and Roundtrip Spanners”. In:
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. SIAM, 2018, pp. 1374–1392. doi: 10.1137/1.
9781611975031.91. url: https://doi.org/10.1137/1.9781611975031.91.

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions of Approximate
Distance Oracles and Spanners”. In: Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings. Vol. 3580. Lecture Notes
in Computer Science. Springer, 2005, pp. 261–272. doi: 10.1007/11523468_22. url: https:
//doi.org/10.1007/11523468%5C_22.

[RTZ08] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Roundtrip spanners and roundtrip routing in directed
graphs”. ACM Trans. Algorithms 4.3 (2008), 29:1–29:17. doi: 10.1145/1367064.1367069. url:
https://doi.org/10.1145/1367064.1367069.

[TZ01] Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece. ACM, 2001,
pp. 183–192. doi: 10.1145/380752.380798. url: https://doi.org/10.1145/380752.380798.

[Woo06] David P. Woodruff. “Lower Bounds for Additive Spanners, Emulators, and More”. In: 2006 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06). 2006, pp. 389–398. doi:
10.1109/FOCS.2006.45.

[ZL18] Chun Jiang Zhu and Kam-yiu Lam. “Deterministic improved round-trip spanners”. Inf. Process.
Lett. 129 (2018), pp. 57–60. doi: 10.1016/j.ipl.2017.09.008. url: https://doi.org/10.1016/
j.ipl.2017.09.008.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited4669

D
ow

nl
oa

de
d

01
/0

9/
25

 to
 2

4.
14

7.
91

.1
39

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.4230/LIPIcs.ICALP.2023.85
https://drops.dagstuhl.de/opus/volltexte/2023/18137
https://drops.dagstuhl.de/opus/volltexte/2023/18137
https://doi.org/10.1137/1.9781611975031.91
https://doi.org/10.1137/1.9781611975031.91
https://doi.org/10.1137/1.9781611975031.91
https://doi.org/10.1007/11523468_22
https://doi.org/10.1007/11523468%5C_22
https://doi.org/10.1007/11523468%5C_22
https://doi.org/10.1145/1367064.1367069
https://doi.org/10.1145/1367064.1367069
https://doi.org/10.1145/380752.380798
https://doi.org/10.1145/380752.380798
https://doi.org/10.1109/FOCS.2006.45
https://doi.org/10.1016/j.ipl.2017.09.008
https://doi.org/10.1016/j.ipl.2017.09.008
https://doi.org/10.1016/j.ipl.2017.09.008

	Introduction
	Our Results
	Paper organization

	Preliminaries
	Technical Overview
	Previous Work
	Our Techniques

	3-Roundtrip Spanner
	Algorithm and stretch analysis
	Analysis of sparsity and running time

	(2k-1)-roundtrip emulator in nearly quadratic time
	Algorithm
	Analysis of sparsity and running time
	Stretch analysis

	4-Approximation of girth in (mn1/3) time
	Main Algorithm
	Phase I and II
	New lemmas for 4-approximation
	Phase III

	Conclusion

