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Abstract
Taxonomies play a crucial role in various applications by provid-
ing a structural representation of knowledge. The task of taxon-
omy expansion involves integrating emerging concepts into ex-
isting taxonomies by identifying appropriate parent concepts for
these new query concepts. Previous approaches typically relied
on self-supervised methods that generate annotation data from
existing taxonomies. However, these methods are less e�ective
when the existing taxonomy is small (fewer than 100 entities). In
this work, we introduce C���T���, a novel approach that lever-
ages large language models through code language prompts to
capture the taxonomic structure. Extensive experiments on �ve
real-world benchmarks from di�erent domains demonstrate that
C���T��� consistently achieves superior performance across all
evaluation metrics, signi�cantly outperforming previous state-of-
the-art methods. The code and data are available at https://github.
com/QingkaiZeng/CodeTaxo-Pub.
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1 Introduction
Taxonomy has a hierarchical structure that represents the hypernym-
hyponym relations or “is-A” relations between concepts or entities.
Researchers have been using relational knowledge to identify se-
mantic relevance for web search [15, 34], personalized recommenda-
tion [26, 36], and question answering [32]. Existing taxonomies are
constructed mainly by human experts or through crowd-sourcing,
but this manual approach is time-consuming, labor-intensive, and
often limited in knowledge coverage [5, 12]. As new entities con-
tinue to emerge, it becomes essential to keep these taxonomies up-
to-date by enriching them with these emerging entities. To address
the challenges of manual taxonomy construction and maintenance,
taxonomy expansion tasks have been developed to automatically
expand the existing taxonomies by integrating emerging entities
into the relational graph [12].

Recent works primarily contribute to taxonomy expansion fol-
lowing the discriminative method illustrated in Figure 1a. These
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(a) Discriminative Methods: A scoring function is trained to eval-
uate and select the best parent entity from the current taxonomy
for the query entity based on the scoring results [17, 21, 28].
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(b) Generative Methods: Prompting LLMs to generate the parent
entity from the current taxonomy based on the query entity.

Figure 1: Two Types of Methods for Taxonomy Expansion

methods extract hierarchical information from the existing taxon-
omy and employ various techniques to model the structural infor-
mation, such as local Egonet [21], mini-paths [35] and Ego-Tree [28].
As pre-trained language models (PLMs) that have enhanced the
performance of various text processing systems, PLMs are lever-
aged to encode entities’ textual descriptions (term and de�nition)
to enrich the semantic representation of entities and improve the
performance in taxonomy expansion tasks [17, 28, 29, 31].

The primary methodology adopted by many of the aforemen-
tioned methods involves learning hierarchical structural informa-
tion from annotations generated in a self-supervised manner based
on existing taxonomies. However, these methods often encounter
limitations when the existing taxonomies are small. In such sce-
narios, the limited size of the taxonomy fails to generate su�cient
self-supervised annotation data, which is crucial for trainingmodels
to e�ectively learn the hierarchical structure necessary for taxon-
omy expansion.

Generative Large Language Models (LLMs) such as GPT-4 [1]
and Llama family [8, 27] have recently demonstrated remarkable
capabilities in text comprehension and generation, making them
highly e�ective for tasks aimed at generating structural knowl-
edge [4, 23, 24, 33]. Moreover, increasing the number of parameters
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...

# creating query node

organic_chemistry = Entity(name='...', 
                           description='...',
                           parent=None, 
                           child=[])

# finding the parent of the query node

# then generating a comment to explain
why it is the parent of the given query
node (optional)

science

chemistry

class Entity:
    def __init__(self, name: str, description: str, 
                parent: str, child: List['Entity']):

<Other Selected Entity Instances>

chemistry = Entity(name='chemistry', 
   description='chemistry is ... ', 
   parent='science', 

           child=['thermochemistry',...,])

<Other Selected Entity Instances>

thermo-
chemistry

electro-
chemistry

organic
chemistry

organic_chemistry.add_parent(chemistry)

physics biology

Term: 

Definition: 

SimCSE

Top n%
Similarity # creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# Finding the parent of query node

thermochemistry.add_parent(chemistry)

# creating query node

thermochemistry = Entity(name='thermochemistry', 
                         description='...',
                         parent=None, child=[])

# finding the parent of query node

thermochemistry.add_parent(chemistry)
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Output Format 
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& 
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Figure 2: The overview of the framework for C���T���: C���T��� reformulates the task of integrating a query entity @ into
an existing taxonomy T0 as a code completion task using code-based prompts for LLMs.

in LLMs signi�cantly enhances their generalization capabilities,
surpassing smaller pre-trained models, and enabling superior per-
formance in few-shot or zero-shot settings. Consequently, even in
scenarios where existing taxonomies cannot provide su�cient self-
supervised annotation data for training, LLMs can still e�ectively
perform the task by leveraging the extensive knowledge embed-
ded within their parameters, acquired from large-scale pre-training
corpora. In Figure 1b, we illustrate the pipeline to how generative
methods are applied to the taxonomy expansion task.

However, two key challenges arise when employing LLMs for
taxonomy expansion tasks. First, unlike traditional NLP tasks such
as question answering and machine translation, which naturally
lend themselves to text-to-text generation, the taxonomic structure
required for this task is often di�cult to represent using natural lan-
guage. In particular, the taxonomic structure to be generated must
be serialized into text, which involves “�attening” the taxonomy
into a sequence of parent-child entity pairs [18]. However, LLMs
are primarily pre-trained on unstructured text, making these serial-
ized structured outputs considerably di�erent from the majority of
their pre-training data. Moreover, in natural language, semantically
related words are usually located within a relatively small range.
In contrast, when representing a taxonomy as a linear sequence,
entities that are conceptually related may be positioned at greater
distances from each other. Second, for large-scale taxonomies, in-
cluding every entity from the existing taxonomy within the prompt
is impractical due to the limited contextual window size of current
LLMs and the associated computational costs. Even if we could
incorporate all these thousands of entities directly in the prompts,
it would result in structural information loss, thereby reducing the
clarity with which LLMs can distinguish entity-speci�c details.

To address these two challenges, in this work, we proposedC����
T���, a novel approach to taxonomy expansion that leverages code
languages as prompts. Recent progress in large language models of
code (Code-LLMs) [20] has demonstrated the potential to employ
Code-LLMs for di�erent structure prediction tasks [4, 13, 14, 18, 30].
The core philosophy of these approaches is that code language can
more e�ectively represent structural data compared to natural lan-
guage. In C���T���, we reformulate the taxonomy expansion task
as a code completion problem to exploit the bene�ts of code lan-
guages. We �rst de�ne a base class Entity, which encapsulates the

surface name and de�nition of entities to represent their semantic
information. Additionally, Entity class includes references to the
parent entity and a list of child entities, thereby capturing the tax-
onomic relations among the entities. Two methods for modifying
the taxonomic relations between entities are also included in the
Entity class. To represent the existing taxonomy that we aim to
expand, we instantiate the Entity class for each entity within the
current taxonomy. To address the limitation posed by the contex-
tual window size of LLMs, which cannot accommodate the entire
taxonomy, we selectively include only entities that exhibit high
similarity to the query entity in the prompt. For encoding the tex-
tual descriptions of entities, we utilize SimCSE [10], measuring
similarity through cosine similarity.

The e�ectiveness of C���T��� has been validated through ex-
tensive experiments on two sets of small-scale sub-taxonomies
fromWordNet [3], Graphine [16], and three large-scale taxonomies
from SemEval-2016 [5]. The experimental result demonstrates that
C���T��� in one-shot setting outperforms all self-supervised base-
line methods, despite these baselines being well-trained on self-
supervised annotation data derived from large-scale taxonomies
in SemEval-2016. Speci�cally, our C���T��� in the one-shot set-
ting shows relative improvements in accuracy of 10.26%, 8.89%,
and 9.21% on SemEval-Sci, SemEval-Env, and SemEval-Food, re-
spectively. Additionally, we evaluated C���T��� using various
open-source LLMs, revealing several interesting observations dis-
cussed in this work.

In summary, this study makes the following contributions:

• We introduce C���T���, an innovative in-context learning
method that utilizes code language prompts to represent
taxonomic relationships between entities, thereby improving
the e�ectiveness of taxonomy expansion.

• We develop a similarity-based �lter, which employs a small
pre-trained model to encode the textual descriptions of enti-
ties, ensuring that only highly relevant entities are included
in the prompt in relation to the query entity.

• Extensive experiments demonstrate that C���T��� signif-
icantly enhances the performance of taxonomy expansion
across two sets of small-scale sub-taxonomies and three
large-scale taxonomies.
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Task Instruction

Taxonomy Code Representation

Few-shot Demo.

Code Completion Prompt & Output

Complete the next line of code according to the comments and the given code
snippet. You need to find the parent of the query node in the given current
taxonomy and use the add_parent function.                                                        (a)

The parent of the given query node always exists in the given current taxonomy,
so do NOT generate a node that is NOT in the given current taxonomy. Note that
you only need to complete the next ONE line of code a one-line explanation to
explain why it is the parent node of the given query node, DO NOT generate any
additional content.                                                                                               (b)

Demo.

 = Entity(name=      , description=      ,  parent=None, child=[])

# creating query node

# Finding the parent of query node

<Entity class defined in Section 3.2>

.add_parent(   )

   = Entity(name=      , description=      , parent=     , child=     )

where the textual description of     is                           ,      is the parent of    ,
and                                      is the list of children of    .

:FOR EACH             

Figure 3: Prompt Overview of C���T���
Scope and Limitation. This study represents an initial e�ort

to utilize LLMs for taxonomy expansion. Our primary objective
is to identify an e�ective in-context learning strategy to leverage
the potential of LLMs. We acknowledge that the performance and
scalability of C���T��� are constrained by the inherent knowledge
of LLMs and the limitations of their context window size. While this
paper does not address the challenges of expanding LLM knowledge
or increasing context window size, we hope that our work will
inspire further research in these areas.

2 Problem De�nition
In this section, we present the key concepts used in this paper and
formally de�ne the taxonomy expansion problem:

De�nition 2.1 (Taxonomy). We follow the de�nition of taxonomy
in [11]. A taxonomy T = (E,H) is a tree-like structure, where
each entity 4 2 E is a conceptual entity, and each edge ⌘ 2 H

represents the hypernymy-hyponymy relation between the two
entities connected by it. Each entity 4 is associated with a set of
textual description X4 = {- C

4 ,-
3
4 }, where - C

4 is its term and -3
4

is its de�nition. Meanwhile, each directed edge ⌘ = h?, 2i 2 H

represents a parent-child relationship that points to a child entity 2
from its most exact hypernymy entity ? .

Since the taxonomies are naturally incomplete and always chang-
ing as emerging entities are introduced. Adding these emerging
entities to the existing taxonomy is essential to keep it up-to-date.
This study focuses on how to expand taxonomies with given emerg-
ing entities. We de�ne the task of taxonomy expansion as follows:

De�nition 2.2 (Taxonomy Expansion). Given a set of emerging
conceptual entities E0, taxonomy expansion aims to incorporate
these entities into an existing seed taxonomy T0 = (E0,H0). The

from typing import List

class Entity:
    def __init__(
                self, 
                name: str, 
                description: str, 
                parent: 'Entity', 
                child: List['Entity']
    ):
        self.name = name
        self.description = description
        self.parent = parent
        self.child = child

    def add_parent(self, parent: 'Entity'):
        self.parent = parent
        parent.add_child(self)

    def add_child(self, child: 'Entity'):
        self.child.append(child)

Figure 4: Python code in C���T��� de�ning a Entity class
with two methods for managing parent-child relations.

goal is to expand T0 to be a larger taxonomy T = (E0 [E
0,H 0

). To
insert each query entity @ 2 E

0, we identify an appropriate anchor
entity 0 2 E0, and introduce a new edge h@,0i. Consequently, the
updated edge set isH 0 = H0[@2E0 {h@,0i}.

3 Methodology
In this section, we provide a comprehensive overview of our pro-
posed C���T��� designed for addressing the taxonomy expansion
task. Speci�cally, C���T��� expands the existing taxonomy by
prompting LLMs with code language. The pipeline of C���T���
is shown in Figure 2. Our C���T��� consists of three parts: Task
Instruction, Taxonomy Code Representation, and Few-shot Demon-
strations Construction.

3.1 Task Instruction
To enhance the e�ectiveness and accuracy of LLMs in completing
the taxonomy expansion task, we propose a detailed task descrip-
tion along with a set of fundamental rules, denoted as R, for ex-
panding the existing taxonomy via the query entity. As illustrated
in Figure 3, component (a) outlines the objectives of the taxonomy
expansion task, framing it as a code completion task and specifying
add_parent function should be employed. In component (b), we
emphasize a set of fundamental rules R for the taxonomy expan-
sion task. These rules include the following: 1. Do not use entities
that are not covered in the existing taxonomy T0 = (E0,H0) (r1); 2.
Maintain the output generation format by LLMs, consisting of one
line of code followed by one line explaining why the model made
that prediction (r2); 3. Refrain from generating additional content
(r3). Additionally, the rule for generating an explanation for the
prediction in r2 is optional for future analysis. In C���T���, this
rule is omitted as generating explanations is not required.

3.2 Taxonomy Code Representation
To represent the existing taxonomy T0 = (V0, E0) as code language,
we concatenate the entity class de�nition, representation of existing
taxonomic relations, and the code completion prompt. In this work,
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we use Python as the programming language for the code prompt
due to its widespread popularity.

3.2.1 Entity Class Definition. First, we de�ne a base type Entity to
be inherited by each entity mentioned in the taxonomy expansion
task. As shown in Figure 4, the code de�nes a Python class named
Entity that models a taxonomic structure with parent-child rela-
tions. The �rst line imports the List type from the typingmodule,
which is used for type hinting. This allows the child attribute to
be explicitly declared as a list of Entity objects.

The Entity class encapsulates the attributes and methods for
managing hierarchical entities. The __init__ method initializes
an instance of the Entity class with the following parameters:

• name: A string representing the term of the entity.
• description: A string representing the textual description
of the entity

• parent: An instance of the Entity class, denoting the parent
entity within the taxonomy.

• child: A list of entities, each an instance of the Entity class,
representing the entity’s children.

These instance attributes are assigned as follows: self.name,
self.description, self.parent, and self.child. Additionally,
since we consider that each entity in the taxonomy should only
have one parent entity, we do not use the List type for the parent
attribute, unlike the child attribute.

The Entity class includes twomethods for modifying the parent-
child relations between entities. The �rst method, add_parent,
assigns a parent entity to the current entity. It takes one parame-
ter, parent, which is an instance of the Entity class. The second
method, add_child, appends the child entity to the self.child
list of the current entity. This method also requires one parameter,
child, which is an instance of the Entity class.

3.2.2 Representing the Existing Taxonomy. To facilitate the taxon-
omy expansion, the initial taxonomy T0 is encoded using a pro-
gramming language. Instances of the Entity class, as de�ned in
Section 3.2.1, are created for each entity 4 in the set E0 of T0. The
taxonomy T0 is traversed from top to bottom, and for each entry,
an entity 4 2 E0 is instantiated as follows:

4 = Entity(name = - C
4 , description = -3

4 ,

parent = ?4 , child = C4 )

where ?4 denotes the parent entity of 4 , and C4 = [214 , 2
2
4 , . . . , 2

=
4 ]

represents the list of its child entities.

3.2.3 Semantic Similarity Filter. Including every entity 4 2 E0 in
the code prompt to represent the existing taxonomy T0 presents two
major challenges. First, the limited contextual window size of LLMs
makes it impractical for large-scale taxonomies. Second, it unnec-
essarily expands the search space, introducing irrelevant entities
and redundant information. To mitigate these issues, we propose a
Semantic Similarity Filter that selects only entities relevant to the
query @ for inclusion in the prompt context.

To compute the similarity between a query entity @ with its
descriptive text X@ = {- C

@,-
3
@ } and an entity 48 2 E0 with its de-

scriptive textX48 = {- C
48 ,-

3
48 }, we employ the pre-trained language

model (PLM) as textual encoder. We concatenate the query entity @

and the 8-th entity 48 with special tokens [CLS] and [SEP], then en-
code the sequence using a pre-trained SimCSE model [10]. SimCSE
converts them into<-dimensional representation q, e8 2 R< :

q = PLM([CLS] � - C
@ � -3

@ � [SEP])

e8 = PLM([CLS] � - C
48 � -3

48 � [SEP])

The semantic relevance is calculated using cosine similarity be-
tween {e8 }=8=1 and q. We select the Top-: entities with high sim-
ilarity with query entity @ from the entity set E0 from existing
taxonomy T0 as follow:

I = argmax
I✓{1,2,...,=},

| I |=:

’
82I

cos_sim(e8 , q)

where I is the index set of the selected entities EB4; = {48 |8 2 I}

that represents the existing taxonomy. In this work, : is set to 50%
of the entities in the taxonomy.

3.2.4 Code Completion Prompt. The code completion prompt in-
volves the instantiation of a query entity @ as an instance of the
Entity class, as de�ned in Figure 3.2.1. Since the query entity @
lacks information about its parent and child entities, it is instanti-
ated as follows:

@ = Entity(name = - C
@, description = -3

@ ,

parent = None, child = [])

Here, the name and description are initialized with the query’s
terms - C

@ and de�nition -3
@ , respectively, while the parent is set to

None, and the child list is empty.
We include the requirement “Find the parent of the query node”

as a comment to guide LLMs in selecting an anchor entity 0 2 EB4;
as the parent entity for entity @. The output is the query @, an in-
stance of the Entity class, which invokes the prede�ned method
add_parent() to assign0 as its parent entity like q.add_parent(a).

We propose incorporating an optional feature in the code com-
pletion prompt: “then generating a comment to explain why it is
the parent of the given query node”. This feature allows the LLM
to simultaneously generate both the prediction and its rationale,
enhancing the explainability of the output and revealing interesting
insights, as discussed in Section 4.6.

3.3 Few-shot Demonstration Construction
To enhance LLMs’ ability to expand our existing taxonomy, we
propose a method for constructing demonstrations using the initial
taxonomy T0. Our demonstration selection strategy focuses on the
semantic similarity between the query entity @ and entities 4 2 E0
in the existing taxonomy. Speci�cally, we use SimCSE encoding
to calculate these similarities, selecting the top-5 entities from the
existing set E0 based on their similarity to @:

I3 = argmax
I3 ✓{1,2,...,=},

| I3 |=5

’
82I3

cos_sim(e8 , q)

Here, I3 represents the indices of entities selected for the demon-
stration set E34<> = {48 |8 2 I3 }. For each demonstration 38 , we
treat each entity 48 2 E34<> as a query entity and, following the
procedure outlined in Section 3.2.4, add its parent entity using the
add_parent method.
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#Concepts #Edges Depth

WordNet 20.5 19.5 3.0
Graphine 48.2 48.2 4.6
SemEval-Sci 429.0 451.0 8.0
SemEval-Env 261.0 261.0 6.0
SemEval-Food 1,486.0 1,576.0 8.0

Table 1: Statistics of�ve taxonomy benchmarks. ForWordNet
andGraphine, we report the average for taxonomies included
in these two benchmarks.

4 Experiments
Our proposed C���T��� is evaluated on �ve real-world bench-
marks to address these research questions (RQs):

• RQ1: How does the performance of the C���T��� compare
to state-of-the-art baselines in taxonomy expansion task?

• RQ2: How does C���T��� perform across di�erent large
language models?

• RQ3:Which components of C���T��� most signi�cantly
in�uence the e�ectiveness of taxonomy expansion, and how
can their hyperparameters be optimized?

4.1 Experimental Settings
4.1.1 Datasets. We evaluate the performance of taxonomy ex-
pansion methods on small-scale taxonomies using WordNet Sub-
taxonomies from [3], and Graphine taxonomies from [16]. Speci�-
cally, we use 35 Graphine taxonomies with fewer than 100 entities,
selected from a total of 227 taxonomies. For the Graphine dataset,
we selected 35 taxonomies with fewer than 100 entities out of 227
total taxonomies. In our experiment with WordNet, we utilized 114
sub-taxonomies from the test sets. Additionally, we evaluate three
large-scale taxonomies from SemEval-2016 [5] across science, envi-
ronment, and food domains. Table 1 presents the statistics of these
taxonomies, all of which contain entities and de�nitions curated by
human experts. For all benchmarks, 20% of leaf entities are reserved
for testing, with the remaining entities used for training.

4.1.2 Baseline Methods. In the taxonomy expansion task, we eval-
uated the performance of C���T��� against several baseline meth-
ods, using both GPT�4� and GPT�4������ for in-context learning.
The baselines included:

• TaxoExpan [21]: adopts GNNs to encode local ego-graphs
in taxonomy to enhance entity representation.

• STEAM [35]: utilizes the mini-path information to capture
the global structure of the taxonomy.

• HEF [29]: represents taxonomies as ego-trees to capture
hierarchy, fully leveraging the hierarchical structure to im-
prove taxonomy coherence.

• Musubu [25]: leverages pre-trained models and �ne-tunes
them as sentence classi�ers using queries generated from
Hearst patterns.

• TEMP [17]: utilizes a pre-trained model to encode text de-
scriptions of each concept in the taxonomy. It incorporates
taxonomic structure information through taxonomy paths.

• BoxTaxo [11]: represent the entities via box embeddings in-
stead of single vector embeddings to capture the hierarchical
relation between entities.

Figure 5: Performance comparison of NL and C���T���
(CT) across Llama trained on Code and Natural Language
domains. Due to limited contextual window sizes, evalua-
tions were conducted on small-scale sub-taxonomies from
WordNet (WN) and Graphine (G).

• TaxoPrompt [31]: adopt prompt tuning on the BERT-based
encoder model to capture the taxonomic structure.

• TaxoInstruct [22]: a uni�ed framework for taxonomy-related
tasks using instruction tuning, focused solely on taxonomy
expansion for fair comparison.

4.1.3 Evaluation Metrics. The performance of C���T��� and the
baseline models for taxonomy expansion tasks is evaluated using
commonly adopted metrics, including accuracy (Acc) and Wu &
Palmer similarity (Wu&P), as established in prior work [17, 28, 35].

4.2 Results on Taxonomy Expansion (RQ1)
We compare C���T��� with baseline methods for taxonomy ex-
pansion, as shown in Table 2. The baselines include two categories:
self-supervised methods and in-context learning methods. To our
knowledge, C���T��� is the �rst approach to utilize prompting
LLMs for taxonomy expansion. We also design a natural language
prompt (NL) for comparison to assess the e�ectiveness of C����
T���. The NL prompt mirrors C���T��� but omits the entity class
de�nition and uses a sentence for each entity, incorporating the
entity’s term, de�nition, and its parent and child relationships. We
have three major observations as follows:

First, both NL and C���T��� signi�cantly outperform all self-
supervised baselines on theWordNet and Graphine taxonomies. No-
tably, C���T��� in a one-shot setting shows a 72.06% and 103.06%
improvement in accuracy over the best self-supervised baselines
(TaxoInstruct and TEMP) on WordNet and Graphine, respectively.
This indicates that LLM prompting via code prompts can e�ec-
tively harness the internal knowledge of LLMs, even with limited
annotated data. In contrast, self-supervised methods, which heavily
depend on annotation data from existing taxonomies, struggle to
learn taxonomic relations when the existing taxonomy is insu�-
ciently large for expansion tasks.

Second, for the large-scale taxonomies in SemEval-2016, C����
T��� in a one-shot setting still outperforms self-supervised meth-
ods, even when the existing taxonomy is su�ciently large for gen-
erating annotation data. However, the NL prompt does not ex-
hibit the same performance advantages, particularly in terms of
accuracy, when compared with self-supervised methods and C����
T���. Speci�cally, C���T��� outperforms the best self-supervised
baseline, TaxoPrompt, by 10.26%, 8.89%, and 9.21% in accuracy on
SemEval-Sci, SemEval-Env, and SemEval-Food, respectively. Con-
versely, the NL prompt underperforms TaxoPrompt on SemEval-Sci
and SemEval-Env, with a decrease in accuracy of 10.75% and 8.53%,
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Dataset SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Metric Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P

Self-supervised Setting
TaxoExpan [21] 27.8 57.6 11.1 54.8 27.6 54.2 19.8 64.8 24.5 65.9
STEAM [35] 36.5 68.2 36.1 69.6 34.2 67.0 23.2 62.4 20.3 63.1
HEF [28] 53.6 75.6 55.3 71.4 47.9 73.5 16.4 60.3 25.5 66.5
Musubu [25] 44.9 76.2 45.3 65.4 42.3 72.4 28.5 64.0 35.4 75.2
TEMP [17] 57.8 85.3 49.2 77.7 47.6 81.0 29.4 65.7 35.9 73.8
BoxTaxo [11] 31.8 64.7 38.1 75.4 31.4 66.8 26.4 63.9 29.2 68.2
TaxoPrompt [31] 61.4 85.6 57.4 83.6 53.2 83.1 40.3 71.5 33.9 74.4
TaxoInstruct [22] 45.9 76.2 48.8 77.2 34.3 70.2 43.3 71.8 31.8 69.0

1-shot Setting
NL (GPT-4o) 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1
C���T��� (GPT-4o) 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0
NL (GPT-4o-mini) 50.0 83.0 35.0 76.1 55.1 87.2 60.1 86.0 58.3 85.2
C���T��� (GPT-4o-mini) 58.1 85.6 42.5 76.0 55.9 85.3 68.8 89.2 61.5 85.1

5-shot Setting
NL (GPT-4o) 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0
C���T��� (GPT-4o) 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4
NL (GPT-4o-mini) 53.2 84.8 42.5 80.2 57.2 87.6 63.4 87.3 63.5 88.6
C���T��� (GPT-4o-mini) 59.7 84.8 47.5 78.3 58.9 87.9 66.8 88.6 70.3 89.1

Table 2: Performance on taxonomy expansion across two small-scale taxonomies (WordNet and Graphine) and three large-scale
taxonomies (SemEval2016: science, environment, food). Bold indicates the highest score; underlined indicates the second-
highest. All metrics are in percentages (%).

respectively. Although NL prompting performs better than Taxo-
Prompt on SemEval-Food, it still shows a 4.68% decrease in accuracy
compared to C���T���. It suggests that C���T��� is more e�ec-
tive in representing taxonomic structures than NL and performs
better than self-supervised training on existing taxonomies.

Finally, our �ndings indicate that the performance of C���T���
as an in-context learning method is consistently in�uenced by the
inherent capabilities of LLMs and the number of demonstrations
included in the prompt. Speci�cally, we evaluated both NL and
C���T��� using GPT�4� and GPT�4������. Across all benchmarks,
the performance of both NL and C���T��� on GPT�4� surpasses
that on GPT�4������. Additionally, we assessed 5-shot and 1-shot
settings for both NL and C���T���, �nding that as the number
of high-quality demonstrations increases, the performance of both
methods improves across all benchmarks.

4.3 Comparison between NL and C���T��� on
LLMs and Code-LLMs (RQ2)

Given that C���T��� is a prompting method speci�cally designed
for programming languages, we conducted a comparative analysis
of its e�ectiveness against natural language prompting on both
general-purpose LLMs and Code-LLMs. To ensure a fair evaluation,
we selected models from the Llama family, speci�cally LLaMa-3-
70B-instruct and CodeLLaMA-70B-instruct. Additionally, we in-
cluded an assessment of CodeLLaMA-34B-instruct to examine the
impact of model size on performance. Due to the inability of these
LLMs to process large-scale taxonomies within their contextual

window, our evaluation was limited to WordNet and Graphine. The
experimental results are presented in Figure 5. We have several
�ndings as follows:

First, for both the WordNet and Graphine taxonomies, C����
T��� demonstrated superior accuracy and Wu&P scores across all
tested Code-LLMs and general-purpose LLMs. This suggests that
C���T��� is more e�ective in representing taxonomic structures
than natural language prompts, not only for black-box general-
purpose LLMs like GPT-4 but also for open-source LLMs. Further-
more, whether the LLMs are specialized in code tasks does not
appear to a�ect C���T���’s e�ciency, indicating its robustness as
a more e�cient method compared to natural language prompting.

Secondly, our analysis reveals that C���T��� derives greater
bene�t from Code-LLMs compared to natural language prompts.
Speci�cally, when transitioning from natural language prompt-
ing to code language prompting on LLaMa-3-70B-instruct and
CodeLLaMA-70B-instruct, C���T��� exhibited a 13.33% improve-
ment in accuracy on WordNet, compared to a 6.51% improvement
with natural language prompts. Also, we �nd that the performance
of prompting CodeLLaMA-34B-instruct via code language is better
on bothWordNet andGraphine taxonomy, even thoughCodeLLaMA-
34B-instruct is much more light than LLaMa-3-70B-instruct.

4.4 E�ciency Analysis of C���T��� (RQ3)
4.4.1 Semantic Similarity Filter E�iciency. This section examines
the e�ect of selecting Top-K entities using the Semantic Similarity



CodeTaxo: Enhancing Taxonomy Expansion with Limited Examples via Code Language Prompts Conference’17, July 2017, Washington, DC, USA

Method Def. SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P
1-shot Setting
NL (GPT-4o) X 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1

⇥ 59.7 89.0 57.5 82.8 56.4 87.0 68.1 89.1 68.8 90.1
C���T��� (GPT-4o) X 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0

⇥ 56.5 84.5 55.0 85.1 56.8 86.1 66.4 88.4 69.8 88.8

5-shot Setting
NL (GPT-4o) X 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0

⇥ 59.7 89.6 50.0 79.3 55.5 87.6 70.5 89.9 68.8 88.9
C���T��� (GPT-4o) X 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4

⇥ 51.6 80.6 65.0 86.7 57.6 86.1 67.8 88.8 68.8 89.7
Table 3: Impact of Entity De�nition Sentences (Def.) on C���T��� and NL Performance in 1-Shot and 5-Shot Settings.

Figure 6: E�ect of Top-K relevant entities selected through
SimCSE-based Semantic Similarity Filter.

Dataset 1-shot 5-shot

NL CodeTaxo NL CodeTaxo

SemEval-Sci 15737.2 9701.4 16095.1 10342.6
SemEval-Env 8965.7 5693.6 9325.0 6321.1
SemEval-Food 48908.1 30536.5 49266.4 31176.3
WordNet 948.9 1369.2 1306.4 1962.3
Graphine 2486.0 3223.9 2855.2 3893.3

Table 4: Comparison of average tokens used by NEthical
ConsiderationsL and C���T��� across 5 benchmarks in 1-
shot and 5-shot settings.

Filter on model performance. We conduct experiments using GPT-
4o-mini across the three taxonomies in SemEval2016. As shown
in Figure 6, across all three taxonomies, increasing the number of
Top-K entities generally enhances performance. This improvement
is attributed to retaining more entities, which lowers the chance of
�ltering out the ground truth, thereby boosting prediction accuracy.
However, there is a trade-o� between search space size and cover-
age. A smaller search space can improve accuracy by narrowing the
model’s focus but risks excluding the ground truth. For example, in
the SemEval-Sci, the model achieved optimal performance with a
Hit@25 score of 78% by retaining the top 25 entities, demonstrating
the �lter’s e�ectiveness in balancing search space and coverage.

In our experiments, we retained the top 50% of entities, ensuring
that Hit@n exceeded 90% across all benchmarks. This approach
reduces the search space while maintaining a high likelihood of in-
cluding the ground truth, thereby enhancing the model’s precision
in taxonomy expansion.

Setting Con�g. SemEval-Sci SemEval-Env SemEval-Food

Demo. Filter Acc Wu&P Acc Wu&P Acc Wu&P

1-shot

⇥ ⇥ 50.0 84.0 47.5 81.1 56.4 85.3
⇥ X 61.3 84.4 55.0 83.2 54.2 84.6
X ⇥ 61.3 85.9 47.5 79.0 57.2 86.7
X X 67.7 89.2 62.5 86.1 58.1 85.3

5-shot

⇥ ⇥ 58.1 86.0 55.0 82.8 56.4 86.5
⇥ X 59.7 84.7 57.5 83.7 58.5 85.8
X ⇥ 61.3 88.5 55.0 85.3 57.6 86.5
X X 66.1 88.0 67.5 87.02 60.2 85.7

Table 5: Ablation Study of two major modules in the C����
T���: All metrics are presented in percentages (%). Con�gu-
rations indicate whether Demonstration Selection (Demo.)
and Semantic Similarity Filter (Filter) were employed.

4.4.2 Number of Tokens. Table 4 compares average token usage
across benchmarks and prompt types (C���T��� vs. NL) in 1-shot
and 5-shot settings. The �ndings highlight C���T���’s e�ciency
in reducing token usage while maintaining e�ectiveness. Notably,
in SemEval2016, C���T��� cuts token usage by approximately
37.6% in the SemEval-Food task compared to natural language
prompts. However, in the WordNet and Graphine datasets, C����
T��� uses slightly more tokens due to the need to de�ne Entity
classes and methods. Overall, the signi�cant reduction in token us-
age in SemEval2016 underscores C���T���’s e�ciency, especially
in contexts with limited token windows.

4.5 Ablation Study (RQ3)
4.5.1 Insight of Definition Sentences. We performed an ablation
study on de�nition sentences, a vital data source for taxonomy
expansion tasks, using two prompting methods: NL and C���T���.
Our results in Table 3 show that without de�nition sentences, C����
T��� su�ers a substantial drop in accuracy and Wu&P across all
benchmarks in both 1-shot and 5-shot settings, highlighting its
reliance on semantic information from de�nitions to establish tax-
onomic relationships. Interestingly, NL performed better without
de�nition sentences in speci�c benchmarks (SemEval-Sci, SemEval-
Env, SemEval-Food) in the 1-shot setting, and in SemEval-Sci and
SemEval-Food in the 5-shot setting. This suggests that NL struggles
to process de�nition information e�ectively, potentially leading to
incorrect predictions when overloaded with de�nitional content.
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Query NL Output CodeTaxo Output CodeTaxo Explanation

functional genomics
Def. functional genomics is
a �eld of molecular biology
that attempts to describe
gene functions and inter-

actions

genetics
Def. genetics is a branch of biol-
ogy concerned with the study
of genes, genetic variation,

and heredity in organisms.

genomics
Def. genomics is an interdisci-
plinary �eld of biology focus-
ing on the structure, function,
evolution, mapping, and edit-
ing of genomes

genomics
Exp. Functional genomics
is a sub�eld of genomics
that focuses on under-
standing the functions and
interactions of genes within
the genome.

geostrategy
Def. geostrategy, a sub�eld of
geopolitics, is a type of foreign
policy guided principally by
geographical factors as they
inform, constrain, or a�ect po-
litical and military planning

politics
Def. politics is the set of activ-
ities that are associated with
making decisions in groups, or
other forms of power relations
between individuals, such as
the distribution of resources or
status

geopolitics
Def. geopolitics on politics and
international relations

geopolitics
Exp. : Geostrategy is a sub�eld
of geopolitics, which focuses
on geographic factors in�u-
encing political and military
planning.

Table 6: Case study comparing the outputs of the C���T��� and NL prompt using the SemEval-Sci benchmarks. The table
presents the de�nitions (Def.) of each model’s prediction, additionally with the C���T��� explanations (Exp.) provided in
the last column. Yellow highlights emphasize the speci�c focus of the query within its de�nition, as correctly captured by
C���T���, while green highlights indicate broader, less precise concepts used by the NL model.

4.5.2 E�evtiveness of Demo. Selection and Semantic Similarity Fil-
ter. We performed an ablation study on the three SemEval2016
benchmarks mentioned above to assess the e�ectiveness of the two
primary modules in C���T���: Demonstration Selection (Demo.)
and the Semantic Similarity Filter (Filter). Due to the relatively small
size of the taxonomies in WordNet and Graphine, �ltering redun-
dant entities from the existing taxonomies was unnecessary. The
results, presented in Table 5, indicate that selecting demonstrations
related to the query entity and �ltering out unrelated entities in
the existing taxonomy signi�cantly improves taxonomy expansion.
This �nding suggests that incorporating more relevant contextual
information and reducing redundant information to narrow the
search space is bene�cial for both accuracy and the Wu & Palmer
(Wu&P) score across all SemEval2016 benchmarks.

4.6 Case Study
This section presents a case study to illustrate the e�ectiveness of
our C���T��� framework. We compare the outputs of C���T���
and the NL prompt, with model predictions and the corresponding
de�nition detailed in Table 6, where C���T���’s predictions align
with the ground truth. We additionally provide the model output
using the prompt mentioned in Section 3.2.4, to allow the model to
generate explanations and facilitate better discussion.

In the �rst case, the query functional genomics, which focuses on
gene functions and interactions, is correctly classi�ed by C���T���
under genomics. The explanation generated by C���T��� empha-
sizes the speci�c focus of functional genomics within genomics
by noting its attention to the “functions and interactions of genes
within the genome”, re�ecting its speci�c focus within the broader
�eld. In contrast, the NL model incorrectly selects genetics, a more
general term, as the parent entity.

In the second case, C���T��� accurately identi�es geopolitics as
the parent entity of geostrategy, and the explanation provided by

C���T��� shows its emphasis on geographic factors. The NL model,
however, selects the broader category of politics, failing to capture
the speci�c geographic considerations inherent to geostrategy.

These cases demonstrate that C���T��� leverages de�nition
information more e�ectively, enabling a nuanced understanding of
taxonomy structures and leading to more precise predictions.

5 Related Works
5.1 Taxonomy Expansion
In taxonomy expansion, various approaches have been developed to
integrate emerging entities into existing taxonomies. Aly et al. [2]
and Ma et al. utilized hyperbolic embeddings to capture taxonomic
relations, while Jiang et al. [11] employed box embedding instead of
single vector embedding to encode taxonomic relations. Manzoor
et al. [19] introduced implicit edge semantics to enhance entity rep-
resentations. Self-supervised methods, such as Egonet [21], mini-
path [35], and Ego-Tree [28], have also been explored to model
structural information within taxonomies. To leverage more se-
mantic information from the textural description of entities, Liu
et al. [17], Takeoka et al. [25] and Xu et al. [31] �ne-tuned BERT-
based models to leverage textual descriptions of entities. Shen et
al. [22] proposed a uni�ed framework combining various taxon-
omy construction tasks for instruction tuning. To our knowledge,
C���T��� is the �rst work to perform taxonomy expansion via
prompting LLMs.

5.2 Code-LLMs for Structured Tasks
Recent studies have demonstrated the strong performance of Code-
LLMs in complex reasoning tasks, including symbolic reasoning [7,
18], event structure prediction [6, 30], mathematical reasoning [9],
and knowledge graph construction [4, 13]. These works highlight
Code-LLMs’ ability to transform unstructured text into structured
representations, enabling advanced reasoning tasks. In this paper,



CodeTaxo: Enhancing Taxonomy Expansion with Limited Examples via Code Language Prompts Conference’17, July 2017, Washington, DC, USA

we focus on enhancing Code-LLMs’ ability to comprehend and
expand existing taxonomies through emerging query entities.

6 Conclusion
In this paper, we introduce C���T���, a novel approach to taxon-
omy expansion that leverages code-based prompts to e�ectively uti-
lize the inherent knowledge within large language models (LLMs).
Our method addresses key challenges in traditional taxonomy ex-
pansion by reformulating the task as a code completion problem and
employing a Semantic Similarity Filtering mechanism to optimize
the use of LLMs’ contextual capacity. Extensive experiments on
small-scale and large-scale taxonomies demonstrate that C���T���
achieves state-of-the-art performance, in both one-shot settings and
�ve-shot settings. We envision C���T��� as a powerful framework
for integrating emerging entities into existing taxonomies by ac-
curately identifying appropriate parent entities and also providing
new insights for leveraging LLMs in structured knowledge tasks.
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