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Abstract

The rapid development and large body of literature on machine learning potentials (MLPs) can
make it difficult to know how to proceed for researchers who are not experts but wish to use these
tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide
to the state-of-the-art in MLPs. This review paper covers a broad range of topics related to MLPs,
including (i) central aspects of how and why MLPs are enablers of many exciting advancements
in molecular modeling, (ii) the main underpinnings of different types of MLPs, including their
basic structure and formalism, (iii) the potentially transformative impact of universal MLPs for
both organic and inorganic systems, including an overview of the most recent advances,
capabilities, downsides, and potential applications of this nascent class of MLPs, (iv) a practical
guide for estimating and understanding the execution speed of MLPs, including guidance for users
based on hardware availability, type of MLP used, and prospective simulation size and time, (v) a
manual for what MLP a user should choose for a given application by considering hardware
resources, speed requirements, energy and force accuracy requirements, as well as guidance for
choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLP
infrastructure, including sources of training data, pre-trained potentials, and hardware resources
for training, (vii) summary of some key limitations of present MLPs and current approaches to
mitigate such limitations, including methods of including long-range interactions, handling
magnetic systems, and treatment of excited states, and finally (viii) we finish with some more
speculative thoughts on what the future holds for the development and application of MLPs over

the next 3-10+ years.

1 Introduction

This paper was inspired by the workshop ‘“Machine Learning Potentials — Status and Future
(MLP-SAFE)”, which was held online on July 17-19, 2023. It represents select themes and key
points we thought would be of particular interest to the broader materials science and chemistry
communities. The rapid development and large body of literature on machine learning potentials
(MLPs) (sometimes also called machine learning force fields) can make it difficult to know how
to proceed for researchers who are not experts but wish to use these tools. The spirit of this paper

is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in
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MLPs. We aim to keep deep mathematics and formalism to a minimum, as such details can be
readily found in other excellent reviews and references therein.[1-9] In contrast, we believe that
guidance on the general landscape of MLPs- their practical use, trade-offs, pros and cons for
particular problems, timing, and how to get started running them is still challenging to learn from
the literature. We note that a recent Comment published by Ko and Ong and a Perspective from
Duignan both highlight many of the same topics addressed in this Review,[10,11] albeit more
briefly and at a higher level, and we therefore feel the present work serves as a complementary,
more in-depth examination of the present state of MLPs from a practical perspective. Our target
audience is technically literate material scientists and chemists, with a background in molecular
modeling, but not MLP experts. Therefore, we do not discuss technical details of, for example,
basis function expansions, but do provide guidance on how to understand the broad differences
between approaches (e.g., atomic cluster expansion (ACE) vs. graph neural networks (GNNs)) and
the benefits and tradeoffs of using different approaches. This paper will provide a high-level guide
on the key fundamental aspects needed to understand the landscape of MLPs, including their
enormous potential range of applications, general frameworks, typical workflows (including fitting
and/or using pre-fit MLPs), speed and accuracy, supporting infrastructure, and some guidance on
MLP choice.

This review paper covers a broad range of topics related to MLPs and is organized as
follows. In Sec. 2, we provide a list of MLPs discussed throughout this review, including their
abbreviations and key references to original work. In Sec. 3, we outline the central aspects of how
and why MLPs are enablers of many exciting advancements in molecular modeling. In Sec. 4, we
discuss the main underpinnings of different types of MLPs, including their basic structure and
formalism (Sec. 4.1), the differences between MLPs using explicit featurization approaches of the
atomic environments vs. implicit approaches leveraging graph neural networks (Sec. 4.2) and
details of the explicit and implicit approaches more specifically in Sec. 4.3 and Sec 4.4,
respectively. In Sec. 5, we highlight the potentially transformative impact of universal MLPs (U-
MLPs) for both organic and inorganic systems, including an overview of the most recent advances,
capabilities, downsides, and potential applications of this nascent class of MLPs. In Sec. 6, we
provide a practical guide for estimating and understanding the execution speed of MLPs, including
guidance for users based on hardware availability, type of MLP used, and prospective simulation
size and time. Next, Sec. 7 functions as a practical manual for what MLP a user should choose for
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a given application by considering hardware resources (Sec. 7.1), speed requirements (Sec. 7.2),
energy and force accuracy requirements (Sec. 7.3), as well as guidance for choosing pre-trained
potentials (Sec. 7.4), and fitting a new potential from scratch (Sec. 7.5 and Sec. 7.6). Discussion
in Sec. 8 centers around MLP infrastructure, including sources of training data, pre-trained
potentials, and hardware resources for training. Sec. 9 summarizes some key limitations of present
MLPs and current approaches to mitigate such limitations, including methods of including long-
range interactions, handling magnetic systems, and treatment of excited states. Finally, we
conclude in Sec. 10 with some more speculative thoughts on what the future holds for the

development and application of MLPs over the next 3-10+ years.

2 A List of MLPs

In the following discussions, we will often refer to MLPs by their acronyms. To help clarify
the meaning and appropriate citations for these MLPs we here summarize the names, acronyms,
and standard citations of the MLPs that are discussed in this paper. Note that this is not meant to
serve as a comprehensive list of existing MLPs.

Accurate NeurAl networK engINe for Molecular Energies (ANAKIN-ME, ANI for short): [12]
Allegro: [13]

Atomic Cluster Expansion (ACE): [14]

Atomic Energy Network (enet): [15,16]

Atomistic Line Graph Neural Network-based Force Field (ALIGNN-FF): [17]
Atoms-In-Molecules Network 2 (AIMNet2): [18]

Behler-Parrinello Neural Network (BP-NN, or BP)[19]

Crystal Hamiltonian Graph Neural Network (CHGNet)[20]

Deep Molecular Dynamics (DeepMD): [21,22]

Elemental Spatial Density Neural Network Force Field (Elemental-SDNNFF): [23]
EquiformerV2-OMAT24: [24]

Fast Learning of Atomistic Rare Events (FLARE): [25]

Gaussian Approximation Potential (GAP): [26]

Graph-based Pre-trained Transformer Force Field (GPTFF): [27]

Graph Networks for Materials Exploration (GNoME): [28]

Graph Atomic Cluster Expansion (grACE): [29]



Mattersim: [30]

ACE with message passing (MACE): [31]

MACE foundation model (MACE-MP-0): [32]
MACE-OFF23 potential for organics (MACE-OFF23): [33]
Moment Tensor Potential (MTP): [34]

Neural Equivariant Interatomic Potential (NequlP): [35]
Orb: [36]

PreFerred Potential (PFP): [37]

Scalable EquiVariance-Enabled Neural NETwork (SevenNet): [38]
SchNet: [39]

Spectral Neighbor Analysis Potential (SNAP): [40]
Three-body Materials Graph Network (M3GNet): [41]
Ultra-Fast Force Fields (UF3) potential: [42]

3 What Makes MLPs So Exciting?

For this paper, we will define an MLP as a function that takes as input a set of atoms with
positions {x;, y;, zi} and element types {n;! and maps this atomic configuration to a total energy £
for that set of atoms i. The MLP therefore serves as a potential energy surface (PES) function. The
MLP generally also provides forces, which are spatial derivatives of the PES generated by the
MLP. The forces are generally available through a formal derivative expression that can be derived
from the MLP and no numerical differentiation of E{x;, y;, zi} is required. A similar situation occurs
for stresses. We note that some of the presently best-performing MLPs are trained separately on
energies and forces, and are nonconservative in the sense that the forces are not directly calculated
by differentiating the PES[24,30,36]. The purpose of an MLP is to enable efficient calculation of
material properties, typically using molecular dynamics (MD), for myriad applications ranging
from understanding and predicting chemical reactions to designing stronger metal alloys to
developing more effective drugs. We note that here we define a “material” to mean any collection
of atoms, from crystals to gasses to molecules. Throughout this work, we consider a model to be

an MLP if it can provide energies and forces (regardless if these quantities are connected



analytically through differentiation or obtained from separate models), and the model is capable
of performing MD simulations.

Historically, atomistic simulation of materials has been divided into two very different
approaches. On the one hand, ab initio molecular dynamics (AIMD) has enabled high accuracy
simulations of small numbers of atoms, providing rich insight into the structural, thermodynamic,
and transport properties of materials at the very smallest scales. On the other hand, classical
molecular dynamics simulations with physics-based potentials (PBPs) have enabled researchers to
qualitatively study how atomic interactions drive the emergence of diverse phenomena on much
larger scales. For a long time, these two approaches were disconnected. AIMD was incapable of
achieving the scale needed to observe many phenomena of scientific interest, while PBP-based
MD could not provide accurate representations of specific materials. The emergence of MLPs has
revolutionized the practice of atomistic simulations by bridging this disconnect. By leveraging
massively parallel computing resources and flexible parallel simulations frameworks such as
LAMMPS,[43] it is now possible to directly simulate large-scale emergent phenomena in specific
materials with accuracy that approaches that of AIMD.

MLPs differ from traditional PBPs in that MLPs utilize a highly flexible approach to
represent the PES function (e.g., a neural network), typically taken from the machine learning
(ML) community. In contrast, PBPs use a highly constrained functional form guided by physics
(e.g., a Lennard-Jones or Born-Meyer potential). The categories of PBPs vs. MLPs are somewhat
arbitrary and inexact, as there is really a continuum of possible approaches between the extreme
limits of a purely physical set of equations with almost no fitting parameters (a pure PBP) and a
purely numerical fit done with almost no physical guidance (a pure MLP). An overview of the
different general approaches for constructing PBPs and MLPs is provided in Figure 1. Starting
from the physics limit, PBPs can incorporate increasingly flexible functions to become more like
ML models, e.g., as has been done in the very flexible forms for pair interactions in the Embedded
Atom Method (EAM) potentials.[44,45] Conversely, starting from the pure ML side, MLPs can
be made more like PBPs by introducing physically-motivated terms to the PES representation,
e.g., adding in a Ziegler-Biersack-Littmark repulsive interaction to ensure that atoms do not behave
unphysically when close together, as is available in several MLP training packages.[21,22,46] In

addition, many intermediate approaches are possible, e.g., as discussed in the review by Mishin.[4]



Here, we will follow the standard convention of referring to any potential that uses traditional ML

featurization or modeling approaches as an MLP.
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Figure 1. Overview of approaches for generating (a) physics-based potentials and (b) machine
learning-based potentials. Adapted with permission from Ref. [47].

MLPs have an advantage vs. PBPs because their flexible functional form can fit essentially
arbitrarily complex atomistic scale potential energy landscapes. We note that by “energy
landscape” we mean the ground state Born-Oppenheimer surface, as is generally produced by ab
initio calculations. One of the main disadvantages of MLPs vs. PBPs is that MLPs require a lot of
training data to learn the physics of the system. However, as ab initio data continues to become
more plentiful, more accurate, easier to obtain, and codified in standard databases (e.g., the MPtrj
database[20] contained in the Materials Project and the Open Materials 24 (OMAT24) database
released by Meta[24]) the high training data requirements of MLPs become increasingly easy to
meet, giving MLPs a notable and increasing advantage over PBPs. We can think of MLPs today

as an improved version of traditional PBPs, but with greater accuracy and more flexibility to model
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complex systems, at the expense of higher computational cost (depending on the type of MLP
used). Very flexible and accurate PBP functional forms are often difficult to develop because they
require significant domain expertise and physical insight to construct.

When using MLPs, it is important to note that the level of improvement in accuracy and
number of elements modeled vs. using PBPs appears to be so great that the introduction of MLPs
is more revolutionary than evolutionary. The physical functional forms in PBPs, for all their
ingenuity, almost always do not have sufficient complexity to quantitatively model the necessary
behavior of interacting atoms across all the conditions of interest, which often contain many
complex changes in bonding and charge state. In contrast, modern MLPs can capture many
chemical changes of interest provided adequate training data is available. We stress that MLPs are
not fundamentally limited in any particular way, e.g., to only metallic vs. ionic systems, or to only
nonreactive vs. chemically reactive processes. While this is a good initial perspective for those
new to MLPs there are definitely some constraints on present MLP capabilities, and we enumerate
some of the major present limitations of MLPs in Sec. 9. Distinctions that were often essential to
determining the form and applicability of PBPs, e.g., organics vs. inorganics, bond-breaking /
reactive vs. not, metallic vs. ionic vs. covalent, are often not particularly important for whether an
MLP is applicable. Furthermore, the accuracy of MLPs is typically on the scale of a few to tens of
meV/atom, which is often an order of magnitude better than typical PBPs.[1,48] Additionally,
MLPs are straightforward to iteratively improve and can be fixed if they show undesirable errors
by adding more training data.[49] While PBPs can be iteratively improved as well, doing so is
more difficult than improving MLPs, because instead of just providing more diverse training data,
more fundamental changes to the underlying functional forms may be needed, which requires
significant expertise to do properly. Finally, MLPs with excellent testing errors are quite easy to
fit (typically ranging from just days to a couple of months for a system comprising a few elements
for a graduate student with the necessary skills), and good pre-fit potentials, including ones
covering large parts of chemical and structural space, are becoming widely available, e.g., as seen
with the recent development of Universal MLPs (U-MLPs) (see Sec. 5). Given all the advantages
of MLPs, it seems possible that MLPs will be easy enough to train for most systems that they may
at least partially replace ab initio calculations in applications needing just forces and energies.
Even partial replacement of ab initio calculations will dramatically accelerate many kinds of
molecular modeling, but one notable example is that quantum mechanics-based AIMD might be
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almost entirely replaced by MLP MD. This replacement of AIMD with MLP MD would make
similar time and length scales to those studied with AIMD accessible with orders of magnitude
less compute time. Such an increased efficiency is an important change as a significant amount of
the compute time used in ab initio simulations is devoted to running AIMD. Perhaps more
importantly, the use of MLP MD would unlock gains of orders of magnitude in accessible length
and time scales vs. AIMD for many systems, enabling the study of new physical regimes
inaccessible with AIMD. There is growing evidence that we will be able to develop quantitative
U-MLPs, something like the foundational models in computer vision and language machine
learning, which can directly, or with some fine tuning, provide almost instant access to quantum
mechanical accuracy on almost any chemical system at the scale of millions to billions of atoms
and for microsecond or longer timescales.[20,28,32,41] Thus, MLPs may dramatically enhance
the capabilities of molecular simulations, significantly impacting chemistry, biology, materials
science and engineering, physics, and many other disciplines. The necessary understanding,
methods, and tools exist today to enable non-experts to apply MLPs to practical problems, and it
is reasonable to expect an explosion of use across many fields of science in the next few years.
However, there are still significant challenges to realizing the full potential of MLPs, including
refining the best features and architectures, developing optimal training strategies, finding ways to
include additional physics (e.g., long-range interactions), scaling up to universal potentials, and

successfully developing and adopting potentials for many complex systems of interest.

4 Understanding the Types of MLPs - Basic Formalisms

In this section, we discuss the basic formalism behind MLPs. The goal of this discussion
is to provide a qualitative description to help guide users in understanding what aspects control the
key properties users care about, which include e.g., (1) human vs. computational MLP training
limitations, (2) MLP speed of execution, (3) MLP accuracy, (4) MLP ease of use, and (5)
appropriateness of an MLP to specific problems. Detailed mathematical descriptions of MLP
formalisms can be found in many other reviews.[1-9] This section provides a high-level overview
of the basic construction of an MLP (Sec. 4.1), discussion of the construction and use cases of
MLPs created by explicitly featurizing atomic positions with specific functional forms (Sec. 4.3),
discussion of the construction of MLPs created implicitly through featurizing by graph neural
network approaches (Sec. 4.4), the general differences between these two approaches (Sec. 4.2),
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and, finally, the unification of these two approaches into a single over-arching MLP framework
(Sec. 4.5). We stress that this section was written to reflect the historical development of different
MLP formalisms, where we discuss differences between various approaches which we believe
accurately portrays how the community has thought of MLP development until recently. However,
these previously perceived differences between various MLP formalisms appears to be collapsing
into a single over-arching formalism, which we discuss in more detail in the following subsections.

4.1 The Basic Structure of an MLP

Almost all MLPs have the same qualitative structure, although the details of the
implementation differ between MLP types. The idea behind this structure is that for use in an MLP,
the local environment of all atoms must be represented by some set of numbers, or features, which
we will call its atomic environment featurization (AEF). In Figure 1B, this is described as “local
structural parameters”. The AEF is built in a manner such that it can be represented as a
manageable set of numbers, then that featurization is fed into an ML model. The potential accuracy
of the model depends on how well these features and the model can capture the local environments,
and, generally, larger sets of features are better able to capture environments (this is sometimes
referred to as an AEF that is more “expressive”).

4.2 Explicit vs. Implicit MLPs

Determining how to distinctly categorize different MLP approaches is challenging. This
complication is the result of the multiple different ways researchers approach the featurization
portion of MLP development, and, as discussed below, how greater understanding in the field has
prompted the convergence of various approaches, making the boundary between MLP approaches
more nebulous. However, we think that a helpful distinction at present is to consider MLPs as
being based on “explicit AEF” vs. “implicit AEF”. We note that the designation of explicit vs.
implicit AEF is analogous to what others, such as Schiitt et al., have previously called
“handcrafted” vs. “learned” representations.[39] By explicit AEF MLPs, we mean MLPs that
define an explicit set of features for each element. Explicit AEFs are the type of potentials that
were first invented by Behler and Parrinello[19] and have dominated MLPs until quite recently,
where the specific formulations of these explicit AEF MLPs are discussed below in Sec. 4.3. In
contrast, implicit AEF MLPs are MLPs that define a set of features or chemical descriptors which
are learned, rather than pre-defined. Implicit AEFs result in learned features (sometimes called

“embeddings”) of the atoms and bonds comprising a material. MLPs employing implicit AEFs
12



will generally involve more ML architectural complexity, potentially making them harder or
slower to use, train, and execute. Of particular importance is that the learned features from implicit
AEFs can scale with number of different chemical species much more efficiently than those used
in most explicit AEF MLPs, and it is therefore this category of implicit AEFs that is almost always
used for modeling many elements (e.g., > 5). As of this writing, implicit AEF MLPs are almost
entirely based on deep learning approaches for learning effective features. For example, implicit
AEF MLPs include all of the graph neural network (GNN) approaches (e.g., M3Gnet,[41]
NequlP,[35] etc.) and the newest implementations of DeepMD.[21,22] Therefore, we will usually
just refer to implicit AEF methods as deep learning methods, although these two categories are
technically distinct.[39]In the text below, we will refer to explicit and implicit or deep learning-
type MLPs when the above distinction is useful.

4.3 Explicit AEF Type MLPs

In this section, we describe the explicit construction of the AEF. The standard way to treat
the mathematical representation of atom types and positions is to consider each atom as having an
energy given by the atom type and its local environment (the positions and element types of nearby
atoms). For this description, we refer to a given atom under consideration as the farget atom (atom
i in Figure 1). The initial AEF for a target atom is generally constructed by writing the local atomic
environment as a set of densities for a given atom type and then expanding that density function
using a basis set consisting of radial and angular functions (for example, Bessel and spherical
harmonic functions, respectively). The explicit AEF is most effective when it respects the
symmetries of materials, which typically include permutations, translation, and rotation. A
symmetry-aware representation can be created by taking tensor products of the initial AEF over
the target atom and its near neighbors. These tensor products can then be combined to create a set
of values that are covariant (i.e., change in a structured and predictable way) with symmetry
operations. The final ML model then operates on these tensors, generally to predict a single scalar
energy. It is possible and quite common to just keep scalar-covariant, generally called invariant,
features, which can then be used in almost any ML model, provided the ML model is continuously

differentiable.
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Figure 2. An overview of the explicit AEF approach of making an MLP, including acquiring
reference data from ab initio calculations, choosing a featurization approach to represent the local
chemical environments, and an ML regression model to map the chemical environments to
energies and forces. Adapted with permission from Ref. [50].

Once an AEF is established, any atom and its environment can be mapped onto a vector,
which can then be used as an input feature in a standard ML model. We call the simple passing of
the AEF as features into the ML model the “explicit AEF approach”. A graphical overview of the
explicit AEF approach is given in Figure 2. The training target values for the ML model are
typically a set of energies and forces. These energies and forces could come from any source but
are almost always taken from a large set of ab initio calculations, such as density functional theory
(DFT). Any DFT cell calculation that provides energies and forces, including stable structures,
structures calculated during atomic relaxations, and structures calculated during AIMD are
potentially of use. Then, the model parameters are estimated by standard regression methods. One
difference from typical regression problems is that the training data are not just simple functions
of the AEFs. First, the forces on a single target atom are often given as the derivative of the ML
function, and so in this case the fitting loss function must have a term that depends on the derivative
of the ML model function. It is worth noting that some MLPs are trained on energies and forces

separately, e.g., NN-based MLPs trained without forces, where comparable accuracy can be
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obtained by increasing the training dataset size.[51,52] Second, the training energies are each total
energies for a whole set of atoms comprising a molecule or crystal unit cell (almost no ab initio
methods allow easy formal decomposition of the total energy into values for each atom), and so
the fitting loss function typically must have a term that depends on the sum of energies of all the
atoms in each calculated configuration. Note that some MLP code packages will fit to other
properties as well, e.g., stress tensor, virial, polarizability, etc.[21,34] These additional properties
can all be included in the fitting with regression approaches like those just described but with
adjustment to the loss function. Assuming one is using an established MLP code repository or
package, these manipulations should be automatic and thus largely invisible to the user, and one
can consider the MLP fitting qualitatively as fitting a simple regression problem. As with any
regression, there are many possible ML models available. The most widely used models for MLPs,
listed in approximate order of their conceptual simplicity, decreasing speed of fitting and
execution, and increasing accuracy are: Linear Regression (LR) (simplest, fastest, least accurate),
Gaussian Process Regression (GPR), and Neural Networks (NNs) (complex, slowest, most
accurate). We note that the speed of fitting GPR is highly dependent on the dataset size, and, for
small datasets, GPR can have accuracies exceeding those of NN approaches, which tend to excel
for problems involving large datasets.[1] Here, we exclude GNNss as they are discussed separately
in Sec. 4.4 in the context of implicit AEFs. From the above discussion, it is worth noting that some
highly popular ML models used in regression problems, such as random forests, are not suitable
for MLPs because they do not possess continuous derivatives.

There is no universal answer to which ML model is best for MLPs, but with good
featurization, LR and GPR have both proven to work very well and are generally simpler to fit
than NNs. Many of the most widely used MLPs can be described with this explicit AEF
framework. Specifically, the original Behler-Parrinello potential used atom-centered symmetry
functions (ACSFs) as AEFs and a NN ML model,[19] the Gaussian Approximation Potential
(GAP) uses the Smooth Overlap of Atomic Positions (SOAP) approach to construct AEFs and a
GPR ML model,[26] the Spectral Neighbor Analysis Potential (SNAP) used hyperspherical
bispectrum functions (HBFs) as AEFs and a LR ML model,[40] the Moment Tensor Potentials
(MTP) used moment tensor functions (MTFs) as AEFs and a LR ML model,[34] and the Atomic
Cluster Expansion (ACE) uses the product of radial functions and spherical harmonics as its AEF
and a LR ML model.[14] It should be noted that it has recently been realized that the ACE
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formalism is a superset of most other methods, meaning that ACSFs, SOAP, HBFs, and MTFs are
all specific cases of ACE.[14] Note that this does not make these other potentials irrelevant, since
any given potential may represent specific choices that are exceptionally efficient to train or
execute, but it does help to realize that ACE appears to be a comprehensive formalism for
expressing state-of-the-art explicit AEFs for MLPs. Moreover, it is possible to combine any of
these AEFs with any ML model. For example, the FitSNAP software[46] allows SNAP and ACE
featurizations to be combined with PyTorch and JAX models.[53]

While the explicit AEF formalism is very effective, it has until recently had a significant
scaling problem[13] which we describe here. We note this argument is based on the ACE basis
construction, but it is quite general and similar issues occur in other related explicit AEF
formalisms. Let N, be the number of basis functions used to expand the density of one species
around a target atom and S be the number of species. Then there are Niosi pasis = Np %S total basis
functions for one target atom. Let v be the number of atomic sites we couple to in tensor products
(here v+1 is called the bond order, and v+/ = 2 gives pair information, v+/ = 3 gives 3-body
information, and so on). For a given bond order, there are order O((N»xS)") basis functions. For a
typical bond order of 3, this gives quadratic scaling with the number of basis functions and species,
which can become quite slow for a complex basis and for large numbers of species. The species
scaling typically limits most explicit AEF potentials to approximately 5 or fewer species.

4.4 Implicit AEF and GNN MLPs

There are a few solutions to the issue of poor of scaling for explicit AEFs, particularly with
the number of species. The general approach to overcoming this scaling problem is to instead use
an implicit AEF to embed the chemical space in a learned feature vector (i.e., an embedding) that
can effectively represent different chemistries without explicitly developing basis functions for
each one. This approach appears to work very well, dramatically reducing the complexity of
treating different species. The exact reason this works is not totally clear, but likely is because the
properties of different elements are not independent, and their interactions in subclusters inform
their more complex cluster interactions (e.g., pair couplings can dominate the energy of a cluster
of 10 different atom types). Probably the most widely used approach that provides efficient
embedding (as well as has other potential advantages and disadvantages) are GNNs, discussed
more below. However, there are other approaches. For example, the DeepMD[21,22] MLP

represents the local environment as embedding vectors that are constructed by a neural network
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based on some or all of local atom distances, angles, and types. The weights of the embedding
network are trained during fitting, making the AEF an implicit function of the coordinates that is
learned during training and allowing DeepMD to fit many elements. A number of papers have
recently shown how features in standard explicit AEF MLPs might be manipulated to reduce the
scaling with species, where such an approach by Lopanitsyna, et al. is illustratively named
“chemical compression”.[54—56] Darby et al. in particular has shown that linear embedding of the
elements into a fixed dimensional vector space corresponds formally to tensor-decomposition, and
as the dimension increases will converge to the uncompressed result.[54] Artrith et al. showed that
element-specific weights allow constant-size AEF vectors irrespective of the number of chemical
elements and demonstrated the method for up to 11 species[16] and a similar approach was
independently proposed by Gastegger et al.[S7] An outstanding example of the power of these
approaches is the graph ACE (grACE) method and package, which are now available and appear
to provide excellent scaling with the number of elements while achieving high accuracy.[29] These
recent papers and emerging packages suggest that soon the chemical scaling issues associated with
the explicit AEF approach may be greatly reduced or removed altogether.

A GNN is an NN architecture that operates on graphs, where graphs are collections of
nodes and the connections between them (called edges). Perhaps not surprisingly, a graph is an
excellent way to think about interacting atoms, where nodes are mapped to atoms and edges are
mapped to reasonably near neighbor bonds. GNNs and the graph representation provide a
somewhat different approach to constructing an AEF with some clear advantages vs. the explicit
AEF approaches discussed above, and therefore have become a very popular approach for MLPs.
In a graph, sets of embeddings are associated with each node and/or edge, and these embeddings
can be mapped to properties of the atoms by the GNN. GNNs iteratively update the embeddings
of a target node/bond through learned mappings of connected node/bond embeddings onto the
target node/bond, with the connections determined by the graph structure. Each one of the updates
is typically done in one layer of the GNN. These updates are also given structural information like
bond lengths or more detailed AEF parametrizations. Because GNNs encode the features of atoms
and bonds through a learned mapping to embedded features, these features can potentially
represent the chemistry and structure much more effectively than the basis function tensor products
in the standard explicit AEF MLP described in Sec. 4.3. In particular, compared to explicit AEFs,
these embeddings appear to avoid the explosion in complexity and resultant scaling problems with
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number of species noted in Sec. 4.3. Thus, GNNs using implicit AEFs appear to have the ability
to scale to almost arbitrary numbers of chemical components. Not all GNNs are equivalent. For
example, recent GNNs are often so-called E(3) equivariant NNs (e.g., NequlP[35][41],
MACE][32], TeaNet[58]), which work with highly expressive equivariant tensor representations of
atomic environments and operate on them to preserve the proper symmetries. Such GNNs appear
to be particularly data-efficient in fitting. Also, most GNN MLPs effectively couple a widening
range of atoms/bonds to a target atom/bond at each layer of the GNN. The multiple layers needed
to get good convergence often effectively couple atoms 3-4 nm apart. This coupling can be
advantageous for capturing longer range interactions, e.g., as shown for M3GNet in comparison
with MTP potentials.[41] However, this coupling of 3-4 nm is much longer than typical ranges of
direct physical interaction in almost all PBPs and explicit AEF MLPs (which are almost always 1
nm or less) and can lead to significant memory and parallelization issues. Therefore, researchers
are now exploring more local equivariant NN approaches, e.g., Allegro,[13] which has excellent

scalability with multiple processors.

4.5 Unifying explicit and implicit AEFs

It is worth noting that all of these MLP methods are increasingly appearing to be different
aspects of a single general MLP approach. As discussed above, explicit and implicit AEFs were
developed largely independently. Explicit AEFs focus on local descriptions of atomic energy
obtained by the interaction with all neighbors within a cutoff distance. Implicit AEFs recursively
incorporate via message passing information about atoms that can be several cutoff distances
away. The messages are assembled from the local atomic environment within a cutoff distance and
then employed for the computation of the energy of another atom. From the viewpoint of explicit
AFEFs, message passing modifies the character of an atom. In an explicit AEF neighboring atoms
are characterized by their positions and chemical species. In an implicit AEF neighboring atoms
are characterized by further attributes collected from the atomic environment. For example, this
makes a carbon atom on a surface different from a carbon atom in the bulk. In equivariant neural
networks the additional attributes are vectors and tensors, which essentially give the carbon atom

an environmentally dependent, non-spherical character.
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ACE provides a complete basis for the local atomic environment. Applied to the local
atomic environment of neighboring atoms, ACE facilitates formally complete messages.[59]
Recursive application of ACE in an implicit AEF is multi ACE (MACE).[31]

However, while intuitive, it is not necessary to take an iterative evaluation as the starting
point. In fact, the ACE basis was extended to incorporate more general graph basis functions.[29]
In this setting, the ACE basis functions build on star graphs, whereas the more general graph basis
functions on tree graphs. In complete analogy to ACE, in graph ACE the energy or any other local
or semilocal property is written as a linear combination of graph ACE basis functions, i.e. in an
explicit AEF. Only for an efficient numerical evaluation of graph ACE functions and by employing
tensor decomposition along the graph ACE basis functions, an iterative evaluation is employed.
This iterative evaluation comprises message passing equivariant neural networks such as
NequlP,[35] MACE, i.e. it corresponds to implicit AEFs.

This facilitates the following understanding. AEFs can be formulated in an explicit way.
Here graph ACE provides a general and complete representation. Explicit AEFs with graphs that
have two or more layers can be transformed to implicit AEFs for numerically efficient evaluation,
resulting in message passing neural networks. In practice even single layer explicit AEFs are
evaluated iteratively for numerical efficiency,[60] which means that they should fall into the
implicit AEF category, too.

Therefore, the distinction between explicit and implicit AEFs reflects the history of the
development of AEFs in the past years more than their actual structure. To the best of our
knowledge, all AEFs can be represented in an explicit way. Iterative evaluation for numerical
efficiency leads to implicit representations of AEFs. These results increasingly suggest that we
may be converging on a single general formalism for MLPs, and the seemingly very different
approaches in use today are actually specific choices within the general formalism. Such
understanding will hopefully allow the community to extract the approaches that are
simultaneously optimized to be the most efficient for training, and fast and most accurate for

prediction.

5 Universal MLPs

To date, the vast majority of MLPs are trained on a limited domain of chemical or materials
systems. This amounts to an MLP that represents a particular materials family (e.g., perovskite
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oxides, 2D MXenes, etc.) or particular chemical system (e.g., the Li-Co-Mn-Ni-O composition
space) well, but is not transferable in the sense that these MLPs are unable to extrapolate to
accurately model new elements or structure types that are not present in the specific training data.
As discussed in Sec. 4 above, part of the reason researchers focus on small numbers of chemical
species is related to the explicit AEF approach used, many of which do not scale well to include
more than ~5 species. The creation of accurate, highly general MLPs that cover many more
elements and conditions than typical MLPs is highly desirable as it would produce a potential with
the widest possible domain of applicability, enabling the study of the statics and dynamics of many
types of chemically complex systems, potentially for long simulation time scales. In thinking about
scaling up MLPs to more chemical species, we propose that it is useful to distinguish a few
categories of MLPs, specifically:

1. Targeted MLPs (T-MLPs). These are the typical MLPs that cover approximately 1-10
(usually < 5) elements and are typically under some constraints of chemistry, structure, or
phase (e.g., oxides with certain compositions, multiple elements in a fixed crystal structure
for high entropy alloys, or molten (liquid) phase salts) although these latter constraints can
be quite few or potentially even none.

2. Universal MLPs (U-MLPs). These attempt to cover a large number of species under
different levels of constraints, e.g., transition metal oxides in solid form or organic
molecules with select heavy elements. These typically cover 10-100 elements and could
range in conditions, from a very strong constraint to a specific crystal lattice to allowing
almost any atomic configuration. Obviously, the MLP would be considered more useful
and universal as more elements are included and fewer constraints on the considered
chemical or material structures are made. It can be useful to consider these MLPs in two
categories, which we call semi-universal-MLPs (SU-MLPs) and true U-MLPs. Both
require a method that can scale well with number of species and target a large number of
species. However, SU-MLPs focus on a select domain, e.g., transition metal oxides in
solid form or organic molecules with select heavy elements. A good example of an SU-
MLP is the recent AIMNet2,[18] which targets molecular and macromolecular structures
and is applicable to species containing up to 14 chemical elements in both neutral and
charged states, making it valuable for modeling the majority of non-metallic compounds.
As another example of a SU-MLP, the work of Rodriguez et al. built the Elemental Spatial
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Density Neural Network Force Field (Elemental-SDNNFF), which produces accurate
forces for Heusler alloys constituting 55 different elements and accurate predictions of
phonon properties.[23] A third example is the SuperSalt potential from Chen et al., which
models M-Cl molten salts for 11 cations M, and was shown to be significantly more
accurate than the MACE-MPO U-MLP for these materials. In contrast, U-MLPs attempt
to cover a very large fraction or even almost all of the periodic table with atoms potentially
in any arrangement. Even for U-MLPs, it is typical to exclude elements that are very
impractical or intractable to ab initio methods, e.g., Nobelium (atomic number 102 or
anything with an atomic number above 103). Thus, the relevant portion of the periodic
table for materials and chemistry is generally up to about 100 elements. U-MLPs typically
cover over 50 elements and may accurately model solids, liquids, and molecular
structures. A good example of this class is the recent M3GNet potential from Chen and
Ong,[41] with 89 elements and no particular constraints on its applicability (although there
is a strong bias in training to solid phases), or the above-mentioned MACE-MPO0, which
is trained on the same data and was shown to be effective for running stable MD
simulations.[32]

The exact values of the number of elements or level of structural constraint in the categories
above are somewhat arbitrary, although T-MLPs are distinct from U-MLPs in that the latter
typically require scalable implicit AEF methods (see Sec. 4). In particular, in this section U-MLPs
will be used rather loosely to indicate an MLP which has been trained on sufficiently large and
diverse datasets such that it provides usefully accurate predictions on a wide range of compositions
and structures for molecules and/or materials. If the training data is sufficiently large and diverse,
the MLP may provide accurate predictions for the behavior of most chemically relevant elements
in the periodic table.

Universal potentials are not limited to MLPs and have been developed previously in the
context of PBPs. The creation of universal PBPs dates back to 1981 with the seminal work of
Weiner et al.[61] Since this time, the universal force field (UFF) of Rappe et al.[62] and the
Assisted Model Building with Energy Refinement (AMBER) force fields[61,63] have emerged as
some of the most popular universal PBPs, where the main utility of these potentials is for modeling
molecular systems (e.g., to aid drug discovery), as opposed to condensed phases. The relative
utility of these universal traditional PBPs vs. U-MLPs is difficult to determine at this stage since
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the development of U-MLPs is still in the nascent stages. The first reported U-MLP for organic
systems (representing molecules initially containing only C, H, O, N atoms) is the Accurate
NeurAl networK engINe for Molecular Energies (ANAKIN-ME, ANI for short) potential from the
work of Smith et al. in 2017,[12,64] which was expanded in 2020 to include S, CI and F elements
(thus covering ~90% of drug-like molecules).[65] The ANI potential has similar applicability as
the universal AMBER PBP for organic systems, but in MLP form. The latest iteration of this U-
MLP as of this writing came in late 2023, termed the atoms-in-molecules neural network potential
(AIMNet2) U-MLP.[18] This U-MLP extends the ANI potential to include up to 14 elemental
species and additional energy terms related to short-range van der Waals (vdW) correction and
long-range electrostatic correction, enabling higher fidelity predictions of organic molecules and
macromolecules which can also include the effects of charged species and species with different
valence states. In addition, the ANI-1xnr potential extended the success of the ANI U-MLP to also
enable the accurate modeling of condensed phases of organic systems (comprising C, N, H, O)
such as liquids, supercritical fluids, and chemical reactions.[66] Finally, the MACE-OFF3
potential,[33] also published in late 2023, uses the MACE message-passing framework to
construct a U-MLP for the 10 most-occurring elements in organic chemistry (H, C, N, O, F, P, S,
ClL, Br, I). Compared to the most recent ANI potentials, MACE-OFF3 uses only short-range
interactions, yet results in improved performance on a number of benchmark molecular simulation
properties compared to ANI.

The first published U-MLPs intended to have broad applicability across most elements in
the periodic table came nearly simultaneously in early 2022.[41,58] In just the past two years,
many U-MLPs capable of representing most elements in the periodic table have been developed:
(1) the 3-body Materials Graph NETwork (M3GNet) potential from Chen and Ong;[41] (2) the
Crystal Hamiltonian Graph Neural Network (CHGNet) of Deng et al.;[20] (3) the unified atomistic
line graph neural network-based force field (ALIGNN-FF) of Choudhary et al.;[17] (4) the
tensorial message passing neural network PreFerred Potential (PFP) from the work of Takamoto
et al.,[37] which is now shared as a commercial product in the Matlantis package;[67] (5) the
Graph Networks for Materials Exploration (GNoME) U-MLP from Merchant et al.,[28] which is
a custom-trained version of NequlP from the work of Batzner et al.[35] fit to an in-house database
of roughly 80 million DFT calculations;[28] (6) the SevenNet-0 potential from Park et al.,[38]
which is also based on NequlP and trained in the same Materials Project data as M3GNet but
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refined to provide good scaling on many processors for modeling larger systems; (7) the
equivariant graph tensor network MACE-MPO, developed by Batatia et al.,[32] which was trained
on the same publicly available data used by the CHGNet model, and was demonstrated to have a
high degree of accuracy on three illustrative applications of dynamics of aqueous systems,
heterogeneous catalysis, and metal-organic frameworks but also showed stable nanosecond-long
molecular dynamics on over 30 examples with diverse chemistry; (8) the graph-based pre-trained
transformer force field (GPTFF) developed by Xie et al.,[27] a GNN model with transformer
blocks integrated into the model architecture; (9) MatterSim,[30] a large-scale deep learning model
from researchers at Microsoft trained on actively-learned DFT data from a large custom database
of roughly 17 million atomic configurations, including many non-ground state structures over a
large temperature (0-5000 K) and pressure (0-1000 GPa) range; (10) the Orb model developed by
Neumann et al.[36] achieves excellent performance on the MatBench leaderboard and offers the
advantage of faster performance compared to other leading U-MLPs, where, for example, it was
found Orb performed 3-6 times faster than MACE, particularly for large system sizes and if
dispersion corrections were included; and, finally, (11) the EquiformerV2-OMAT24 model from
Meta,[24] which trains the EquiformerV2 model[68] on a novel open source database of roughly
118 million atomic configurations, leading to, as of this writing, the best performance on the
MatBench leaderboard. An overview of some example capabilities of U-MLPs is given in Figure

3.
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Figure 3. Examples of applications of U-MLPs. (a) Li diffusivity in the solid electrolyte material
LisLaszTe2012 using the CHGNet potential, adapted with permission from Ref. [20]. (b) Calculated
thermodynamic stabilities (as signed convex hull distance) of a set of hypothetical predicted
materials using the M3GNet potential and compared to DFT calculations, adapted with permission

from Ref. [41

]. (c¢) Time to optimize the structure of large protein structures using AIMNet2,

adapted with permission from Ref. [18]. (d- left) Number of newly discovered stable materials
using a GNN model that only predicts the formation energy of a given crystal based on number of
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unique elements in the structure, (d- right) mean absolute error as a function of training set size
using the same GNN, adapted from Ref. [28].

The above U-MLPs are made possible by advancements in previously developed GNN
models to include physical information of how the bond energies of a system evolve with the
positions of the constituent atoms, enabling the acquisition of forces and stresses via differentiation
of this learned energy dependence. For example, the M3GNet potential is an extension of the
MatErials Graph Network (MEGNet) model[69] to include 3-body interactions (note general N-
body interactions are possible, but 3-body is used for computational efficiency), explicit atomic
coordinates, and the 3x3 crystal lattice matrix.[41] As another example, ALIGNN-FF extends the
ALIGNN model,[70] which already incorporates many-body interactions, to also produce
atomwise and gradient predictions, thus enabling calculation of the force on each atom and stress
on the system.[17] In addition to advancements to underlying GNN models, U-MLPs have been
made possible by the growth of large computational databases, namely those containing tens of
thousands of static DFT calculations and AIMD simulations. Each cataloged DFT structure
provides one energy and 3N forces (N = number of atoms in the structure) to use for training the
universal MLP. The presently available U-MLPs were all trained on various databases of DFT
calculations, as summarized in Table 1. In addition, Figure 4 shows the evolution of DFT database
size used to train various U-MLPs over time. We find, on average, that the database size has
increased by more than an order of magnitude each year, from roughly 2x10° in 2022 (M3GNet)
to a present maximum of 1.18x10® in 2024 (EquiformerV2-OMAT24). Even one more year of
following this trend would bring the community to the level of training on billion calculation

databases, a demanding goal but one that would likely bring further improvements in performance.

Table 1. Summary of data and applicability domain of U-MLPs.

U-MLP name Training database | Number of | Training data | Notes
elements amount
represented
M3GNet Materials Project 89 62,783 compounds: | Training data taken
187,687  energies, | from Materials
16,875,138 forces, | Project dating back
and 1,689,183 | to its inception in
stresses 2011
CHGNet Materials Project + | 89 146,000 Training data taken
Trajectory database compounds: from Materials
1,580,395 energies, | Project GGA and
49,295,660 forces, | GGA+U relaxation
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and 14,223,555
stresses

trajectory up to Sept
2022 version.

ALIGNN-FF JARVIS-DFT 89 307,113 energies
and 3,197,795 forces
for 72,708
compounds
PFP (Matlantis) Custom 96 (previous | Roughly 10 million | Training data is a
versions were for 18 | configurations custom in-house set
(TeaNet) and then performed by a
45 elements) collaboration of
Preferred Networks,
Inc. and the ENEOS
Corporation
GNoME Materials Project + | 94 Roughly 89 | Initial training done
Custom million on Materials Project
configurations from | data from 2018
6 million | comprising 69,000
compositions materials. Later fits
include about 89
million
configurations
MACE-MPO Materials Project + | 89 ~150k compounds | An additional
Trajectory database comprising ~1.5 | dispersion
million atomic | correction  model
configurations can be wused to
accurately  capture
dispersion  physics
not present in the
training data
SevenNet-0 Materials Project 89 Same training data | Same training data
as used to build the | as used to build the
M3GNet potential M3GNet potential
GPTFF Atomly.net Value not given in | Roughly 2.2 million
text crystal  structures,
consisting of a total
of 37.8 million
energies (349k of
these are
equilibrium states),
11.7 billion force
vectors, and 340.2
million stresses
MatterSim Initial data from | 89 Roughly 17 million | Sampling
public databases like atomic techniques include
Materials  Project, configurations simulations with
Materials  Project temperatures
Trajectory, and ranging from 0-5000
Alexandria, then K and pressures
customized with from 0-1000 GPa
additional DFT
calculations
Orb Materials ~ Project | 89 Value not directly | Orb found to be 2-6
Trajectory and mentioned in text times faster than
Alexandria closest competitors
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(depends on system
size)
EquiformerV2- Initial data from | 89 Roughly 118 million | As of this writing,
OMAT24 public databases like atomic state-of-the-art
Materials  Project, configurations performance on
Materials  Project MatBench
Trajectory, and leaderboard and
Alexandria, then largest publicly-
customized with available DFT
additional DFT database
calculations
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Figure 4. Evolution of DFT database size used to train U-MLPs over time. The small circle points
are values for individual U-MLPs, and the large blue squares are the average for a given year (note
that SevenNet-0 was not included in the average for 2024).

While it is possible to train a U-MLP on only energies, Chen and Ong recommend training

on energies, forces, and stresses to obtain the most physically accurate potential, and the inclusion

of stresses is needed if one is interested in modeling structural phase transformations or performing

molecular dynamics simulations where volume can vary (e.g., NPT ensemble).[41] These U-MLPs

tend to have very good accuracy when averaged over large test data sets, evidenced by test errors
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in CHGNet (M3GNet) which has energy, force and stress mean absolute errors on test data of 29
(35) meV/atom, 70 (72) meV/Angstrom, and 0.308 (0.41) GPa, respectively. ALIGNN-FF, trained
only on energy and forces as seen in Table 1, has energy and force mean absolute errors on test
data of 86 meV/atom and 47 meV/Angstrom, respectively. Note the higher errors for ALIGNN-
FF are likely due to the authors using roughly 300k of the 4 million data points available to them
for training due to hardware and speed constraints, and not a fundamental limitation of the
ALIGNN-FF approach. These values are comparable to other MLPs that cover much smaller
domains of chemical space.

In general, the developers of these U-MLPs (M3GNet, CHGNet, ALIGNN-FF, PFP,
GNoME, MACE-MPO0) all perform multiple benchmark tests on various classes of materials
structures, chemistries, and prediction of resulting materials properties. While the specific tests
and comparisons are too numerous to list here and also not directly comparable due to different
databases used for training and testing, all of these U-MLPs are successful in accurately modeling
a very large domain of materials phenomena, with typical energy, force and stress errors greatly
surpassing many-body PBPs such as EAM and modified EAM and achieving comparable or
slightly worse accuracy than explicit AEF approaches relying on local environment representations
like MTP. Therefore, it appears possible these U-MLPs may soon be able to achieve near DFT
accuracy across many different arrangements of atoms.

The CHGNet U-MLP is unique from the other U-MLPs discussed here because it
additionally includes the electronic effects of valences by explicitly embedding the magnetic
moments on the vector representation of each atom, thereby enabling charge-informed atomistic
simulations.[20] The inclusion of such electronic effects in an MLP might be beneficial to
modeling some materials phenomena that are highly correlated with charge states (i.e., transition
metal bonding dictated by the ions’ valence states, and phase transformations driven by charge
disproportionation, discussed more below). There are different approaches to represent charge on
an atom, and in CHGNet, the charge is inferred via the DFT-calculated magnetic moment, which
is essentially the localized spin density that is governed by the electron orbital occupancies of a
given valence. Therefore, the training data and predicted outputs of CHGNet consist of energies,
forces, stresses, and magnetic moments on every atom in the system, where the addition of
magnetic moments in training led to further error reductions of energy, force and stress (in the
range of 1-10%, depending on the property) compared to not including magnetic moments in
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training. More important than slight error reductions is the new ability to model key pieces of
physics governed by specific valence states and charge transfer which was not possible with any
previously formulated MLP. To illustrate the power of this capability, Deng et al.[20] highlight
the ability of CHGNet to (i) accurately discriminate different valence states of transition metal
with the example of V oxidation in NasV2(POs4)3, (ii) enable the study of charge transfer-based
dynamic information with the example of charge-coupled degradation in LiMnO: battery cathode
material, where the degradation is driven by the dynamic differences of Mn?" and Mn** vs. the
immobile Mn*" cations, and (iii) model how the electronic entropy effects in the battery cathode
material LixFePOj4 drives the finite temperature phase stability of this material, where the inclusion
of Fe valences in CHGNet correctly reproduces the qualitative miscibility gap as Li is added to
LixFePOa, whereas no miscibility gap is observed if the Fe valence effects are ignored. Finally, it
is worth noting that while the original CHGNet model took 8.3 days to train on a single A100
GPU, the recently developed FastCHGNet includes several optimizations which results in
significantly faster training, down to just 1.5 hours when using 32 GPUs.[71]

There have been at least five notable, recent studies benchmarking the performance of
different U-MLPs. First, work by Yu et al.[72] compared the ability of M3GNet (and the newer
Pytorch-based MAT-GL implementation), CHGNet, MACE-MPO, and ALIGNN-FF to predict
various materials properties. Regarding the convergence behavior of cell relaxations, they found
CHGNet and MACE-MPO to be best, with M3GNet having numerous cases of providing non-
converged full-volume relaxations. All models could predict formation energies roughly as well,
though CHGNet had the lowest MAE at just 81 meV/atom, while all other models had MAEs that
were 129 meV/atom or higher. For vibrational properties, MACE-MPO emerged as the best, while
ALIGNN-FF demonstrated some significant qualitative errors with reproducing phonon band
structures. Second, work by Focassio et al.[73] compares predictions of M3GNet, CHGNet, and
MACE-MPO for predictions of bulk and surface total energies and surface energies for 73
elemental systems for which bulk and surface slab data were available in the Materials Project,
where a total of 1497 surface structures were considered. As shown in Figure 5, all three U-MLP
models were able to accurately reproduce the total energies of bulk (note, on average CHGNet has
the lowest prediction errors), which is sensible as these bulk structures were included in the U-
MLP training data. The errors for surface energies are much more significant than for bulk, which
is the result of these surfaces not being present in the training data. Surface energy prediction errors
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with M3GNet and CHGNet show systematic underprediction and MACE-MPO shows multiple
instances of overprediction. Focassio et al. also show that targeted MLPs like MTP and NequlP
can have lower errors for predicting properties of specific systems vs. the zero-shot U-MLP
predictions, improving accuracy at the cost of losing generality. The third benchmark from Deng
et al.[74] shows the underprediction of energy and forces by U-MLP in a series of material
modeling tasks, including surface energy, defect energy, mixing energy, phonon vibrations, ion
migration barriers, etc. The observation of underpredicted properties aligns with the report by
Focassio et al. The underpredicted energies and forces are attributed to a systematic softening of
the U-MLP PES, where the U-MLPs are found to predict smoother energy landscapes than the real
PES described by DFT. The author claimed the softening effect is driven by the biased sampling
in U-MLP training dataset, where the training atomic configurations are taken from DFT ionic
relaxations and are therefore close to local PES minima. The fourth benchmarking work we discuss
here is from Riebesell et al.,[75] who focused on the ability of U-MLPs and other GNN-based ML
models (e.g., MEGNet, ALIGNN) to predict stable materials (i.e., materials with a convex hull
energy within some threshold, chosen as being on or below the Materials Project training data
convex hull). They tested these models on the dataset from Wang et al.,[76] which consists of
unrelaxed structures of materials less well-sampled in the Materials Project and was generated by
a chemical-similarity based element substitution process using structures from the Materials
Project. They found that all three U-MLP models outperformed all other models, and that, in
particular, MACE-MPO performed best for discovering new stable materials, where the
classification F1 scores for finding stable materials followed the order of 0.67 (MACE-MPO0) >
0.61 (CHGNet) > 0.57 (M3GNet) > (everything else). The MACE-MP0 and CHGNet models had
MAE values of convex hull energy of 60 meV/atom. Finally, work from Casillas-Trujillo et al.
sought to evaluate the ability of M3GNet, CHGNet and MACE-MPO to predict metallic alloy
mixing thermodynamics. A striking result of their work is that none of these 3 U-MLPs were able
to accurately reproduce the mixing energies of metallic binary alloys in adequate agreement with
DFT results.[77] These findings point to the need for careful benchmarking when pursuing the use
of U-MLPs for a new problem of interest, and, if sufficient accuracy is not obtained, the
consideration of carefully selected additional training data to fine-tune the U-MLP to obtain
enhanced accuracy. To this end, recent work from Wines and Choudhary established the
Computational High-Performance Infrastructure for Predictive Simulation-based Force Fields
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(CHIPS-FF), which is an open-source infrastructure specifically tailored for benchmarking
materials properties predicted with various U-MLPs.[78] The problems identified in the above
benchmarking studies suggest a benefit to a focusing on not just force and energy errors but also
quantitative assessment of U-MLP errors on physically relevant properties, e.g., surface energies,
defect energies, mixing behavior, elastic constants, etc. Testing of such behavior will benefit from
the careful generation of sophisticated test datasets to assess U-MLP performance. There are
challenges for how to do this effectively since, once a test set is established, it is tempting for the
community to begin effectively fitting new potentials to minimize errors on these test sets, which
may inadvertently create undesirable performance of the potential with respect to other properties.
Developing and properly utilizing such test datasets is expected to play an important role in the
refinement of U-MLPs. It is important to note the that the limited ability for low energy and force
errors on training and test data to assure good performance in predicting important materials
properties is not limited to U-MLPs and is a challenge for MLPs. We discuss this issue further in
Sec. 7.5.3.
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Figure 5. Benchmarking performance of U-MLP models for predicting bulk and surface total
energies and surface energies. ML vs. DFT total energies for (a) bulk and (b) surface. (c) ML
predicted vs. DFT-calculated surface energies. (d) Data from (c) but plotted as a box-and-whisker
plot of the ML vs. DFT residuals. Figure adapted with permission from Ref. [73].

U-MLPs are expected to keep improving rapidly. Such improvements can come from
simply refitting a potential to more data e.g., as already demonstrated by Takamoto et al.[37,58,79]
Improvement can also come from expanding the underlying MLP formalism to include new pieces
of physics, as was done by Anstine et al. to include vdW and electrostatic contributions to the total
energy of the organic U-MLP AIMNet2,[18] and the addition of dispersion and vdW interactions
to MACE-MPO despite the potential only being trained on PBE-level DFT data.[32] A different
and more subtle method of using additional data to improve a U-MLP is through fine-tuning of an

existing model. Fine tuning is a process by which a large NN model that is already trained has its
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weights only slightly altered to match a small amount of new data, with the goal to keep the model
accuracy on its original training data while increasing the model accuracy on the new data. Fine-
tuning typically involves updating a small fraction of the weights, typically in layers involved in
just the final steps before output. Such fine-tuning has been widely applied in other ML problems
(e.g., computer vision and language models). Through this approach, U-MLPs may form the basis
for more focused models that can be fine-tuned using new data comprising more specific chemical
or structural families of materials or molecules. Since the weights in the U-MLPs have been pre-
conditioned on comprehensive datasets, the fine-tuning process typically requires fewer data
compared to fitting a new potential, and may result in lower errors than training from
scratch.[28,74,80] For example, Merchant et al. found that the error of a fine-tuned U-MLP also
follows a power-law as a function of its pretraining data size[28] (i.e. larger pre-training dataset
sizes led to better downstream fine-tuned U-MLP’s. The M3GNet, CHGNet and MACE Python
packages already allow for fine-tuning, so this approach can be readily explored by users.
U-MLPs have several promising use cases. The first is that they may drastically speed up
DFT calculations by providing a means to quickly relax a set of atomic positions much closer to
equilibrium positions prior to running a full DFT calculation. In their work on developing
M3GNet, Chen and Ong discuss how such speedup may reduce DFT calculation time for relaxing
material structures by a factor of three.[41] This application is largely insensitive to inaccuracies
in the U-MLP since the final output is from a full ab initio calculation and it is therefore extremely
appealing. One could imagine it becoming standard practice and having a large impact, cutting
typical ab initio calculation times significantly across potentially billions of future calculations. A
second use case is replacing and expanding beyond AIMD. Similar to all MLPs, U-MLPs are
useful for simulating large-scale, long-time dynamic phenomena inaccessible to current AIMD
length and time scales. Such speed-up of DFT and MD studies has the potential for disruptive
transformation of atomistic modeling, potentially impacting thousands of studies each year. A third
use case is materials exploration. Different from more targeted MLPs, U-MLPs have a much
broader domain of applicability, increasing the chemical and structural complexity of systems that
can be modeled with typically a small or minimal loss in accuracy. This makes U-MLPs
particularly powerful for exploring many chemistries and structures, e.g., screening for a certain
property like Li-ion conductivity or high elastic modulus. In particular, the lack of scaling issues
with many components makes U-MLPs uniquely positioned for exploration of chemically and
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structurally complex multicomponent materials with, for example, >5 species. There is thus a
massive opportunity to screen materials properties across the periodic table which was only
possible with computationally expensive ab initio calculations in the past, but which could be
made roughly 1000x faster for even modest-size unit cells with the aid of U-MLPs. As a
demonstration of the beginnings of such an approach, Chen and Ong developed matterverse.ai, a
Materials Project-like repository containing millions of hypothetical structures generated using
physics-based considerations of reasonable materials structures and chemistries, and for which
formation energies were subsequently calculated and screened using the M3GNet potential.[41]
Similarly, Merchant et al. used a GNN model that directly predicts the formation energy of a crystal
to propose 381,000 new stable (at T = 0 K) materials, expanding the number of known stable
inorganic materials by nearly an order of magnitude. Given the rapid advances in generative Al,
one can imagine the possibilities of combining generative inverse materials design approaches
together with U-MLPs for fast materials exploration and screening, for example using tools like
the Crystal Diffusion Variational Autoencoder (CDVAE) of Xie et al.[81,82], the MatterGen
model of Zeni et al.[83], the Symmetry-aware Hierarchical Architecture for Flow-based Traversal
(SHAFT) model of Nguyen et al.[84], a diffusion probabilistic model employing unified crystal
representations of materials (UniMat) from Yang et al.,[85] or even using large language models
trained to produce stable crystal structures,[86,87]. Joining generative and U-MLP methods may
provide a powerful new way to discover exceptional new materials that would not have been
considered by way of conventional screening approaches.

Presently, the main drawbacks of U-MLPs include the same limitations as noted for more
targeted MLPs (see Sec. 9) with the additional (and quite major) limitation that its true domain of
applicability is quite uncertain. While U-MLPs are much broader in their domain than targeted
MLPs, the currently available models almost certainly have many areas of major weakness that
cannot be easily predicted in advance. For example, using a U-MLP to study Li diffusion in solid
electrolytes might provide excellent diffusivity values for 95% of the materials but be quite far off
for 5% of considered materials.

We discuss some strategies for the effective use of U-MLPs in their present stage of
development in Sec. 7. U-MLPs are also generally slower than targeted MLPs, as noted in the
discussion of MLP execution speed in Sec. 6. That said, there is an enormous advantage to a large,
centralized effort around one or a few U-MLPs. These advantages include the ability to efficiently
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integrate state-of-the-art improvements, e.g., adding long-range forces, speed optimizations, multi-
fidelity learning, fine-tuning, uncertainty quantification, etc. It may be that the aggregation in one
place of all the best practices and state-of-the-art approaches helps grow the value of U-MLPs over
targeted MLPs. Overall, U-MLPs represent a very exciting advance of MLPs that will likely have
a significant impact on the field of atomistic modeling. The coupled facts that a single potential (i)
may soon produce energy, force, and stress values (and perhaps additional properties, such as
magnetic moments) with near ab initio-level accuracy and order of magnitude more than ab initio
speed, (i1) can be applied to almost every chemically relevant element in the periodic table, and
(ii1) can include increasingly complex physics, offers the tantalizing possibility of future U-MLPs
functioning as a truly foundational model for materials modeling, in turn replacing a significant
fraction of explicit quantum mechanical calculations with no need for explicit training. Fully
realizing the potential of U-MLPs would allow researchers to quickly and easily explore problems
that are practically inaccessible to present physics-based approaches and greatly increase the

overall impact of atomic-scale materials modeling.

6 Execution (Inference) Speed of MLPs

Speed for execution of an MLP is important when one is performing a large number of
calculations, which might occur during long MD runs or large-scale searches of configuration and
chemical spaces. Key issues to consider for timing are: the processor used for calculations (speed
of CPU, GPU, or other hardware), system size, and MLP type (e.g., complexity, where increasing
complexity generally corresponds to greater accuracy and slower execution). It is very difficult to
quantitatively assess the speed of MLPs unless one makes a direct comparison of the same
calculations with proper controls for hardware, hyperparameter settings, etc. However, there are
some relevant studies available, and qualitative trends can be determined from different
performance reports in the literature. We stress that the values given here should be treated very
cautiously as qualitative guides and careful benchmarking for your project should be part of any
extensive study where speed is an issue. A common metric for assessing performance that allows

for some comparison across different numbers of atoms, processors, and steps from MD or other

. . . . Nproc proc—s
multl-step simulations is processor-seconds per atom per step, | ———— ) Tsim | —zrom—|» where

NatomNstep step

Ngtom 1s the number of atoms[88], Ny, 1s the number of steps in the simulation (where one step
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of an MLP involves evaluation of the total energy and forces on all the atoms for one atomic
configuration, e.g., as might occur during one MD time-step), Npyo. is the number of processors
being used), and 7, is the wall-clock time required to execute Ngtep steps. The units for each
measure are given in brackets. Note that processors could be either individual cores on a multicore
CPU or entire GPU processors. Typical nodes on high performance computing resources may
contain dozens of cores and up to 6 or more GPUs. As long as each processor has a sufficiently
large number of atoms to work with, the performance in proc-s/atom/step will be insensitive to
both Ngtom and Ny,o.. The results discussed here will mostly be approximately in this linear
scaling regime. An exception to this is the Nj,,.=1 special case, where simulations are run on a
single core or single GPU. Performance here is usually significantly better than larger scale
parallel calculations with Ny, >>1, where there is additional overhead of MPI network
communication. For the Ny,.,.=1 special case, performance is given in units of simply s/atom/step.
All performance results are based on a typical state-of-the-art CPU or GPU from the last few years
(relative to 2023). For CPUs, these provide about 10!! floating point operations per second
(FLOPS) and for GPUs (e.g., NVIDIA® V100 Tensor Core GPU) these are about 10'> FLOPS.
Note that in the following discussions we will be giving approximate performance values and thus
generally round to the nearest order of magnitude.

First, we consider performance for cases running on a single CPU or GPU processor under
close-to-optimal conditions, with a reasonable system size (e.g., 100-1000 atoms) that can fit into
memory limits on the CPU/GPU. Good scaling for parallel execution up to very large system sizes
has been achieved and will be discussed more below. Timing values for a number of explicit AEF
type MLPs (see Sec. 4.3) under different levels of complexity (i.e., basis set size) are shown in
Figure 6.[1,60] Well-fit MLPs of the explicit AEF type range from about 10~ to 10~ s/atom/step
(note that this is just proc-s/atom/step for one processor) depending on the number of degrees of
freedom used, typically set by the number of terms that are included in the basis function
expansions. A typical speed of the faster explicit AEF type MLPs (e.g., MTP and ACE) is about
10 s/atom/step. As a concrete example of timings, Bernstein evaluated GAP, ACE and MACE
potentials for 1024-atom cells of CuxAlix alloys using MD.[88] He found that ACE timings ranged
from about 0.06x 107 to 0.18x 107 s/atom/step, while GAP was slower at 2.1x 107 s/atom/step,

both computed for one processor. MACE timings ranged from 0.042x107 to 0.12x107
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s/atom/step on a single NVIDIA A100 GPU. For reference, timing is about 103 s/atom/step for
standard well-converged DFT in a state-of-the-art code for ~100 atom unit cells of a typical set of
elements, 10~ s/atom/step for a ReaxFF potential (one of the most complex physics-based
traditional potentials), and 107 s/atom/step for the Lennard-Jones and EAM interatomic potentials

(some of the fastest physics-based potentials).[89]
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Figure 6: Trends in computational cost (speed of the MLP) for a set of major MLPs for (a) Cu and
(b) Si molecular dynamics calculations (done on one CPU with 108 atoms for 2500 steps). The
varying colors correspond to different MLPs and the points for each color correspond to larger
basis function sets, which generally lead to greater accuracy and larger computational cost. The
abbreviations are Atomic Cluster Expansion (ACE), Gaussian Approximation Potentials (GAP),
Moment Tensor Potentials (MTP), Neural Network Potential (NNP), Spectral Neighbor Analysis

Potential (SNAP), and quadratic SNAP (qSNAP). Figure reproduced with permission from Ref.
[60] with data originally from Ref. [1].

Next, we consider the timing of deep learning-based MLPs. Deep learning MLPs are
generally similar to, or somewhat slower, than non-deep learning explicit AEF approaches,
although it can be hard to compare as the former are often run on GPUs. Nonetheless, some results
exist that give a qualitative sense of the relative speeds of deep learning MLPs under different
conditions. DeepMD typically performs at about 107 proc-s/atom/step on a CPU, and was
accelerated 39 times (so about 10 proc-s/atom/step) on a GPU in a direct comparison.[90]
M3GNet,[41] which models a very large number of elements (89) and is what we refer to as a U-
MLP (see Sec. 5), takes about 107 proc-s/atom/step on a single CPU to perform a structural

relaxation of Ks7Sess4, an example chosen for its large energy change during relaxation. Recent
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testing of the PFP U-MLP from Matlantis gave about 10~ s/atom/step on a GPU for 100-1000
atom unit cells running MD in LAMMPS.[91] These values were about 5 times slower than well-
converged MTP and ACE fits on identical systems run on a single CPU, and about 50-100 times
slower than the same runs on a large set of CPUs.

An interesting developing area to increase MLP speed is the ultra-fast approach,[42] which
uses computationally cheap spline functions to describe the atomic environments and linear
regressions for energy/force predictions. The potentials resulting from the ultra-fast approach are
extremely fast compared to existing MLPs at the price of limited flexibility and possibly greater
errors for complex systems. For example, such potentials are about 10° times faster than typical
explicit AEF MLPs, with similar prediction accuracy to SNAP, GAP, and MTP on some test cases,
putting them at about 107 s/atom/step and comparable to the fastest simple PBPs.

Efficient architectures and scaling up the number of CPUs and GPUs used to evaluate
MLPs can lead to large speedups, which is particularly useful for the somewhat slower deep
learning methods. Note that these timing values are somewhat faster than above, likely because
the inclusion of more atoms is allowing for more efficient use of the processors. DeepMD achieved
about 107 proc-s/atom/step with about 127 million Cu atoms, and SNAP achieved 10 proc-
s/atom/step on about 20 billion C atoms, both running on 27,900 GPUs (4650 nodes on the Summit
machine).[92] A deep learning MLP particularly optimized for scaling and performance is
Allegro,[13] which uses a strictly local equivariant neural network and ACE-like atomic features,
and while it can be executed on CPUs, it is best run on GPUs. Allegro models of water achieved
about 107 proc-s/atom/step with 4, 64, 1024 GPUs and 10°, 10%, 107 atoms, respectively.[93] Note
that the choice of hyperparameters (i.e., complexity) can change this approximate timing by an
order of magnitude and that this is for an optimally tuned MLP. To increase execution speed,
typically a more complex model is first used to verify the fidelity of the training data and learning
process, before being reduced in size, while still reproducing a target property of interest with
sufficient accuracy.

As another example of an MLP particularly optimized for scale and speed, the GPU
implementation of the FLARE potential,[25] based on C++ with a Python wrapper, was used to
model heterogeneous catalysis of Hz/Pt(111) for 0.5 trillion atoms on 27336 GPUs nodes,
achieving 107 proc-s/atom/step.[94] However, the speed of FLARE on CPUs reduces significantly
compared to GPUs, down to roughly 107 proc-s/atom/step. It is useful to note that the performance
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for SNAP, FLARE, and Allegro all begin to deviate significantly from linear scaling of inverse
time with processors (constant B values) by around 10> atoms/GPU for the Summit hardware used
in these tests (NVIDIA V100-16GB GPUs). While these timings are very impressive, it is
important to realize that PBPs can also take advantage of parallelization and GPUs. For example,
a GPU-accelerated classical force fields model based on the Martini potential recently achieved 6
microseconds/day on 136,000 particles (B=10 proc-s/atom/step) using six V100 GPUs.[95]

In summary, from the above-discussed timings we can learn at least two important lessons.
The first lesson is that, similar to PBPs, scaling up to even hundreds of billions of atoms is possible
for some MLPs. These calculations generally require multiple GPUs, which can be a challenge to
access, but options are becoming increasingly available (see discussion of infrastructure for MLPs
in Sec. 8). The second lesson is that the general trend of speed we noted on one CPU, which is that
simple PBPs are fastest, followed by explicit AEF MLPs, then finally implicit AEF deep learning
MLPs, largely still holds with larger-scale calculations. That said, we stress that the details of the
MLP fit and optimization can matter a lot for large-scale calculations, so one should choose an

optimal approach carefully if pursuing such studies.
7 MLP Choices — What Should | Use When?

When choosing MLPs, many factors can be considered. We list a few of these factors in
this section and provide some guidance on how to think about each of them. We start from basic
aspects of hardware, accuracy, and speed and then progress to the details of pursuing a specific

MLP.
7.1 Hardware Resources

Hardware resources could be an initial deciding factor in choosing MLPs both when fitting
anew potential or using a pre-trained potential. Generally, explicit AEF MLPs such as MTP, ACE,
SNAP, and GAP have fewer parameters and functions than NN-based MLPs and run well on
CPUs. On the other hand, NN- and GNN-based MLPs mostly rely on GPUs. Some potentials, like
MTP, can presently only be run on CPUs, while ACE is faster when fit using GPUs but can be
used for MD simulations on both CPUs and GPUs. NN-based MLPs are primarily created to be fit
and used with GPUs, although they can be run on CPUs, with typically a 10-100x slowdown on
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CPU vs. GPU calculations (see discussion of MLP timings in Sec. 6). These trends generally
suggest that if you only have access to CPUs, then explicit AEF MLPs are likely best as they will
be certain to run and will typically run with reasonable speed. If you have access to GPUs, then
both explicit AEF and NN-based MLPs are potentially good choices. Given the growing
importance of U-MLPs and the use of GPUs in training and executing many MLPs, it is likely
advisable to have access to at least one high-performing GPU if you are planning extensive use of
MLPs. In addition to the discussion above, in Matlantis, which is commercially deployed as SaaS,
PFP is provided via an API, allowing users to execute inference without considering the
environment setting and optimization of computing devices. In practice, the inference is executed

in backend GPUs or specific deep learning accelerators named MN-Core series. [96]

7.2 Speed Requirements

The overall simulation time depends on the size of the system, the number of execution
steps in the simulation, available hardware resources, and the computational cost of the MLP.
Assuming the first three factors are fixed by the project and infrastructure needs of the user, the
MLP framework determines the overall simulation time. As previously discussed in Sec. 6, explicit
AEF MLPs are about 10-100x faster than implicit AEF deep learning MLPs. If the computational
cost is not a limitation, deep learning MLPs typically provide the highest accuracy and may be
adopted. Otherwise, the user could opt for any of the explicit AEF MLPs that provide the desired

accuracy.

7.3 Accuracy Requirements

While the promise of MLPs is to achieve any desired property accuracy with respect to ab
initio methods, in practice there is an accuracy limit of MLPs to keep the computational cost of
the MLP reasonable given the available resources. One limiter of MLP accuracy stemmed from
the insufficient description of the atomic environment in the earlier MLPs such as Behler-
Parrinello NNs, GAP, and SNAP. More recent MTP and ACE formalisms introduced new methods
to give a complete description of the atomic environment and used linear regression to learn the
PES, enabling an increase in the accuracy of MLPs while keeping the computational cost tractable.

In recent years, it has been shown that equivariant GNNs can achieve very high accuracies with a
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practical computational cost, where NequlP, Allegro, TeaNet, SO3krates[97] and MACE are
examples of such approaches. Thus, the authors recommend that if GPUs are available, training
with equivariant models such as NequlP, Allegro, TeaNet, SO3krates or MACE is likely to yield
the highest accuracy. Furthermore, it has been found that higher accuracy may be obtained by fine-
tuning a pre-trained potential as opposed to to training a new MLP from scratch, even for tasks
that were out-of-distribution compared to the training data.[80] In a few personal experiences by
the authors, we have found that for real systems, with abundant training data available (meaning
we could keep running more DFT as needed until we see little improvement in the potential), the
AEF methods like ACE tend to have root mean squared error (RMSE) on energies and forces that
are 2-3 times those of GNN methods like MACE. If there are only CPUs at hand, the authors
suggest MTP or ACE. Implementations of these various methods are likely to improve and

diversify utilizing popular hardware, and therefore we expect the field to change rapidly.

7.4 Using A Pre-trained Potential

Depending on the type of study, one may decide to use a pre-trained potential or to fit a
potential from scratch. It will likely save a lot of time if one can start from a pre-trained potential,
so this is a logical first step to explore. Pre-trained potentials may be found in online repositories
or by searching through scientific articles. For example, pre-trained targeted MLPs for specific
systems (e.g., GAP potential for Cu) can be found on the NIST Interatomic Potentials Repository
and the Open Knowledgebase of Interatomic Models (OpenKIM).[98—100] When deciding to use
a pretrained potential, one must make sure that the potential is suitable for the study. Given the
recent availability of U-MLPs and their ease of use across many systems, they represent an
appealing option, and importing pre-trained versions of U-MLPs from their respective repositories
is straightforward.[101-103] However, although U-MLPs generally have low energy and force
errors compared to their ab initio training data, their ability to predict accurate materials properties
is not ensured by these low errors (see Sec. 5) and they have not been thoroughly validated for
accurate prediction of materials properties across most systems. It is therefore quite possible that
despite some impressive successes (see Sec. 5) that many properties, from vacancy formation
energies to melting temperatures, may be incorrectly predicted. Furthermore, U-MLPs can be
slower than other MLP or PBP approaches (see Sec. 6), so speed requirements should be

considered. However, given the rapid rise of such U-MLPs in just the past couple of years, it is
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likely that increased property prediction benchmarking will be available, and iterative
improvements to the U-MLPs, e.g., through fine-tuning, will further aid in improving their
accuracy and generalizability. For the time being, there are a few simple strategies one can use to

apply U-MLPs most effectively, which we summarize here:

1. Validate the U-MLP predicted energies and forces for your system of interest. One way to
ensure the accuracy of an untested MLP for a specific system and purpose is to run some
relevant ab initio simulations for your problem and compare the ab initio and U-MLP energies
and forces. One should be careful to choose ab initio settings such as functional, energy cutoff,
k-point density, etc., consistent with the training data used for the MLP (e.g., choosing the right
pseudopotentials and Hubbard U values for GGA+U calculations). Good agreement is strong
support that the U-MLP is applicable to your system. Such a benchmark can be done with just
a handful of static ab initio calculations on small unit cells and therefore can be quite fast. The
use of benchmarks that directly relate to the property of interest, e.g., an activated state for a
chemical reaction or few points on a gamma surface for stacking fault energies, are likely best.

2. Validate the U-MLP property predictions for your system. In many cases, the benchmarking
described above can be easily extended to include comparing ab initio and U-MLP calculation
of specific properties of interest, e.g., a set of phonon dispersion curves, diffusion coefficients
or defect formation energies, particularly for small systems or simplified cases. Good
agreement on target properties provides even greater confidence in the U-MLP than just similar
energies and forces on select structures. For example, one might calculate diffusion
coefficients in a small unit cell with ab initio and the U-MLP and, if similar results are
achieved, apply the U-MLP to much larger systems or different compositions.

3. Apply U-MLPs to problems that can easily detect failures or are not overly sensitive to failures.
Many applications might not suffer too much from intermittent failures of the U-MLP. For
example, using a U-MLP to pre-relax other ab initio calculations is a very robust application
tolerant to U-MLP failures since the final calculated result does not directly depend on the
accuracy of the U-MLP. In addition, failures in the pre-relaxing can be easily identified and
corrected by checking against the corresponding ab initio relaxation. As noted above, in
developing the M3GNet U-MLP, Chen and Ong comment that pre-relaxing hypothetical

structures with their U-MLP before performing ab initio calculations resulted in approximately

42



3x time savings compared to running ab initio on un-relaxed structures.[41] Another example
might be using U-MLPs for an initial screening of a large set of candidate materials for a
specific property, where a highly accurate calculation may not be necessary in the initial steps.
Failures of the U-MLP might lead to false positives (keeping unpromising materials) or false
negatives (removing promising materials) but later screening with full ab initio calculations
can catch the false positives, and, typically, screening is often more focused on getting a few
successes than ensuring no false negatives. A final example is generating physically relevant
atomic configurations (which need to be calculated with ab initio methods later) for training a
more specific potentials, a way in which U-MLPs might help accelerate the development of

more targeted MLPs.

Despite the exciting potential of U-MLPs, the high levels of uncertainty in their
applicability means that many practitioners presently still either fit their own potential or use a pre-
trained potential that is specifically fit for the material under investigation. As a new trend different
from this, some early adopter researchers have begun to perform calculations without finetuning.
For example, Matlantis provides pretrained U-MLP (PFP), with the aim of allowing users to do
practical simulations without having to perform finetuning. In all cases, it still matters that the
training data used for the potential is consistent with the type of study being considered, both in
terms of atomic structures, chemical states, and relevant physics. For example, (i) an MLP that is
trained on pristine crystalline phases and crystals with stacking faults and vacancies may not be
appropriate to conduct a study on the amorphous phases of the same material, (i1) an MLP trained
on low valence transition metal states might not represent high valence states of these same metals
well, or (ii1) a potential trained on ab initio methods like the DFT-PBE functional may not be
suitable for layered materials or molten salts, where vdW contributions are significant (although
in this case the potential might be corrected by empirical vdW corrections). In general, for all
MLPs, one should validate the energy, force, and property predictions as much as possible for a
specific use case unless it very closely matches previously published or well-validated work. Many
considerations related to the issues above are likely relevant for choosing an optimal pre-trained
potential but, since the potential has already been developed, it is likely that the original authors
have already taken these items into consideration (e.g., choosing the right potential for the

hardware they ran on, etc.). Thus, one can take guidance from the earlier work about optimal use.
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That said, it might still be useful to have a sense of how different potentials behave related to the
above issues, and in the next section we summarize the key concerns in the context of fitting a new

potential.

7.5 Fitting A New Potential: General workflow

7.5.1 Basicideas

If no pre-trained potential is available, one will need to choose an MLP framework and fit
a potential from scratch. In this section, we provide some strategies and guidance from hands-on
experience to help new users approach choosing an MLP to fit. In addition to the above
considerations when using a pre-trained potential, a few new factors become relevant when fitting
your own potentials, which we discuss here.

The basic idea behind fitting MLPs is the same as in almost all regression ML problems.
One defines a loss function and adjusts the parameters of the ML model, typically using some kind
of matrix inversion or backpropagation, until the loss function is minimized. For MLPs, the loss
function is usually a weighted sum of RMSEs on a few targets, which are usually forces on atoms
and total energy, but can also include other properties such as stress tensor, virial, polarizability,
etc. Typically, the most important terms are the RMSE in forces and energy and these are standard
to report. It is important to realize that, although MLP fitting is similar to other ML models, it is
helpful to use domain knowledge (from physics, chemistry, and materials science) to perform
successful training and assessment, which we call science-informed fitting. Science-informed
fitting is very helpful, at least at present, because the MLP fit will almost certainly not be perfect
for all possible configurations of atoms, so the user is suggested to apply their domain knowledge
to develop a model that is adequate for their needs.

At present, there is no agreed-upon standard or widely accepted optimal workflow for
fitting an MLP. However, multiple authors have provided very helpful articles that cover the major
considerations and provide excellent practical guidance.[104—-107] Here, we describe the typical
general workflow, and then go into some of the detailed questions and choices associated with its
implementation. In addition, a standard set of procedures and software for generating or acquiring
training data, fitting, comparison, and deployment of MLPs is provided in Sec. 8. The general

approach is to generate an initial set of ab initio data {s,}, consisting of atomic configurations
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related to your problem of interest (e.g., liquid configurations for studying a melt, different
vibrational modes for studying phonons, or multiple distortions for studying molecular systems).
Then, fit an initial potential to ~80% of {s;} and test on the left-out ~20% of {s;} to assess
accuracy on energy and forces (this approach and the details below can be readily extended to
other targets if they are used). In the case of training GNN:Ss, it is common practice to train on 80%
of the data, reserving 10% for validation (to guide the GNN training process) and 10% for testing.
If the fit quality is not adequate (e.g., the force and/or energy RMSE is too high), one develops
additional data, adds it to {s;} to form a new data set we call {s,}, and then performs a similar
assessment. If {s,} is sufficiently large, then no iterations may be needed. If the system is complex
and/or relatively small data sets are being added at each step, then this might take many iterations.
Atomic configurations for different {s;} are generally determined based on user intuitions about
important configurations for the application of interest (e.g., known stable compounds in the
material), independent samples from MD trajectories, guidance from active learning (discussed
below), or some combination of all of these, depending on the application. The required amount
of data to obtain a desirable fit can vary, but for typical systems with 3-4 species, the number of
total energies Ng and the number of forces N used in training are approximately Ng ~ 10° and N
~ 10°. This estimate is very approximate, and model type and architecture (e.g., MTP vs. ACE,
equivariant vs. invariant features, etc.) can also affect the results. In particular, for deep learning
methods, the error vs. amount of training data (the learning curve) is expected to follow a power

law, but the power law exponent can depend on significantly on the details of the MLP.[108§]

7.5.2 Determination of test data

The first potential fitting issue we address is strategies for determining useful test data sets
for validating the MLP fit. Random cross-validation (CV) or k-fold CV are both reasonable if the
data is not highly correlated. However, if the data has many similar conditions, e.g., as occurs for
data generated from AIMD trajectories or small perturbations to existing structures, then these
random CV approaches will yield overly optimistic predictions. The predictions will be overly
optimistic due to the “twin” problem, where extremely similar data is present in both the train and
test sets, and the model predictions are thus indicative of data that looks just like the training data.

In the case of highly correlated or otherwise similar data, one can assess the potential more robustly
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by comparing ab initio and MLP predictions from new conditions, e.g., MD at a new temperature
or MD from a much later time than that used during training. An even better way to assess the
MLP in such cases is to apply the MLP in expected or near-to-expected use cases and check errors
on select configurations from those conditions. For example, assume you are trying to predict the
diffusion of Li in a solid-state electrolyte at low or even room temperature. The bulk of the training
data might be AIMD trajectories at higher temperatures so that many Li hops occur. An example
of good test data would be to simulate low-temperature hopping with the MLP, extract
configurations where the hopping occurs, run these with ab initio methods, and compare the ab
initio and MLP energies and forces for those configurations as a test. Obviously, when possible,
testing the ability of the potential to predict the properties of interest is essential. Continuing the
example above, one should be sure that the ab initio and MLP-predicted Li diffusion match in the
higher temperature conditions where the ab initio simulations are reliable and can be well-
converged. However, extensive property testing is generally difficult as it can be challenging to
have a robust ground truth, proper simulations often take a long time for the ground truth even
using the MLP, and there are generally relatively few property values for comparison (e.g., one
might have only 5-10 densities or diffusion coefficients as compared to many thousands of forces).
This disparity makes it desirable to know as much as possible that a potential will be robust before
starting significant property exploration. This robustness is generally assessed through energy and

force errors and brings us to the second issue.

7.5.3 Required energy and force accuracy

The second potential fitting issue we address is what accuracy of energies and forces is
needed in the test data to ensure a useful MLP, by which we mean an MLP that can be used for a
wide range of simulations and yields accurate predictions for properties of interest. At present,
there is no exact answer to this question. The accuracy that can be achieved will depend on the
conditions being explored and the range of elemental species and structures considered, as well as
the type of MLP. For example, a simple liquid phase of just one element may yield much smaller
errors, both relative and absolute, than modeling oxidation of a complex surface at high
temperatures. However, there are still challenges in learning even single-element systems. For

example, Owen, et al.[109] found that early transition metals have higher relative errors than late

46



platinum- and coinage-group elements. This apparent difficulty in learning is attributed to the
sharp d-electron density of states above and below the Fermi level, resulting in complex physics
which makes the PES difficult to learn. The relative energy and force errors in their study of
transition metals ranged over about a factor of 10. That said, typical values for energy and force
errors are in the ranges of 1-10 meV/atom and 20-40 meV/A, respectively, for a very good fit,
although force errors of up to around 100-200 meV/A have been reported in nominally successful
MLPs.[1,109] Very accurately trained MLPs can achieve errors for energies, forces, and stress
tensor components on the order of 1 meV/atom, 10 meV/A, and 0.1 GPa, respectively, although
in practice one may find somewhat higher (e.g., 2x) energy, force and stress errors which are
highly system and potential dependent.

It is reasonable to assume that for a relevant and diverse set of training data, a lower RMSE
on energies and forces will generally translate into more accurate property prediction. However,
depending on the application, low energy, force, and stress errors may not be sufficient criteria for
ensuring accurate property predictions.[110,111] In addition, an MLP trained on a large number
of chemically diverse systems may exhibit energy and force RMSEs that vary widely by element
or chemistry type (e.g., defects in oxides vs. elemental metals), system state (e.g., solid vs. liquid),
and simulation conditions. Obviously, the MLP is at best as accurate as the ab initio method used
to train it, so for the discussion here we will assume that the ab initio method yields accurate
results. In the case of negligible RMSE on all atoms in all situations, it is expected that the MLP
is essentially equivalent to the ab initio method used to train it and will ideally yield robust property
prediction. However, this ideal scenario is difficult to reach in practice, due to poor predictions on
outliers. RMSE values are averages over many configurations, so even MLPs with low RMSE can
have outliers that have significant errors. If these outliers are important for a given property, then
the prediction may not be accurate. Again, referring to the example above, an MLP trained on a
large body of ab initio MD simulation data of a Li conducting compound may show very low
RMSEs on energies and forces on all the different atom types, but still not accurately capture the
activated state energy of Li during a hop (i.e., this activated state is an outlier) and therefore yield
inaccurate diffusion coefficients. The result of a low RMSE but the inability of the model to
capture some piece of physics is analogous to situations that often arise when developing standard
ML regression models, where the model is generally reliable for interpolation tasks (test data
similar to training data) but unreliable for other tasks, even when not formally extrapolating.[86]
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As a concrete example of MLP extrapolation issues encountered during a study, Zhai et
al.[112] demonstrated that a widely-used deep neural network potential, i.e., DeepMD, can reliably
reproduce the properties of liquid bulk water but provides a less accurate description of the vapor—
liquid equilibrium properties. This problem can be compounded by two potential issues: (1) The
ML architecture cannot capture the essential symmetries and physics, e.g., many-body
interactions; (2) The training data is not at all evenly distributed in structural or chemical space, a
common issue when data is sampled from MD or biased toward widely studied compositions,
leading to data imbalance issues when training robust MLPs. As discussed above in the
hypothetical case of studying Li conductors, the simplest way to avoid such issues is to be sure
that the training data samples as much of the relevant configuration space as possible. If one is
concerned about predicting diffusion, then use training data with many activated states for hops,
and if one is concerned about predicting bulk moduli, then use training data from a range of
different stresses. Another way to improve predictability is to change the evaluation metrics to
include force predictions on important outliers. This technique was suggested by Liu et al. when
they observed that large discrepancies can still be observed in migration barriers even when defects
are included in the training.[113] Considering relevant rare-event-based metrics (e.g., accuracy for
diffusion hops, defects, atomic vibrations) for MLPs is important, since it is for these
configurations where force errors can potentially be large.

An additional complexity in ensuring a robust potential is that small RMSE is not a
guarantor of stable simulations.[111] By stable simulations, we mean particularly long-time (e.g.,
tens of nanoseconds) MD simulations.[114] There is a tendency for MLPs to become unstable
during MD simulations and crash. Depending on your needs, this can make the potential useless.
We hypothesize that crashing of the potential typically occurs due to the system exploring regions
of configuration space where forces are not accurate and change in ways that are too fast for the
MD time step to manage. This leads to errors that accumulate and eventually cause numerical
instability. In other words, the numerical integration of the equations of motion being performed
by the MD becomes unstable because the energies and forces are, at least during some parts of the
simulation, not changing slowly on the time scale of the MD time step. Such an event is not
unlikely if the potential becomes unphysical, since the MD time step, generally taken to be 1-2 fs,
is tuned to be effective for a physically realistic system. This problem can be reduced by starting
with progressively more varied training data. It can also be remedied by running ab initio
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calculations on configurations from the MLP simulation just before the observed instability to
obtain new training data, which can stabilize the model after retraining. It is also possible to flag
configurations that appear during the use of the MLP that are in some way outside the domain of
the training data and running ab initio calculations to add these cases to the training data. The
domain of the training data is typically determined using some measure of difference from the
training data, e.g., active learning with D-optimality (discussed more below).[115,116] These
domain-based approaches are quite effective in establishing a stable potential for MD and are
widely used. Such approaches may require multiple iterations, and it is not clear a priori how many
will be needed to achieve a stable simulation, although typically no more than 5 iterations are
needed. The above discussions offer many qualitative guides for training and test data, but do not
provide any concrete approach to assembling a training database, which brings us to our discussion

of this third important issue.

7.5.4 Determination of training data, use of active learning

The third potential fitting issue we address is how one should choose training data. Again,
this does not have a unique settled answer, but there are useful guides. The simplest approach is to
use domain-specific intuition to develop a training database that is diverse, relevant, and large.
This is easier than it might sound, and given the speed of modern ab initio methods, often quite
practical. The advantage of this “intuitive structures” approach is that it is relatively easy to
implement, makes good use of materials knowledge, and tends to yield a good MLP in a practical
amount of time. However, the approach is almost certainly not optimal in terms of getting the best
potential for the least training data, it is not readily automated, and it may not scale well to MLPs
that are targeting many elements and many kinds of physics all at once. A different second
approach that seeks to solve these issues is active learning, which is described next.

For the most efficient training data generation, users have a few options, and active
learning is commonly useful. Note, by active learning we mean an iterative approach that uses the
results of a collection of fits to suggest the best new training data to add for the next fit to optimize
some condition, e.g., creating an MLP with the lowest RMSE on some property. A general
overview of the use of active learning to train MLPs is provided in Figure 7. To apply active

learning, models need access to uncertainty estimates during configurational sampling. When
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uncertainties are high, a ground truth calculation (i.e., ab initio calculation) is automatically
invoked. The most common active learning approaches for MLPs are D-optimality,[116] Gaussian
process regression,[25] querying by a committee of GNNs,[117,118] Bayesian inference force
fields,[119-121] and uncertainty-driven MD simulations with bias potentials.[122,123] The active
learning process typically makes use of the featurization of the atomic environment to
automatically guide the search for unseen and uncorrelated atomic configurations to improve
model predictability. Implementing active learning therefore requires access to the featurization
used in the MLP, and is most easily applied when built into the MLP package. For instance, MLPs
such as MTP, ACE, and FLARE have built-in active learning functionality in their fitting routines.
It is possible to use a featurization separate from the MLP to implement one’s own active learning
framework. Packages such as Dscribe[124] and matminer[125] can be used to featurize the atomic
configurations for developing one’s own active learning or other data generation approach.

Here we give a few examples of fitting approaches used in recent studies. Attarian et
al.[126] explored the intuitive structures vs. active learning based on D-optimality in a study of
properties of eutectic composition FLiBe salts with an MTP potential. They found that either way
of training data generation resulted in a robust potential, though the active learning approach was
more efficient as it produced about the same prediction error with less than half as many training
structures (600 vs. 1400 structures). Work from Vandermause et al. also compared the use of active
learning vs. random sampling, and they found that active learning resulted in more efficient MLP
training (i.e., lower RMSE per training data added) and an overall lower RMSE compared to

random sampling.[25]
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Figure 7. (a) Overview of the use of active learning in constructing reliable MLPs. (b) Learning
curve showing improved efficiency of active learning approach vs. random sampling for
developing MLP of 5-component high entropy alloy. Adapted with permission from Ref. [25].

There are additional approaches for the efficient generation of training data that do not
leverage active learning. For example, in a recent study using bias potentials, Kulichenko et al.
merged the ideas of querying by committee and metadynamics to model the phase space of proton
transfer in glycine.[122] The use of a bias potential, instead of high-temperature MD simulations,
generates low and high-energy configurations, thus avoiding sampling unnecessary structural
distortions. When the main purpose of active learning is to add weakly correlated or uncorrelated
configurations to the training data, bias potentials may be a direct and efficient approach. As a
second example, in their study of Mo, Chen et al. outlined the selection of training structures using
principal component analysis, and the selection of hyperparameters using a differential evolution
algorithm.[127] Their procedure, using a SNAP MLP, achieved close to DFT accuracy for elastic
constants, melting point, and surface and grain boundary energies. As a third example,
Vandermause et al. built a FLARE potential for vacancy and adatom diffusion in Al, where the
training data was obtained on-the-fly, where select DFT calculations were performed if the GPR
error bar became too large. In their MD runs, they found that the majority of the DFT calculation
calls occurred near the beginning of the run, with no DFT queries occurring after 400 ps of MD
time.[25]

A valuable tool for developing training data can be to use a classical PBP or a U-MLP to
generate a large initial set of atomic configurations, which are then sampled intelligently to obtain
DFT runs for training data. This sampling can be done with active learning, as described above. It
can also be done with other approaches. For example, a clustering algorithm can be used to separate
different groups of configurations based on some similar features and later a collection of
configurations from each cluster is chosen to be calculated with ab initio methods and used as the
training set. Users can take advantage of packages such as Dscribe[124] to featurize the atomic
configurations and ML packages such as scikit-learn to do the clustering. More recently, enhanced
sampling techniques have been utilized to accelerate the sampling of rare events and integrate that
sampling with active learning procedures for the generation of training datasets for MLPs that can

describe rare events.[122,123,128]
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7.6 Fitting A New Potential: More specific considerations

7.6.1 Chemical Complexity

As discussed in Sec. 4.3, a drawback of most explicit AEF MLPs as they are currently
formulated is that they scale poorly with the number of species. This scaling results in a higher
computational cost for systems with a higher number of species both when training and executing
simulations with the potential. For example, FLARE is generally extremely fast in its execution
time (see Sec. 6), but can scale poorly with training set size and chemical complexity. The general
rule is that an update (i.e., retraining of model parameters) of the FLARE sparse Gaussian process
can become prohibitively expensive when there are around Nen, = 1,000,000 environments in its
training set, where N, = O[ (# training ab initio frames) x (# atoms/frame) x (# species)’] , where
a frame is one set of ab initio calculated forces and energies (note that 1M environments is an
upper bound, where in practice FLARE users may experience slow timing and large memory
requirements when using >600k environments).[121] The quadratic scaling with the number of
species is particularly limiting for chemically complex systems since explicit AEF MLPs can
handle less training data, but typically need sufficiently varied training data to explore the many
chemical configurations. Considering the above limit for FLARE as a concrete example, offline
training (where ab initio calculation frames have already been calculated and are available for
fitting) for a system with a single species is possible for about 4000 training frames (250 atoms
per frame) while for 5 species the scaling limits the user to about 150 frames, which is likely too
few to fit an accurate potential. Similar issues exist for MTP, ACE, and other explicit AEF MLPs,
and a brief review of the literature shows that almost all fits with these explicit AEF MLPs are to
5 or fewer chemical species. A recent attempt by the authors to fit an ACE potential to a 12 species
system of chloride salts with 3500 training data using Nvidia Tesla v100-32 GB GPU failed at the
very beginning and the code did not even start the training. A more in-depth discussion of scaling
issues is given in Sec. 4.3. [29]
7.6.2 Training Requirements

The difficulty of training an MLP is a key factor in choosing one that is right for your
project. Key things to consider include both the amount (and potentially variety) of training data
and the training time. All other things being equal (e.g., for the same chemical system and desired

accuracy), the training data requirements for different potentials can be quite different. For
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example, molten salt FLiBe potentials were recently trained with DeepMD and MTP.[126,129]
Both approaches produced excellent potentials, but the MTP fitting was achieved with less than
1% of the amount of the DeepMD data (although it should be noted that this was not a head-to-
head comparison by the same authors under identical conditions so should be taken as only a
qualitative guide for the training data differences from these potentials). Early deep learning
MLPs[129,130] required much more training data than explicit AEF MLPs, but this no longer
seems to be true for the newer equivariant deep learning MLPs, which are much more data
efficient. For example, studies with NequlP report a 1000x improvement vs. DeepMD with
respect to data requirements.[131] However, even if a deep learning and explicit AEF MLP require
the same amount of training data, the complexity of the former will typically cause it to train more

slowly.

7.6.3 Ease of Fitting (Tools and Hyperparameters)

Ease of the fitting process is also a key factor in considering which potential to use. First,
it is important to have good fitting tools associated with the potential that allow for easy fitting,
ideally with active learning. Most popular potentials now provide such tools, and more are being
developed rapidly, so we will not say more about this requirement and just assume it is satisfied
for any potentials one might consider. More fundamentally, potentials with fewer hyperparameters
are significantly easier to use. This difference can be large, ranging from just one hyperparameter
in MTP, which makes hyperparameter optimization trivial and fast, to many for Allegro, which
can require significant experience and skill to optimize to achieve state-of-the-art results. In this
regard, the authors have found that MTP is one of the easiest MLPs to fit as it only has one
hyperparameter, which is called the “complexity level” parameter of MTP, and the user can start
from lower levels and increase the complexity level step-by-step to achieve the desired accuracy.
It should be noted that as of this writing (early 2024), MTP does not support GPU training, so with
large training sets many CPU cores are required. However, this hardware limitation may be
removed at any time with an update to the MTP code. Compared to MTP, the ACE potential
provides much more flexibility in terms of fitting parameters for interaction between each pair,
triplets, etc., of species. This flexibility creates a lot of hyperparameters, which correspond to the
bond order of many-body interactions, the number of radial basis functions, and the angular
resolution of the description. However, because ACE featurization allows for good physical

intuition, after a few training sessions with different hyperparameters, the user gets an
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understanding of how to balance the hyperparameters to achieve the desired accuracy while
keeping computational cost low. While this modest complexity from hyperparameter optimization
may seem unimportant, it can easily increase the overall time to fit a potential by a few multiples.
This is because the ab initio simulations and fitting efforts are largely automated, but the
hyperparameter optimization is still often done somewhat sequentially and by hand. This challenge
may reduce quickly as standardized hyperparameter choices emerge or more automated

optimization methods become available.

7.7 Summary of Considerations for Choosing a Potential

There are many options for possible MLPs for fitting, including those already mentioned
in this paper as well as many others, and, as with many aspects in this emerging field, there is no
standard consensus on the best MLPs. However, we can provide some guidance to help users
navigate the options. If one needs a fast potential (e.g., simulations for tens of nanoseconds and
longer) and/or one does not have access to GPUs, then explicit AEF MLPs are likely a good
starting point, where we suggest starting with MTP or ACE due to their ease of fitting and high
accuracy, respectively. Conversely, if one does not need a lot of speed (e.g., exploring a few
thousand structural energies) and/or one has access to GPUs, then deep learning potentials are a
practical option, although not necessarily required or even the best option. The requirements of
accuracy, noted in Sec. 7.3, suggest using the more complete potentials (e.g., MTP, ACE) vs. the
older forms (e.g., SNAP), due to greater potential accuracy with no obvious downsides. In
particular, the work of Zuo, et al. performed a very useful comparison of different MLPs in 2020
and found that MTP was both highly accurate and very fast to execute, performing generally
somewhat better than GAP, SNAP, and Behler-Parrinello NN potentials.[1] This suggests that
MTP is a good potential to start with in the absence of more information. As discussed in Sec. 4.3,
recent developments in MLP formalism have shown that essentially all of the basis functions that
underlie different explicit AEF methods (e.g., ACSF, SOAP, HBFs, MTFs) are special cases of
the ACE formalism.[14] This suggests ACE is a method of choice, but its flexibility comes with
more hyperparameter choices, which can make it more complex for the user to navigate.

Using a pre-trained MLP avoids training time, which is typically days to months, and is
therefore worth pursuing (Sec. 7.4). U-MLPs can be a great starting point, but need to be carefully

vetted, and at this stage are likely best used in cases where some post-calculation checking is built
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into the project workflow. Reusing targeted MLPs can be a great solution, but it is recommended
to validate at least some aspects of the MLP since it is likely being used in some ways different
from those in the original studies and assessments. Finally, if you are fitting your own MLPs, then
deep learning potentials are generally needed for more than ~5 elements, although recent
methodological developments are potentially removing this constraint (Sec. 7.6.1). However, deep
learning MLPs can require more data and take more time to train (Sec. 7.6.2), and may require

more human time for hyperparameter optimization (Sec. 7.6.3).

8 MLP Infrastructure

In recent years, a plethora of software packages have emerged within the dynamic
landscape of MLPs, catering to both standard-scale and large-scale simulations. These packages
aim to streamline the process of training, fitting, and deploying MLPs for running MD for diverse
applications in chemistry and materials science. For standard-scale simulations, ideal features for
packages should include ease of use, adaptability, intuitive interfaces, and flexibility in handling
various data types and model architectures. On the other hand, large-scale simulations demand
efficient parallelization, scalability, robustness, and high-performance computing integrations. In
the following section, we explore some of the most prominent and user-friendly packages in both
categories, detailing their features, strengths, and ideal use cases.

In the effort to promote adoption and advance the accessibility of MLPs, many tools and
platforms have emerged. As mentioned in Sec. 7.4, a notable example is ColabFit Exchange, which
functions as an informatics platform tailored for advanced materials and chemistry
applications.[ 132] ColabFit Exchange contains curated, high-quality data from publications useful
for fitting MLPs. As of January 2025, there are nearly 400 datasets comprising more than 230
million unique atomic arrangements. Recent work from Andolina and Saidi generated curated
training datasets of 23 single-element systems and built MLPs with DeepMD, where all of the
training data are hosted on ColabFit Exchange.[133,134] Furthermore, packages like the
Knowledgebase of Interatomic Models-based Learning-Integrated Fitting Framework (KLIFF)
have been developed for general-purpose fitting of MLPs, offering the versatility to deploy these
models within simulation software like LAMMPS via OpenKIM, as well as automated model
verification, testing (i.e., the automated computation of a wide range of physical properties for all
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archived potentials), and archiving on https://openkim.org.[91] KLIFF also incorporates
uncertainty quantification, a powerful feature for assessing the reliability and confidence
associated with MLP predictions. These tools exemplify some of the concerted efforts made by
the community to surmount adoption barriers and propel the field of MLPs forward. Another
emerging platform in the ecosystem is Garden.[135,136] Garden is designed to make ML models
more accessible and deployable across different computing environments. Models are collected
into domain-specific “gardens”, as a collection of containerized models linked with structured data
via the Materials Data Facility[137,138] or Foundry,[139] benchmarks, tests, and computing
resources. Garden addresses key infrastructure challenges by containerizing models for consistent
execution, facilitating model discovery and simplified deployment across local machines, cloud
resources, and HPC clusters through Globus Compute integration. Finally, as discussed in Sec.
7.4, at present there are at least two notable examples of interatomic potential repositories,
OpenKIM and the NIST Interatomic Potentials Repository, that include many PBPs but also a
growing number of MLPs.

Below, we discuss a standard set of procedures and software for generating or acquiring
training data, fitting, comparison, and deployment of MLPs in MD simulations. For MD
simulations, LAMMPS has been a standard in the past decades in the field of materials science
with a comprehensive documentation and most widely used MLPs have libraries in LAMMPS.
The earlier MLP formulations such as Behler-Parrinello NNs, GAP, SNAP, and ACE have well-
tested libraries (ML-HDPNN, ML-QUIP, ML-SNAP, and ML-PACE) that have become part of
the LAMMPS code and is easier for users to install and use them. MTP also has a LAMMPS
library, but it needs to be separately acquired from its Gitlab repository and added to LAMMPS.
Recent MLPs such as DeepMD, MACE and Allegro also have LAMMPS libraries, but currently
their libraries need to be downloaded from their GitHub repositories and added to LAMMPS. More
streamlined integration of state-of-the-art MLPs with molecular simulation codes is ongoing. For
example, the newest MLPs (e.g., NequlP, MACE) now provide native integration with JAX-MD,
which is a Python library to run end-to-end differentiable MD simulations on GPUs.[140] In
addition to LAMMPS and JAX-MD, another Python library frequently used for MD simulations
is the Atomic Simulation Environment (ASE).[141] ASE provides numerous functionalities such
as MD simulations or static energy/force calculation for each atomic configuration, that can be
used for testing and comparing MLPs. Many aforementioned MLPs have specific libraries to use

56



with ASE which are called calculators. U-MLPs such as M3GNet,[41] CHGNet,[20] MACE-
MPO,[32] and EquiformerV2-OMAT24 [24] integrate seamlessly with ASE code, enabling a new
user to load in a pre-trained U-MLP and perform atomic relaxations or MD runs with only a few
lines of python code.

As discussed in Sec. 6 and Sec. 7.1, many MLPs require GPUs for efficient operation.
Access to modest numbers of GPUs (e.g., 1-10) is becoming widespread in computational labs but
can still be challenging to access when many are needed for large-scale studies. The Department
of Energy (e.g., Summit) and National Science Foundation (e.g., ACCESS, National Artificial
Intelligence Research Resource (NAIRR)) all have machines with large numbers of GPUs to which
researchers can apply for resources. In addition, cloud computing resources, e.g., from Amazon
Web Services (AWS) and Microsoft Azure can be leveraged to carry out large simulations with
modest cost. This “pay-as-you-go” infrastructure provides users with instant access to state-of-the-
art GPUs for large-scale applications. Of note is AWS, which recently launched its EC2
UltraCluster, which contains more than 4000 NVIDIA A100 GPUs. If more modest GPU
computing is sufficient, users may consider using the free or paid tiers of Google Colab. The
Garden framework further simplifies access to these diverse computing resources by providing
standardized methods for deploying MLPs across different platforms. Through its integration with
Globus Compute, Garden allows researchers to seamlessly utilize various computing resources,

from local machines to DOE facilities and cloud providers.

9 Limits of Standard MLPs and Advanced MLPs to Overcome Those
Limits

MLPs have significantly enhanced our ability to describe PESs in various material systems.

When dealing with complexities such as long-range forces, magnetism, and electronic excitation

states, it is generally the case that modifications to standard MLPs are needed. However, adding

more physics is more difficult than simply including more data for training MLPs. In this section,

we provide an overview of the limits of MLP application within the realm of complex materials

and the recent advancements to overcome these constraints.
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9.1 Long-range interactions

Long-range interactions are not included in standard MLPs as they typically focus on
learning local atomic descriptors for environments encompassing a radius of just 5-10 A, becoming
much slower for longer ranges. A graphical depiction of long-range interactions researchers hope
to integrate into future MLPs is given in Figure 8. It is possible that the MLPs which consider
contributions only from short-range interactions may be deficient for accurately predicting some
properties.[142] In cases where the importance of nonlocal physics and chemistry is fundamental
in explaining properties, it becomes imperative to focus on nonlocal electrostatic and dispersion
interactions, which are usually not represented by local descriptors. To overcome this challenge,
several methodologies and models are employed to enhance the performance of MLPs for handling
long-range interactions.

The first strategy is implicitly incorporating long-range interactions into short-range
interactions, which is particularly useful for homogeneous condensed-phase systems with strong
screening effects. This essentially comes down to trying to include the correct physics in the
training data and hoping the long-range effects are largely screened or reasonably quantitatively
renormalized into the short-range MLP. One approach is increasing the cutoff radius in standard
MLPs to accommodate long-range interactions. For instance, AP-NET utilizes 8 A cutoff atom-
pair symmetry functions for evaluating monomer-monomer interaction energies.[143] A concrete
example of renormalizing a naturally long-range interaction is including dispersion in DFT
calculations for training data for standard short-range MLPs. It is interesting to note that for molten
salts, which are ionic systems with large electrostatic interactions and significant dispersion
contributions, there are many successful MLP models, demonstrating how effective this simple
approach can be.[126,144—146] The ability to represent long-range electrostatics with short-range
interactions can be understood as a result of screening, where local charge neutrality makes longer
range interactions zero on average. The nature of this screening has been explained and studied
quantitatively by Ceder et al.[147] Their work points out that local charge neutrality is strongly
correlated with lower-energy states, and that higher-energy states, where local charge neutrality is
less robust, have electrostatic interaction that are not well-represented with short-range
interactions. Thus, the success of short-range potentials for ionic systems may be in a large part
due to the typical states explored in training and application data, which are often lower-energy

states associated with near-equilibrium molecular dynamics simulations. These observations imply
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that for simulations with higher energy states, or more precisely, states without strong local charge
neutrality, researchers should be very careful about using only short-range interaction and more

complete treatment of long-range electrostatics may be necessary.

-y =U +U +U o+

total ocal dispersion

Figure 8. Summary of the general energetic contributions composing the total potential energy
(Utotal) of a system. Ulocal refers to the short-range system energies and is typically inferred using a
machine learning model trained on local features. Dispersion corrections, electrostatics, and
induction are collectively referred to as the long-range interaction energy contributions. Adapted
with permission from Ref. [142].

The second strategy is including explicit long-range interactions, such as electrostatics,
using physics-based functional forms like Coulomb's law, with or without a dependency on the
local atomic environment. For instance, the deep neural network potential called DeepPot utilizes
a model based on (averages of the positions of) maximally localized Wannier centers to accurately
calculate electrostatics.[148] A more refined version of DeepPot is the self-consistent field neural
network (SCFNN), where SCFNN combines an iterative refinement approach with maximally
localized Wannier centers to enhance the accuracy of electrostatics calculations, demonstrated by
its ability to accurately predict the high-frequency dielectric constant of water.[149] The recently
updated AIMNet2 (also mentioned in Sec. 5) directly includes long-range interactions into the
MLP formalism, in which the DFT-D3 vdW and electrostatic corrections are explicitly included
as energy terms, allowing an expanded application to neutral and charged states, as well as diverse
organic compounds composed of many different chemical elements.[18,142] Also, as mentioned

in Sec. 5, the MACE-MPO U-MLP was trained only on PBE-level DFT calculations (which only

59



incorporate short-range interactions) and has the ability to add on the DFT-D3 vdW interactions,
which are an empirical correction on top of the PBE-level model. This correction can be done
easily using the torch-dftd dispersion model implemented in PyTorch.[79] Another example of
dispersion corrected-MLP is SO3LR.[150] As another example, in the global gradient-domain
machine learning force field, i.e., Symmetric Gradient Domain Machine Learning (sGDML)
approach, the descriptor of a molecular system is treated as a unified entity, bypassing the need for
arbitrary partitioning of energy into atomic contributions.[151] The learned model essentially
includes all interaction scales. This unique approach enables the sGDML framework to effectively
capture both chemical interactions and long-range forces. However, due to the requirement of all
correlations of atom-atom interactions, the global MLPs are usually limited in scaling up to large
molecules.

In summary, the presence of long-range interactions has posed some challenges for MLPs,
and substantial efforts have been made to address this issue. Specifically, the first strategy of
renormalizing long-range interactions from training data into short-range interactions in the MLP
has been extensively employed in standard MLPs, requiring no additional knowledge or extra
effort. For applications where long-range interactions have minimal impacts, users are encouraged
to implement this straightforward approach for the first strategy. The second strategy of explicit
long-range interactions is becoming more routine for state-of-the-art MLPs. For studies that
require long-range interactions or where such interactions are of interest, particularly electrostatics
(e.g., ions, electrolytes), users are encouraged to employ the MLPs mentioned in the second
strategy discussed above. In addition, small molecular systems, usually consisting of (at most) a
few hundred atoms, where significant long-range interactions are in play, are well-suited for using
global representations of the features. Utilizing a global representation of the entire system
typically leads to a reduction in computational complexity compared with previous methods,

thereby enhancing both the training process and the efficiency of molecular simulations.

9.2 Modeling Systems Off the Born-Oppenheimer Surface

MLPs are typically a mapping of atomic positions to energy and forces, and therefore
assume this mapping is unique. The natural unique PES is that of the lowest energy electron
configurations for each atomic arrangement, which is the Born-Oppenheimer surface. However, it

is often of interest to consider some forms of excitations. If the excitations are fixed, e.g., we ionize
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the system, then this is just another uniquely defined Born-Oppenheimer surface determined by
some constraint and presents no fundamental challenge. One can simply train a standard MLP on
data from the constrained system Born-Oppenheimer surface. However, if the excitations can
move between different Born-Oppenheimer surfaces, e.g., multiple magnetic states or varying
electronic excitations, then a significant change in the MLP formalism is required. Here, we
discuss two areas being widely studied, namely magnetism and electronic excitations, although

other types of excitations might also be of interest.

9.2.1 Magnetism

Different magnetic states of ions possess significantly different properties, and this
complexity becomes critical in the context of magnetic materials. How to differentiate ions with
different spin states is difficult and lacks a unique solution in the MLP community. Incorporating
spin degrees of freedom into MLPs, which are crucial for accurately representing finite
temperature phenomena in magnetic materials, has remained a challenging task. In spin density
functional theory (SDFT), magnetization arises from the interplay between magnetic exchange and
band energy contributions,[152,153] where the energy required for electron redistribution between
up and down spin channels depends on the local density of states (DOS). Iron, for example,
exhibits a bimodal DOS in its body-centered crystal structure (bcc), resulting in larger magnetic
moments compared to the face-centered cubic (fcc) structure with a more unimodal DOS.[154]
This intricate relationship between magnetic and atomic structure necessitates the consideration of
multi-atom, multi-spin interactions to capture various magnetic and atomic arrangements within a
single model. Unlike methods derived from electronic structure theory that seamlessly incorporate
the complexity of magnetic interactions,[154] classical PBPs require additional terms to mimic
quantum exchange interactions. One common approach involves using a classical Heisenberg
Hamiltonian,[155] where atomic spin operators are replaced by spin vectors, and exchange
interactions are parameterized using ab initio calculations.[156] Many MLP approaches for
magnetic systems have adopted similar strategies. For instance, Nikolov et al.[157] expanded the
SNAP framework with a two-spin bi-linear Heisenberg model. Yu et al.[158] developed a neural
network-based approach to describe contributions to the Heisenberg Hamiltonian based on the
local magnetic environment, although this method did not account for lattice information and
treated magnetic moments as unit vectors. Eckhoff and Behler[159] extended the original Behler-

Parrinello[19] symmetry functions framework but the formalism was limited to collinear
61



configurations. Novikov et al.[160] incorporated magnetic moments as additional degrees of
freedom in the MTP framework, albeit also restricted to collinear moments. Domina et al.[161]
extended the SNAP framework to handle arbitrary vectorial fields, demonstrating its functionality
with non-collinear spin configurations. Chapman and Ma introduced a neural network correction
to an embedded atom method potential augmented with a Heisenberg-Landau Hamiltonian for
large-scale spin-lattice dynamics simulations.[162] Finally, as discussed in Sec. 5, the CHGNet U-
MLP developed by Deng et al.[20] goes beyond reporting energies and forces by also predicting
the magnetic moment on every atom in the system, enabling differentiation of different valence
states and analysis of the underlying magnetic properties. Despite these efforts, none of the existing
ML approaches for magnetic systems have achieved a transferable and quantitatively accurate
description of magnetic interactions suitable for modeling magnetism in different crystal
structures.

The ACE method has been expanded to accommodate vectorial or tensorial characteristics,
alongside the inclusion of atomic magnetic moments and charges in addition to atomic positions,
as detailed by Drautz et al.[163] This extended ACE framework offers a complete foundation for
characterizing the local atomic environment. Unlike being limited to representing energies solely
as a function of atomic positions and chemical species, ACE can be adapted to encompass vectorial
or tensorial properties and incorporate additional degrees of freedom. This adaptability is
particularly significant for magnetic materials where potential energy surfaces depend on both
atomic positions and atomic magnetic moments concurrently. Notably, recent work by Rinaldi et
al. introduced a non-collinear magnetic ACE parameterization specifically tailored for the
prototypical magnetic element, iron.[164] The model was trained using a diverse set of collinear
and noncollinear magnetic structures, computed using SDFT. Their findings demonstrate that this
non-collinear magnetic ACE method not only accurately reproduces the ground state properties of
various magnetic phases of iron but also captures magnetic and lattice excitations crucial for an
accurate description of finite-temperature behavior and crystal defect properties.[164]

Recently, Yu et al.[165] introduced the Time-reversal Equivariant Neural Network
(TENN) framework, which incorporates time-reversal symmetry into the equivariant neural
network (ENN). This extension allows ENN to account for physical aspects related to time-
reversal symmetry, such as the spin and velocity of atoms. Specifically, they developed TENN-
e3, an expansion of the E(3) equivariant neural network, to maintain the time reversal E(3)
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equivariance while considering the inclusion of the spin-orbit effect in situations involving both
collinear and non-collinear magnetic moments in magnetic materials. TENN-e3 can construct a
spin neural network potential and the Hamiltonian for magnetic materials based on ab initio
calculations. TENN-e3 employs Time-reversal-E(3)-equivariant convolutions to model
interactions between spinor and geometric tensors. TENN-e3 excels at accurately describing the
complex spin-lattice coupling while preserving time-reversal symmetry, a feature not present in
existing E(3)-equivariant models. Additionally, TENN-e3 facilitates the construction of the
Hamiltonian for magnetic materials with time-reversal symmetry.

In summary, TENN offers a new approach for conducting spin-lattice dynamics
simulations over extended time scales and performing electronic structure calculations on large-
scale magnetic materials. As an instance of TENN-e3, Spin-Allegro can help generate the spin
interatomic potential.[166] On the other hand, the ACE approach for iron can be directly extended
to multicomponent systems, such as technologically important magnetic alloys and carbides.
While conceptually straightforward, generating precise and comprehensive DFT reference data for
magnetic multicomponent materials is challenging. People can use efficient sampling techniques
based on D-optimality active learning to address this challenge (see Sec. 7.5.4), which is expanded
to include magnetic degrees of freedom. It can help reduce the number of required DFT reference
calculations. Although these novel methods have been proposed, the testing has only been on a
small number of systems. Therefore, further exploration and testing of such MLPs on more

magnetic systems are needed to assess the general efficacy.

9.2.2 Excited states

At present, a well-established MLP specifically for excited systems does not exist.
Nevertheless, it is crucial to emphasize that ongoing research efforts aimed at developing and
enhancing MLPs are progressing rapidly, and we discuss a few recent efforts here.

Electronically excited states are central to various fields such as photochemistry and
photophysics. Like magnetism, they represent an additional degree of freedom that must be added
to the potential. Most MLPs are attempting to learn the PES of molecular/condensed phase systems
at the ground state. It requires careful consideration to design an MLP that can learn the secondary
outputs, i.e., excited-state PES, corresponding forces, and nonadiabatic and spin-orbit couplings
between them.[167,168] For instance, multiple PESs and their couplings should be considered

when dealing with excited states. Furthermore, the complexity and high computational expense of
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generating the underlying training data calculations and the associated complexity of the
corresponding ML models make it more challenging to train an MLP for excited states than for
the ground state. Therefore, the application of ML models for excited states is significantly more
challenging than for the ground state.

Recently, Marquet and co-workers developed SchNarc, a framework for excited-state
molecular dynamics simulations.[169] SchNarc combines the surface hopping including arbitrary
couplings (SHARC) approach for photodynamics, which handles states of different multiplicities,
with SchNet (a message-passing deep neural network), which efficiently and accurately fits
potential energies and other molecular properties. This framework overcomes current limitations
of existing MLP-based MD simulations for excited states by allowing (i) phase-free training,
eliminating the costly preprocessing of raw quantum chemistry data, (ii) treatment of rotationally
covariant non-adiabatic couplings (NACs), which can either be trained or (iii) approximated from
only ML potentials, their gradients, and Hessians, and (iv) handling of spin-orbit couplings. They
extended the model using a NN with multiple outputs to fit all non-adiabatic vectors between
different states of the same spin multiplicity simultaneously,[ 170] which increases the accuracy of
the prediction of excited-state dynamics simulations.

More recently, Zhang and co-workers applied a symmetry-adapted high-dimensional
neural network to treat couplings as derivatives of NN representations.[171] In this approach,
electronic friction was modeled using machine learning and applied to MD simulations of
molecules at metal surfaces, thereby treating electron-nuclei coupling in a rotationally covariant
manner. For the non-adiabatic coupling vectors, a similar strategy akin to force-only training for
potentials, by implementing them as derivatives of virtual properties—properties not explicitly
defined in quantum chemistry—constructed by a deep NN. They extended their embedded atom
neural network to a universal field-induced recursively embedded atom neural network
(FIREANN) by introducing pseudo atomic field vectors relative to each atom with rigorous
rotational equivariance. The FIREANN is capable of predicting multiple polarization values for
various response properties, making it possible to accurately capture the excited-state PESs within

a single model.[172]
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10 The Future of MLPs

Given the rapid development and evolution of the field of MLPs, discussing the future of
MLPs is quite speculative. In particular, the extraordinary pace and disruptive nature of
innovations in ML suggest that all predictions related to this area are highly uncertain. With that
caveat, we share a few ideas of how the field of MLPs may progress in the near future.

In the near term (~3-5 years) we see numerous areas where trends that are already well-
established are likely to continue. In terms of sampling, we expect to continue to see new methods
of active learning and ways to determine optimal training structures to emerge, e.g., as done
recently by Fonseca et al. who used ML to sample new areas of configurational space to more
optimally improve both explicit AEF MLPs based on GAP and a deep learning MLP.[173]
Additionally, in complex chemical applications such as bond breaking/formation, advances in
active learning can guide the selection of relevant training data, as was illustrated by Kulichenko
et al.[122]

At this point there are many different databases available that are used for fitting (e.g., the
Materials Project and data shared through ColabFit[132,134]), typically developed by single
groups in many different ways. However, there does not seem to be a leading established approach
to developing databases of pre-existing ab initio calculations for fitting. This problem has many
facets as it involves interacting with large existing databases, integrating data from multiple levels
of accuracy, and providing guidance for fitting everything from very focused potentials (e.g., just
C or Si) to large U-MLPs (e.g., with 90+ elements). We expect that a few underlying approaches
and key databases will eventually become standard and widely adopted for the majority of use
cases.

We also expect further refinements to standard MLP methods. At present, it seems that the
pace of innovation has slowed compared to what was occurring over the last 10-15 years, and it
appears that the explicit AEF approaches provided by methods like ACE and the deep learning
equivariant GNNs are close to optimal within our present understanding. Therefore, within the
present explicit AEF and deep learning MLP framework, efforts will shift to modest changes in
the formalism, with a focus on allowing more rapid and turn-key fitting and evaluation of these
methods, as well as scaling the fitting to larger datasets. There is a clear need to establish standard

methodological approaches to some of the known limitations of present standard MLPs, which
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include incorporating long-range-forces and excited states (including magnetic states). Short- and
long-range forces are relatively straightforward to treat with either targeted fitting and/or semi-
empirical corrections. Recent work has also shown a path for magnetic states, which can be treated
by some advanced methods, such as the non-collinear magnetic ACE method and the TENN
model, and they are expected to be a standard part of MLP fitting packages within the next few
years. More general excited state methods are being developed and will likely become widely
accessible in the next 3-5 years. That all said, the tools of deep learning keep improving, driven by
enormous commercial and national priority pressures, which will likely drive rapid improvements
in deep learning training, execution, accuracy, interpretation, and implementation. To help readers
appreciate the rate of change and improvement in this field, we note that the modern form of the
MPGNN upon which so many deep learning MLPs are based is generally attributed to work
published only in 2017.[174] It therefore seems likely that there will be disruptive innovations in
ML that will suggest new and possibly much more powerful MLP approaches sometime within
the next 3-5 years, which may alter the focus of the field significantly.

Also in the next 3-5 years, we expect large and crucially important improvements in MLP-
related infrastructure and corresponding increases in the adoption of MLPs for molecular modeling
across the chemistry, materials, physics, and biology communities. Many studies using MLPs are
still related to benchmarking or basic property prediction, and reuse of MLPs for complex property
modeling and materials discovery and design is still limited. However, as their utility becomes
better known and the MLP infrastructure develops further, we can expect much more widespread
use. In terms of MLP infrastructure, code packages for fitting (e.g., MTP, ACE, Allegro, etc.) and
integration with major molecular development packages (e.g., ASE, pymatgen) and simulation
tools (e.g., LAMMPS) are already widely available, but can still be made more comprehensive
and easier to use. Furthermore, greater integration between MLP fitting codes is likely to provide
many advantages. For example, we expect there to soon be code packages that can fit multiple
potentials and provide assessment of which is best for your systems and problem. Similarly, such
codes and pre-fit MLPs will be housed in easily accessible and searchable repositories with an
automated assessment of MLP quality, as is being developed in OpenKIM.[175] Both fitting and
assessment will greatly benefit from a large set of high-quality benchmark databases. Many
benchmarks already exist but were often not developed with MLP development and benchmarking
in mind (e.g., the Materials Project). Applying FAIR principles to MLPs will increase the useful
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infrastructure and enhance their adoption. The Garden framework represents an early example of
this trend, providing a FAIR-oriented platform that simplifies model publishing, discovery, and
deployment across various computing resources. Such frameworks will help democratize access
to MLPs and ensure reproducibility across different computing environments. Finally, we note that
direct integration with DFT packages is possible (e.g., as has happened in the VASP code[176])
but that does not seem to be the direction the field is moving, likely due to the ease of connecting
DFT with the MLP fitting and the challenges of maintaining all the advantages of the flexible and
evolving MLP ecosystem when integrated with a DFT package. Overall, navigating the multitude
of available options for MLPs is likely to be a daunting task for at least a few years to come. To
facilitate decision-making on the choice of MLPs for a given application, we expect to see the
emergence of recommendation systems based on the user's intended applications and case-specific
problems. In this regard, we believe it is important to establish a basis for informed decision-
making, i.e., comparisons that aid in evaluating the suitability of different packages.

As an external factor affecting MLPs, the continually evolving supercomputing landscape
can alter the relative strengths of MLPs based on their ability to adapt. Already, the dominance of
GPU-based supercomputers (9 out of the top 10 in the world) renders those MLPs equipped with
GPU-acceleration favorable for scientific applications that require large-scale simulations, as a
CPU-locked MLP will require hundreds of CPU cores to match the performance of even a single
GPU. Such differences will be exacerbated as the computing landscape becomes more diversified.
Even today, of the four fastest supercomputers, one is CPU-based, while the other three use GPUs
from different vendors, whose native programming models are not interoperable. For the typical
user with access to one or a small handful of computing environments, the choice of MLP will
strongly be influenced by the MLP’s performance, or even ability to run, on the hardware available
to the user. This favors MLPs that are built on a performance portability layer that makes them
largely agnostic to the underlying hardware, such as SNAP and FLARE, which use Kokkos, and
many of the deep learning based MLPs using PyTorch, such as MACE and Allegro. In the future,
we may see more radical changes to hardware. Very recently, the Cerebras wafer-scale Al chip
was used to run MD simulations more than two orders of magnitudes faster than CPUs and
GPUs.[177] While the Cerebras-based simulations used an EAM potential, the results demonstrate

the promise of new hardware to drastically change the capabilities of MD simulations, and the
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MLPs and their implementations that best adjust accordingly will have a great advantage over the
competition.

In the short- to mid-term (5-10 years), a particularly interesting area will be the
development of U-MLPs. U-MLPs are somewhat analogous to the foundational models that have
been so impactful in the image generation and natural language processing (NLP) community.
Foundational models generally refer to large models that can achieve good performance on a wide
variety of tasks, which allows them to be adapted to many specific applications (i.e., they are a
foundation for many other useful more specific models). For example, Large Language Models
(LLMs) in the NLP community have seen an explosion of performance and utility over the last
few years, and are being integrated into hundreds of different tools and products. The generality
of U-MLPs across chemistry and structure will also allow them to impact many more problems
than a typical PBP or targeted MLP has done in the past, which is why they are sometimes referred
to as foundational models for materials and chemistry. At present, U-MLPs are mostly useful for
qualitative or semi-quantitative screening across many systems, but they are rapidly becoming
quantitative tools for detailed molecular modeling of specific material properties (e.g., Li diffusion
in electrolytes). Future U-MLPs may function as foundational models, enabling simulation of
longer time scales (e.g., > 1 ms) and modeling of totally new materials phenomena currently
inaccessible with today’s MLPs. It is likely U-MLPs will continue to improve rapidly, increasingly
taking over the applications presently dominated by targeted MLPs. This transformation will
require a few improvements, but all seem to be well underway. First, larger, more diverse, high-
fidelity training data is needed. However, improved hardware, both CPU and GPU, will contribute
to increasing the output of ab initio data for fitting. Integration of multiple databases will allow for
very large training sets and potentially multifidelity training sets[80,178,179] (e.g., with DFT and
coupled cluster data) to support MLPs that approach chemical accuracy (1 kcal/mol) and overcome
limitations of lower fidelity DFT data (e.g., like DFT-PBE calculations). We also expect
infrastructure and methodological innovations to allow for more contributions from the enormous
amounts of data in the broader community, e.g., through online fine tuning or federated learning
approaches. It is reasonable to expect that training data sets approaching or exceeding a billion
training data points will be within reach in the next few years (we are already seeing training on
~110x10° DFT configurations). Along with this data, better algorithms and faster GPUs will
support more rapid training and evaluation. A final piece that needs to be developed is likely some
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form of distillation (transferring knowledge from a larger to a smaller model) to allow fast models
for specific applications to be easily developed from slower U-MLPs. This distillation could be as
simple as fitting a simpler and faster MLP to U-MLP data, but more sophisticated direct methods
might be developed. All of these innovations will require improved infrastructure to have their full
impact realized. In particular, the scale of data and perhaps even model size of U-MLPs will require
them to be trained and likely hosted by just a few leading organizations with large resources,
including perhaps government (e.g., NIST), companies (e.g., Google, Matlantis), major research
groups, and relevant societies (e.g., American Chemical Society (ACS)). Such hosting should
allow easy use of the models, fine tuning, and distillation for use in high performance applications.
These resources could supply full compute environments, just the codes, or some combination.
Similar infrastructure is available for LLMs through tools like the OpenAl and HuggingFace APIs,
and these tools play an enormous role in supporting the adoption of the LLMs. Frameworks like
Garden[135,136] are beginning to lay the groundwork for this future by providing infrastructure
that connects models with distributed computing resources and simplifies deployment across
different environments — bridging the gap between model developers and users, much like how
APIs from OpenAl and HuggingFace have done for LLMs.

As discussed in Sec. 5, the change from targeted MLPs (< 5 elements) to U-MLPs (40-
90+ elements) is a continuum. It is possible that semi-universal (SU-MLPs) (see Sec. 5) for key
classes of materials with intermediate numbers of elements (e.g., ~20) and/or limited phases or
structures, might be established, e.g., for organic molecules, polymers, steel alloys, Al alloys,
halide perovskites, electronic materials, molten salts, etc. Such an approach would mimic the very
successful methods of the calculation of phase diagrams (CALPHAD) community, which typically
develops databases in this manner. Such an approach obviously limits compositional complexity
by treating fewer species, and limits the structural complexity by treating fewer phases and
structures, but could also make fitting easier by treating relatively consistent physics (e.g., mostly
ionic or covalent bonding). Therefore, SU-MLPs may provide a more practical solution for many
materials design problems than full U-MLPs, or at least bridge the transition from models
containing a few species under limited conditions to those seeking to represent the full periodic
table under all conditions.

Overall, the above trends will likely lead to a significant reduction in ab initio molecular
dynamics simulation time, although only after the method has been used to help train many
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potentials. This reduction may reduce overall compute and energy requirements for molecular
modeling research, but we expect a large increase in MLP modeling, which may offset any gains
and likely lead to an increase in the overall utilization of simulation.

More long-term (>10 years), it is possible the traditional potentials (e.g., Lennard-Jones,
EAM, AMBER, etc.) will be almost fully replaced by MLPs, but this is not clear. For example,
the AMBER potentials for many organic systems are close to chemical accuracy and very fast,
making it unclear what advantages more complex MLPs would provide. However, it is possible
that MLP approaches will be integrated into even the fastest and simplest potential approaches.
For example, Yu et al.[ 180] recently described an approach to fit pair potentials with ML and then
convert them to simple Buckingham form, achieving almost optimal pair potentials from ML with
no loss of speed. It is also possible that MLPs will grow to become much more like full ab initio
simulations, providing not just a mapping of positions to energies and forces but also to band
structures, magnetic moments, charge densities, and even wavefunctions, replacing huge parts of
what is presently done with quantum simulations.[181] On the other hand, a complementary vision
is that ML integrates with ab initio at a more fundamental level, e.g., advancing exchange-
correlation functionals and/or massively accelerating solutions of the Schrédinger equation (and
relativistic extensions). This path might speed up ab initio methods to the level of MLPs,
effectively achieving an MLP from a very different starting point.[182] Finally, there is perhaps
no scientific or engineering field changing as fast as Al and ML right now, so all researchers need
to be vigilant for new ideas that can bring entirely new frameworks and capabilities to the

molecular modeling community.
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