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Abstract— A modified form of Legendre-Gauss orthogonal

direct collocation is developed for solving optimal control

problems whose solutions are nonsmooth due to control discon-

tinuities. This new method adds switch time variables, control

variables, and collocation conditions at both endpoints of a

mesh interval, whereas these new variables and collocation con-

ditions are not included in standard Legendre-Gauss orthogonal

collocation. The modified Legendre-Gauss collocation method

alters the search space of the resulting nonlinear programming

problem and optimizes the switch point of the control solution.

The transformed adjoint system of the modified Legendre-

Gauss collocation method is then derived and shown to satisfy

the necessary conditions for optimality. Finally, an example is

provided where the optimal control is bang-bang and contains

multiple switches. This method is shown to be capable of solving

complex optimal control problems with nonsmooth solutions.

I. INTRODUCTION

Optimal control problems whose solutions are nonsmooth
due to discontinuous control structures pose significant com-
putational challenges. In particular, a priori knowledge of
the precise discontinuity locations is seldom known, but
detection and optimization of these locations are critical to
obtaining high accuracy solutions. The objective of this paper
is to develop a method that determines accurate solutions to
optimal control problems with bang-bang control solutions.

Over the past few decades, direct collocation methods
have become popular for solving general constrained optimal
control problems numerically. More recently, the class of
Gaussian quadrature direct orthogonal collocation methods
has received a great deal of attention [1]–[5]. In a Gaus-
sian quadrature orthogonal collocation method, the state is
often approximated using a basis of Lagrange polynomials
with Gaussian quadrature points as the support points for
the Lagrange polynomials. The resulting finite-dimensional
Gaussian quadrature collocation method then forms a non-
linear programming problem (NLP) that can be solved using
well-known nonlinear optimization software. Well-developed
Gaussian quadrature methods employ Legendre-Gauss (LG)
points [1], Legendre-Gauss-Radau (LGR) points [2], [4],
or Legendre-Gauss-Lobatto (LGL) points [5]. Additionally,
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convergence theory for Gaussian quadrature collocation
methods that collocate the dynamics at LG or LGR points
has demonstrated that, under assumptions of smoothness and
coercivity, these methods converge to a local minimizer of
the optimal control problem at an exponential rate as a
function of the polynomial degree of the approximation [6].

When the solution of an optimal control problem is nons-
mooth, both the standard Gaussian quadrature methods and
the associated convergence theory are no longer applicable.
For this reason, extensive research has been conducted into
developing hp mesh refinement algorithms that adjust the
number and width of mesh intervals and/or adjust the degree
of the polynomial approximation within a mesh interval [7]–
[9]. However, these methods tend to place an unnecessarily
large number of collocation points and mesh intervals in the
neighborhood of control discontinuities. Furthermore, some
of the discretization schemes employed do not approximate
both the left-hand and right-hand limits of a bang-bang
optimal control at a single discrete switch time. Another
approach is to introduce a variable mesh such that param-
eters corresponding to the switching structure are included
as variables to be optimized. Assuming structure detection
has been performed, the optimal control problem may be
parameterized with switch time variables and additional
optimal control law constraints as either multi-stage direct
shooting methods [10], [11] or multi-phase direct collocation
methods [12], [13]. An alternate approach for constructing
a variable mesh is through nested direct transcription [14]
which first solves an inner NLP on a static mesh and then
solves an outer NLP to determine grid size and enforce
additional optimality conditions. However when adding a
degree of freedom through the inclusion of a switch time
variable, the search space of the NLP solver is altered and
the Lavrentiev phenomenon may occur. Such a phenomenon
is observed where a numerical approximation of a continuous
optimization problem leads to an optimal objective value
that differs from the true optimal value [15]. A recently
developed modified LGR collocation method [16] addresses
the Lavrentiev gap by introducing defect constraints at one
end of each mesh interval alongside variable switch times.

This paper presents a modified LG direct collocation
method with the purpose of optimizing the locations of
control discontinuities and obtaining accurate solutions to
the state, control, and costate. This method extends the idea
of Ref. [16] to LG collocation in order to take numerical
advantage of the symmetry of the LG points as well as the
increased accuracy of Gauss quadrature using LG points. It
also addresses the drawback of multi-interval standard LG



collocation related to absent discrete control values at adja-
cent interval interfaces. Unlike the modified LGR collocation
method which introduces a new collocation constraint and
control variable at just one endpoint of each mesh interval,
the modified LG collocation method introduces additional
collocation constraints and control variables at both the initial
and terminal endpoint of each mesh interval. By comparing
the Karush-Kuhn-Tucker (KKT) conditions from the NLP
with the first-order variational conditions of the continuous
optimal control problem, a costate mapping is obtained
for this modified LG collocation scheme. Furthermore, the
discrete and continuous adjoint systems of the modified LG
collocation scheme are equivalent, unlike in the LGL collo-
cation scheme (which inherently collocates both endpoints).

II. BOLZA OPTIMAL CONTROL PROBLEM

Without loss of generality, consider the following Bolza
form of an optimal control problem. Determine the state,
x(T ) 2 R

nx and v(T ) 2 R
nv , the control u(T ) 2 R

nu , the
initial time, t0 2 R, and the final time, tf 2 R, that minimize
the objective functional

J = M(x(�1),v(�1),x(+1),v(+1), t0, tf ) + ↵

Z +1

�1
LdT, (1)

subject to the dynamic constraints

x0 = ↵fx(x,v), v0 = ↵fv(x,v,u), (2)

the boundary conditions

b(x(�1),v(�1),x(+1),v(+1), t0, tf ) = 0, (3)

and the control inequality constraints

c(u)  0, (4)

where z0 is the derivative of some vector-valued function z
with respect to T , ↵ := (tf � t0)/2 is a domain scaling
factor from t 2 [t0, tf ] onto T 2 [�1,+1], and the functions
M, L, fx, fv, b, and c are defined by the mappings M :
R

nx⇥R
nv⇥R

nx⇥R
nv⇥R⇥R ! R,L : Rnx⇥R

nv⇥R
nu !

R, fx : Rnx ⇥R
nv ! R

nx , fv : Rnx ⇥R
nv ⇥R

nu ! R
nv ,b :

R
nx⇥R

nv⇥R
nx⇥R

nv⇥R⇥R ! R
nb , and c : Rnu ! R

nc .
The modified Legendre-Gauss collocation method exploits
the separation of those differential equations that explicitly
depend on the control and those that do not. Furthermore, no
generality is lost with such a decomposition since nx = 0 is
a special case of the dynamics in Eq. (2).

III. LEGENDRE-GAUSS COLLOCATION

The Bolza optimal control problem of Section II may
be partitioned into a mesh consisting of K mesh intervals,
Ik = [Tk�1, Tk], (k = 1, . . . ,K), where �1 = T0 <
T1 < . . . < TK�1 < TK = +1. The mesh intervals have
the property that

SK
k=1 Ik = [�1,+1] and Ik \ Ik+1 =

{Tk}, (k = 1, . . . ,K�1). Each individual interval is mapped
from the computational domain T to a new independent
variable ⌧ 2 [�1,+1] via the affine transformation ⌧ =
2(T �Tk�1)/(Tk �Tk�1)� 1, which implies that dT/d⌧ =

(Tk � Tk�1)/2 := �k, (k = 1, . . . ,K), where �k is defined
as a secondary domain scaling factor.

The multiple interval Legendre-Gauss (LG) direct orthog-
onal collocation method for optimal control [1], [2] is based
on approximating the state in each interval using Lagrange
interpolating polynomials and enforcing the state dynamics
at collocation points. For simplicity of notation, it is assumed
that the number of collocation points, denoted by N , is the
same in each mesh interval. Next, let (⌧1, ⌧2, . . . , ⌧N ) be the
N LG nodes on the interval (�1,+1) while ⌧0 = �1 and
⌧N+1 = +1 are located at the endpoints of each interval.
Now, let the state in each interval be approximated by a
polynomial of degree at most N using a basis of Lagrange
polynomials, `j(⌧), such that

x(k)
⇡

NX

j=0

X(k)
j `j(⌧), v(k)

⇡

NX

j=0

V(k)
j `j(⌧), (5)

where `j(⌧) are the Lagrange polynomials

`j(⌧) =
NY

i=0
i 6=j

⌧ � ⌧i
⌧j � ⌧i

, (j = 0, . . . , N), (6)

whose support points are the initial endpoint, ⌧0, and the N
LG nodes, (⌧1, . . . , ⌧N ). The row-vectors X(k)

i 2 R
nx and

V(k)
i 2 R

nv satisfy x(k)(⌧i) ⇡ X(k)
i and v(k)(⌧i) ⇡ V(k)

i ,
(i = 0, . . . , N ; k = 1, . . . ,K) due to the isolation property
of the Lagrange polynomials

`j(⌧i) = �ij =

(
1, i = j,

0, i 6= j.
(7)

Differentiating x(k) and v(k) leads to

ẋ(k)
⇡

NX

j=0

X(k)
j

˙̀
j(⌧), v̇(k)

⇡

NX

j=0

V(k)
j

˙̀
j(⌧), (8)

where ż is the derivative of some vector-valued function z
with respect to ⌧ . Next, let the state dynamics of Eq. (2)
be discretized at the LG nodes and denoted by fx

(k)
i :=

fx(X
(k)
i ,V(k)

i ) and fv
(k)
i := fv(X

(k)
i ,V(k)

i ,U(k)
i ), (i =

1, . . . , N ; k = 1, . . . ,K), where the row vector U(k)
i 2 R

nu ,
corresponds to the discrete control components at ⌧i, (i =
1, . . . , N). The state derivative approximation of Eq. (8) is
collocated with the right-hand side of the dynamic constraints
at the N LG points of each mesh interval, producing the
following defect constraints,

NX

j=0

D(i,j)X
(k)
j = ↵�kfx

(k)
i ,

NX

j=0

D(i,j)V
(k)
j = ↵�kfv

(k)
i , (9)

where D(i,j) := ˙̀
j(⌧i), (i = 1, . . . , N ; j = 0, . . . , N), are

the elements of the N ⇥ (N +1) standard LG differentiation

matrix. It can be seen in Eq. (9) that the dynamic constraints
are only collocated at the LG points and not at the boundary
points. Since the Lagrange interpolating polynomials are
used to approximate the state at the initial endpoint of an
interval and the collocation points, the approximation of



the state at the terminal endpoint of each mesh interval is
obtained via the Gauss quadrature constraint,

X(k)
N+1 = X(k)

0 + ↵�k

NX

i=1

wifx
(k)
i ,

V(k)
N+1 = V(k)

0 + ↵�k

NX

i=1

wifv
(k)
i ,

(10)

where wi, (i = 1, . . . , N), are the Gauss quadrature weights.
The aforementioned discretization leads to the following

nonlinear programming problem (NLP) that approximates
the optimal control problem given in Section II. Minimize
the objective function

J = M(X(1)
0 ,V(1)

0 ,X(K)
N+1,V

(K)
N+1, t0, tf ) + ↵

KX

k=1

NX

i=1

�kwiL
(k)
i ,

(11)
subject to

D(i,:)X
(k)
0:N � ↵�kfx

(k)
i = 0, (12)

D(i,:)V
(k)
0:N � ↵�kfv

(k)
i = 0, (13)

X(k)
N+1 �X(k)

0 � ↵�k

NX

i=1

wifx
(k)
i = 0, (14)

V(k)
N+1 �V(k)

0 � ↵�k

NX

i=1

wifv
(k)
i = 0, (15)

b(X(1)
0 ,V(1)

0 ,X(K)
N+1,V

(K)
N+1, t0, tf ) = 0, (16)

c(U(k)
i )  0, (17)

where L
(k)
i := L(X(k)

i ,V(k)
i ,U(k)

i ), (i = 1, . . . , N ; k =
1, . . . ,K). Continuity in the state is enforced implicitly by
using the same variable for the pair X(k)

N+1 and X(k+1)
0 and

the pair V(k)
N+1 and V(k+1)

0 at each interior mesh point.

IV. MODIFIED LEGENDRE-GAUSS
COLLOCATION

Additional variables and corresponding constraints are
now augmented to the standard LG collocation method in
order to improve the approximation of nonsmoothness in
the solution to the optimal control problem. In particular,
interior mesh points are treated as variables, control variables
are introduced at the previously non-collocated endpoints of
each mesh interval, and collocation constraints are added at
both endpoints of each mesh interval.

A. New Decision Variables

The modified LG collocation method introduces new deci-
sion variables corresponding to the location of interior mesh
points as well as new decision variables corresponding to the
value of the control at the endpoints of each mesh interval.
The interior mesh point variables are denoted Tk, (k =
1, . . . ,K�1). The values of the control approximation at the
start and end of each mesh interval are denoted, respectively,
by U(k)

0 and U(k)
N+1, (k = 1, . . . ,K). It is important to note

that U(k)
N+1 and U(k+1)

0 , (k = 1, . . . ,K � 1), correspond

to the same mesh point Tk. Unlike the state approximation
which implicitly maintains continuity at the mesh points by
using the same variable for the pair X(k)

N+1 and X(k+1)
0 and

the pair V(k)
N+1 and V(k+1)

0 , (k = 1, . . . ,K), the control
approximation needs not be continuous, particularly in the
case of nonsmoothness in the solution. Therefore, the dual
values of the control at a mesh point Tk allow the left-hand
and right-hand limits of the control at Tk be approximated,
i.e., u(k)(T�

k ) ⇡ U(k)
N+1 and u(k+1)(T+

k ) ⇡ U(k+1)
0 .

B. New Constraints

Additional constraints are now added to appropriately
modify the search space such that the values of the new
decision variables can be accurately approximated. These
additional constraints consist of collocation constraints at
the endpoints of each mesh interval, exclusively applied to
those differential equations that are an explicit function of
the control. It is important to note that the standard LG
collocation method uses the initial endpoint and the LG
nodes to formulate a basis of Lagrange polynomials for the
purpose of approximating the state. Evaluating the derivative
of this same basis of Lagrange polynomials at the endpoints
of each interval results in a modified LG differentiation

matrix of the form

D̃ =

2

664

h
˙̀
0(⌧0), . . . , ˙̀N (⌧0)

i

Dh
˙̀
0(⌧N+1), . . . , ˙̀N (⌧N+1)

i

3

775 2 R
(N+2)⇥(N+1), (18)

where D 2 R
N⇥(N+1) is the standard LG differentiation

matrix. The resulting collocation constraints at the initial
endpoint and terminal endpoint of each mesh interval are
then given by

D̃(0,:)V
(k)
0:N � ↵�kfv

(k)
0 = 0,

D̃(N+1,:)V
(k)
0:N � ↵�kfv

(k)
N+1 = 0,

(19)

where fv
(k)
0 := fv(X

(k)
0 ,V(k)

0 ,U(k)
0 ) and fv

(k)
N+1 := fv(X

(k)
N+1,

V(k)
N+1,U

(k)
N+1), (k = 1, . . . ,K), and D̃(0,:) and D̃(N+1,:)

correspond to the first row and last row of D̃, respectively.
Note, these new constraints only correspond to components
of v since fx(x,v) is not an explicit function of control.

In addition to the endpoint collocation constraints given
by Eq. (19), the control inequality constraints in Eq. (17)
are augmented to include the new control variables using

c(U(k)
i )  0, (i = 0, . . . , N + 1; k = 1, . . . ,K). (20)

Lastly, the inclusion of variable mesh points requires
that the mesh interval scaling factors be constrained byPK

k=1 �k = 1, where �k > 0, (k = 1, . . . ,K), ensures
that the timespan of each mesh interval is strictly increasing.
These mesh interval scaling factors can also be thought of
as fractions of the mesh, summing to unity. The standard
Legendre-Gauss collocation method given by Eqs. (11)-(16)
together with the collocation constraints in Eq. (19), the
control path constraints in Eq. (20), and the scaling factor
constraints is referred to as the modified Legendre-Gauss

collocation method.



V. FIRST-ORDER NECESSARY CONDITIONS OF
THE CONTINUOUS BOLZA PROBLEM

The transformed adjoint system of the modified LG col-
location method can be derived by relating the Karush-
Kuhn-Tucker (KKT) conditions of the NLP to the first-
order optimality conditions of the continuous optimal control
problem. These necessary conditions for optimality are de-
rived using a variational approach which employs calculus of
variations and Pontryagin’s minimum principle [17] on the
optimal control problem defined in Section II. To simplify
the derivation, it is assumed that the control inequality path
constraint of Eq. (4) can be omitted from the problem
formulation because it can be enforced implicitly by the NLP
variable bounds. The continuous augmented Hamiltonian is
defined as H(x,v,�x,�v,u) = L(x,v,u) + �xfTx (x,v) +
�vfTv (x,v,u), where �x 2 R

nx and �v 2 R
nv are the

costates associated with x and v, respectively. The continu-
ous first-order optimality conditions are given by

(x0,v0) = ↵(fx, fv), (21)
(�0

x,�
0
v) = �↵(rx(H),rv(H)), (22)
0 = ↵ru(H), (23)

(�x(�1),�v(�1)) = (rx0( b
T
�M),rv0( b

T
�M)), (24)

(�x(+1),�v(+1)) = (rxf (M� bT),rvf (M� bT)), (25)
(H(t0),H(tf )) = (rt0(M� bT),rtf ( b

T
�M)), (26)

where  2 R
nb is the Lagrange multiplier associated with

the boundary condition b. Furthermore, it has been shown in
[18] that the augmented Hamiltonian at the initial and final
times can be written, respectively, as

H(t0) = �↵

Z 1

�1

@H

@t0
dt+

1

2

Z 1

�1
Hdt, (27)

H(tf ) = ↵

Z 1

�1

@H

@tf
dt+

1

2

Z 1

�1
Hdt. (28)

VI. KKT CONDITIONS OF THE NLP

The KKT conditions of the NLP associated with the
modified LG collocation method are obtained by setting
equal to zero the derivatives of the augmented cost function,
or Lagrangian, with respect to each variable. The Lagrangian
associated with modified LG collocation is given as

Ja = J �

KX

k=1

NX

i=1

D
⇤x

(k)
i ,D(i,:)X

(k)
0:N � ↵�kfx

(k)
i

E

�

KX

k=1

N+1X

i=0

D
⇤̃v

(k)
i , D̃(i,:)V

(k)
0:N � ↵�kfv

(k)
i

E

�

KX

k=1

D
⇤x

(k)
N+1,X

(k)
N+1 �X(k)

0 � ↵�k

NX

i=1

wifx
(k)
i

E
(29)

�

KX

k=1

D
⇤v

(k)
N+1,V

(k)
N+1 �V(k)

0 � ↵�k

NX

i=1

wifv
(k)
i

E

� bT
�
X(1)

0 ,V(1)
0 ,X(K)

N+1,V
(K)
N+1, t0, tf

�
�⇥

⇣ KX

k=1

�k � 1
⌘
,

where ⇤(k)
x 2 R

(N+1)⇥nx , ⇤(k)
v 2 R

(N+1)⇥nv , ⇤̃v
(k)
0 2

R
nv , ⇤̃v

(k)
N+1 2 R

nv ,  2 R
nb , and ⇥ 2 R are the

Lagrange multipliers, ⇤̃
(k)
v := [⇤̃v

(k)
0 ,⇤v

(k)
1:N , ⇤̃v

(k)
N+1]

T
2

R
(N+2)⇥nv , and h·, ·i denotes the standard inner product

between two vectors. Furthermore, ⇤x
(k)
i and ⇤v

(k)
i denote

the ith rows of ⇤(k)
x and ⇤(k)

v , respectively.
Next, the following theorem is introduced that will allow

the terms involving fv
(k)
0 and D̃(0,1:N) in Eq. (29) to be

written as functions of X(k)
1:N , V(k)

1:N , U(k)
1:N , and D. For the

remainder of this discussion, let W = diag(w1, . . . , wN ) be
a diagonal matrix of LG quadrature weights

Theorem 1: Let (⌧1, . . . , ⌧N ) be the Legendre-Gauss
points on the interval (�1,+1) and let ⌧0 = �1 and
⌧N+1 = +1. Furthermore, let Lj(⌧) be a Lagrange basis
polynomial, given by

Lj(⌧) =
N+1Y

i=0
i 6=j

⌧ � ⌧i
⌧j � ⌧i

, (j = 0, . . . , N + 1), (30)

with support points at (⌧0, ⌧1, . . . , ⌧N+1). Then, if f(⌧) is
a polynomial of degree at most N � 1 on the interval ⌧ 2

[�1,+1], it is the case that
Z +1

�1
f(⌧)L̇0(⌧)d⌧ = �f(�1). (31)

Proof: The left-hand side of Eq. (31) can be integrated
by parts as
Z +1

�1
f(⌧)L̇0(⌧)d⌧ = f(⌧)L0(⌧)

���
+1

�1
�

Z +1

�1
ḟ(⌧)L0(⌧)d⌧ . (32)

Because f(⌧) is a polynomial of degree at most N � 1, it
follows that ḟ(⌧) is a polynomial of degree at most N �

2. Furthermore, because L0(⌧) is a polynomial of at most
degree N + 1, then the integrand on the right-hand side of
Eq. (32) is at most degree 2N � 1. Since LG quadrature is
exact for polynomials of degree 2N � 1 or less, the integral
on the right-hand side of Eq. (32) can be evaluated exactly
using LG quadrature as

Z +1

�1
ḟ(⌧)L0(⌧)d⌧ =

NX

i=1

wiḟ(⌧i)L0(⌧i), (33)

where wi is the ith LG quadrature weight. Then, since the
Lagrange polynomials given by Eq. (30) satisfy the isolation
property Lj(⌧i) = �ij (see Eq. (7)), every term L0(⌧i), (i =
1, . . . , N + 1), is zero which implies that

Z +1

�1
f(⌧)L̇0(⌧)d⌧ = f(⌧)L0(⌧)

���
+1

�1
= �f(�1). (34)

Corollary 1: The row vector D̃(0,1:N) obtained from
the modified LG differentiation matrix can be written as
��0WD(:,1:N), where �0 := [L̇0(⌧1), L̇0(⌧2), . . . , L̇0(⌧N )].

Proof: Replacing f(⌧) from Theorem 1 with
˙̀
j(⌧), (j = 1, . . . , N), results in

Z +1

�1

˙̀
j(⌧)L̇0(⌧)d⌧ = � ˙̀

j(�1) = �D̃(0,j). (35)



Furthermore, since ˙̀
j(⌧)L̇0(⌧) is a polynomial of degree at

most 2N � 1, the left-hand side of Eq. (35) can be replaced
exactly with an LG quadrature as

Z +1

�1

˙̀
j(⌧)L̇0(⌧)d⌧ =

NX

i=1

wi
˙̀
j(⌧i)L̇0(⌧i). (36)

Relating Eq. (35) and Eq. (36), D̃(0,1:N) can be written as

D̃(0,1:N) = ��0WD(:,1:N). (37)

Corollary 2: Suppose that (X(k)
i ,V(k)

i ,U(k)
i ), (i =

0, . . . , N + 1) satisfy the collocation constraints given in
Eq. (9) and Eq. (19). Following the definitions in Corollary 1,
the row vector fv

(k)
0 can be written as ��0Wfv

(k)
1:N , where

fv
(k)
1:N :=

h
fv

(k)
1 , fv

(k)
2 , . . . , fv

(k)
N

iT
2 R

N⇥nv .

Proof: Replacing f(⌧) from Theorem 1 with the vector
function F(⌧) =

PN
j=0

˙̀
j(⌧)V

(k)
j results in

Z +1

�1
L̇0(⌧)F(⌧)d⌧ = �F(�1) = �↵�kfv

(k)
0 . (38)

Furthermore, since the integrand in Eq. (38) is a polynomial
of degree at most 2N � 1, it can be replaced exactly with
an LG quadrature as

Z +1

�1
L̇0(⌧)F(⌧)d⌧ =

NX

i=1

wiL̇0(⌧i)F(⌧i), (39)

where F(⌧i) is equal to the discrete state dynamics of v(⌧) as
given by the right-hand side of Eq. (9). Combining Eq. (38)
and Eq. (39), fv

(k)
0 can be written as

fv
(k)
0 = ��0Wfv

(k)
1:N . (40)

A process similar to that of Theorem 1 is used to derive the
expressions D̃(N+1,1:N) = �N+1WD(:,1:N) and fv

(k)
N+1 =

�N+1Wfv
(k)
1:N , where �N+1 := [L̇N+1(⌧1), L̇N+1(⌧2), . . . ,

L̇N+1(⌧N )]. Such details are beyond the scope of this paper
and can be found in Ref. [19].

The previously derived expressions can be substituted into
the Lagrangian of Eq. (29), and then the KKT conditions
are found by setting equal to zero the derivatives of the La-
grangian with respect to X(k)

0:N+1, V(k)
0:N+1, U(k)

1:N , ⇤x
(k)
1:N+1,

⇤v
(k)
1:N+1, ⇤̃v

(k)
0 , ⇤̃v

(k)
N+1,  , ⇥, �k, t0, and tf . Along with

the constraints given in Sections III and IV, the solution to
the NLP of the modified LG collocation method must satisfy
the following KKT conditions:

DT
(:,i)⇤x

(k)
1:N = ↵�krXi

⇣
wiH̄

(k)
i

⌘
, (41)

DT
(:,i)⇤v

(k)
1:N = ↵�krVi

⇣
wiH̄

(k)
i

⌘
+ �0WD(:,i)⇤̃v

(k)
0

��N+1WD(:,i)⇤̃v
(k)
N+1,

(42)

0 = ↵�krUi

⇣
wiH̄

(k)
i

⌘
, (43)

rX0( bT
�M) = ⇤x

(k)
N+1 �DT

(:,0)⇤x
(k)
1:N , (44)

rV0( bT
�M) = ⇤v

(k)
N+1 �DT

(:,0)⇤v
(k)
1:N

�D̃(0,0)⇤̃v
(k)
0 � D̃(N+1,0)⇤̃v

(k)
N+1,

(45)

rXN+1(M� bT) = ⇤x
(k)
N+1, (46)

rVN+1(M� bT) = ⇤v
(k)
N+1, (47)

rt0(M� bT) =
1

2

KX

k=1

�k

NX

i=1

wiH̄
(k)
i , (48)

rtf ( bT
�M) =

1

2

KX

k=1

�k

NX

i=1

wiH̄
(k)
i , (49)

⇥ = ↵
NX

i=1

wiH̄
(k)
i , (50)

where H̄
(k)
i := L

(k)
i +

⌦
fx

(k)
i ,⇤x

(k)
i /wi +⇤x

(k)
N+1

↵
+
⌦
fv

(k)
i ,

⇤v
(k)
i /wi + ⇤v

(k)
N+1 � �0,i⇤̃v

(k)
0 + �N+1,i⇤̃v

(k)
N+1

↵
, (i =

1, . . . , N ; k = 1, . . . ,K) is the discrete-time augmented
Hamiltonian.

VII. TRANSFORMED ADJOINT SYSTEM
The transformed adjoint variables in the kth interval

corresponding to the modified LG collocation method can
be expressed as follows:

�x
(k)
0 = ⇤x

(k)
N+1 �DT

(:,0)⇤x
(k)
1:N , (51)

�x
(k)
1:N = W�1⇤x

(k)
1:N + 1⇤x

(k)
N+1, (52)

�x
(k)
N+1 = ⇤x

(k)
N+1, (53)

�v
(k)
0 = ⇤v

(k)
N+1 �DT

(:,0)⇤v
(k)
1:N

� D̃(0,0)⇤̃v
(k)
0 � D̃(N+1,0)⇤̃v

(k)
N+1,

(54)

�v
(k)
1:N = W�1⇤v

(k)
1:N + 1⇤v

(k)
N+1

� �T
0 ⇤̃v

(k)
0 + �T

N+1⇤̃v
(k)
N+1,

(55)

�v
(k)
N+1 = ⇤v

(k)
N+1, (56)

 =  . (57)

Finally, let D† be the N ⇥ (N + 1) matrix derived in [18]
given by

D†
(i,j) = �

wj

wi
D(j,i), D†

(i,N+1) =
NX

i=1

wj

wi
D(j,i), (58)

(i, j = 1, . . . , N). Substituting the costate estimates of
Eqs. (51)-(57) and the differentiation matrix D† of Eq. (58)
into the KKT conditions given by Eqs. (41)-(50), the trans-
formed adjoint system is given by

⇥
D†

(i,1:N+1)

⇤T
�x

(k)
1:N+1 = �↵�krXi

�
H

(k)
i

�
, (59)

⇥
D†

(i,1:N+1)

⇤T
�v

(k)
1:N+1 = �↵�krVi

�
H

(k)
i

�
, (60)

0 = ↵�krUi

�
H

(k)
i

�
, (61)

�x
(k)
0 = rX0

�
 bT

�M
�
, (62)

�v
(k)
0 = rV0

�
 bT

�M
�
, (63)

�x
(k)
N+1 = rXN+1

�
M� bT

�
, (64)

�v
(k)
N+1 = rVN+1

�
M� bT

�
, (65)

rt0

�
M� bT

�
=

1

2

KX

k=1

�k

NX

i=1

wiH
(k)
i , (66)



rtf

�
 bT

�M
�
=

1

2

KX

k=1

�k

NX

i=1

wiH
(k)
i , (67)

such that Eqs. (59)-(67) are the multiple-interval discrete
representations of the continuous first-order optimality con-
ditions from Eqs. (22)-(28).

VIII. NUMERICAL EXAMPLE
Consider the following optimal control problem. Minimize

the final time, tf , of a robotic arm reorientation maneuver
[20] subject to the dynamic constraints

y01 = ↵y2, y02 = ↵u1/L, y03 = ↵y4

y04 = ↵u2/I✓, y05 = ↵y6, y06 = ↵u3/I�,

the boundary conditions

(y1(�1), y1(+1))= (4.5, 4.5), (y2(�1), y2(+1))= (0, 0),

(y3(�1), y3(+1))= (0, 2⇡/3), (y4(�1), y4(+1))= (0, 0),

(y5(�1), y5(+1))= (⇡/4,⇡/4), (y6(�1), y6(+1))= (0, 0),

and the control inequality constraints �1  ui  +1, (i =
1, 2, 3), where t0 = 0, tf is free, I� = ((L� y1)3 + y31)/3,
I✓ = I� sin

2(y5), and L = 5. The optimal control for this ex-
ample exhibits a bang-bang structure with five discontinuities
located at T ⇡ {�0.5000,�0.3882, 0.0000, 0.3882, 0.5000}
with an optimal cost of t⇤f ⇡ 9.1409.

Figure 1 shows the optimal control solution obtained using
the modified Legendre-Gauss (mLG) collocation method
presented in this work alongside the multi-interval stan-
dard Legendre-Gauss (LG) collocation method with linear
interpolation between points. The approximate locations of
the five discontinuities and their uncertainty bounds are
first determined using a jump function approximation [7]
on an initial static mesh of ten uniformly spaced intervals
with four collocation points in each interval. Setting the
five discontinuity approximations as variable mesh points,
a new variable mesh is generated consisting of six intervals
with four collocation points in each interval. The resulting

Fig. 1: Comparison of control solutions for robot arm reori-
entation maneuver.

NLP is then solved using SNOPT [21] with the NLP error
tolerance set to 10�6 and first-derivatives supplied using
the automatic differentiation software ADiGator [22]. The
first observation is that discrete controls are obtained at
the left and right limits of each switch time only for the
mLG method. Furthermore, the accuracy of the discontinuity
locations is higher using the mLG method when compared
with the LG method with variable mesh points. The higher
accuracy of the mLG method demonstrates the improvement
that the mLG method has on the NLP search space. The
objective obtained using the LG method is tf = 9.1407 < t⇤f .
The lower objective obtained using the LG method can
be interpreted as Lavrentiev phenomenon [15] because the
additional degrees of freedom introduced via the inclusion of
variable mesh points leads to an optimal objective value that
differs from the true optimal value. The constraints imposed
by the mLG method reduce the size of the larger NLP search
space that is attributed to the added degrees of freedom. The
augmented search space corresponding to the mLG method
prevents convergence to a pseudo-minimizer and enables
accurate computation of the optimal control solution.

Next, let �v = [�y2 ,�y4 ,�y6 ] be the costates associated
with the state dynamics that explicitly depend on the control.
The approximations to these costate components are shown
in Fig. 2. It can be seen that each control switch time,
Ti, i 2 {1, . . . , 5}, coincides with one of these costate
components being zero, which is in agreement with Pontrya-
gin’s minimum principle. That is, because the Hamiltonian is
linear in the control, the switching structure of the optimal
control is determined by the switching function @H/@ui,
(i = 1, 2, 3), where @H/@ui = 0 at a control switch time
(assuming no control is singular).

Lastly, the solution accuracy of the mLG method is com-
pared to that of equivalent meshes discretized with modified
LGR collocation (mLGR) [16] and standard LG collocation
in Table I. Additionally, the problem was solved using the
hp-Legendre(1) mesh refinement method of [7] with standard

Fig. 2: Costate solutions, �v , for robot arm reorientation
maneuver obtained with modified LG collocation method.



TABLE I: Relative errors obtained using modified LG col-
location compared to various methods.

mLG mLGR LG hp-Legendre(1)

Etf 2.8⇥ 10�7 3.9⇥ 10�7 2.4⇥ 10�5 3.0⇥ 10�6

ET1 2.1⇥ 10�7 4.2⇥ 10�14 4.7⇥ 10�2 9.1⇥ 10�3

ET2 4.7⇥ 10�7 8.6⇥ 10�5 5.4⇥ 10�5 2.4⇥ 10�2

ET3 8.9⇥ 10�8 3.6⇥ 10�5 2.8⇥ 10�5 8.9⇥ 10�3

ET4 6.6⇥ 10�7 8.4⇥ 10�7 5.5⇥ 10�5 7.5⇥ 10�3

ET5 2.6⇥ 10�7 1.3⇥ 10�14 1.1⇥ 10�4 9.1⇥ 10�3

max
i2{1,...,6}

Eyi 6.4⇥ 10�5 1.3⇥ 10�4 9.5⇥ 10�3 5.2⇥ 10�3

max
i2{1,2,3}

Eui 4.7⇥ 10�3 1.1⇥ 10�2 1.0⇥ 10�6 8.4⇥ 10�1

LGR collocation. The hp-Legendre(1) method uses jump
function approximations to bracket detected discontinuities,
but the refined mesh remains static. All relative errors were
computed using a baseline solution that was obtained with
GPOPS� II [23] in multi-phase mode with the controls
fixed to their optimal values. The mLG method results in
the most accurate final cost and state approximations. The
control solutions and switch times are also computed with
high accuracy. While the maximum control error appears
smallest with the LG collocation method, it is important
to remark that the control is noticeably absent at the mesh
points. Finally, the accuracy of the solution obtained with the
hp-Legendre(1) method is negatively impacted by the static
nature of the mesh, i.e. the mesh density increases near the
control discontinuities but the switch times themselves are
not optimized by the NLP solver.

IX. CONCLUSIONS

A modified Legendre-Gauss collocation method has
been described for solving optimal control problems with
nonsmooth solutions. The method augments the standard
Legendre-Gauss direct collocation method by introducing
additional control variables and variable mesh points as well
as enforcing the dynamics at the previously non-collocated
interval endpoints. It was shown that the KKT conditions
from the NLP obtained via the modified Legendre-Gauss
collocation method satisfy the variational conditions of
the continuous optimal control problem. The method was
demonstrated on a complex optimal control problem with
multiple control switches. The results obtained in this paper
demonstrate the viability of the modified Legendre-Gauss
collocation method for solving optimal control problems with
nonsmooth solutions when variable mesh points are located
in the neighborhood of corresponding control discontinuities.
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