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Abstract— A computational framework for the solution of op-
timal control problems with time-dependent partial differential
equations (PDEs) is presented. The optimal control problem is
transformed from a continuous time and space optimal control
problem to a sparse nonlinear programming problem through
state parameterization with Lagrange polynomials and discrete
controls defined at Legendre-Gauss-Radau (LGR) points. The
standard LGR collocation method is coupled with a modified
Radau method to produce a collocation point on the typically
noncollocated boundary. The newly collocated endpoint allows
for a representation of the state derivative and control on
the originally noncollocated boundary such that Neumann
boundary conditions may be satisfied. Finally, the method
developed in this paper is demonstrated on a viscous Burgers’
tracking problem and the results are compared to an existing
solution.

[. INTRODUCTION

Direct and indirect methods exist for solving optimal con-
trol problems with partial differential equations numerically
[1]-[7]. While direct methods for the solution of optimal
control problems with ordinary differential equations (ODEs)
have been well studied [3], [8]-[11], direct methods for the
solution of optimal control problems with partial differential
equations are less general and thereby less common in the
optimal control literature. Moreover, significant challenges
arise when the state is a function of both a temporal and spa-
tial variable. Such challenges include difficulties in varying
degrees of equation order, handling of boundary conditions,
control location, and the computational and mathematical
complexity of the additional dependence. In particular, the
boundary conditions play an exceptional role in the spatial
discretization and many times influence the choice of scheme
and inhibit generality of a method. In addition, the location
of the control (boundary or distributed) plays a large role in
the choice of discretization and solution methodology.

Numerous methods exist to solve partial differential equa-
tions numerically, including spectral [12], finite element [13],
the method of lines [3], domain decomposition [14], and
multigrid methods [15]. Another approach for solving opti-
mal control problems with partial differential equations is by
orthogonal collocation. Direct orthogonal collocation meth-
ods for the solution of optimal control problems have largely
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been applied to systems described by ODEs, and they have
been sparingly applied to problems with PDE constraints. In
many cases, direct orthogonal collocation methods present
challenges when handling Neumann boundary conditions and
boundary controls. The primary contribution of this work is
a Legendre-Gauss-Radau (LGR) method [16] coupled with
a modified Radau scheme [17] for the numerical solution
of optimal control problems with time-dependent partial
differential equations and Neumann boundary conditions.

The modified method allows for a representation of the
derivative on both boundaries with the addition of control on
the originally noncollocated boundary. The modified method
as introduced by Eide, Hager, and Rao [17] was developed
for the solution of optimal control problems with nonsmooth
solutions; however, the modified method is used in this
paper to gather a representation of the derivative on both
boundaries and the control on the originally noncollocated
boundary. In doing this, the solution of optimal control
problems with time-dependent PDEs and Neumann boundary
conditions may be obtained.

The remainder of the paper is presented as follows. The
mathematical framework for the solution of optimal control
problems with time-dependent PDEs and Neumann boundary
conditions by LGR collocation is presented in Section II, and
the viscous Burgers’ tracking problem presented and solved
by Biiskens and Griesse [18] is solved by the framework in
Section III. Optimal values of the cost are then compared
with another existing solution [3].

II. MATHEMATICAL FRAMEWORK
A. LGR and Flipped LGR Collocation

The method presented here employs a direct orthogonal
collocation method to transcribe a continuous-time and space
optimal control problem into a sparse nonlinear programming
problem via state parameterization with Lagrange polynomi-
als and discrete controls defined at the LGR points. In this
work, both LGR points and flipped LGR points are used as
collocation points for the PDE constraints, boundary condi-
tions, and initial conditions. The LGR points are calculated
from the roots of the Py_;(7)+ Py(7) Legendre polynomial
where N is the number of collocation points and are defined
on the half-open interval from [—1,1) [19]. The flipped LGR
points are the negative of the LGR points on the half-open
interval from (—1,1]. The LGR points can be used to exactly
integrate a polynomial, p(7), of degree 2N —2 by
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where w; are the quadrature weights. It has been shown that
both LGR and flipped LGR points may essentially be used
interchangeably for problems with constraints defined by
ordinary differential equations [20]. However, for problems
with partial differential equation constraints, the noncollo-
cated point (on the open boundary) becomes important to
consider for accurate solutions.

B. Optimal Control with Partial Differential Equations

Without loss of generality, an optimal control problem in
Lagrange form is presented as follows. Assume we seek to
minimize the arbitrary cost functional, F, given by
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where ¢ and x are the temporal and spatial variables, respec-
tively, y(x,7) and u(x,¢) are the state and control, respec-
tively, and a is a constant. For simplicity in the remaining
discussion, only parabolic PDEs are addressed, but it should
be noted that the methodology is similar for hyperbolic PDE
constraints. An affine transformation is used to transform the
temporal and spatial domains from fo <t <ty and xo <x <xy
to —1<t<1and 1<E& <1, respectively, where T and &
are the transformed independent variables given by
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Using the transformations in (7), it is possible to rewrite the
PDE in (3); however, it is useful to expand the PDE in (3)
into two PDE:s that are first-order in space. This may be done
by constructing a new state variable, v(x,7), and rewriting (3)
in an equivalent form as

dy 0
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The PDEs in (8)-(9) may then be rewritten using the trans-
formation in (7) as
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where dt /9T = (t;—19)/2 from (7) and dx/dE = (xy —xp)/2

from (7). Suppose that the domain, Q = {(£,7) | —1 <
£ <1, =1 <1 <1}, may further be broken into J time

intervals and K space intervals. That is, the time domain,
T={t|-1=1n%<1<...<T_ < 17 =1}, is transformed
from T; € [t;_1,7j], (j=1,...,J), to the new independent
variable r € [—1,1], and the space domain, S={£ | — 1=
Eo< & <... < &1 <& =1}, is transformed from Sy €
[E—1,&], (k=1,...,K), to the new independent variable
s € [—1,1]. To perform the J transformations on the temporal
variable and K transformations on the spatial variable, a simi-
lar transformation as in (7) is employed. The transformations
are provided as
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where the dependency of yU*) v and ul/%) on the inde-
pendent variables (s, r) have been excluded for compactness.
Note, the values of (8&/8s)( ) and (a’c/ar) depend upon
the bounds of the intervals [&_1,&] V k=1,...,K, and

[Tj—1,7j] ¥ j=1,...,J, respectively, and are computed by
(0E/3s)W = (& —& 1)/2, k=1,....,K,  (16)
@/ = (1j—11)/2, j=1,...0. (A7)

C. The Legendre-Gauss-Radau Collocation Method

The states in (14)-(15) may be approximated by a basis
of Lagrange polynomials by
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where LY/ )(r) and Qﬁ,f) (s) are defined as
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In (18)-(20), N,m and N)Ek) represent the number of LGR
points in time (r) in interval j and in space (s) in interval k,
respectively. Note, the number of collocation points in space
in a particular space interval must remain consistent across
all time intervals, and similarly, the number of collocation



points in time in a particular time interval must remain con-
sistent across all space intervals. Taking the partial derivative
of (18) with respect to r and s yields
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and taking the partial derivative of (19) with respect to s
yields
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These approximations may now be substituted into (14)-(15)
to define the constraint equations on a finite mesh. Prior to
substitution, to simplify the constraint equations in (14)-(15),
the state approximations YE’ k)) and VI k)> can be organized
into state vectors with specified 1ndlces For simplicity, in
both space and time, the number of collocation points are
kept consistent in each interval. In other words, the total
number of points in time is given by N,J + 1, and the total
number of points in space is given by N,K + 1. As a result,
the total number of points in the entire domain is given by
(N:J+1) x (NxK +1). In this work, indexing was completed
by “stacking” in space. Mathematically, this is shown by

YK 1T RNk 1) <1

N
Y=Y (Ny+1)

1)
That is, all time components at a particular space point are
stacked into the vector, and the process is repeated at each
additional space point until the end of the domain. This is
similarly done for V. A visual depiction of the mesh for the
problem presented is given in Fig. 1. In time, the flipped
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Fig. 1. A visual depiction of the mesh with standard LGR points in space

and flipped-LGR points in time with N; =6, J =2, N, =6, and K = 2. The
mesh demonstrates the organization of the points in the state vector.

LGR points are used, and in space, the standard LGR points
are used. As points at the interval interfaces exist in both
of the connecting intervals, they are treated as the same
NLP variable in the optimization (e.g. Y( = YE 2 at
the first mesh interval intersection). Note, (14) (15) hold for
the interior of the domain and the final time boundary. The
boundary at ¢t =y, x = xp, and x = x; are constrained by
an initial condition and boundary conditions, respectively.
As a result, these points will be treated separately from the
interior.

1) Collocating the Interior: The interior of the domain
consists of all of the collocated points demonstrated in Fig. 1
with the exception of the boundary at x = xo. For simplicity,
the following simplification of the constraint equations is
shown for the global case. The multi-interval case is done
identically; however, the indexing of the NLP variables
makes the explanation unnecessarily complex. In one mesh
interval, the sums in (21)-(23), can be organized into matrix
form to match the state vector organization in (24). As the
Lagrange polynomial at a specific collocation point is unity at
the collocation point and zero elsewhere, LY )(r) € RNixNi+1
can be expressed as a matrix with unity on the main diagonal
and zeros elsewhere The matrix will be denoted by L. The
derivative term, JLY ( )/dr can be represented by a dense
N; X N, + 1 matrix where the value of the i row and n™
column is the value of the derivative of the n™ time Lagrange
polynomial evaluated at the i”" time collocation point. The
matrix representation of oLy )(r)/ dr will be denoted as
L, € RV>*N+1 1f the mesh is only comprised of one mesh
interval, the double sum in (21) can be replaced by the matrix
D¢, which has the form

L:O1(s2)  LrQa(s2) Ly On,+1(52)
L:Qi(s3) LeQa(s3) ... LeOwn11(s3)

D= : : . : - (29)
LrQl‘(SNx) L. 0> (sn,) Ly On,+1(sn,)

Note, due to the isolation property of the Lagrange poly-
nomials, the only non-zero terms in Dy in (25) occur when
the m™ spatial polynomial is evaluated at the m™ collocation
point. These non-zero terms reduce to the matrix L.

As the flipped LGR points are used in time, the matrix
L € RV*Ni+1 yith ones on the main diagonal and zeros
elsewhere must be rearranged to account for the noncollo-
cated point. This is done by shifting the column of zeros
corresponding to the noncollocated point such that

10 ... 0 01 0
L_l0 1 0 .| ]00 1 0 26)
00 " 0 00 0

A matrix, Dy, can be constructed that replaces the double
sum in (22). This is given by

L3Q1§S2) LaQégsz) LaQNX+S1 (s2)
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Sparsity patterns for Dy and Dy for the one interval (global
Radau) case are given in Fig. 2 and Fig. 3, respectively. Hav-
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Fig. 2. The sparsity pattern for D¢ with J =1, K =1, N; =3, and N, =4.
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Fig. 3. The sparsity pattern for Dy with J=1, K=1, N, =3, and N, =4.
ing performed the simplification of (21)-(23), the constraint
equations in (14)-(15) may be reduced to

0 ox__ _ Ot ot -_8§a’cax8t
E%DtY—F E%DXV = gaﬁ&f@, 7, Yeol; Veol, ),
(28)
_ 0& ox
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where Y and V are the state vectors and Yo and Ve
indicate the portion of the state vector corresponding to the
collocated points. For the multi-interval case, the indexing
becomes more complicated, as state variables at endpoints in
one interval are the same as those at the start of the following
interval. Sparsity patterns for Dy and Dy for a multi-interval
case are given in Fig. 4 and Fig. 5 for reference.

L L L L L L
0 10 20 30 40 50 60
nz =168

Fig. 4. The sparsity pattern for D¢ with J =2, K =2, N; =3, and N, =4.

2) Handling Initial Conditions: Typically, the initial con-
dition is a fixed value of the state at each spatial point. Thus,
constraining the initial condition is rather straightforward.
If a fixed-state initial condition exists, it is advantageous
to use the flipped LGR points for the time discretization,
as it is not imperative to have collocated points at the

[ 10 20 30 40 50 60
nz =210

Fig. 5. The sparsity pattern for Dy with /=2, K =2, N; =3, and N, = 4.

initial time boundary. The use of the flipped LGR points
allows for the final time boundary to be constrained by the
dynamics. The only remaining dependence is the connection
between the state variable, y(fo,x), and its spatial derivative,
v(19,x); however, this is easily done by applying (15) at the
intermediate points between (xp, xy) and constraining the
endpoints via the boundary conditions.

3) Handling Boundary Conditions: Whereas initial con-
ditions are typically fixed values of the state, a vast array of
boundary conditions exist that are dependent on the type of
equation and problem being solved. The most problematic
set of boundary conditions are those that depend upon the
derivative of the state. The LGR method only has a defined
representation of the derivative on one of the two boundaries
in a particular interval. Thus, for problems when derivatives
on both ends are required, the LGR scheme is incapable of
satisfying both boundary conditions without modification. To
properly modify the LGR scheme to satisfy boundary condi-
tions of this type, a modified LGR scheme [17] is employed.
The modified scheme adds an additional collocation point at
the endpoint of an interval and an additional control variable
to the decision vector. On the first boundary (x = xp), there
exists representations for derivatives of the state when the

standard LGR points are used. This is given by
— |.221(s1) LM]
S
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On the second boundary (x = xy), the modified equations
must be used to gather a representation for the derivative of
the state. The equations for the modified scheme are given
by

D, = [Lt?Ql(gngﬂ) L3Q2(51:x+1) L9QNX+(19§SNX+1) ]
(3D
When one space interval is used, the equations in (30)-
(31), along with the added control variables at the sec-
ond boundary, are sufficient to fully define the boundary
conditions and consequently the problem. However, in the
multi-interval formulation, an additional set of constraints is
required. Assume the boundary conditions on the first and
second boundary take on the form

y(xo,1)/0x =uy(t), dy(xs,1)/dx=us(t).

The lack of complete definition stems from the mesh interval
intersection at the end of the first interval. Examining the
mesh in Fig. 1, the collocation points at the mesh interval

(32)



intersection compute the derivative of the state via the
Lagrange polynomials in the second interval. The “forward
derivative” references the values of the state at the final
boundary to compute its approximation for the derivative.
Thus, the information from the second boundary condition
may be propagated through the entirety of the domain.
However, though the derivative is continuous as defined by
the set of Lagrange polynomials, the information from the
first boundary condition is not used when computing the
value of the derivative at the intersection of the first mesh
interval. To connect the first mesh interval accurately to the
rest of the solution, the derivative of the state at the mesh
interval intersection that references the points in the first
interval is additionally required. To do this, the modified
constraints in (31) are employed at the intersection of the
first mesh interval. The addition of the modified constraints
without control variables is only required in the first space
interval such that the first boundary condition can be satisfied
through an accurate computation of the state derivative at the
first mesh interval intersection.

4) Search Space Modification: When using the modified
method, control variables are to be added to properly modify
the search space to arrive at the correct solution. However,
if the dynamics equations are not a function of the control,
this is not feasible. With the addition of more constraints,
the number of degrees of freedom in the problem have been
reduced, and as a result, the search space has been improperly
reduced. To re-widen the search space, “slack” must be given
to the modified constraints. That is, instead of setting the
modified constraints equal to zero, the modified constraints
are redefined as inequality path constraints between some
tolerance =+4.

Finding the best value of & for a specific mesh is non-
trivial, and it requires some degree of trial and error depend-
ing on the problem and number of collocation points used. If
0 is made too large, the search space becomes too large, and
as a result, the optimizer may converge to solutions that do
not satisfy the parameters of the original problem. However,
if & is made too small, the search space becomes too small,
and the optimizer may not converge to a solution. In general,
the best procedure for determining a suitable value of & (say
0%) is to first define a value of § < &*. If the optimizer
does not converge, gradually increase the value of O until
the optimizer converges to the optimal solution.

The need for additional constraints and “slack™ highlights
an important feature of Gaussian quadrature and the modified
Radau method. In theory, the “forward” and ‘“backward”
representations of the derivative of the state at the first mesh
interval intersection should be close to (if not) identical,
however, when few numbers of collocation points are used,
the approximations of the derivative using two distinct sets
of points becomes more disparate. As a result, numerical
differences in the derivative approximations can present the
need for “slack” in the constraint equations. As more collo-
cation points are added, the approximation of the derivative
in both intervals improves, and consequently, less “slack” is
needed. It was found that the influence of the control on the

first boundary is unable to propagate through to the interior
of the domain without a computation of an accurate state
derivative that satisfies both the boundary condition and the
dynamics at the mesh interval intersection.

I1I. EXAMPLE

For this work, the viscous Burgers’ tracking problem first
presented by Biiskens and Griesse [18] and resolved by Betts
[3] is presented. The problem is to minimize

F= %/0]/(;ILV(x,z)—0.035]2dxdt+g/ol[u%(t)w%(t)]dh

(33)
subject to the PDE
Iy(xt) _ 9%y(x1) 9y(x.1)
% Vo2 y(x,1) o (34)
with the initial and boundary conditions
¥(x,0) =x*(1—x)?, (35)
dy(0,t ady(l,t
L(gx — L((;x — (36)

The control bounds for i = 1, 2 are given by u;, < u;(t) <
Umay- The problem is defined on the domain Q = {(x,7) |0 <
x<1; 0<t <1}, and the following parameters complete
the definition: 6 =0.01, v =0.1, uy. = 0.015,
—0.015.

The problem is solved using the presented framework on
two different meshes. The first mesh contains a relatively
small number of collocation points per interval while the
second mesh contains a relatively large number of collocation
points per interval. The computed solutions for the optimal
state, state derivative, and two control inputs are provided
in Figs. 6, 7, and 8, respectively, and the solution details
are provided in Table I. Note that using a larger number

Umin =

Fig. 6. The optimal state Y*(x,7) with J =14, K=10, N, =6, and Ny =7.
TABLE I
SOLUTION DETAILS
N N J K 5" F*
Mesh 1 6 7 14 10 2x107% 2.896463 x 107>

2.896938 x 1073
2.896682 x 1073

Mesh 2 6 15 14 5 1x10712
Betts [3] - - - - -

of collocation points per interval results in a significant



Fig. 7. The optimal state derivative V*(x,7) with J =14, K =10, N, =6,
and N, =7.
0.015 T T T T
w ()
up(t)
0.01 B
0.005 \\ B
= T
-0.005 + 4
-0.01 F B
-0.015 L L L L
0 0.2 0.4 0.6 0.8 1

Fig. 8. The optimal controls u;(¢) and uy(r) with J =14, K =10, N, =6,
and N, =7.

reduction of the value of §*. The solutions found on Mesh 1
and 2 were solved with the open source NLP solver [POPT
[21] using an NLP tolerance of 10~!2. The solution on Mesh
1 resulted in an overall NLP error of 5 x 10~'3. The solution
on Mesh 2 resulted in an overall NLP error of 9 x 10713, The
solutions closely match those given by Betts [3].

IV. CONCLUSIONS

A computational framework for the solution of optimal
control problems with time-dependent partial differential
equations is presented. The standard LGR method is used
in association with the modified method presented by Eide,
Hager, and Rao [17] to solve optimal control problems
with Neumann boundary conditions and boundary controls.
The framework is then employed on a viscous Burgers’
tracking problem to demonstrate the method in practice. The
computed solution matches closely with an existing solution
in the literature.
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