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Abstract— An optimal guidance method is developed that

reduces sensitivity to parametric uncertainties in the dynamic

model. The method combines a previously developed method

for guidance and control using adaptive Legendre-Gauss-Radau

(LGR) collocation and a previously developed approach for

desensitized optimal control. Guidance updates are performed

such that the desensitized optimal control problem is re-solved

on the remaining horizon at the start of each guidance cycle.

The effectiveness of the method is demonstrated on a simple

example using Monte Carlo simulation. The application of the

method results in a smaller final state error distribution when

compared to desensitized optimal control without guidance as

well as a previously developed method for optimal guidance

and control.

I. INTRODUCTION

The goal of an optimal control problem is to determine
the state and control of a controlled dynamical system that
optimizes a specified performance index while satisfying
dynamic constraints, path constraints, and boundary condi-
tions. Due to their complexity, most optimal control problems
cannot be solved analytically and, thus, must be solved
numerically. Numerical methods for solving optimal control
problems fall into two categories: indirect methods and direct
methods. In an indirect method, the calculus of variations is
employed to formulate the first-order optimality conditions,
leading to a Hamiltonian boundary-value problem (HBVP).
In a direct method, the control and/or the state are param-
eterized and the optimal control problem is transcribed into
a finite-dimensional nonlinear programming problem (NLP)
which is solved using well known optimization methods [1],
[2].

Optimal control problems are typically formulated with
a reference (nominal) dynamic model and the optimized
trajectory and control are obtained in an open-loop manner
along the horizon of interest using this reference model.
Typically, the reference optimal control is computed based
on a deterministic model. However, in real systems, uncer-
tainties in the model exist. As a result, the utilization of the
reference optimal control can lead to significant perturbations
from the optimal trajectory. In the case of sufficiently large
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uncertainties, employing the reference optimal control for
any significant duration will lead to large perturbations in
the state and, in order to reduce such perturbations, some
form of correction will be required. Often, course corrections
in the form of guidance updates are performed where the
optimal control problem may be solved periodically (that is,
at specified guidance update times), thus leading to closed-
loop optimal control.

In the application of optimal control to high performance
vehicles, the vehicle is subject to uncertainty in model param-
eters. When designing a reference trajectory, it is desirable
to reduce sensitivities to these parametric uncertainties to
promote robustness while minimizing the error in the final
state in response to perturbations in the state anywhere along
the trajectory. The process of determining the control that
reduces sensitivities of the state to parametric uncertainty
is known as desensitized optimal control. The study of
desensitized optimal control first appeared in Ref. [3] for
a simple optimal control problem. An extension of the work
of Ref. [3] for problems with constraints can be found in
Ref. [4]. Next, Ref. [5] and [6] use desensitized optimal
control to solve the Mars pinpoint landing problem. The
work of Ref. [5] and [6] was then extended in Ref. [7]
to study perturbations resulting from parametric uncertain-
ties in aerodynamic characteristics and atmospheric density
and was further implemented using direct collocation and
nonlinear programming in Ref. [8]. Furthermore, Ref. [9]
studied a relationship between covariance trajectory shaping
and desensitized optimal control, while Ref. [10] studied
this same relationship in conjunction with trajectory design.
Next, desensitized trajectory optimization was studied in
Ref. [11] where the sensitivity dynamics were explored as
functions of the partial derivatives of the original dynamics
with respect to the state and parameters with uncertainties.
In particular, a simplified form of the sensitivity dynamics
from Ref. [3] was derived. This method was then applied to
hypersonic trajectory optimization of a reentry problem [12]
in which parameter uncertainties existed in the parasitic drag
and scaling height. The cost was augmented to include the
expected deviations in a user-defined penalty term.

The objective of this work is to develop a method for
optimal guidance that desensitizes the reference control to
parametric uncertainties while providing guidance updates
to allow for corrections in the desensitized optimal control.
The method developed employs a closed-loop adaptation
of the method developed in Ref. [12] while employing a



guidance strategy that is based on the work of Ref. [13]. The
adaptation of the method of Ref. [12] offers an approach
for desensitized optimal control while the inclusion of the
method developed in Ref. [13] provides an efficient approach
for performing guidance updates using adaptive Legendre-
Gauss-Radau (LGR) collocation. The method developed in
this paper is demonstrated on a simple example where it
is shown that combining guidance updates via solving a
desensitized optimal control problem reduces the variation
in the final state error compared with using either open-loop
desensitized optimal control or optimal guidance alone.

II. BOLZA OPTIMAL CONTROL PROBLEM

Without loss of generality, consider the following Bolza
optimal control problem in terms of the elapsed time, t, that
has the domain t 2 [t0, tf ]. Determine the state x(t) and the
control u(t) that minimizes the objective functional

J = M(x(t0), t0,x(tf ), tf ) +

Z tf

t0

L(x(t),u(t), t)dt, (1)

subject to the dynamic constraints

ẋ = f(x(t),u(t), t), (2)

inequality path constraints

cmin  c(x(t),u(t), t)  cmax, (3)

and boundary conditions

bmin  b(x(t0), t0,x(tf ), tf )  bmax. (4)

Suppose now that the domain, t 2 [t0, tf ], is mapped to a
new domain, ⌧ 2 [�1,+1] where

t ⌘ t(⌧, t0, tf ) =
tf + t0

2
⌧ +

tf � t0
2

. (5)

Next, let us further divide the mesh into K intervals
{I1, . . . , IK} such that I = [Tk�1, Tk], (k = 1, . . . ,K)
where the mesh points (T0, . . . , TK) are defined such that
�1 = T0 < T1 < · · · < TK�1 < TK = +1. Furthermore, let
xk(⌧) and uk(⌧) denote, respectively, the state and control
in mesh interval Ik, (k = 1, . . . ,K). The Bolza optimal
control problem can then be written as follows: Minimize
the objective functional

J = M(x(1)(T0), t0,x
(K)(TK), tf )

+
tf � t0

2

KX

k=1

Z Tk

Tk�1

L
⇣
x(k)(⌧),u(k)(⌧), t

⌘
d⌧, (6)

subject to the dynamic constraints

ẋ(k)(⌧) =
tf � t0

2
f(x(k)(⌧),u(k)(⌧), t), (k = 1, . . . ,K),

(7)
the path constraints

cmin  c(x(k)(⌧),u(k)(⌧), t)  cmax, (k = 1, . . . ,K),
(8)

and the boundary conditions

bmin  b(x(T0), t0,x(TK), tf )  bmax. (9)

Finally, continuity in the state at each interior mesh point
Tk, (k = 1, . . . ,K � 1) is enforced via the condition:
xk(Tk) = xk+1(Tk), (k = 1, . . . ,K � 1) that is enforced
through utilizing the same variable in the NLP.

III. LEGENDRE-GAUSS-RADAU COLLOCATION METHOD

The proposed desensitized optimal control guidance
scheme employs the hp form of the LGR collocation method
to discretize the multiple-interval form of the trajectory
optimization optimal control problem [14]–[20]. The state is
approximated using a basis of Lagrange polynomials `(k)j (⌧)
[13]

x(⌧) ⇡ X(k)(⌧) =
Nk+1X

j=1

X(k)
j `(k)j (⌧), (10)

the derivative of the state with respect to ⌧ is then

dx(k)(⌧)

d⌧
⇡ dX(k)(⌧)

d⌧
=

Nk+1X

j=1

X(k)
j

d`(k)j (⌧)

d⌧
, (11)

where

`(k)j (⌧) =
Nk+1Y

l=1,l 6=j

⌧ � ⌧ (k)l

⌧ (k)j � ⌧ (k)l

. (12)

The mesh domain is again defined on ⌧ 2 [�1,+1] where
⌧ (k) = (⌧ (k)1 , ..., ⌧ (k)Nk

) are the LGR collocation points in
the kth mesh interval and ⌧ (k)Nk+1 = Tk is a noncollocated
point. The problem can then be converted to a nonlinear
programming problem (NLP) by writing the cost in terms of
the Nk collocated points as

J ⇡ M(X(1)
1 , t0,X

(K)
NK+1, tf )

+
tf � t0

2

KX

k=1

NkX

j=1

w(k)
j L(X(k)

j ,U(k)
j , t(⌧ (k)j , t0, tf )), (13)

where the running cost is approximated using an Nk-point
LGR quadrature such that w(k)

j are the Nk LGR weights in
each mesh interval. The NLP is then subject to the dynamic
constraints

Nk+1X

j=1

D(k)
ij X(k)

j � tf � t0
2

f(X(k)
i ,U(k)

i , t(⌧ (k)i , t0, tf )) = 0,

(14)
the boundary conditions

bmin  b(X(1)
1 , t0,X

(K)
NK+1, tf )  bmax, (15)

and any path constraints

cmin  c(X(k)
i ,U(k)

i , t(⌧ (k)i , t0, tf ))  cmax. (16)

The elements of the interval LGR differentiation matrix
of size Nk ⇥ (Nk + 1) are denoted D(k)

ij where D(k)
ij =

d`(k)j (⌧ (k)i )/d⌧ for (i = 1, ..., Nk, j = 1, ..., Nk + 1).



IV. DESENSITIZED OPTIMAL CONTROL

The objective of desensitized optimal control is to deter-
mine the state and control that minimizes some performance
index along with sensitivities of a user-specified function
to state perturbations while satisfying dynamic constraints,
boundary conditions, and any path constraints. The user-
specified function acts as a penalty term in the cost that
quantifies the influence of state perturbations on the final
state. In the context of this research, the state perturbations
are a result of parametric uncertainties in the dynamic
model. In general, desensitized optimal control involves
the introduction of sensitivities, S(t), in either matrix or
function form, as states to the original problem formulation.
A sensitivity matrix, as formulated by Ref. [3], allows for
consideration of uncertainties with respect to time varying
parameters. As a result, evaluating the objective requires
propagating (n⇥m)2+n+m states where n is the number
of states in the original optimal control problem formulation
and m is the number of parameters with uncertainties.
Alternatively, the sensitivity function derived in Ref. [11] as-
sumes the parameters of interest to be constant and therefore
requires only n⇥m states to be propagated. While different
approaches have been conceived for introducing sensitivities,
in this research the approach developed in Ref. [11] is
employed because it reduces dimensionality compared with
the approach developed in Ref. [3].

Consider a desensitized optimal control problem with
dynamics of the form

ẋ = f(x,p,u, t), (17)

which are assumed to be continuous in (x,p,u, t) and
continuously differentiable with respect to the state, x, and
the nominal parameter values, p. Now suppose the solution
to those dynamics is given as

x(p, t) = x0 +

Z tf

t0

f(x(p, ⌧),p,u(⌧), ⌧)d⌧, (18)

where the initial condition on the original state vector is
known. Let the partial derivative of the state with respect to
the parameters now be taken as a function of the elapsed
time, t, and parameters

@x

@p
(p, t) =

Z tf

t0

"
@f

@x
(x(p, ⌧),p,u(⌧), ⌧)

@x

@p
(p, ⌧)

+
@f

@p
(x(p, ⌧),p,u(⌧), ⌧)

#
d⌧. (19)

Taking the derivative with respect to the elapsed time yields
the following expression for the sensitivity dynamics:

d

dt

"
@x

@p
(p, t)

#
=

@f

@x
(x(t),p,u(t), t)

@x

@p
(p, t)

+
@f

@p
(x(t),p,u(t), t), (20)

where the sensitivity is now defined as the change in the
state with respect to nominal parameter values

S(t) =
@x

@p
(p, t), (21)

with n⇥m elements. The sensitivity dynamics are then

Ṡ(t) =
d

dt

"
@x

@p
(p, t)

#
, (22)

where the initial condition on the sensitivity matrix is the
zero matrix due to a fixed initial state. The augmented cost
is now a function of the original cost and the sensitivity
function at the final time subject to some user-defined
weighting term, Q(t), also evaluated at the final time

JA = J +

Z tf

t0

||S(tf )||2Q(tf )
, (23)

where, again, the sensitivities are a function of the prop-
agated state under nominal parameter conditions and the
nominal parameters are assumed to be constant to improve
computational efficiency.

V. DESENSITIZED OPTIMAL GUIDANCE

The following framework for desensitized optimal guid-
ance combines the desensitized trajectory optimization
method from Ref. [12] and mesh remapping guidance
method from Ref. [13]. Consider the aforementioned Bolza
optimal control problem. Suppose now that the state, x(p, t),
is subject to parametric uncertainties where the nominal
values of the parameters are denoted by p. As a result, it
is desirable to reduce sensitivities to these uncertainties so
that the resultant error in the final state is minimized. The
sensitivity, S(t), of the state with respect to perturbations at
any point along the trajectory is given as the solution to the
ordinary differential equation [11]

Ṡ(t) = A(t)S(t) +B(t), (24)

where S(t0) = 0. Here, A(t) and B(t) are defined as

A(t) =
@f

@x
(x(p, t),u(t),p, t), (25)

B(t) =
@f

@p
(x(p, t),u(t),p, t). (26)

To minimize perturbations in the final state, the objective
functional must be augmented, JA, to include variations in
a user-defined penalty term, h = g(x).

JA = J + E
✓
||�h(tf )||2Qf

+

Z tf

t0

||�h(t)||2Q(t)dt

◆
(27)

The penalty error term is then defined as [12]

E(||�h||2Q) = trQE(�h�h>) ⇡ trQGSPS>G>, (28)

where Q is a user-defined weighting matrix that is positive
semi-definite, G is the jacobian of the penalty term, h, and
S is the sensitivity function with n ⇥ m elements. P is a
user-defined, positive semi-definite covariance matrix which



is a function of the nominal values of the parameters. This
formulation allows for the user to define the uncertainty in
the parameter through P while adjusting how much it is
desired to desensitize the control through Q. If Q is set to
zero at all points in time, then the objective returns to that
of the original optimal control problem.

The aforementioned problem formulation determines a
desensitized reference trajectory and therefore a control
which is less sensitive to perturbations in the state due to
parametric uncertainties. Suppose now that it is desired to
perform guidance updates such that the desensitized optimal
trajectory is recalculated on the remaining horizon to allow
for corrections in the desensitized optimal control. Let s
denote the current guidance cycle where s 2 [1, 2, 3, ..., S]
and D denote the duration of the guidance cycle. The current
guidance cycle iteration then occurs on the time interval
t 2 [t(s)0 , t(s)e ] where

t(s)0 = t0 + sD, (29)

t(s)e = t0 + (s+ 1)D. (30)

At the end of each guidance cycle, the expired horizon is
removed and the initial conditions are updated before the
problem can be resolved on the remaining horizon. The
terminal time of the previous cycle occurs between two mesh
points as seen in Fig. 1. To delete the expired horizon,
the desensitized optimal control, state, and sensitivity are
interpolated to t(s�1)

e and the initial conditions become

x0 = x(t(s)0 ) = x̃(t(s�1)
e ), (31)

S0 = 0, (32)

while the final boundary conditions remain the same. The
mesh is then remapped such that the first mesh point cor-
responds to t(s�1)

e and t 2 [t(s)0 , tf ] maps to ⌧ 2 [�1,+1].
Note that t(s)e is not the same as tf . The former is the final
time for the simulated dynamics of the relevant guidance
cycle while the latter is the terminal boundary condition on
the time for the desensitized optimal control problem.

To reiterate, the desensitized optimal control problem is
first solved using the nominal parameter values to obtain a
desensitized optimal control for the entirety of the trajectory.
The dynamics are then simulated for the first guidance
cycle using the perturbed parameter values and the reference
desensitized optimal control. At the end of the guidance
cycle, the final value of the simulated dynamics is used as
the initial state at the start of the next guidance cycle. The
expired horizon is removed and the mesh is remapped after
interpolating the desensitized reference state, control, and
sensitivity to the current time. The problem is then resolved
on the remaining horizon to obtain a new desensitized opti-
mal control used to simulate the dynamics for the next cycle.
This process repeats until the end of the horizon with the goal
of minimizing sensitivities to parametric uncertainties while
allowing for corrections in the control to reduce perturbations
in the final state. A simple numerical example is introduced
in the next section to demonstrate this guidance method.

Fig. 1: Mesh remapping for guidance cycle (s�1) featuring
the expired and unexpired horizon [13].

VI. EXAMPLE

The approach described in Section V is now applied to
the following free-flying robot optimal control problem taken
from [1]. Determine the state, x(t), and control, u(t), that
minimize the objective functional

J =

Z tf

t0

�
u2
1(t) + u2

2(t) + u2
3(t) + u2

4(t)
�
dt, (33)

subject to the dynamic constraints

(ẋ, ẏ) = (vx, vy),
(v̇x, v̇y) = (⇠ cos ✓, ⇠ sin ✓),
(✓̇, !̇) = (!,↵T1 � �T2),

(34)

where ⇠ = T1 + T2, and the boundary conditions

(x0, xf ) = (�10, 0),
(y0, yf ) = (�10, 0),
(vx0, vxf ) = (0, 0),
(vy0, vyf ) = (0, 0),
(✓0, ✓f ) = (⇡/2, 0),
(!0,!f ) = (0, 0),
(t0, tf ) = (0, 12),

(35)

and the control inequality path constraints

0  ui(t)  1000, (i = 1, 2, 3, 4),
|Ti(t)|  1, (i = 1, 2),

(36)

where
T1 = u1 � u2,
T2 = u3 � u4,
↵ = 0.2,
� = 0.2.

(37)

Suppose now that it is desired to design both a reference
solution and a guidance solution that reduces sensitivities
in the terminal state with respect to perturbations in the
parameters p = (↵,�). A desensitized optimal control
problem that meets this aforementioned objective is then
given as follows. Minimize

JA = J + E
⇣
||�h(tf )||2Qf

⌘
, (38)

subject to (34), (35), (36), and (24) where S(t0) = 0.
The objective in desensitizing the control is to minimize
the final state error; therefore, let the penalty term h be a
function of the state such that h = (x, y). The parameter
covariance, P, is set such that three standard deviations is



equal to two percent of the nominal value of the parameters.
The desensitization weight, Q, is altered depending on the
magnitude of desensitization desired. When Q is assigned
a value of zero, the problem returns to a standard optimal
control problem. As the value of Q increases, more emphasis
is placed on minimizing the deviation of the terminal state
from its desired target.

To evaluate the effectiveness of the desensitized optimal
guidance method, 100 Monte Carlo simulations were per-
formed with the desensitization weight Q = 5. Furthermore,
for this study, parameters ↵ and � were sampled from the
Gaussian distribution p̃ ⇠ N(p,P). Figures 2�4 display
the nominal desensitized optimal state and control. Figure 5
shows the distribution of perturbed parameter values used.
For the full set of Monte Carlo simulations, the deviation
in the final state relative to the reference, denoted ✏, is
then shown in Figs. 6�7. For each error distribution, a 3�
confidence ellipse is computed using the sample mean and
sample covariance of the 100 Monte Carlo simulations. The
probability that a sample will lie in the 3� confidence ellipse
of each method is then 99.97%. Results are compared for
standard optimal control with guidance (OG), desensitized
optimal control with guidance (DOG), and desensitized op-
timal control without guidance (DOC). For methods with
guidance updates, the guidance cycle duration was set to
three seconds with a total of three cycles performed. The
mesh error and NLP tolerance were set to 1 ⇥ 10�5 and
1⇥ 10�7, respectively.

The results shown in Fig. 6 demonstrate that DOG pro-
vides a tighter distribution compared with DOC. Figure 7
shows that when compared with the distribution obtained
using OG, the variation in the final state error for DOG
is smaller. Thus, the results of this example show that a
guidance method that combines the desensitized optimal
control approach of Ref. [12] with the optimal guidance
method of Ref. [13] leads to a guidance method that reduces
the errors in the terminal state error when compared with
using only the method of Ref. [12] without guidance updates
or using only the optimal guidance method of Ref. [13]
without including desensitization.

VII. CONCLUSIONS

A method has been developed for employing desensitized
optimal control with guidance updates. The optimal control
has been desensitized to state perturbations resulting from
parametric uncertainties to promote robustness. For each
guidance update, the portion of the mesh corresponding to
the expired horizon was deleted and the remaining mesh
was remapped to the remaining horizon. The desensitized
optimal control problem was then re-solved at the start of
the next guidance cycle. This approach was applied to an
example, and numerical results demonstrated that combining
desensitized optimal control with guidance updates produces
results where the distribution of errors in the final state is
tighter when compared with using either desensitized optimal
control without guidance updates or using a previously
developed optimal guidance method without desensitization.

Fig. 2: Reference desensitized optimal state solutions for
free-flying robot problem.

Fig. 3: Sensitivities of states x and y with respect to
uncertainties in parameters ↵ and � for free-flying robot
problem.

Fig. 4: Desensitized optimal control solution for free-flying
robot problem.



Fig. 5: Perturbed parameter values for ↵ and � with 3�
confidence bounds.

Fig. 6: Final position error for all three methods with 3�
confidence bounds.

Fig. 7: Final position error for DOG and OG algorithms with
3� confidence bounds.
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