
Insights from Running 24 Static Analysis Tools

on Open Source Software Repositories

Fabiha Hashmat, Zeyad Alwaleed Aljaali, Mingjie Shen, and Aravind Machiry

Purdue University, West Lafayette, IN, USA
{fhashmat,zaljaali,shen497,amachiry}@purdue.edu

Abstract. OSS is important and useful. We want to ensure that it is
of high quality and has no security issues. Static analysis tools provide
easy-to-use and application-independent mechanisms to assess various
aspects of a given code. Many effective open-source static analysis tools
exist. In this paper, we perform the őrst comprehensive analysis using 24
open-source static analysis tools (through Omega Analyzer) on 4,947
repositories. Our study identiőed several interesting őndings, such as the
distribution of errors in relation to the criticality score of repositories
shows that repositories with a criticality score have the highest percent-
age of errors. We envision that our őndings provide insights into the
effectiveness of static analysis tools on OSS and future research direc-
tions in securing OSS repositories.

Keywords: Program Analysis · Omega Analyzer· GitHub Network
Projects · Static Analysis · OSSF critical repositories

1 Introduction

Open Source Software (OSS) plays and an important role in the software ecosys-
tem [18,70]. Many important and high-impact software products, such as Linux
kernel [69] and nodejs [8], are all open source. It is also well-known that many or-
ganizations use OSS as part of their software products [36]. Given the prevalence,
it is important to ensure that OSS follows good engineering practices to avoid
security vulnerabilities. Furthermore, WhiteHouse recently released an official
report [7] emphasizing the importance of securing OSS and the use of secure
software engineering practices.

Static Application Security Testing (SAST) [28,31] is a well-known practice
to detect common vulnerabilities. However, previous studies [66] have shown
that 40% of organizations do not use any SAST tools as part of their engineer-
ing practices. Furthermore, our analysis (in ğ 2), also shows that only 19% of the
critical OSS use any SAST tools. There are various Free SAST Tools (FSTs),
such as CodeQL [2], to detect common security vulnerabilities and can be used
without cost or licensing issues. However, the effectiveness of FSTs on OSS is un-
known. Although prior works (discussed in ğ 8.2) try to explore the same aspect,
they mainly focus on SAST tools that őnd software vulnerabilities. Furthermore,
their study is often limited to a small number of OSS projects.

2 F. Hashmat et al.

In this paper, we perform the őrst large-scale study of the effectiveness of
FSTs on OSS. Speciőcally, we investigate the following three research questions:

ś RQ 1: Execution. Executing FSTs on OSS Repositories. How easy/hard is
it to run static analysis tools on OSS repositories? How robust are the tools
in analyzing these repositories?

ś RQ 2: Effectiveness. Effectiveness of FSTs on OSS Repositories. What
types of issues are found by FSTs? What types of issues are prevalent in
OSS repositories?

ś RQ 3: Quality. Quality of Issues Found by FSTs. What is the quality
(true/false positive rate) of the issues found FSTs?

For our dataset, we collected a suite of 24 FSTs from Open Source Security
Foundation (OpenSSF)’s [3] AlphaOmega [1] project. The project contains a
list of stable and recommended SAST tools for OSS projects. We also identiőed
a set of 4,947 critical OSS projects by contacting OpenSSF team. We created a
GitHub workŕow [4] (i.e., a Continuous Integration (CI) pipeline) called FST-

Workflow, that can execute all 24 FSTs on a given repository. We also created
an automated mechanism to categorize the tool’s results in a common format.
We investigated our research questions by executing FSTs (through FSTWork-

flow) on all of our repositories and analyzed the results through automated and
manual analysis. In summary, the following are our contributions:

ś (FSTs Collection.) We collected a dataset of 4,947 repositories across vari-
ous programming languages to evaluate Omega Analyzer’s performance.

ś (Study.) We performed the őrst extensive analysis of Omega Analyzer,
identifying resource constraints, failure modes, and language distribution.

ś (Findings.) We found a 98.3% success rate for Omega Analyzer, with
Python, JSON, and JavaScript being the most common languages. The Source
Code Scanning (SCS) tool detected more errors and warnings than the Mis-
conőgurations (MC) tool.

ś (Open-source availability.) We made our analysis workŕow, dataset, and
results open-source to enable future research.

2 Motivation

OSS is important and used directly or indirectly in many software products [22].
The design and code patterns used in OSS also inspire other software prod-
ucts [53]. It is important to ensure that OSS does not contain any obvious
security vulnerabilities in general insecure (or risky) practices, e.g., unsanitized
use of strcpy, hardcoded private keys, etc.

SAST is a recommended practice to easily detect previously known vulner-
abilities and reasonably assess the quality of a software project. Furthermore,
there exist several easy-to-use (plug-and-play) free SAST tools (FSTs) to detect
common classes of vulnerabilities and insecure practices. One of the well-known
FST is CodeQL [32]. A recent study [64] shows that just running CodeQL

SAST Tools on Open Source Software Repositories 3

(with its default conőguration) found more than 300 security vulnerabilities in
open-source embedded software repositories. Also, the authors identiőed that
only 4% use any sort of SAST in their repository. Our preliminary analysis also
found that only 10% of critical OSS projects use CodeQL.

Many prior studies [14,26,35,54] focus mainly on software security vulnerabil-
ities and try to investigate their effectiveness. Furthermore, most of these studies
were performed on a small scale, raising concerns regarding the generalizability
of their observations. OSS can contain other classes (e.g., improper conőgura-
tion) of defects. However, no existing work tries to understand the effectiveness

of all categories of SAST tools at a large scale. We argue that such a work will
serve as guidance for tool developers and can potentially expose problems in the
applicability of SAST tools on OSS.

3 Background

In this section, we provide the necessary background related to our methodology.

3.1 OpenSSF and Criticality Score

OpenSSF Open Source Security Foundation (OpenSSF) [3] is a community of
software developers, security engineers, and more who are working together to
secure open-source software. AlphaOmega [1] is an associated project of the
OpenSSF, funded by Microsoft, Google, and Amazon, with a mission to pro-
tect society by catalyzing sustainable security improvements in the most critical
open-source software projects and ecosystems.

Measuring Project Importance as Criticality Score OpenSSF created
a mechanism to compute a criticality score [15] for GitHub repositories. Se-
curity analysts use this score to triage the security vulnerabilities by scanning
large datasets. We use the criticality score to measure the importance of an
open-source project. A project’s criticality score is a number between 0 and 1.
It is computed based on attributes, including its popularity, dependents, and
level of activity. Ranges correspond to qualitative labels: 0.0-0.2 is considered
low criticality, 0.2-0.4 is medium, 0.4-0.6 is high, 0.6-0.9 is critical, and above
0.9 is extremely critical. The Swift language frontend (with 2.4K stars) [6] has
criticality scores of 0.51, indicating a high severity project. The Linux kernel
(with 157K stars) [68] has a criticality score of 0.88, indicating a critical project.
The Node.js runtime (with 97.6K stars) [5] has a score of 0.99, indicating an
extremely critical project.

3.2 Static Application Security Testing (SAST)

SAST represents a class of techniques to őnd security issues in a given software.
These techniques are static, i.e., they do not execute the target software. On

4 F. Hashmat et al.

the contrary, dynamic techniques (e.g., random testing) execute the target and
need an appropriate execution environment. A well-known category of SAST
tools is code scanning tools, e.g., CodeQL, which őnd security vulnerabilities
(e.g., buffer overŕow) in source code. As these vulnerabilities are often severe,
most of the SAST research focused on the code scanning tools. Consequently,
the security community uses SAST synonymous with code scanning. However,
there are also other classes of SAST tools (e.g., identifying misconőgurations),
which also try to őnd import security issues but are not well-studied. For our
study, we classify SAST tools into the following categories as shown in Table 3.

ś Source Code Scanning (SCS): These are classic code scanning tools; they
use pattern-matching (e.g.,) or ŕow-based static program analysis techniques
(e.g., CodeQL) to őnd security vulnerabilities in programs’ source code. For
instance, CodeQL őnds use-after-free vulnerabilities by performing a ŕow-
sensitive analysis [33].

ś Mis-conőgurations (MC): These tools focus on detecting sub-optimal or
insecure conőgurations (e.g., hardcoding a private key) at both the source level
and the project level. These are similar to SCS tools but also focus on non-
code entities. Similarly, Binwalk [37] can be used for the detection of private
hard-coded keys in the projects.

ś Quality and Best Practices (QS): As the name suggests, this category of
tools checks for quality issues at both the source code and project levels. For
instance, Lizard [74] detects code with high complexity, a well-known proxy
for potential bugs.

ś Software Statistics (SS): These tools report interesting statistics that can
serve as a proxy for anomalies or potential vulnerabilities. For instance, the
SCC [19] tool computes the number of people required to maintain a given
repository, i.e., łEstimated People Requiredž, based on various software-driven
metrics. The increase in this number indicates potential anomaly and refac-
toring opportunities.

These SAST tools often report the severity level of alerts to indicate the
potential risk added to the codebase; for example, CodeQL alerts classify issues
as łError,ž łWarning,ž or łNote.ž

4 Study Design and Research Questions

Based on our motivation and background stated before, we have devised a study
design as shown in Fig. 1. The execution of GitHub open source repositories
is done on the Omega Analyzer. Based on the functionality of each static
analysis tool of Omega Analyzer, its categorization is done. Based on run-
ning those static analysis tools on open source repositories, we have divided our
study into three research questions as shown below. Research Question 1 (RQ1)
focuses on the deployment of the Omega Analyzer to evaluate an extensive
dataset of open source repositories. Research Question 2 (RQ2) is centered on
a quantitative evaluation to interpret the errors and warnings distribution that

SAST Tools on Open Source Software Repositories 5

occur across different repositories while analyzing through Omega Analyzer.
Research Question 3 (RQ3) explores the accuracy of SCS tools by analyzing
their false positive rates in our repository dataset.

Research Questions
RQ1: Executing Omega Analyzer (Section 5)

RQ2: Quantitative Evaluation (Section 6)

RQ3: Qualitative Evaluation (Section 7)

RQ1: Findings

RQ2: Findings

RQ3: Findings

Omega
Analyzer

GitHub
Open

Source
Repositories

Tool Categorization
SCS (Source Code Security
Issues/Code Level Security

Issues)
MC (Misconfiguration/ Incorrect
Configuration Security Issues

QS (Code/Repo Quality Issues)

SS (Statistics Info)

Fig. 1. Research Methodology

5 RQ1ÐExecuting Omega Analyzer

Research Question 1 (RQ1) explores the deployment of Omega Analyzer on
the dataset of open source software repositories, particularly focusing on the
major programming languages used, the categorization of repositories and their
primary languages, and the classiőcation and language support of the Omega

Analyzer underlying tools.

5.1 RQ1: Methods and Results

We developed an automated workŕow for running Omega Analyzer on reposi-
tories. It takes the input of the GitHub repository for running the latest Omega

Analyzer docker image on it and stores the results for review in SARIF format.
We established self-hosted runners on eight machines, each utilizing an AWS
EC2 m7a.2xlarge instance with 8 CPU cores, 32GB of memory, and 100GB
of disk space, operating on Ubuntu 22.04. The workŕow timeout was conőg-
ured to three hours. The execution of OmegaAnalyzer across all repositories in
our dataset took approximately eight days. We succeeded to run Omega An-

alyzer on 4,865 repositories. Failure factors include workŕow timeouts (60),
out-of-memory (2), and others (20), e.g. insufficient disk space. The details of
our analysis are presented in the following sub-sections.

Open Source Software Dataset For this study, we analyzed a dataset of 4,947
high-criticality projects from the Open Source Security Foundation (OSSF).
These projects were chosen for their signiőcant impact on the open-source ecosys-
tem. They span diverse applications and sectors, including infrastructure, web
development, security, and data analysis.

6 F. Hashmat et al.

ś Major Programming Languages and SLOC of repositories: Table 1
lists the major programming languages used in these repositories, along with
their Source Lines of Code (SLOC) statistics. It shows the number of repos-
itories for each language and the maximum, mean, median, and minimum
SLOC values. Python is the most used language with 383 repositories, fol-
lowed by JSON (369) and JavaScript (322), highlighting their roles in data
interchange and web development. JSON leads in SLOC with a maximum
of 30 million lines, closely followed by Java and Go, reŕecting their use in
large-scale projects.

ś Repository Categories and Their Top Languages: Table 2 shows the
distribution of repositories across categories and the predominant program-
ming languages used. Python and JavaScript are most frequent, especially in
hacktoberfest, python, and react categories. C is prevalent in kubernetes, an-
droid, and linux, highlighting its system-level programming relevance. Go’s
presence in kubernetes and docker categories indicates its growing impor-
tance in cloud technologies. This data illustrates the diverse application of
programming languages across domains.

Table 1. Major programming languages and SLOC of repositories.

Lang.
ID

Language / Encoding Format Num of Repo
SLOC

Max Mean Med Min

L1 Python 383 6M 100K 40K 40
L2 JSON 369 30M 300K 60K 200
L3 JavaScript 322 3M 100K 60K 200
L4 Java 317 9M 400K 200K 2K
L5 PHP 284 2M 100K 40K 100
L6 Go 258 10M 500K 100K 2K
L7 C 250 20M 1M 100K 7K
L8 C++ 228 4M 400K 200K 3K
L9 TypeScript 216 4M 200K 60K 700
L10 Markdown 166 6M 200K 20K 4
L11 Ruby 161 5M 100K 20K 1K
L12 C# 124 10M 400K 100K 5K
L13 POFile 109 9M 700K 200K 8K
L14 XML 88 10M 700K 200K 1K
L15 YAML 83 9M 300K 70K 40
L16 C/C++Header 76 5M 400K 100K 3K
L17 Rust 60 1M 100K 50K 3K
L18 Text 60 20M 1M 200K 3K
L19 HTML 57 5M 500K 100K 1K
L20 Scala 42 900K 100K 50K 6K
L21 QtLinguist 33 6M 800K 400K 10K
L22 Kotlin 30 2M 100K 60K 6K
L23 Haskell 26 600K 70K 20K 2K
L24 diff 25 4M 300K 200K 8K
L25 BourneShell 24 70K 20K 7K 100
L26 Swift 22 500K 100K 70K 7K
L27 SVG 19 2M 300K 100K 900
L28 CSV 19 3M 500K 200K 20K
L29 CSS 17 1M 200K 40K 3K
L30 Objective-C 12 300K 70K 20K 2K

ś Others 1067

Results of Omega Analyzer Tools under each category Each tool within
the Omega Analyzer plays a speciőc role, from static code analysis to detecting
vulnerabilities, ensuring code quality, and safeguarding against security threats.

SAST Tools on Open Source Software Repositories 7

Table 2. Repository Categories and Their Top Languages

Category # Repos Top Language

hacktoberfest 807 Python
python 371 Python
javascript 264 JavaScript
java 211 Java
php 181 PHP
kubernetes 113 C
ruby 97 Ruby
react 93 JavaScript
c 91 C
go 80 Go
c-plus-plus 68 C++
rust 59 Rust
android 51 C
typescript 50 TypeScript
dotnet 43 C
linux 39 C
security 35 C
machine learning 30 Python
nodejs 29 JavaScript
docker 28 Go

ś Omega Analyzer Tools Categorization: In our study, we have catego-
rized the tools integrated into the Omega Analyzer based on the speciőc
types of security and code quality issues they address. These categories are
deőned in Section 3. According to those categories we have assigned an ID
number to each tool in Omega Analyzer. The ID number of each tool
along with its description is shown in Table 3. Some interesting results of
running these tools on repositories are shown below.
• Source Code Scanning (SCS)

The DevSkim tool found an error in the Platform Helpers repository [56]
involving a weak hash algorithm. This vulnerability compromises data
integrity and security, making the system susceptible to attacks. The
error is shown in Listing 1.1, where the line checksum = sha1(hashlib_ ⌋

encode_data(__version__)) directly uses the version string for checksum
calculation. If an attacker knows the version, they can manipulate or
predict the checksum.

1 import re

2 from hashlib import sha1

3
4 def compute_project_checksum(config):

5 # rebuild when PIO Core version changes

6 checksum = sha1(hashlib_encode_data(__version__))

Listing 1.1. Hardcoding Version Information

• Mis-conőguration (MC) The Semgrep tool detected common mis-
conőguration issues in the Microsoft Terminal Workŕow repository [50].
Speciőcally, the line uses: craigloewen-msft/GitGudSimilarIssues@main

in Listing 1.2 sources an action from a third-party repository without
pinning it to a full-length commit SHA. Pinning to a full-length commit
SHA is crucial as it ensures the action remains immutable, mitigating
the risk of a backdoor being added to the action’s repository.

1 steps:

2 - id: getBody

3 uses: craigloewen -msft/GitGudSimilarIssues@main

4 with:

5 issueTitle: ${{ github.event.issue.title }}

6 issueBody: ${{ github.event.issue.body }}

8 F. Hashmat et al.

Table 3. Overview of Tools Integrated in Omega Analyzer and Their Categorization.

ID Tool Description

SCS Errors

T1 DevSkim [47] Identiőes and őxes security issues in source code.
T2 NodeJsScan [9] SAST tool for Node.js applications.
T3 CppCheck [45] Static analysis for C and C++ code.
T4 CodeQL [32] Automated code review and security analysis.
T5 SecretScanner [23] Scans for secrets in code and őle systems.
T6 Detect-Secrets [73] Prevents secrets in code.
T7 Brakeman [21] Security vulnerabilities detection in Ruby on Rails.
T8 Graudit [71] Scans source code for security ŕaws.
T9 ILSpy [38] .NET assembly browser and decompiler.
T10 npm audit [52] Reviews npm projects for vulnerabilities in dependencies.
T11 Snyk Code [66] Finds and őxes vulnerabilities in open-source dependencies.
T12 Bandit [59] Finds common security issues in Python code.
T13 Semgrep [60] Fast tool for bug detection and code standard enforcement.

MC Errors

T14 ClamAV [67] Antivirus engine for detecting malware.
T15 Yara [13] Helps in malware identiőcation and classiőcation.
T16 Manalyze [41] Static analyzer for PE őles, malware detection.

MC Warnings

T17 strace [43] Monitors interactions between processes and the Linux kernel.
T18 OSS Gadget [49] Tools for open-source intelligence.
T19 binwalk [37] Searches binary images for embedded őles and hidden data.
T20 ShhGit [58] Scans GitHub for sensitive information.
T21 TBV [42] Package veriőcation for npm.
T22 Radare2 [12] Binary analysis and reverse-engineering tool.

SS Statistics Info

T23 Application Inspector [48] Identiőes and reports software features.
T24 SCC [19] Code counter with complexity calculations.

QS Warnings

T25 Lizard [74] Analyzes code complexity and generates metrics.

7 repo: ${{ github.repository }}

8 similaritytolerance: "0.8"

Listing 1.2. GitHub Actions workŕow step.

Another error is detected under this category in Yoast SEO WordPress
plugin’s components directory [75]. The Yoast SEO WordPress plugin’s
components directory, analyzed by Binwalk, contains exposed private
keys and certiőcates. The RSA private key is exposed in the repository.
See Listing 1.3. This oversight could compromise the security of the
application by allowing unauthorized access or decryption of sensitive
data.

1 -----BEGIN RSA PRIVATE KEY -----

2 MIIEpAIBAAKCAQEAn +5 QIkyjSaeAt8o+htOoVaa9/rxU95ROYbpezlofm ...

3 -----END RSA PRIVATE KEY -----

Listing 1.3. RSA Private Key exposed in repository.

• Quality and Best Practices (QS): The issue identiőed in this cate-
gory is in the Facebook Hermes [27] repository relates to high code com-
plexity, as detected by the tool Lizard. High code complexity can lead
to difficulties in understanding, maintaining, and modifying the code,
potentially increasing the risk of errors and reducing efficiency in devel-
opment processes.

• Software Statistics (SS) The error reported in the SageMath reposi-
tory [63] by the SCC tool falls under Statistics Info (SS). SCC estimated

SAST Tools on Open Source Software Repositories 9

that maintaining SageMath would require about 120 people, reŕecting
the project’s complexity and scale. Key metrics include an estimated de-
velopment cost of $111,404,644, a scheduled effort of 82.46 months, and
120 people required. These insights are vital for planning and resource
allocation in software development.

ś Supported languages for Tools of Omega Analyzer: The table 4 maps
the applicability of Omega Analyzer tools (T1, T2, T3) across various
programming languages (L1 to L30). The supported languages for the tools
of OmegaAnalyzer illustrate the breadth of compatibility across different
programming environments. For example, tools such as T1 and T3 support
a wide range of languages, including Python (L1) and JavaScript (L3), which
are commonly used in various applications. In contrast, other tools like T14
and T18 are compatible with fewer languages.

Table 4. Supported languages for Tools of Omega Analyzer

T1 T2 T3 T4 T5 T6 T12 T13 T14 T17 T18 T19 T20 T23 T24 T25

L1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L2 ✓ ✓ ✓ ✓ ✓ ✓

L3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L23 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L26 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L29 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5.2 RQ1: Findings

ś Finding 1: The execution of Omega Analyzer across 4,947 repositories
revealed 60 workŕow timeouts, 2 out-of-memory errors, and 20 disk space
failures, resulting in a 98.3% success rate out of 4,947 repositories, indicating
effective processing despite some resource constraints.

ś Finding 2: In our dataset, the major programming language is Python with
383 repositories (Table 1), followed by JSON and JavaScript with 369 and
322 repositories respectively; JSON leads in Source Lines of Code (SLOC)
with 30 million lines, followed by Java and Go, indicating their use in large-
scale applications.

ś Finding 3: The distribution of repositories across various categories, as
detailed in Table 2 , indicates a dominant use of Python and JavaScript,
especially in hacktoberfest, python, and react categories. Conversely, C is

10 F. Hashmat et al.

prevalent in system-oriented categories such as kubernetes, android, and
linux, while Go’s signiőcant presence in kubernetes and docker categories
shows its increasing importance in cloud technologies. Overall, the data il-
lustrates the diverse application of programming languages across different
domains.

ś Finding 4: Table 4 indicates the versatility of certain tools and suggests the
need for speciőc tools tailored to handle the unique requirements of differ-
ent programming languages, considering their varied usage and complexity
levels.

6 RQ2ÐQuantitative Evaluation

Research Question 2 (RQ2) is centered on a quantitative evaluation to interpret
the distribution of errors and warnings that occur across different repositories
while being analyzed through the Omega Analyzer, focusing on the relation-
ship between error distribution and criticality score, comparative error distribu-
tion across repositories by the Omega Analyzer tool, and warning distribution
across repositories by analytical tools.

6.1 RQ2: Methods and Results

Following is a detailed analysis of our quantitative analysis.

Errors Distribution in relation to Criticality Score Figure 2 shows the
distribution of errors in relation to the ’Criticality Score’ of repositories. The
x-axis represents the criticality score from 0-0.1 to 0.9-1.0, with higher scores
indicating greater importance. The y-axis represents the percentage, ranging
from 0% to 80%. Blue bars indicate the percentage of repositories within each
score range, while red bars show the percentage of errors. Most repositories
have a criticality score of 0.5-0.6, but the highest error percentage is in the 0.4-
0.5 range. This suggests that certain criticality scores are more prone to errors
regardless of the number of repositories.

Distribution of Alerts in Repositories by Omega Analyzer Figure 3
presents a comprehensive visualization of the distribution of alerts generated by
the Omega Analyzer across a series of repositories. The x-axis represents the
cumulative percentage of analyzed repositories, offering a progressive insight into
the coverage of the dataset. The y-axis quantiőes the number of alerts, distin-
guishing between errors (blue line) and warnings (red line). Notably, the graph
serves as a diagnostic tool, highlighting the Omega Analyzer’s capability in
identifying and categorizing potential issues, thereby aiding in the prioritization
of repository maintenance and code quality assurance.

SAST Tools on Open Source Software Repositories 11

0-
0.
1

0.
1-
0.
2

0.
2-
0.
3

0.
3-
0.
4

0.
4-
0.
5

0.
5-
0.
6

0.
6-
0.
7

0.
7-
0.
8

0.
8-
0.
9
0.
9-
1

0%

20%

40%

60%

80%

Criticality score

P
er

ce
n
ta

g
e

(%
)

% of repos

% of errors

Fig. 2. Errors Distribution in relation
to Criticality Score

0 20 40 60 80 100
0

5 000 000

10 000 000

15 000 000

20 000 000

Percentage of Repositories

N
u
m

b
er

o
f
E

rr
o
rs

Errors

0

200, 000

400, 000

600, 000

N
u
m

b
er

o
f
W

a
rn

in
g
s

Warnings

Fig. 3. Distribution of Alerts in Repos-
itories by Omega Analyzer

Comparative Error Distribution Across Repositories by Omega Ana-

lyzer Figure 4 shows the cumulative percentage of errors detected by differ-
ent analytical tools across repositories. The x-axis represents the percentage of
repositories analyzed, and the y-axis indicates the percentage of errors detected.
The varied trajectories highlight each tool’s unique error detection patterns and
sensitivities. The graph is essential for understanding error distribution and mag-
nitude across repositories, with the y-axis reaching up to 15 million errors.

0 20 40 60 80 100
0

5 000 000

10 000 000

15 000 000

Percentage of Repositories

N
u
m

b
er

o
f
E

rr
o
rs

SCS

MC

Fig. 4. Comparative Error Distribu-
tion Across Repositories by Omega

Analyzer

Warning Distribution Across Repositories by Analytical Tools Figure 5
illustrates the distribution of warnings across repositories as analyzed by three
tools: QS, SCS, and MC. The SCS tool, focusing on source code security issues,
shows a sharp increase in warnings past the 50% mark of analyzed repositories.
The MC tool, identifying misconőgurations, exhibits consistent but moderate

12 F. Hashmat et al.

growth in warnings, suggesting widespread but stable conőguration issues. The
QS tool, targeting code and repository quality, displays a gradual increase in
warnings, indicating a baseline level of quality issues. These trends reveal the
diverse challenges in maintaining code quality and security across repositories.

0 20 40 60 80 100
0

100 000

200 000

300 000

Percentage of Repositories

N
u
m

b
er

o
f
W

a
rn

in
g
s

QS

SCS

MC

Fig. 5. Warning Distribution Across Repositories by Analytical Tools

6.2 RQ2: Findings

ś Finding 1: The distribution of errors in relation to the criticality score of
repositories shows that repositories with a criticality score of 0.4-0.5 have
the highest percentage of errors, despite the majority of repositories having
a criticality score in the 0.5-0.6 range (Figure 2).

ś Finding 2: The Omega Analyzer identiőes a signiőcant number of errors
and warnings across repositories, with a sharp increase in errors detected
after analyzing 50% of the repositories. This suggests that errors are more
prevalent in the latter half of the analyzed repositories.

ś Finding 3: Different analytical tools, such as SCS and MC, exhibit unique
error detection patterns, with SCS detecting a higher number of errors com-
pared to MC. This difference reŕects the distinct focuses and strengths of
each tool, rather than a direct comparison of their effectiveness, as they are
designed to address different aspects of code analysis (Figure 4).

ś Finding 4: The distribution of warnings across repositories by analytical
tools reveals that the SCS tool identiőes a signiőcantly higher number of
warnings, especially after the 50% mark of analyzed repositories. This sug-
gests that security-related issues become more pronounced in the latter half
of the repository analysis (Figure 5).

ś Finding 5: The QS tool, focused on detecting code and repository quality
issues, shows a gradual increase in warnings, indicating a baseline level of
code quality is maintained across repositories, but still highlighting prevalent
quality issues (Figure 5).

ś Finding 6: The moderate but consistent growth in warnings identiőed by
the MC tool across analyzed repositories implies that conőguration errors are

SAST Tools on Open Source Software Repositories 13

widespread but do not vary dramatically, emphasizing the need for consistent
conőguration management (Figure 5).

7 RQ3ÐQualitative Evaluation

In this section, we assess the quality of SCS tools. Speciőcally, we want to study
the false positive rates of these tools on our dataset of repositories. SCS tools
are pivotal in modern software development, providing automated means to
detect potential vulnerabilities early in the development lifecycle. However, the
efficacy of these tools is often diminished by false positives ś instances where a
tool reports a security issue that is not actually present in the codebase. High
false positive rates can lead to wasted time and resources as developers must
spend considerable time verifying and dismissing false alarms, which hinders
their productivity and delays the development process.

In the rest of this section, we will őrst present our methodology, followed by
the results.

7.1 RQ3: Methods and Results

Methods Categorizing alerts into true and false positives requires signiőcant
manual effort. Given the large number of repositories and alerts, it is infeasible
to analyze them all. To address this, we implement a random sampling approach
to maintain manageability while ensuring a representative evaluation. For each
SCS tool, we randomly sample 10 repositories that each has fewer than 20 errors
or warnings reported.

Each reported issue is manually reviewed to determine its accuracy. This
involves examining the code in question to ascertain whether the reported issue is
a true positive (a genuine security vulnerability) or a false positive (an incorrectly
identiőed issue).

Results We managed to obtain the false positive rate for őve SCS tools. Unfor-
tunately, we did not have enough data to evaluate other tools due to the following
reasons: 1) No results in the dataset: Some tools did not yield any results in any
of the repositories within our dataset; 2) Lack of source line Information: Some
tools failed to report the source line number for the issues detected, making it
challenging for us to verify and categorize the results accurately.

The false positive rates for the evaluated tools are summarized in Table 5.
These results indicate signiőcant variability in the accuracy of the evaluated
SCS tools. Tool T4 demonstrated the highest accuracy with a false positive rate
of only 9%, making it the most reliable among the tools tested. In contrast,
Tools T1 and T2 had the highest false positive rates, each exceeding 60%, which
suggests a need for improvement in their detection algorithms.

To illustrate the nature of false positives encountered during our evaluation,
Listing 1.4 shows an example of a false positive reported by T1. The tool ŕagged
a piece of code as a potential security vulnerability, but upon manual review, it

14 F. Hashmat et al.

Table 5. Number of true positives, false positives, and false positive rate for the őve
evaluated SCS tools.

#TP #FP FP%

T1 28 50 64%
T2 9 17 65%
T4 51 5 9%
T12 53 28 35%
T13 45 35 44%

was determined to be a false positive. Speciőcally, this tool incorrectly identiőed
the use of the SHA-512 hash algorithm as weak or broken.

Overall, our őndings highlight the importance of evaluating and selecting SCS
tools carefully, as the effectiveness of these tools can vary greatly. Accurate tools
can signiőcantly aid in identifying genuine security vulnerabilities, while those
with high false positive rates can burden developers with unnecessary reviews
and potentially lead to overlooked issues.

1 "node_modules/normalize -package -data": {

2 "version": "5.0.0",

3 "resolved": "https :// registry.npmjs.org/normalize -package -data/-/normalize -package -data -5.0.0. tgz",

4 "integrity": "sha512 -h9iPVIfrVZ9wVYQnxFgtw1ugSvGEMOlyPWWtm8BMJhnwyEL/FLbYbTY3V3PpjI/

BUK67n9PEWDu6eHzu1fB15Q ==",

5 ...

6 },

Listing 1.4. An example of a false positive reported by T1. T1 ŕagged the hash
algorithm used for integrity checking of the package as weak or broken. However, the
integrity őeld uses SHA-512, which is considered secure.

7.2 RQ3: Findings

ś Finding 1: There is signiőcant variability in the accuracy of the evaluated
tools. Tool T4 had the lowest false positive rate at 9%, indicating high re-
liability, while Tools T1 and T2 had the highest false positive rates, each
exceeding 60%.

ś Finding 2: High false positive rates can mislead developers. For example,
one tool incorrectly ŕagged the secure SHA-512 hash algorithm as weak,
illustrating the need for reőnement in detection algorithms to reduce unnec-
essary reviews and potential oversight of genuine issues.

8 Related Work

This literature review examines three main areas: őrstly, it looks into studies
that explore the security vulnerabilities in open-source repositories, identifying
the key risks and challenges involved. Secondly, it evaluates the effectiveness of
existing Static Application Security Testing (SAST) tools. Finally, it reviews
efforts that apply these SAST tools to open-source software.

SAST Tools on Open Source Software Repositories 15

8.1 Security Vulnerabilities in Open Source Repositories

Recent studies have signiőcantly advanced our understanding of security vulner-
abilities in open-source software repositories. Research has included case studies
on major projects like Apache HTTP Server and Apache Tomcat, revealing
speciőc security őxes and preventive measures [55]. The reliability of data in
vulnerability repositories has been critically evaluated, highlighting inconsisten-
cies and gaps in current databases [40]. Tools like CVEőxes and VCCFinder
have been developed to automate the collection of vulnerabilities and assist in
code audits by mining software repositories [17] [76]. Empirical analyses have
shed light on the nature and frequency of security issues reported in open-
source projects, with some focusing on mining threat intelligence from issues
and bug reports [76]. Efforts to generate datasets from vulnerable source code
have enhanced the resources available for understanding and mitigating these
risks [61] [34] [57]. Studies have also proposed models to estimate and predict se-
curity risks associated with open-source packages, contributing to more informed
decision-making in software development [65] [72]. Moreover, assessments of the
impact of vulnerabilities in software libraries have been complemented by inves-
tigations into the release practices and secret integration channels of open-source
packages [39] [62].

8.2 Evaluating the Effectiveness of SAST Tools

Research has extensively evaluated the effectiveness of Static Application Se-
curity Testing (SAST) tools in diverse programming environments. Key studies
have benchmarked SAST tools for C, revealing strengths and limitations [30] [29].
Innovative uses, such as employing AI models like ChatGPT for static security
testing, have been examined for their practicality [16]. Empirical work has shed
light on the performance and reliability of these tools, particularly through se-
curity warnings [11]. Additionally, comparative analyses have highlighted SAST
tools’ capabilities in Java and distributed applications, contrasting them with
dynamic methods to evaluate thoroughness [44] [24]. The integration of SAST
with reverse engineering for binary executables also illustrates a comprehensive
approach to security [25].

8.3 Application of SAST Tools in Open-Source Software
Environments

Mingjie Shen et al. [64] studied 258 popular EMBOSS projects using GitHub’s
CodeQL, őnding 540 defects, 74% of which were probable security vulnerabilities,
highlighting SAST tools’ effectiveness and low false positive rate (23%). Feras
Al Kassar et al. [10] examined the impact of code patterns on security testing in
web applications, identifying over 270 patterns that hinder static analysis and
discovering 440 new vulnerabilities across 48 projects. A. Nguyen-Duc et al. [51]
found that combining SAST tools enhances performance in an open-source e-
government project. MM Casanova Páez et al. [20] reviewed various application

16 F. Hashmat et al.

security testing tools, emphasizing automation, ease of use, and accuracy, and
found no direct correlation between commercial tools and higher effectiveness.

Additionally, C. Gentsch et al. [29] evaluated multiple open-source Static
Analysis Security Testing (SAST) tools for C, including AdLint, Clang-Tidy, and
others. Using a methodology involving őle-by-őle analysis and a comprehensive
database to track outputs, the study conőrmed the tools’ efficacy by comparing
őndings against the Juliet Test Suite. This rigorous approach assessed overall
tool accuracy, overlap, and usability in various real-world and synthetic environ-
ments. Further, F. Mateo Tudela and J.R. Bermejo Higuera [46] analyzed the
effectiveness of combining SAST, DAST, and IAST tools against the OWASP
Top Ten vulnerabilities. Using combinations like Fortify+Arachni+CCE, they
achieved notable success across various security levels in web applications.

9 Discussion and Future Work

We will responsibly disclose all critical vulnerabilities found, such as exposed
private keys, to the respective maintainers. In Section 7, we limited our analysis
to repositories with fewer than 20 errors or warnings, which may bias results
by excluding projects with more issues. Future work will expand the scope to
include repositories with a broader range of issues and develop a semi-automated
system to classify false positives, enhancing the scalability and accuracy of our
analysis.

10 Conclusion

In conclusion, this paper provides a detailed examination of the quality and
security of open-source software (OSS) using 24 open-source static analysis tools
through Omega Analyzer. By analyzing 4,865 signiőcant OSS projects, we
have uncovered numerous insights that underscore the effectiveness of these tools
in identifying security vulnerabilities and enhancing code quality. The őndings
from our comprehensive study not only highlight the pivotal role of static analysis
tools in securing OSS repositories but also suggest future research directions
aimed at reőning these tools and strategies.

Acknowledgements

This research was partly supported by the National Science Foundation (NSF)
under Grant CNS-2340548. Any opinions, őndings, conclusions, or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily
reŕect the views of the NSF.

References

1. Alpha Omega ś Linux Foundation Project, https://alpha-omega.dev/

SAST Tools on Open Source Software Repositories 17

2. CodeQL, https://codeql.github.com/
3. Open Source Security Foundation ś Linux Foundation Projects, https://openss

f.org/

4. Understanding GitHub Actions, https://docs.github.com/_next/data/0DKyBPM
qZhPYD1Lsg3qKt/en/free-pro-team@latest/actions/learn-github-actions/u

nderstanding-github-actions.json?versionId=free-pro-team%40latest&pro

ductId=actions&restPage=learn-github-actions&restPage=understanding-g

ithub-actions

5. Node.js. https://github.com/nodejs/node (Sep 2023), original-date: 2014-11-
26T19:57:11Z

6. SwiftSyntax. https://github.com/apple/swift-syntax (Sep 2023), original-
date: 2018-07-31T23:19:58Z

7. Fact Sheet: Biden-Harris Administration Releases End of Year Report on Open-
Source Software Security Initiative | ONCD (Jan 2024), https://www.whitehouse
.gov/oncd/briefing-room/2024/01/30/fact-sheet-biden-harris-administr

ation-releases-end-of-year-report-on-open-source-software-security-i

nitiative/

8. nodejs/node (Jun 2024), https://github.com/nodejs/node, original-date: 2014-
11-26T19:57:11Z

9. Abraham, A.: Nodejsscan (2023), https://github.com/ajinabraham/NodeJsScan,
accessed: 2024-05-18

10. Al Kassar, F., Clerici, G., Compagna, L., Balzarotti, D., Yamaguchi, F.: Testability
tarpits: the impact of code patterns on the security testing of web applications. In:
NDSS Symposium 2022. Internet Society, San Diego, California, USA (2022)

11. Aloraini, B., Nagappan, M., German, D.M., Hayashi, S., Higo, Y.: An empirical
study of security warnings from static application security testing tools. Journal
of Systems and Software 158, 110427 (2019)

12. Alvarez, S.: Radare2 (2006), https://www.radare.org/, accessed: 2024-05-18
13. Alvarez, V.: Yara (2024), https://virustotal.github.io/yara/, accessed: 2024-

05-18
14. Arusoaie, A., Ciobâca, S., Craciun, V., Gavrilut, D., Lucanu, D.: A comparison of

open-source static analysis tools for vulnerability detection in c/c++ code. In: 2017
19th International Symposium on Symbolic and Numeric Algorithms for Scientiőc
Computing (SYNASC). pp. 161ś168 (2017). https://doi.org/10.1109/SYNASC
.2017.00035

15. Arya, A., Brown, C., Pike, R., The Open Source Security Foundation: Open Source
Project Criticality Score. https://github.com/ossf/criticality_score (Mar
2023), original-date: 2020-11-17T16:14:23Z

16. Bakhshandeh, A., Keramatfar, A., Norouzi, A., Chekidehkhoun, M.M.: Using chat-
gpt as a static application security testing tool. arXiv preprint arXiv:2308.14434
N/A, N/A (2023)

17. Bhandari, G., Naseer, A., Moonen, L.: Cveőxes: automated collection of vulner-
abilities and their őxes from open-source software. In: Proceedings of the 17th
International Conference on Predictive Models and Data Analytics in Software
Engineering. pp. 30ś39. Association for Computing Machinery, Athens, Greece
(2021)

18. Bonaccorsi, A., Rossi, C.: Why open source software can succeed. Research policy
32(7), 1243ś1258 (2003)

19. Boyter, B.: Scc (2018), https://github.com/boyter/scc, accessed: 2024-05-18
20. Casanova Páez, M.M.: Application security testing tools study and proposal. N/A

N/A, N/A (2021)

18 F. Hashmat et al.

21. Collins, J.: Brakeman (2010), https://brakemanscanner.org/, accessed: 2024-05-
18

22. Cybersecurity and Infrastructure Security Agency (CISA): Government and indus-
try partners publish fact sheet for organizations using open source software (2023),
https://www.cisa.gov/news-events/news/government-and-industry-partn

ers-publish-fact-sheet-organizations-using-open-source-software,
accessed: 2024-06-13

23. Deepfence: Secretscanner (2020), https://github.com/deepfence/SecretScann
er, accessed: 2024-05-18

24. Dencheva, L.: Comparative analysis of Static application security testing (SAST)
and Dynamic application security testing (DAST) by using open-source web appli-
cation penetration testing tools. Ph.D. thesis, Dublin, National College of Ireland
(2022)

25. Devine, T.R., Campbell, M., Anderson, M., Dzielski, D.: Srep+ sast: A comparison
of tools for reverse engineering machine code to detect cybersecurity vulnerabilities
in binary executables. In: 2022 International Conference on Computational Science
and Computational Intelligence (CSCI). pp. 862ś869. IEEE, Las Vegas, NV, USA
(2022)

26. Esposito, M., Falaschi, V., Falessi, D.: An extensive comparison of static application
security testing tools (2024)

27. Facebook: Hermes javascript engine. https://github.com/facebook/hermes

(2024), accessed: 2024-04-30
28. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:

Security testing: A survey. In: Advances in Computers, vol. 101, pp. 1ś51. Elsevier
(2016)

29. Gentsch, C.: Evaluation of open source static analysis security testing (sast) tools
for c. N/A N/A, N/A (2020)

30. Gentsch, C., Krishnamurthy, R., Heinze, T.S.: Benchmarking open-source static
analyzers for security testing for c. In: Leveraging Applications of Formal Methods,
Veriőcation and Validation: Tools and Trends: 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20ś30, 2020, Proceedings, Part IV 9. pp. 182ś198. Springer, Rhodes, Greece (2021)

31. Ghazaly, N.M.: Learning the idea behind sast (static application security testing)
and how it functions. International Journal of Management and Engineering Re-
search 1(1), 01ś04 (2021)

32. GitHub: Codeql (2019), https://securitylab.github.com/tools/codeql,
accessed: 2024-05-18

33. GitHub: Potential use after free. https://codeql.github.com/codeql-query-h
elp/cpp/cpp-use-after-free/ (2024), accessed: 2024-06-24

34. Gkortzis, A., Mitropoulos, D., Spinellis, D.: Vulinoss: a dataset of security vulnera-
bilities in open-source systems. In: Proceedings of the 15th International conference
on mining software repositories. pp. 18ś21. ACM, Gothenburg, Sweden (2018)

35. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Information and Software Technology 68, 18ś33
(2015)

36. Hauge, é., Ayala, C., Conradi, R.: Adoption of open source software in software-
intensive organizationsśa systematic literature review. Information and Software
Technology 52(11), 1133ś1154 (2010)

37. Heffner, C.: binwalk (2010), https://github.com/ReFirmLabs/binwalk, accessed:
2024-05-18

SAST Tools on Open Source Software Repositories 19

38. ICSharpCode: Ilspy (2011), https://github.com/icsharpcode/ILSpy, accessed:
2024-05-18

39. Imtiaz, N., Khanom, A., Williams, L.: Open or sneaky? fast or slow? light or
heavy?: Investigating security releases of open source packages. IEEE Transactions
on Software Engineering 49(4), 1540ś1560 (2022)

40. Jiang, Y., Jeusfeld, M., Ding, J.: Evaluating the data inconsistency of open-source
vulnerability repositories. In: Proceedings of the 16th International Conference on
Availability, Reliability and Security. pp. 1ś10. ACM, Vienna, Austria (2021)

41. JusticeRage: Manalyze (2010), https://github.com/JusticeRage/Manalyze,
accessed: 2024-05-18

42. Konves, S.: Tbv (2019), https://github.com/verifynpm/tbv, accessed: 2024-05-
18

43. Levin, D.V.: strace (1992), https://strace.io/, accessed: 2024-05-18
44. Li, K., Chen, S., Fan, L., Feng, R., Liu, H., Liu, C., Liu, Y., Chen, Y.: Comparison

and evaluation on static application security testing (sast) tools for java. In: Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. pp. 921ś933. ACM, San
Francisco, CA, USA (2023)

45. Marjamäki, D.: Cppcheck (2007), http://cppcheck.sourceforge.net/, accessed:
2024-05-18

46. Mateo Tudela, F., Bermejo Higuera, J.R., Bermejo Higuera, J., Sicilia Montalvo,
J.A., Argyros, M.I.: On combining static, dynamic and interactive analysis security
testing tools to improve owasp top ten security vulnerability detection in web
applications. Applied Sciences 10(24), 9119 (2020)

47. Microsoft: Devskim (2017), https://github.com/microsoft/DevSkim, accessed:
2024-05-18

48. Microsoft: Applicationinspector (2019), https://github.com/microsoft/Appli
cationInspector, accessed: 2024-05-18

49. Microsoft: Ossgadget (2020), https://github.com/microsoft/OSSGadget, ac-
cessed: 2024-05-18

50. Microsoft: Workŕow conőguration for similar issues in microsoft terminal. https:
//github.com/microsoft/terminal/blob/main/.github/workflows/similarI

ssues.yml (2024), accessed: 2024-04-30
51. Nguyen-Duc, A., Do, M.V., Hong, Q.L., Khac, K.N., Quang, A.N.: On the adoption

of static analysis for software security assessmentśa case study of an open-source
e-government project. computers & security 111, 102470 (2021)

52. npm, I.: npm audit (2018), https://docs.npmjs.com/cli/v7/commands/npm-aud
it, accessed: 2024-05-27

53. Onarcan, M.O., Fu, Y., et al.: A case study on design patterns and software defects
in open source software. Journal of Software Engineering and Applications 11(05),
249 (2018)

54. Oyetoyan, T.D., Milosheska, B., Grini, M., Soares Cruzes, D.: Myths and facts
about static application security testing tools: an action research at telenor digi-
tal. In: Agile Processes in Software Engineering and Extreme Programming: 19th
International Conference, XP 2018, Porto, Portugal, May 21ś25, 2018, Proceedings
19. pp. 86ś103. Springer International Publishing (2018)

55. Piantadosi, V., Scalabrino, S., Oliveto, R.: Fixing of security vulnerabilities in open
source projects: A case study of apache http server and apache tomcat. In: 2019
12th IEEE Conference on Software Testing, Validation and Veriőcation (ICST).
pp. 68ś78. IEEE, Xi’an, China (2019)

20 F. Hashmat et al.

56. PlatformIO: Project helpers for platformio. https://github.com/platformio/
platformio-core/blob/develop/platformio/project/helpers.py (2024),
accessed: 2024-04-30

57. Ponta, S.E., Plate, H., Sabetta, A., Bezzi, M., Dangremont, C.: A manually-curated
dataset of őxes to vulnerabilities of open-source software. In: 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). pp. 383ś387.
IEEE, Montreal, QC, Canada (2019)

58. Price, P.: Shhgit (2018), https://github.com/eth0izzle/shhgit, accessed:
2024-05-18

59. PyCQA: Bandit (2013), https://github.com/PyCQA/bandit, accessed: 2024-05-18
60. r2c: Semgrep (2020), https://semgrep.dev/, accessed: 2024-05-18
61. Raducu, R., Esteban, G., Rodriguez Lera, F.J., Fernández, C.: Collecting vul-

nerable source code from open-source repositories for dataset generation. Applied
Sciences 10(4), 1270 (2020)

62. Ramsauer, R., Bulwahn, L., Lohmann, D., Mauerer, W.: The sound of silence: Min-
ing security vulnerabilities from secret integration channels in open-source projects.
In: Proceedings of the 2020 ACM SIGSAC Conference on Cloud Computing Secu-
rity Workshop. pp. 147ś157. ACM, Virtual Event (2020)

63. SageMath: Sagemath mathematical software system. https://github.com/sagem
ath/sage (2024), accessed: 2024-04-30

64. Shen, M., Pillai, A., Yuan, B.A., Davis, J.C., Machiry, A.: An empirical study on
the use of static analysis tools in open source embedded software. arXiv preprint
arXiv:2310.00205 N/A(N/A), 1ś14 (2023)

65. Smith, L.J.: Estimating Security Risk in Open Source Package Repositories: An
Empirical Analysis and Predictive Model of Software Vulnerabilities. Ph.D. thesis,
Capella University (2019)

66. Snyk: Snyk code (2020), https://snyk.io/product/snyk-code/, accessed: 2024-
05-27

67. Talos, C.: Clamav (2024), https://www.clamav.net/, accessed: 2024-05-18
68. Torvalds, L.: torvalds/linux. https://github.com/torvalds/linux (Sep 2023),

original-date: 2011-09-04T22:48:12Z
69. Torvalds, L.: torvalds/linux (Jun 2024), https://github.com/torvalds/linux,

original-date: 2011-09-04T22:48:12Z
70. Ven, K., Verelst, J., Mannaert, H.: Should you adopt open source software? IEEE

software 25(3), 54ś59 (2008)
71. wireghoul: Graudit (2010), https://github.com/wireghoul/graudit, accessed:

2024-05-18
72. Xu, R., Tang, Z., Ye, G., Wang, H., Ke, X., Fang, D., Wang, Z.: Detecting code

vulnerabilities by learning from large-scale open source repositories. Journal of
Information Security and Applications 69, 103293 (2022)

73. Yelp: Detectsecrets (2017), https://github.com/Yelp/detect-secrets, accessed:
2024-05-18

74. Yin, T.: Lizard (2014), https://github.com/terryyin/lizard, accessed: 2024-
05-18

75. Yoast: Components directory of the yoast seo wordpress plugin. https://github
.com/Yoast/wordpress-seo/tree/trunk/apps/components (2024), accessed:
2024-04-30

76. Zahedi, M., Ali Babar, M., Treude, C.: An empirical study of security issues posted
in open source projects. In: Proceedings of the 51st Hawaii International Conference
on System Sciences (HICSS). pp. 5504ś5513. IEEE, Hawaii, USA (2018)

	Insights from Running 24 Static Analysis Tools on Open Source Software Repositories

