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Abstract

Censorship circumvention is often fueled by supporters out
of goodwill. However, hosting circumvention proxies can
be costly, especially when they are placed in the cloud. We
argue for re-examining cloud features and leveraging them
to achieve novel circumvention benefits, even though these
features are not explicitly engineered for censorship circum-
vention. SpotProxy is inspired by Spot VMsÐcloud instances
backed with excess resources, sold at a fraction of the cost of
regular instances, that can be taken away at a moment’s notice
if higher-paying requests arrive. We observe that for circum-
vention proxies, Spot VMs not only translate to cost savings,
but also create a high churn rate since proxies are constantly
re-spawned at different IP addressesÐmaking them more dif-
ficult for a censor to enumerate and block. SpotProxy pushes
this observation to the extreme and designs a circumvention
infrastructure that constantly searches for cheaper VMs and
refreshes the fleet for anti-blocking, for spot and regular VMs
alike. We adapt Wireguard and Snowflake for use with Spot-
Proxy, and demonstrate that our active migration mechanism
allows clients to seamlessly move between proxies without de-
grading their performance or disrupting existing connections.
We show that SpotProxy leads to significant cost savings, and
that SpotProxy’s rejuvenation mechanism enables proxies to
be replenished frequently with new addresses.

1 Introduction

Censorship circumvention is often fueled by supporters out
of goodwill [93]. Whether they set up proxying infrastruc-
ture at their own cost [47, 56, 69, 74, 94, 110, 111] or rely on
donations [26,60], their available budget is eclipsed by the re-
sources of nation-state censors. To sustain the circumvention
ecosystem, therefore, censorship evasion apparatuses must be
able to operate on constrained budgets and make effective use
of every dollar contributed towards circumvention.

Today, proxying infrastructure is hosted in an array of net-
work locations, including content distribution networks [54,
107], Internet service providers [103], residential homes [42],
edge networks [76], and, perhaps unsurprisingly, the cloud.

Despite the transformative impact of cloud computing on
many workloads, we argue that circumvention proxies must
use the cloud in a very different way to reap benefits. Our goal
in this paper is to re-examine and fully realize the power of the
cloud for hosting circumvention proxies in virtual machines
(VMs), maximizing cost savings and censorship resistance.

On the one hand, many circumvention proxies already hail
from the cloud. This includes many Tor relay nodes [30,
31], standalone Snowflake proxies [27], and VPNs (e.g.,
Psiphon [25] and Lantern [20]). The conveniences of cloud
computing, including its pay-per-use model and stable perfor-
mance, apply to circumvention systems as well as traditional
cloud workloads (e.g., key/value stores, web services). To host
circumvention proxies, a user can rely on VMs in the cloud,
without provisioning physical nodes in a dedicated place.

However, cloud VMs represent a substantially different
computing environment, with many intriguing features not
found elsewhere. Simply ªlifting-and-shiftingº a workloadÐ
any workloadÐinto cloud VMs often falls short; one must
bear in mind which cloud features are uniquely suited for
that workload, in order to maximize benefits [100]. This is
especially true for circumvention proxies, a non-conventional
workload for which the cloud is not explicitly engineered.

The inspiration for this project came from a well-known
cloud feature, Spot VMs [39,45,61], which at first glance seem
unrelated to our goal, but a deeper look reveals two interesting
properties under the lens of censorship circumvention. Spot
VMs are a special class of cloud instances, spawned by cloud
providers just-in-time out of excess resources to maximize
profit, and then taken back at a moment’s notice when higher-
paying tenant requests arrive. Compared to regular VMs, spot
instances are sold at a much cheaper price, even when they
encapsulate the same amount of compute, memory, and net-
work resources. This aligns with the goal of lowering the cost

of hosting circumvention proxies as much as possible. On the
flip side, cloud providers may preempt Spot VMs any time
and repackage the underlying resources as regular VMs for a
higher price. This instability of spot instances is commonly
viewed as a nuisance, since it incurs an undesirable burden for



most workloads. The tenant needs to acquire a replacement
VM, slot it into their fleet with a new random IP address, and
resurrect any interrupted workloads. For censorship evasion,
however, we observe that this high churn is in fact a pow-

erful antidote against censor blocking. Proxy instances are
constantly reborn at different IP addresses, even though their
previous IPs may have been blocked.

Motivated by these observations, SpotProxy is a censor-
ship resistance infrastructure that maximizes circumvention

utility as the first-order objective using cloud-native features.
Despite its name, SpotProxy is not restricted to using spot
instances. Rather, it may use any available VMs found in
the current cloud catalogue, spot or regular, as long as they
are among the cheapest. Moreover, SpotProxy intentionally
creates a high churn in its fleet. The Spot VMs on its fleet
already naturally come and go, but in addition, SpotProxy
also releases VMs as they age and spawn replacement VMs
at new IP addresses to increase unblockability.

We envision that one way of using SpotProxy will be for a
censorship circumvention sponsor (e.g., an organization like
Tor, a VPN provider, or even a regular user) to deploy it in
a public cloud (e.g., Amazon). They either take donations or
pay out-of-pocket to create a fleet of SpotProxy instances,
which in turn proxy communication from censored regions
for whoever is in need. With SpotProxy, sponsors and contrib-
utors know that their resources are put to the most effective
use, explicitly optimized for advancing the circumvention en-
deavor. Censored clients obtain entry to the SpotProxy fleet
using conventional methods (e.g., email, moat [101]), but
once they are connected, their proxy instances are constantly
shifted from one VM to another to defend against IP-based
blocking and enumeration attacks [33, 50, 109]. In a similar
spirit, the complex and often-changing cloud price structure
also leads to periodic cost arbitrage and proxy migration to
cheaper VMsÐdovetailing efforts to reduce the cost of the
infrastructure and increase its churn. Importantly, client con-
nections remain stable, and their communication seamless, as
SpotProxy takes special care to preserve ongoing flows even
when proxies are migrated across VMs. At any given point
in time, the SpotProxy sponsor only pays for a (potentially
small) number of proxies; but in the aggregate, these proxies
comprise an increasingly larger IP footprint as they hop across
VMs, creating an untenable collateral damage if the censor
blocks all of the enumerated/observed addresses.

At its core, SpotProxy has two key mechanisms: infrastruc-

ture rejuvenation, which keeps around a cheap and fresh VM
fleet as its workforce, and client migration, which ensures
seamless client connectivity despite constant movement.

The first component of SpotProxy, the rejuvenator, con-
structs the underlying VM infrastructure and keeps it cheap
(for cost savings) and fresh (for anti-blocking). To reduce
cost, SpotProxy dynamically assesses the costs and bene-
fits involved in acquiring variously-configured VM instances.
This involves navigating the pricing variabilities of Spot VMs

in relation to regular VMs, across cloud zones and regions,
with a particular attention to circumvention-specific features,
such as multi-NIC instances (which can host multiple prox-
ies thus reducing per-proxy cost), ingress/egress preferences
(for serving different censored regions and destinations), and
sometimes, the ability to swap in a new IP address without
any other change to the VM. This real-time arbitrage leads
to the decommissioning of existing VMs in preference of
cheaper ones. This churn is further amplified by keeping the
VMs fresh, so that their IP addresses only host proxies briefly
before being reallocated to unrelated cloud services, increas-
ing collateral damage for a blocking adversary. Each VM is
attached with a rejuvenation timer, and upon firing, the reju-
venator works to find a replacement with similar or cheaper
cost. Complete with the natural dynamism of Spot VMs in
our fleet, the underlying infrastructure is kept in constant flux.

The second component of SpotProxy is the relocator,
which migrates active clients from one proxy instance to
another as instructed by the rejuvenator. Whether a reloca-
tion event is due to cost arbitrage, Spot VM reclamation, or
rejuvenation, the relocator can actualize frequent changes
to client-to-proxy assignments. This enables SpotProxy to
proactively and quickly hand over clients while keeping their
connections alive, thus allowing SpotProxy to exert arbitrary
control over both fleet composition and updated assignments.
This further involves maintaining the state of available proxy
instances, client-to-proxy assignments, session states across
proxies (e.g., per Turbo Tunnel [53]), and seamless session
resumption upon client-to-proxy reassignment. Furthermore,
the relocator mechanism is proxy-independentÐthe same de-
sign pattern applies to different proxy implementations in
re-engineering them slightly to be relocatable.

Our current prototype is compatible with the deployment of
two prominent proxying protocols over SpotProxy-operated
cloud instances: Wireguard [48] and Snowflake [42]. A live
deployment and evaluation of SpotProxy’s performance re-
vealed that the system is able to support active migration at
scale (migrating thousands of clients and hundreds of proxies
simultaneously) while meeting the reclamation deadlines of
cloud providers by a wide margin. In addition, we experimen-
tally verified that SpotProxy preserves the continuity of client
connections across migration events, imposing a negligible
throughput degradation. We also evaluated SpotProxy’ long-
term cost savings by resorting to historical AWS EC2 pricing
data, and experimental deployments. Our results show that
SpotProxy would have been able to achieve ∼90% instance
cost savings (and ∼74% total cost savings when considering
network costs1) across several months in operation, assuming
a move from ad-hoc proxy deployments in on-demand cloud
instances to deployments on multi-NIC Spot VMs acquired
via SpotProxy’s cost arbitrage mechanism. Finally, we evalu-
ated the circumvention efficacy of SpotProxy against multi-

1Network egress costs can be significant too. We analyze this in §11.1.



ple censor behaviors based on Nasr et al.’s game-theoretical
simulation framework [80]. By adopting the proxy assign-
ment algorithm from the same framework, we found that
SpotProxy can provide access to ∼60% of legitimate clients
even when censors control half of the connected clients (i.e.,
sybils); though we note that these are results obtained from
a generic censor model not specialized to SpotProxy. These
results support our belief that SpotProxy will drastically fuel
circumvention as a next generation, cloud-based technique.

2 Why Rediscover the Cloud?

Cloud computing is hardly a new conceptÐmore than 94%
of enterprises already use the cloud [1]. In public cloud
providers, compute, memory, and network resources are pack-
aged as ªvirtual machinesº (VMs), sold at varying prices in a
pay-as-you-go model. Many vendors are vying for the market,
ranging from large-scale service providers such as Amazon,
Google, Azure, Digital Ocean, and Oracle, to smaller players
such as OVH [85]. The cloud has in turn transformed how
modern workloads are hosted, optimized, and served [79].

Owing to the success of cloud computing, it is not un-
common to host circumvention proxies in cloud VMs to-
day [25, 27, 30, 31]. Some proxies even provide cloud config-
uration scripts [30, 31] for automated deployment. However,
today’s proxies use the cloud in a ªlift-and-shiftº manner,
from residential homes/enterprises to virtual machines, with
little customization for the circumvention endeavor. While
this is sufficient for leveraging the more common features
(e.g., payment model, ease of use, robust performance), it
leaves vast opportunities largely untapped. The non-profit
nature of censorship circumvention also means that the rising
cloud costs that led to myriad business repatriation [16] will
eventually impact proxy sustainability as well.

2.1 Benefits of the cloud

The benefits of cloud VMs can be felt by many workloads,
circumvention proxies included.

First, cloud providers strive to make virtual machines easy
to deploy and use, and proxy developers often supply cloud
configuration scripts for automation. This makes cloud-based
proxies far easier to deploy [75] than alternative circumven-
tion solutions that reside in core networks [69, 74, 111] or at
the edge [42,47,76]. Second, high availability is characteristic
of the cloud, and providers dedicate substantial resources to
support ªfive or more ninesº [3]. VM-backed proxies, there-
fore, stand in contrast to user- or web browser-based coun-
terparts (e.g., Snowflake [42] and MassBrowser [81]), which
run on less reliable residential broadband networks and get
shut down without notice. Third, the cloud provides higher
performance, with VM resources customizable over a range
of product classes (e.g., dedicated, shared, or fractional). Thus,
VM-backed proxies can handle much more traffic and con-
nections [89], whereas proxies on user laptops compete for
resources with other applications. To sum it up, the cloud

offers a commercial grade solution to circumvention proxies
as it does for other workloads.

2.2 Downsides of the cloud

The commercial nature of the cloud, however, is at odds with
the non-profit nature of circumvention endeavors, leading to
important disadvantages surrounding cloud expenses.

Cloud VMs are expensive, and they are charged even when
the underlying resources are idle. For instance, if a proxy
fleet uses ten VMs with 2 vCPUs and 8GB memory2, it costs
about $600 per month even if some proxies are underutilized
or blocked. To provision VMs with more CPU, memory, disk,
and network resources, or even public IP addresses, leads
to additional cost. Cloud costs are also steadily increasing,
and this has given rise to the ongoing trend of cloud repatria-
tion [16], where tenants move their workloads out of the cloud
back to on-prem infrastructures due to the steep expenses.

This is particularly problematic for circumvention prox-
ies, both for proxy sponsors/contributors and censored clients.
For the former, financial strain is not uncommon especially
when dealing with usage surges [60]. For instance, Lantern
recently resorted to accepting donations and utilizing credit
cards to sustain its operations and maintain stable access
while scaling up its services in response to surging user de-
mand [2]. One could instead ask proxy users to pay, but this
increases the barrier for censored clients to access the free
Internet. Censored clients could be financially constrained
and need donations from governments and NGO entities for
circumvention [23, 26, 90]. Payment channels for proxies
could be restricted [32]. The act of paying for VPN services
could be criminalized [40]. Free VPNs are thus in frequent
demand, as evidenced by the increased usage during free ac-
cess campaigns by IVPN [90] and the predominance of free
VPN services in Russia [32], despite concerns that these ser-
vices have opaque ownership and have been known to harvest
user data and sell personally identifiable information to data
brokers [52]. Thus, for sustainable operation of VM-backed
proxies, we must minimize the necessary expenditures. For
proxy sponsors and contributors, we must ensure that funds
maximally contribute to circumventing censorship. For cen-
sored clients, we must extend free service to the broadest user
base possible to increase its overall impact and accessibility.

2.3 Unleashing the cloud’s full potential

We believe that a promising path forward is to re-examine the
specific requirements of circumvention proxies, and support
these goals with an infrastructure that leverages unique fea-
tures of the cloud. Spot VMs [38,39,45,61] are poised to offer
a steep cost reduction, ranging from a guaranteed 60% (GCP)
up to 90% (AWS/Azure), a price competitive to even niche
providers (e.g., OVH [85])3. Spot VMs are also conducive

2m6a.large AWS EC2 instance and b2-7 OVH instance
3OVH’s roadmap hints at a future Spot VM offering [84], highlighting

their emerging importance among cloud features providers aim to implement.



to autoscaling, unlike reserved instances [36] which require
upfront lump sum payments. Although Spot VMs can be re-
claimed at a moment’s notice [38], this naturally refreshes
the fleet with new random IP addresses [86, 87]. SpotProxy
pushes these ideas to the limit by embracing these properties.

SpotProxy also leverages a few other cloud-native features.
Cloud VMs can be deployed in chosen compute regions, so
that services can reach their clients in closer proximity. In our
case, this works nicely for supporting different censored re-
gions and censored content. Some VMs can be assigned with
multiple virtual NIC with public IP addresses [6, 17, 21, 46].
While this feature is originally designed for multi-homing sce-
narios [9], under the lens of circumvention, it can potentially
provide further cost saving. Censors enumerate proxies by
their IP addresses, so we can host a different proxy on each vir-
tual NIC. Elastic IP addresses are another feature, allowing a
VM to disassociate from its IP address on-the-fly and acquire
a new one. Last but not least, the cloud hosts a variety of ser-
vices that may be critical for high-profile businesses operating
within censored regions. Censors are faced with significant
collateral damage should they blindly block communications
towards public cloud IP addresses [119]. In sum, our central
principle is to reconsider cloud features and translate them
into novel, anti-censorship benefits, thereby unleashing the
cloud’s full potential as a robust and cost-effective circumven-
tion infrastructure. We emphasize that SpotProxy is an initial
step in this direction, with further exploration detailed in §11.

3 SpotProxy

SpotProxy aims to satisfy the following design goals:

(1) Minimal cost. Proxies deployed on cloud instances are
expensive. SpotProxy aims to provide maximum cost
savings, a prerogative for effective circumvention.

(2) Cloud-native unblockability. The cloud, collectively,
offers near-limitless resources (e.g., instances, or public
IP addresses). SpotProxy should take advantage of this
to make blocking more challenging for censors.

(3) Seamless client connectivity. Pursuing our two afore-
mentioned goals requires frequent reassignments of
clients to proxy instances. Client connectivity and net-
work performance should not be impacted as a result.

3.1 Threat model

We assume that SpotProxy clients are located within regions
under the influence of a state-level adversary who can monitor
and manipulate clients’ traffic flowing within its jurisdiction.
Our assumption centers around a rational adversary who is
mindful of the potential collateral damage stemming from the
use of indiscriminate, coarse-grained blocking policies. For
instance, the adversary refrains from outright blocking large
swaths of IP address spaces pertaining to cloud providers
due to potential collateral damage, an assumption adopted
by existing cloud circumvention tools (§10). In addition, the
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Figure 1: High-level view of SpotProxy’s architecture.

adversary operates within computational bounds, lacking the
capabilities to compromise standard cryptographic assump-
tions (e.g., to decrypt clients’ traffic or forge signatures).

However, the adversary has the power to deploy seemingly-
legitimate SpotProxy clients to acquire proxy identifiers and
engage in active probing. Given extensive research related to
traffic analysis and active probing attacks [41,57±59], we also
assume that the proxying protocols that are deployed on top
of SpotProxy’s circumvention substrate already deploy ade-
quate countermeasures, such as dedicated traffic obfuscation
layers [112], probe-resistant proxy implementations [57, 59],
or proxy-assignment algorithms [49, 80, 102].

3.2 Architectural overview

As shown in Fig. 1, the rejuvenator and the relocator compo-
nents are our main innovation, but SpotProxy also features
a central controller for orchestrating the relocation of proxy
instances. Below, we describe clients’ typical workflow when
using SpotProxy, and then describe the operation of Spot-
Proxy’s backend components.
Client workflow. To use SpotProxy, clients leverage a modi-
fied client-side proxy binary to A register through some ex-
isting proxy distribution service (e.g., a domain-fronted [54]
broker, moat [101]), which forwards such requests to the B
central SpotProxy controller. Upon registration, the client is
assigned a proxy (via some existing proxy-assignment algo-
rithm) whose address is communicated back to the client by
the broker, and the client can then C initiate a connection
to the proxy. Clients’ requests transit through a NAT which
preserves client session state D while data is exchanged with
the Internet services the client wishes to access E .
SpotProxy backend. The fleet of proxies handled by Spot-
Proxy is in constant flux, requiring frequent client-to-proxy
re-assignments. These fleet changes are handled by the con-
troller and do not require clients to go through re-registration.
To this end, the controller continuously collects information
about client registrations from the distribution service, and
proxy state from periodic heartbeat signals sent by the proxies



themselves (e.g., containing CPU utilization, network transfer
volumes, or the number of connected clients) to inform the
remaining SpotProxy’s components that we describe below.

The rejuvenator (details in §4) acquires cheap VM in-
stances for cost savings, and keeps them fresh to increase
unblockability. This satisfies our design goals (1) and (2).
The relocator actuates re-assignment decisions made by the
controller by migrating clients to different proxy instances
for seamless connectivity (details in §5). The proxy instances

can be of any type, as long as they can be re-engineered to be-
come relocatable (see §6). This procedure incorporates active
migration support, alongside our NAT device implementing
TurboTunnel [53] (this device can be deployed on regular
VMs and horizontally/vertically scaled according to client
demand). This satisfies design goal (3) by providing a stable
endpoint from the perspective of the destinationÐthat is, the
destination (e.g., YouTube) is unaware of the client’s chang-
ing proxies because its TCP endpoint remains the (static) NAT
host and its TCP connection is unaffected by client migration.
Our migration technique is designed to be integrated into
existing proxy implementations (as later showcased in §6).

4 The Rejuvenator

The rejuvenator minimizes cost by acquiring spot VMs or
other VMs of the cheapest type, and it creates churn by re-
freshing its fleet periodically.

4.1 Cost arbitrage

SpotProxy opportunistically and continuously searches for
the cheapest VM instances through cost arbitrage, as Spot
VM pricing resembles a marketplace with variable prices
[95] (across hundreds of instance types, availability zones,
dozens of regions, and even potentially across clouds). This
differs from existing works that (1) have a static assignment
upon initialization and do not change until reclamation oc-
curs [4, 114], (2) are focused on a single region and thus
lose out on price competitiveness [4], or (3) choose a mix-
ture of instances (e.g., more expensive regular instances) to
reduce reclamation risk [28]. The ability to opportunistically
select inexpensive instances is enabled by our active migra-
tion mechanism (§5) that allows for arbitrarily frequent reas-
signments of clients to the current cheapest proxy instances,
effectively turning circumvention into a fault-tolerant appli-
cation. It periodically constructs a preference catalog for au-
toscaling and cost arbitrage purposes. The catalog provides
an up-to-date cost-ranked instance list (akin to SkyPilot [114]
and OpenCost [24]) based on the number of proxies required,
common filter attributes (vCPUs, RAM, bandwidth), and two
circumvention-specific filter attributes:

(a) Multi-NIC enabled. This attribute leverages the principle
that public IP addresses are the core units in circumven-
tion, each serving as a unique proxy endpoint. Thus, it
exposes another dimension for cost arbitrage, since larger
but more expensive instances tend to be equipped with

more virtual NICs (vNICs) as well, lowering the overall
per-proxy cost. For instance, the AWS c6in.large in-
stance has three vNICs, effectively reducing the cost of
hosting a single proxy by two-thirds.

(b) Egress region preferences. This attribute is useful for
proxy services (e.g., VPNs) that cater to clients with spe-
cific requirements (e.g., accessing geo-filtered services,
or network performance needs).

The SpotProxy controller then relies on the catalog to se-
lect instances, and invokes cloud-level APIs to provision the
underlying VM resources, forming a proxy fleet.

4.2 Infrastructure rejuvenation

Given the high cost of cloud VMs, SpotProxy seeks to ensure
that cloud expenses are efficiently steered towards enabling
censorship resistance. This requires solving the principal chal-
lenge of ªdisappearingº infrastructure in the circumvention
context, which has two main root causes: (a) circumvention
proxies have to contend with an adversarial censor that can
block access to proxies; and (b) Spot VMs are prone to recla-
mation by cloud providers. Both causes are unpredictable in
severity and frequency.

To address these challenges, SpotProxy introduces the
concept of infrastructure rejuvenation, which harnesses the
cloud’s capability of on-demand provisioning of resources to
continuously replenish disappearing infrastructure to main-
tain a stable supply of proxies. In doing so, SpotProxy can
maintain a small (and thus inexpensive) proxy fleet footprint
at any given moment, but their hosting VMs are constantly in
flux, resulting in an infrastructure whose aggregate footprint
is so large that the blocking cost is untenable. Rejuvenation
employs a strategy of periodic proxy swapping based on the
age of the proxies. This operates under the assumption that
they will eventually be blocked or enumerated, and some-
times, the blocking events may not even be detectable by
SpotProxy. This strategy is dynamic and can be as frequent as
necessary (depending on the availability goals of the circum-
vention sponsor), thanks to the capabilities of active migration
(§5) which guarantees seamless connectivity despite rejuvena-
tion. SpotProxy provides two forms of rejuvenation: IP-based
(§4.2.1) and instance-based (§4.2.2).

4.2.1 Live IP rejuvenation

Live IP rejuvenation is simple and fast, allowing for near-
instantaneous rejuvenation. Conceptually, live IP rejuvenation
relies on the principle that the public IP address of a cloud VM
(i.e., the proxy) is the only resource that needs to be refreshed
in order to counter IP-based blocking. The IP address refresh
is performed on a ªliveº VM instance that does not need to
be shutdown/restarted.
Live IP rejuvenation workflow. The workflow proceeds
as follows. First, a rejuvenation period is associated with
each VM within the fleet. These VMs will be assigned stati-
cally allocated public IPv4 addresses (known as elastic IPs in



AWS [6] or static IPs in Azure and GCP [17, 21]), instead of
using their dynamic ephemeral IP addresses (which can only
be refreshed via §4.2.2) that are allocated by default. Once the
rejuvenation period (TX) for a VM instance is reached, a new
elastic IP address is allocated by the SpotProxy controller.
Via the relocator (§5), the censored client receives this new
address along with an associated shared secret and resumes
proxying over this new address seamlessly. Prior to migra-
tion, IP remapping is triggered: the current attached elastic
IP is disassociated from the existing VM and immediately
deallocated; in this way, we do not have idle IP addresses
which would incur additional charges [7, 10, 18]. The newly
allocated IP is then associated with this VM, concluding the
remapping. Finally, the associated proxy process on the VM
is restarted before it resumes handling new user requests.
The cost of live IP rejuvenation. The primary advantage of
utilizing live IP rejuvenation lies in its capacity to rejuvenate
multiple IPs linked to multiple virtual NICs on a single VM,
where each can host a proxy. This approach can significantly
lower costsÐfor example, a single AWS c6in.large VM
equipped with three vNICs can support three proxies, effec-
tively reducing the hosting cost per proxy by two-thirdsÐin
addition to the cost-saving measures previously discussed.
The only additional cost incurred is the cost of acquiring addi-
tional public IPs (priced at $0.005/hour in AWS and GCP)4,
which can be billed at per-second granularities [7], just like
VMs themselves [5, 19, 22]. Unfortunately, live IP rejuvena-
tion can be cost-ineffective on Azure if TX is low, as Azure
charges IP address allocations at per-hour granularities [10]
(i.e., partial hours are billed as full hours).

4.2.2 Instance rejuvenation

SpotProxy’s second form of rejuvenation works by replacing
the VM instances themselves. This is the most general form
of rejuvenation, since every cloud provider will enable au-
toscaling of their VMs. Conceptually, instance rejuvenation
mitigates blocking by regularly creating new VM instances
that possess distinct IP addresses.
Instance rejuvenation workflow. The workflow proceeds as
follows. First, a rejuvenation period is associated with each
VM instance within the fleet. Note that these VMs will be us-
ing their dynamic ephemeral IP addresses that are allocated by
default; the implication is that we do not support multi-NICs
on a VM (since these can only be rejuvenated via §4.2.1).
Once the rejuvenation period (TX) for a VM is reached, it
is substituted with a replacement instance. To allocate this
instance, a request is sent to our opportunistic instance builder.
Since spot VM fulfilment is not guaranteed by cloud providers
(fulfilment can take minutes to hours [77, 88, 115]), this re-
quest also contains an expiration timer (EX) that instructs the
preference generator to timeout if an instance type takes more

4IP remappings are monetized on AWS ($0.10 per remap), but our experi-
mental validation in §7.3 show that this does not apply to live IP rejuvenation,
as IPs are never reassigned to another VM.

than EX to be fulfilled, and try acquiring the next preferred
instance type instead. Once the instance is activated, active
migration ensures clients resume proxying seamlessly.
Embracing reclamation. In §2, we discussed the unreliabil-
ity of spot VMs, noting their lack of guaranteed availability
and thus the potential for spontaneous reclamation by cloud
providers, usually with a short notice period (e.g., 30 seconds
in GCP [62] and 2 minutes in AWS [38]). Traditional ap-
proaches to handling these reclamations view them negatively
due to their disruptive impact on workloads, such as neces-
sitating restarts from scratch or frequent, resource-intensive
checkpoints [114]. In contrast, in our censorship circumven-
tion setting, SpotProxy embraces reclamation by treating it as
a special case of instance rejuvenation: SpotProxy performs
instance rejuvenation spontaneously once a reclamation no-
tice arrives rather than waiting for the next TX. This approach
involves re-provisioning a new VM instance to which im-
pacted clients are then migrated, while ensuring seamless net-
work continuity and minimal performance impact, as detailed
in §5 and §7.1. Since reclamation occurs unpredictably and
instance rejuvenation may not complete during the reclama-
tion’s short notification period, SpotProxy ensures disruption-
free communication by either using a lower EX or migrating
clients temporarily to other instances.

5 The Relocator

The relocator actualizes client-to-proxy reassignment deci-
sions made by the controller (Fig. 1) by moving clients to
new proxies as the proxy fleet composition shifts, or as dic-
tated by the assignment algorithm [49, 80, 102] used by the
controller. We refer to this process as active migration. Reas-
signing clients to proxies is especially crucial because fleet
composition will continuously fluctuate as SpotProxy strives
to (1) maximize cost savings via runtime cost arbitrage and
autoscaling, and (2) counter blocking and cloud-provider-
induced reclamation through infrastructure rejuvenation (§4).
Active migration needs to fulfill two design goals:

• Seamless. Migration should not cause client connectivity
to be disrupted.

• Automatic. Reassignments should not require decision-
making from external parties (e.g., the controller should
not need to passively wait for clients to indicate that they
would like to receive a proxy identifier).

Active migration mechanism. Active migration involves the
following components: (1) the SpotProxy controller that main-
tains up-to-date databases regarding both the proxy instances
available and current client-to-proxy assignments, performs
assignment decisions based on an assignment algorithm, and
initiates assignment decisions by coordinating with the reloca-
tor to construct relocation messages and; (2) clients running
the client-side proxy binary that are connected to their as-
signed proxies; (3) proxies serving such connections that are
managed by the controller; and one or more (4) NAT (network



Figure 2: Active migration workflow. Re-assignment deci-
sions made by the controller are actualized by the active mi-
gration mechanism, which allows the relocator to proactively
communicate with both its managed proxy fleet (e.g., ACL)
and clients (e.g., identifier and secrets) about its re-assignment
decisions, and allows clients to instantly migrate to its newly
assigned proxies while maintaining seamless connectivity.

address translation) devices that help maintain session state
and constitute static endpoints to clients’ destinations.

The workflow proceeds in phases, as illustrated in Fig. 2.
We discuss these from the viewpoint of a single client, but in
practice, migration would involve all clients assigned to the
given proxy that needs to be migrated.

Active migration begins with the A planning phase where
the controller formulates a reassignment decision in response
to a trigger (e.g., rejuvenation, reclamation). The controller
consults up-to-date state such as the available proxy instances
and current client-to-proxy assignments when forming reas-
signment decisions. Next, during the B notification phase,
the relocator informs the client of its impending reassignment
via a relocation message that includes the identity and network
address of the new proxy and any required secrets needed to
establish connectivity with the new proxy. This message is
securely relayed using the already-established channel be-
tween the client and the proxy. The controller’s reassignment
decision is also delivered to the new proxy, which inserts the
client into its access control list (ACL).

Then, in the C confirmation phase, the client parses the re-
location request, and performs a three-way termination hand-
shake with its current proxy. Next, in the D update phase,
the current proxy removes the client from its ACL, and in-
forms the NAT to update its existing routes for the client.
Finally, in the E resume phase, the client authenticates and
reconnects with the new proxy. Subsequent data packets are
forwarded to the NAT (the egress point of SpotProxy traf-
fic), which uses a Turbo Tunnel [53] design to identify the
client’s existing session to guarantee network continuity (e.g.,

without disconnecting existing TCP sessions to the client’s
previously-connected destinations).

Integrating relocation capabilities requires small modifica-
tions (see §6) to both the client- and proxy-side proxy soft-
ware (e.g., Wireguard). The active migration process requires
a client to have an ongoing connection with its current proxy
to learn of its new assignment. If the client’s proxy is sud-
denly blocked or otherwise becomes unavailable, then active
migration is not possible and the client must re-register with
SpotProxy as described in §3.2.

6 Implementation

We implemented a functional prototype of SpotProxy in
approximately 5200 lines of code. We have open-sourced
our code at https://github.com/spotproxy-project/spotproxy.
SpotProxy currently supports operations on AWS (through
boto3 [37]), although its design applies to other clouds that of-
fer programmable APIs for resource provisioning (e.g., GCP,
Linode) [35, 63]. SpotProxy collects the fleet state (e.g., cost
incurred by each VM in-use) by querying the appropriate
cloud interfaces, and provisions/de-provisions VM instances
based on various conditions that include cost arbitrage, au-
toscaling, and custom rejuvenation actions. The appropriate
proxy implementations are then loaded/started within the VM.

The most significant modification that SpotProxy requires
of existing proxies is that they need to be re-engineered to be
relocatable. In what follows, we describe our implementations
for two popular proxies, Wireguard and Snowflake.

6.1 Relocatable Wireguard

Wireguard is a popular network tunnel operating at layer 3,
implemented as a kernel virtual network interface for Linux.
The SpotProxy controller (Fig. 1) for Wireguard is written
in Python using the Django [14] web framework, and the
databases it maintains are managed with Django’s internal
ORM. It interacts with the instance manager sub-component
through GET/POST HTTP endpoints.

We then implemented a management layer around the
Wireguard [48] tunneling protocol, to be installed on both
the proxy instances and the client. It is designed to handle
multiple clients, creating individual Wireguard threads for
each. Within these threads, a bidirectional connection is es-
tablished linking the client, our management system, and the
external NAT server. Upon instance initialization, our system,
equipped with an Apache HTTPS server, starts monitoring for
migration directives from the controller. Additionally, it in-
corporates a network traffic controller that manages data flow
through the Wireguard tunnel. This controller reroutes outgo-
ing data from the tunnel to the external NAT, and incoming
data is similarly processed before entering the tunnel.

Upon a migration event, the management system receives
Wireguard key configurations of clients (containing the
client’s public IP and Wireguard key) involved in the migra-
tion, and the traffic controller appends the migration header



(containing the replacement proxy’s public IP and Wireguard
key) to an arriving packet destined to the associated clients,
which is encrypted by Wireguard, and delivered to the client.
On the client side, the management system parses this mi-
gration header, updates the Wireguard configuration file, and
restarts its Wireguard tunnel process, before reconnecting to
the new proxy and resuming the network session with its last
acknowledged sent packet.

6.2 Relocatable Snowflake

We made targeted modifications to Snowflake’s codebase,
particularly in the client, broker, and proxy components. We
did not have to create a controller or NAT from scratch as
with Wireguard since Snowflake’s broker and server (that runs
Turbo Tunnel) already provide these functions. We highlight
the more prominent changes, starting with the planning phase:

When performing client-to-proxy assignments, the existing
broker’s knowledge of available proxies is restricted to prox-
ies that are currently advertising their willingness to proxy
client traffic (via an HTTP session opened with POST requests
to the broker). This is sufficient for Snowflake browser-based
proxies as they typically exist in large quantities, yielding a
high probability that there is always at least one proxy ad-
vertising itself to the broker at any given time. However, this
may not necessarily be the case for SpotProxy. To ensure
we always have complete knowledge of available proxies,
on the broker, we enhanced the SnowflakeHeap data struc-
ture to maintain an updated listing of proxy identifiers (e.g.,
IPs). Additionally, we introduced a Client struct that keeps
a historical record of current assignments.

For the notification phase, we modified the broker’s
/client handler to issue periodic relocations. On the proxy,
we set up an HTTP server with a /transfer handler capable
of receiving relocation messages, which are then parsed and
forwarded to the appropriate clients. On the client side, we
added a DecodeMessage function to process the relocation
messages and obtain details about the new proxy.

For the resume phase, on the client side, we implemented
a DirectConnect function, enabling reconnection to a new
proxy without broker involvement for seamless client han-
dover. We also added a /add handler to the proxy’s HTTP
server to enable direct reception of SDP offers from clients, us-
ing the existing makePeerConnectionFromOffer function
for client connection.

7 Performance and Cost Evaluation

We now evaluate SpotProxy in three dimensions: (1) how
much load can SpotProxy active migration support, for vary-
ing client and proxy fleet sizes (§7.1)?, (2) how much cost
savings can SpotProxy provide (§7.2)?, and (3) how fast can
SpotProxy rejuvenate its infrastructure (§7.3)?. The efficacy
of SpotProxy to evade censorship is evaluated later in §8.

Experimental setup. To evaluate SpotProxy performance and
costs, we mostly rely on a live network testbed, built entirely

on public AWS EC2 cloud VMs. Our controller (colocated
with the rejuvenator and relocator) and NAT are both deployed
on lightweight m7a.large EC2 instances (2vCPU and 8GB
RAM), while our clients and network services acting as ªfree
Internet destinationsº are deployed on regular c5.large EC2
VMs (2vCPU and 4GB RAM) in various regions. For ex-
periments whose results do not depend on SpotProxy’s cost
arbitrage (i.e., stress-testing the controller for active migration
performance tests in §7.1), we also deploy proxies on regular
c5.large EC2 VMs.

7.1 Active migration performance

Active migration occurs when the controller decides that
clients should be reassigned to different proxies due to cost
arbitrage, autoscaling, rejuvenation, or reclamation. The main
constituent costs of active migration are (1) the time required
for the controller to perform reassignment decisions and no-
tify all relevant parties, and (2) the time needed for clients to
successfully reconnect to their newly assigned proxies. Next,
we conduct stress tests to measure these overheads.

Migration efficiency. We assess the overhead of active mi-
gration by determining the degree to which it degrades the
throughput of client connections. From the viewpoint of a sin-
gle client, we evaluate our active migration proxy implementa-
tions across representative workloads, including (1) long-lived
connections that outlive multiple migration events (i.e., an
SCP bulk file download), and (2) short-lived connections that
usually complete within a few seconds (i.e., accessing a web
server, or a Redis K-V store).

As shown in Fig. 3, active migration incurs negligible
throughput degradation (sub-second) from the viewpoint of
our client, compared to a baseline in which no migration oc-
curs. This holds for all our workloads, even as we gradually
reduced the migration period (shown as green vertical lines)
down to 5 seconds. Additionally, SpotProxy preserves con-
nection continuity; for example, clients’ SCP transfers were
uninterrupted even across multiple migration events.

Migration scalability. We conduct scalability tests to as-
certain SpotProxy’s capacity to handle a large number of
concurrent active migrations. Fig. 4 shows the average mi-
gration time for various configurations of clients and fleet
sizes, for both SpotProxy-equipped Snowflake and Wireguard.
A client’s migration time is defined as the duration between
the controller initiating the active migration event until the
client connects to its newly assigned proxy. For each con-
figuration, we perform three trials and plot the average. The
variance across trials is small and the range of migration times
is depicted by the (barely visible) error bars.

Our aim in the first two configurations (10 clients with
1 proxy vs. 100 clients with 1 proxy) is to stress a single
proxy by increasing its load (i.e., the number of assigned
clients) tenfold. Even with a heavy load, migration time is
still minimal, requiring only 1.47s at worst.
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(a) Wireguard: HTTP web server loading.
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(b) Wireguard: Redis K-V store querying.
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(c) Wireguard: SCP bulk file download.
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(d) Snowflake: HTTP web server loading.
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(e) Snowflake: Redis K-V store querying.
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(f) Snowflake: SCP bulk file download.

Figure 3: Active migration incurs negligible client-side throughput degradation across diverse workloads and proxy implementa-
tions, even as migration frequency increases (green vertical lines), from a single client’s viewpoint.
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of 100 clients and 10 proxies, where each proxy is assigned
10 clients (evenly-distributed). Error bars (barely visible) rep-
resent the range of values across all trials.

For the remaining four configurations, we focus on the con-

troller’s scalability by fixing a modest 10:1 client-to-proxy
ratio while increasing the total number of proxies and clients
(from 100 proxies and 10 clients, to 2000 clients and 200
proxies) that need to be migrated in parallel by the controller.
Here, we notice a marked increase in average migration times,
up to a maximum of 11.43 seconds for Wireguard. The higher
times are largely due to communication overheads and our
lack of parallelizationÐour current controller sends notifica-
tion messages serially to proxies, which in turn also notify
clients in a serial manner. While performance can clearly be
improved by parallelizing such messaging, we note that the
(unoptimized) migration times still support transparent (to the
client) migration: they are well below the Spot VM reclama-
tion notice of all cloud providers (the lowest is 30 seconds in
GCP [62]), so we can be assured that all clients would have

been migrated before reclamation takes effect. And, second,
client throughput degradation is not noticeably worsened be-
cause the connection with the old proxy is terminated only
after the new proxy becomes available.

7.2 Cost savings via cost arbitrage

To assess the potential cost savings SpotProxy can achieve
through cost arbitrage, we analyzed historical spot VM pric-
ing data, leveraging a comprehensive dataset [15] that encom-
passes AWS spot VM pricing histories over the last two years
(Jun. 2022±Jan. 2024). Additionally, we cross-referenced this
data with the AWS pricing history API (containing data for
the past 90 days) to further validate it, and performed actual
deployments (to confirm these cost-effective instances can be
acquired). While our analysis focuses exclusively on AWS,
due to the absence of comparable datasets for other providers,
our findings remain relevant, since AWS’s Spot VM pricing
is competitive, even when compared to other major and spe-
cialized providers (e.g., Azure, GCP, OVH).

Fig. 5 depicts the analysis results for a few selected months
of interest (a more comprehensive analysis over the last two
years is shown in App. A.1). Our analysis covers regions
within North America and targets non-burstable instances
with at least 2 vCPUs and 4GB RAM. Using the historic
pricing data, we derive the cost of operating a single proxy
when using different strategies:

Static SpotVM denotes using the month’s initially cheap-
est spot VM throughout, without applying cost arbitrage to
adapt to price changes; while Static on-demand VM refers
to the on-demand equivalent of the chosen static SpotVM
instance. Optimal single-NIC refers to selecting an instance
through cost arbitrage that exclusively employs its default
NIC, whereas Optimal multi-NIC uses all the available NICs
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Figure 5: Average monthly cost of a single proxy. Cost ar-
bitrage realizes significant cost savings that are stable and
consistent (hovering at ∼$20 for single-NIC and ∼$9 for
multi-NIC) by tempering the volatile costs of static Spot VMs.

(all with attached public IPs) on the same instances to poten-
tially achieve further savings.

Fig. 5 shows that cost savings through arbitrage are stable
and consistent, hovering around $20 for single-NIC and $9
for multi-NIC. Starting our analysis with Jan. 2024, transi-
tioning from on-demand to Spot VMs yielded a 71% cost
reduction. Implementing cost arbitrage added an extra ∼7.2%
in savings, and adopting multi-NIC configurations further re-
duced costs by ∼55%. Initially, the most affordable spot VM,
an m7gd.large, was priced at $0.0242 per hour, climbing
to $0.0279 by month’s end. Through cost arbitrage, which
prompted 24 migrations within the month with intervals as
brief as around 31 minutes and a median of about 10 hours, we
shifted to more economical options such as the m7g.large,
priced at $0.0241. Altogether, the shift from on-demand VMs
to multi-NIC Spot VMs resulted in total savings of 88.3%.

Our analysis of the Apr. 2023 data saw even more signifi-
cant savings from moving Static SpotVMs to those optimized
via cost arbitrage, achieving savings of about 29.6% (single-
NIC) and 68.8% (multi-NIC), respectively. This period saw
cost arbitrage executed 98 times, with the quickest interval
being roughly 30 minutes and a median time of 6 hours. Dec.
2022 showcased the most substantial savings with cost ar-
bitrage activated only three times, but achieved savings of
roughly 79.2% (Static SpotVM to Optimal single-NIC) and
92.2% (Static SpotVM to Optimal multi-NIC). Overall, mov-
ing from on-demand VMs to cost-arbitraged multi-NIC spot
VMs yielded a maximum saving of 95.4%.

SpotProxy achieves these cost savings by facilitating arbi-
trarily frequent reassignments with minimal disruption (§7.1),
enabling effective cost arbitrage, and the potential for fur-
ther cost savings through autoscaling. This capability sets
SpotProxy apart from existing systems (e.g., SkyPilot [114])
that offer cost arbitrage or autoscaling independently but lack
seamless client reassignment.

7.3 Infrastructure rejuvenation stress tests

We next examine two questions: (1) how fast can we feasibly
perform infrastructure rejuvenation? and (2) is rejuvenation
cost sustainable? Our evaluation is motivated by two factors:
Since Spot VM availability can be unpredictable, frequent
rejuvenation might result in the acquisition of suboptimal (i.e.,
not the cheapest) VM types at a given point in time. Second,
most cloud providers charge for IP address remaps [7], but
the definition of remaps can be opaque (e.g., it is unclear
whether AWS charges for associations/disassociations on a
single VM). We therefore need to empirically validate if live
IP rejuvenation results in additional remapping costs.

To answer these questions, we performed a series of experi-
ments on AWS where we tested rejuvenation periods ranging
from 2 hours to 2 minutes, with proxy fleet sizes ranging from
50 to 300. We performed three trials for each configuration,
using non-burstable instances with at least 2 vCPUs and 4GB
RAM within North American regions. Cost arbitrage did not
occur during our experiments, and the cheapest instance was
a m6g.large (with a maximum of three vNICs) at an hourly
spot VM price of $0.0341 (excluding IP address costs). We
stopped our trials at two minutes, as we observed it takes
∼10 seconds to associate/disassociate IPs (required by live IP
rejuvenation), and ∼1.5 minutes to provision new instances5.

Fig. 6 plots the cost of operating SpotProxy over a two-hour
period, for various fleet sizes and proxy rejuvenation periods.
As expected, operating more proxies incurs higher costs, and
leveraging live IP rejuvenation and multi-NIC VMs can sig-
nificantly reduce costs. Our results show that remapping costs
do not apply to live IP rejuvenation (allowing us to freely
associate IPs to all the available vNICs of an instance), while
instance rejuvenation is generally able to acquire the cheapest
(or within the top 5 cheapest) instance type even at large fleet
sizes, making infrastructure rejuvenation cost sustainable.

Finally, during our evaluation, we acquired approximately
18,000 IPs which were all unique, over a period spanning
multiple days. This finding is consistent with recent studies
on large-scale allocations/deallocations [86, 87] that show the
randomness of cloud IP assignments. SpotProxy could still
reprovision another IP in edge cases where an IP is reassigned.

8 Circumvention efficacy

In this section, we evaluate the effectiveness of SpotProxy
rejuvenation and relocation strategies in facilitating circum-
vention efforts against two main types of censor attacks.

First, we examine censors that aim to enumerate proxies
and perform IP-based blocking (e.g., drawing comparisons
with scenarios documented in previous studies [109] which

5A 90s provisioning time is under the current 120s warning-to-
reclamation time practiced by AWS [38]. However, provisioning times which
are longer than cloud providers’ warning-to-reclamation times (e.g., 90s
provisioning vs. 30s notification in GCP [62]) could mean that SpotProxy
may have to very briefly resort to surplus capacity in the existing fleet to
proxy the traffic of clients whose spot VMs will be reclaimed.
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Figure 6: Both instance and live IP rejuvenation incur minimal cost overhead across rejuvenation periods and fleet sizes in AWS.

observed IP blocking in intervals as brief as 10 minutes, or
only after a week [29]). We recall that SpotProxy does not
consider traffic analysis and fingerprinting attacks within its
threat model. Such attacks are deemed to be the responsibility
of the underlying proxy technology.

Second, our analysis includes the threat posed by censors
deploying Sybil attacks, where the adversary injects fake
clients into the network to continuously acquire new Spot-
Proxy proxy addresses to disrupt the system. This aspect of
our evaluation aims to assess the resilience of SpotProxy’s
rejuvenation and relocation mechanisms against concerted
efforts to undermine the system’s circumvention efficacy.
Censor simulation platform. To test our system under a
variety of scenarios, we employed the state-of-the-art game-
theoretical framework introduced by Nasr et al. [80] (which
we denote by ENEM19), also utilized by MassBrowser [81];
though we note that this is a generic framework not yet spe-
cialized to consider potential strategies by censors aware of
SpotProxy. ENEM19 offers a comprehensive simulation en-
vironment, featuring over a dozen adjustable parameters. It
provides a full-stack solution that includes a proposed proxy

assignment algorithm designed to defend against Sybil at-
tacks, alongside a detailed censor model that operates various
strategies with different levels of blocking aggressiveness.

The ENEM19 simulator works as follows. First, its proxy
assignment algorithm assigns a utility value to each client and
proxy, where a high value represents a desirable proxy (e.g.,
alive for a long time) or trustworthy client (e.g., associated
with few past blocked proxies). It then performs a greedy
assignment by handing out the best proxies to the least suspi-
cious clients. In turn, clients associated with blocked proxies
have their client utility reduced, aiding in the differentiation
between genuine users and those acting as censoring agents,
with the latter eventually being excluded from the system.

Second, the censor controls a fleet of censoring agents
(Sybils) posing as clients with the goal of acquiring prox-
ies and blocking them via different strategies. We elabo-
rate on two of the strategies introduced by ENEM19: (1)
ENEM19-aggressive is a censor that commands its agents
to block proxies as soon as they find them, and (2) the
ENEM19-optimal censor behaves in a reactive manner to
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Figure 7: Results for ENEM19-aggressive. SpotProxy is ca-
pable of maintaining roughly 60% connectivity, despite cen-
soring agents making up 50% of our client composition.

maximize its blocking power, by varying its waiting and block-
ing frequency/intensity, in an attempt to increase the number
of proxies discovered and the total number of clients blocked.
Censors will only gain partial knowledge of the proxy fleet,
assuming some clients are benign. This is because ENEM19’s
assignment algorithm distributes proxies gradually rather than
all at once, proxies are regularly rejuvenated, and Sybils asso-
ciated with blocked proxies are systematically removed.

Simulator parameters. We largely adhered to the origi-
nal choice of parameters used by ENEM19, except for its
timescale: while ENEM19 assumes that operations occur at
a day-level granularity, we instead increase the frequency of
operations to a 2-hour granularity. This means that block-
ing/proxy assignment decisions occur every 2 hours. We also
added a rejuvenation period to account for SpotProxy oper-
ations. We used two values of rejuvenation throughout our
evaluation: 2 hours, matching the censor’s blocking period;
and 4 hours, two times slower than the censor’s blocking
period. The former ensures that SpotProxy infrastructure is
rejuvenated as soon as the proxies have been blocked, while
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Figure 8: Results for ENEM19-optimal. SpotProxy is capa-
ble of maintaining over 90% connectivity, despite censoring
agents making up 50% of our client composition.

the latter period only rejuvenates the infrastructure after some
proxies have been blocked for 2 hours.
Simulation results. Although we tested multiple censor con-
figurations, we highlight the more stringent censorship sce-
narios we handled in Fig. 7 (ENEM-aggressive) and Fig. 8
(ENEM-optimal), where censoring agents made up to 50% of
our client composition. In our figures, connected users refer
to the number of benign clients that remain connected, and
nonblocked proxy ratio refers to the number of proxies that
have not been blocked by censors. In App. A.2, we provide
more details on less stringent scenarios.

First, we observe that censor blocking is largely ineffec-
tive in causing benign clients to be disconnected, for both
models, since SpotProxy benefits from relocation; what ac-
tually causes clients to be disconnected is the fact that they
end up being blamed by the ENEM19 assignment algorithm,
which associates clients with too many blocked proxies over
time. This also explains why out of all the models we tested,
ENEM-aggressive was the most effective censorship model:
since it performs blocking more frequently, it allows for this
ªimplication-styleº blocking to occur more successfully. This
contrasts with the ENEM-optimal model, which prefers to
wait longer before issuing client blocking decisions. However,
when subject to the worst possible scenario, connectivity still
hovers at around 60%, even though our setup was 12x more ag-
gressive than ENEM19, with blocking occurring every 2 hours
compared to their day-level granularity of blocking.

Second, we have a high nonblocked proxy ratio that hovers
at around 90%. This highlights a caveat of ENEM19, in that it
assumes clients blocked by implication will be removed from
the system and never be able to acquire new instances; but
this is a pessimistic assumption that may not be necessarily
true in practice: SpotProxy could run a registration service
to re-filter clients so that they can get back into the system

despite having been blocked in the past, thereby increasing the
connected ratio. We believe this to be a feasible effort since
SpotProxy exhibits a high unblocked proxy ratio, meaning
that SpotProxy maintains a large pool of available proxies to
which re-filtered clients could get access.

9 Security discussion

This section discusses potential attacks to SpotProxy as well
as attacks affecting proxy-based systems in general.

Financial DDoS. A censor could launch a large number of
sybil clients to connect to SpotProxy, exploiting the system’s
autoscaling functionality to arbitrarily increase the costs of
a SpotProxy deployment. However, standard sybil mitiga-
tions [49, 80, 102] apply. As another mitigation to this attack,
SpotProxy’s cost arbitrage module can ensure that cloud in-
stance costs do not surpass a certain threshold, thus explicitly
limiting the system’s autoscaling capacity. While this does
not prevent a potential DDoS to a SpotProxy deployment, it
can actively avoid financial harm to SpotProxy operators.

Blanket ban of cloud services. A censor could block con-
nections to all cloud VMs controlled by a given set of cloud
providers, e.g., by applying strict IP blocking policies to the
address space of such providers. While it is difficult to quan-
tify the collateral damage experienced by censors willing
to fully block connections towards cloud services, existing
reports suggest that such actions cause severe economic reper-
cussions to censoring states [11±13]. We note that other cen-
sorship circumvention systems making use of cloud storage
services [43], content-delivery networks [54, 68, 120], and
edge networks [76] operate under similar assumptions.

Blocking via strict allowlists. An adversary could attempt
to list the IPs associated with popular cloud services, and
block clients’ connections aimed at IPs that are not on the
list. However, since maintaining up-to-date allowlists as new
Internet services are constantly added or updated is a com-
plex task [76], censors have been known to be averse to such
strategies due to potential collateral damage of overblock-
ing [76, 99]. This is true even in today’s cloud circumven-
tion landscape where proxies are identified through static IPs.
SpotProxy’s dynamic rejuvenation improves the status quo by
leveraging the built-in randomness of cloud IP assignments.

Proxy enumeration and blocking. A censor could launch
a vast number of Sybil clients that would attempt to register
in SpotProxy and enumerate proxy addresses for subsequent
blocking. By design, SpotProxy makes this kind of attack im-
practical, as cloud instances will be continuously rejuvenated
within short time intervals and alter proxies’ IP addresses.
Our evaluation earlier in §8 confirms this.

Proxy-to-client connectivity check. Censors may attempt to
enumerate proxies and take action over users located within
the censored region and which are found to be currently con-
nected to IP addresses known to serve SpotProxy proxies.



We note that such an attack is not specific to SpotProxy, but
inherent to most proxy-based circumvention systems.

10 Related work

Cloud-based censorship circumvention. Prior work has ad-
vocated for deploying anonymizing relays on cloud hosting
providers [73,98], while exit bridges [119], deployed on cloud
VMs, help bypass server-side censorship in Tor. While de-
signed to be ephemeral like SpotProxy proxies, they do not
allow clients to bypass state-level censorship policies. Cloud-
Transport [43] uses public cloud storage for covert data trans-
fer, while Camouflage [116] leverages personal cloud storage
services like Dropbox. However, their performance lags be-
hind traditional proxy services. Lastly, CDN-based techniques
include those that let clients access blocked domains while
appearing to access innocuous ones [54, 107], and those that
allow access to censored content cached on CDNs [68, 120].
Of these, only domain shadowing [107] is able to provide
access to any publicly available content, like SpotProxy.

Moving target defenses. SpotProxy can be understood as a
moving target defense [71,92], dynamically shifting its attack
surface by renewing the IP addresses of proxies, making it
harder for adversaries to block them. Previous solutions have
also drawn from moving target defenses to combat censor-
ship. For instance, Heydari et al. [67] leverage mobile IPv6 to
shuffle the IP addresses of public web servers, while Kon et
al. [76] make use of programmable switches to periodically
shuffle the domain-to-IP mappings of public services hosted
within edge networks. Another related concept for SpotProxy
involves a mobile target adversary [83], which can target and
corrupt different fractions of parties in a protocol, but not all si-
multaneously. In SpotProxy, this corresponds to a censor that
can enumerate a fraction of the proxies at any given time. To
counter such threats, previous work has proposed proactively
secure protocols for creating mobile target defenses [44, 51],
e.g., using proactive secret sharing to distribute data among
multiple storage servers and periodically refreshing crypto-
graphic shares. Similarly, SpotProxy rejuvenates its fleet of
proxy instances proactively.

Enhancing privacy through connection migration. Several
encrypted protocols (e.g., QUIC [55], and Mosh [108]) al-
low clients to maintain session continuity despite IP address
changes. SpotProxy however, enhances existing proxy imple-
mentations with active migration that allows for the seamless
remote notification of updated peer addresses to connect to,
while retaining session continuity through Turbo Tunnel [53].

Existing work has used connection migration for privacy-
preserving communication. CoMPS [105] splits client traffic
across network paths and protocols that support connection
migration, making it harder for network adversaries to observe
and analyze all traffic. MIMIQ [64] and RAVEN [78] use
QUIC’s connection migration to rotate client IP addresses and
obscure the source of network flows. In contrast, SpotProxy

uses connection migration to move clients across constantly
changing proxies, not to prevent traffic analysis.

Cost reductions on the cloud. Before SpotProxy, researchers
have already explored cost savings in the cloud (e.g., by pro-
filing workloads and finding cost-effective VM-to-workload
assignments [113]). Other works have used Spot VMs (either
exclusively [65, 104] or mixed with on-demand VMs [66, 72,
117]) to lower cloud costs while increasing operational ef-
fectiveness. Further solutions for optimizing Spot VMs’ cost,
based on cost arbitrage and cost indexes such as HotSpot [96]
and the work of Shastri et al. [97], respectively, migrate work-
loads to cheaper spot VMs while being optimized towards
lowering reclamations and favouring applications that cannot
tolerate frequent migration. In turn, SpotProxy is designed
not only to embrace, but to aggressively trigger reclamations
which are handled through the relocator. Skyplane [70] pro-
posed network cost arbitrage, a strategy compatible with Spot-
Proxy and which we aim to explore in future work, alongside
other compelling directions (see §11 for more details).

11 Future work

SpotProxy offers many avenues for expansion, including:

11.1 Support for network cost savings

While we acknowledge the significance of network costs, our
focus initially centers on the costs associated with instances,
leaving network-related expenses for future exploration. This
prioritization stems from the considerable weight that instance
costs hold in cloud environments. For illustrative purposes,
consider transitioning the entire Snowflake browser-based
proxy ecosystem that is deployed on end-user devices (e.g.,
laptops), to AWS EC2 instances instead. Snowflake’s network,
as detailed in a recent report [42] by its creators, comprises
approximately 130,000 proxies, and transfers around 30 TB of
circumvention traffic per day. Rather than mirroring the one-
to-one client-proxy ratio of the native Snowflake setup with
130,000 AWS instances, we make a conservative estimate that
each EC2 instance could support 30 clients, given that cloud
instances are more performant. Consequently, we assume that
we only require provisioning 4,333 instances.

In our cost analysis, we standardize all calculations on a
monthly basis to simplify comparisons. Regarding network
costs [7], egress fees dominate, since (1) we can ensure mini-
mal inter-VM costs between the proxy and NAT by situating
them within the same region or zone, and (2) ingress costs are
not a concern, as they are not charged. Applying AWS’s tiered
pricing model for egress traffic gives us a monthly network
cost of (0.09×10+0.085×40+0.07×100+(900−100−
10−40)×0.05)×1000 = $48,800, for handling 900 TB of
data transmission (30 TB per day).

For the instance cost analysis, we calculate expenses based
on provisioning standard m7g.large instances with 2 vC-
PUs and 8 GB RAM. With an on-demand pricing rate of
$0.077 per hour for the instance alone, the monthly cost for



operating 4,333 instances equates to (0.077)× 24 × 30 ×
4333 = $240,221.52. Here, SpotProxy’s use of multi-NIC
m7g.large Spot VMs would instead cost (0.0241)× 24×
30× 4333÷ 3 = $25,062.07. Though we do not currently
support network cost savings, this would still yield a ∼74% to-
tal savings of 240,221.52−25,062.07 = $215,159.45. This
underscores the significance of both instance and network
costs in our overall expense framework.

The figures presented serve merely as an example. To effec-
tively manage network costs, one must recognize that the full
integration of the Snowflake ecosystem into the cloud may not
be essential or beneficial, especially since the value of existing
browser-based proxies should not be overlooked, as they can
continue to play a crucial role. Further, we can reserve cloud-
based proxies for clients with lower bandwidth demands, and
defer clients requiring substantial bandwidth allocations to
proxy ecosystems where network cost are less of a concern
(e.g., edge locations or user-hosted devices). Additionally,
leveraging free tiers offered by cloud providersÐe.g., AWS’s
100 GB per month per account, and Oracle’s 10 TB [82],
among other offeringsÐcan further mitigate costs.

11.2 Other directions

Integration with other clouds and proxies. We plan to sup-
port multi-cloud (e.g., GCP) and additional proxies (e.g., Tor
native bridges, in addition to existing Snowflake support).
Cost calculation for burstable instances. This applies partic-
ularly to micro instances (e.g., EC2 T4g VMs), which operate
on burstable performance models [8]. These models offer
fixed or unlimited burst capabilities, potentially leading to un-
expected costs when the allocated burst capacity is exceeded.
Performance variability among similar instances. We have
assumed that instances with identical parameters (e.g., vCPU
count) deliver equivalent performance. However, this may
not always be the case, and different instances could exhibit
varying performance levels (e.g., AWS instances, such as the
M7g, that make use of the newer AWS Graviton3 processors).
Integrating autoscaling with assignment. We incorporated
basic autoscaling, such as scaling down when CPU utiliza-
tion falls below 20%. However, integrating autoscaling more
closely with the chosen assignment algorithm [102], currently
not practiced, could improve cost efficiency or connectivity.
Cost savings via resource harvesting. Recent proposals in
the cloud advocate for the harvesting of idle resources (e.g.,
CPU, storage) from VMs that have already been allocated to
customers [34, 91, 106, 118]. While not yet made available by
cloud providers, we expect that SpotProxy will also be able
to utilize these to further reduce costs.

12 Conclusion

We have presented SpotProxy, a censorship circumvention
infrastructure that hosts proxy instances in the public cloud
while minimizing costs and improving unblockability. Spot-
Proxy is in constant search for the cheapest virtual machines

(VMs) available, reducing the cost of running circumvention
proxies; at the same time, it also swaps older VMs out and
spawns new ones at different IP addresses to increase un-
blockability. We adopted Wireguard and Snowflake for use
with SpotProxy, and demonstrated the drastic cost benefits
of SpotProxy, its resistance to blocking adversaries, and its
ability to tolerate quick rejuvenations and relocations.
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A Extended evaluation

A.1 Cost analysis

We extend our cost analysis with the remaining historical
data mentioned in §7.2, executed over regions within North
America and targetting non-burstable instances with at least
2 vCPUs and 4GB RAM. As seen in Fig. 9 and Fig. 10, our
analysis extends from June 2022 to January 2024. Next, we
provide general statistics on our overall analysis across this
entire period. Transitioning from static on-demand VMs to
static Spot VMs yielded a median cost reduction of 71.6%, a
mean of 71.3%, a min of 41.2%, and a max of 88.2%. Tran-
sitioning from static Spot VMs to optimal single-NIC VMs
yielded additional savings with a median of 9.2%, a mean of
20.9%, a min of 0.03%, and a max of 79.2%. Transitioning
from optimal single-NIC to optimal multi-NIC provided extra
savings with a median of 57.1%, a mean of 58.5%, a min of
55.2%, and a max of 62.6%. Transitioning directly from static
on-demand VMs to optimal single-NIC yielded savings with
a median of 80.8%, a mean of 78.8%, a min of 62.6%, and
a max of 88.3%. Overall, transitioning directly from static
on-demand VMs to optimal multi-NIC yielded savings with
a median of 91.6%, a mean of 91%, a min of 83.8%, and a
max of 95.5%. Finally, for cost arbitrage intervals, we have a
median interval of 7.5 hours, a mean of 17 hours, a min of 16
minutes, and a max of 24 days.

A.2 Circumvention efficacy extensions

In §8, we tested ENEM-aggressive and ENEM-optimal with
censoring agents making up 50% of our client composition.
Here, we include the remaining configurations that we tested
against, namely: 10% of censoring agents and 5% of censor-
ing agents, for ENEM-aggressive (Fig. 11 and Fig. 12) and
ENEM-optimal (Fig. 13 and Fig. 14) respectively.
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Figure 9: Average monthly cost of operating a single proxy, for months between June 2022 and March 2023.
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Figure 10: Average monthly cost of operating a single proxy, for months between April 2023 and January 2024.
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Figure 11: Results for ENEM19-aggressive. SpotProxy is
capable of maintaining roughly 80% connectivity, with cen-
soring agents made up 10% of our client composition.

0.93

0.95

0.98

1.00

Co
nn

ec
te

d 
Us

er
s (

%
)

0 5000 10000 15000 20000
Hours

0.90

0.95

1.00

No
nb

lo
ck

ed
 p

ro
xy

 ra
tio

Rejuvenation period == Blocking period
Rejuvenation period == 2 * Blocking period

Figure 12: Results for ENEM19-aggressive. SpotProxy is
generally capable of maintaining above 90% connectivity,
when censoring agents made up 5% of our client composition.
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Figure 13: Results for ENEM19-optimal. SpotProxy is capa-
ble of maintaining generally above 90% connectivity, despite
censoring agents made up 10% of our client composition.
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Figure 14: Results for ENEM19-optimal. SpotProxy is capa-
ble of maintaining generally above 90% connectivity, when
censoring agents made up 5% of our client composition.
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