NetShuffle: Circumventing Censorship with Shuffle Proxies at the Edge

Patrick Tser Jern Kon Aniket Gattani Dhiraj Saharia* Tianyu Cao
Diogo Barradas! Ang Chen! Micah Sherr* Benjamin E. Ujcich*

Rice University YUniversity of Michigan *Georgetown University *University of Waterloo

Abstract—NetShuffle is a censorship resistance system that
offers ‘“shuffle proxies,” where regular proxy services (e.g.,
HTTPS proxies, Tor bridges) are decoupled from their ad-
dresses via continuous in-network change. This makes shuffle
proxies significantly more difficult to block compared to their
traditional counterparts, because the network locations are
now in constant flux. NetShuffle is also designed to engage
a new class of support base—edge networks—which have
received scant attention from existing work. NetShuffle uses
emerging programmable switches to provide the shuffle, while
staying otherwise transparent to services and clients, enabling
it to be applied as a drop-in network appliance to help promote
Internet freedom. We have prototyped NetShuffle in testbed
environments and operated it seamlessly on a slice of a live
campus network for more than a month, showing that it
provides network shuffles in a way that is transparent and
incurs negligible overheads.

1. Introduction

Circumvention technologies are essential for Internet
freedom, as more than half the world’s population lives in
countries ruled by repressive regimes [1]-[3]. Censorship
presents significant challenges due to the power imbalance
between the censor and the censored. Nation states are
capable of massive surveillance, but censored users have
very little leverage. Fortunately, censored users are not left
to fend for themselves. Users and networks from uncensored
countries contribute circumvention services [4]-[10] that
relay censored requests originating from censored regions to
blocked content located in uncensored regions. Censorship
circumvention is therefore, in nature, a collective enterprise.
Online freedom requires mobilizing any form of help that
uncensored regions are willing to provide. This has further
led to an expanding arsenal of circumvention services [4],
[11]-[13] and to a perennial call for stronger participation
in circumvention services [14]-[16].

Two approaches have gained popularity, operating at end
users and core networks, respectively. End users from uncen-
sored regions provide assistance by setting up circumvention
proxies, (e.g., Tor [4] or Lantern [11]). Such proxies require
few resources to operate, and almost any end user can opt
in, encouraging a potentially large support base. However,
nation-state censors strive to identify and block user prox-
ies [17]. For instance, a censor can easily obtain Tor relay

nodes from nodes’ publicly advertised IP addresses [17].
Even for private Tor bridges, whose addresses are distributed
out of band (e.g., via email or moat [18]), censors have been
adept in identifying and blocking them nevertheless [19]-
[22]. From the censor’s perspective, blocking individual
proxy addresses incurs little collateral damage in terms of
economical or social impact, as proxy addresses rarely host
services important to the censor.

Core network circumvention techniques are at the oppo-
site end of the spectrum, operating in critical infrastructures.
In ISP networks, decoy routing (DR) and its variants [5]—
[10] secretly divert traffic from the network core to covert
destinations by tapping and sifting through network traffic
to identify packets with embedded steganographic signals.
In CDN networks, domain fronting [23] and domain shad-
owing [13] leverage content distribution mechanisms to hide
covert domains in network requests and redirect them within
the CDN infrastructure. These techniques rely on the reluc-
tance of the censor to block key infrastructures due to high
collateral damage, since blocking core networks can lead to
severe performance penalty or service unavailability [23].
However, given that only a small number of dominant
players operate key infrastructures, there is a high barrier to
participation [24], and opt-outs have a critical effect [25]—
[27]. Even one opt-out can disable circumvention services
for a significant portion of the Internet. To date, Amazon,
Azure, and Google have disabled domain fronting [28]—
[30], and Akamai selectively suppresses the distribution of
content in specific countries [31].

Both classes of techniques enhance the circumvention
arsenal and are crucial for countering censorship. However,
we believe that more is needed, at an operating point that
is currently mostly untapped by censorship circumvention
approaches. This paper explores novel circumvention tech-
niques to mobilize a third support base—edge networks—
which are notably missing from the picture. As a result of
their unique resources and features, edge networks offer a
new front in the censorship arms race.

Edge networks, such as campus networks, enterprises,
and private data centers, provide salient properties as they
lie in the middle of the spectrum. In many aspects, edge
networks exhibit similar properties as the network core, as
they are an integral part of the Internet infrastructure. They
offer a variety of services, such as education materials, soft-
ware downloads, and web content. They are also endowed
with considerable resources, including publicly-routed IP

address blocks and hardware equipment such as high-speed
networking and compute infrastructure. At the same time,
edge networks share certain characteristics with end users
as well. They are greater in number than core networks, and
may be less constrained by social and economic ties with
censors, thus providing a robust support base.

NetShuffle. We present NetShuffle, a censorship circum-
vention system targeted towards edge networks. NetShuffle
offers a new class of “shuffle proxies.” NetShuffle works by
raising regular proxy services (e.g., HTTPS proxies) to a
new degree of unblockability by decoupling services from
their public identifiers via shuffling. NetShuffle scrambles
the mapping between a participating network’s domains
and its IP addresses, and breaks away from the prevailing
method in which proxies are located by fixed identifiers
(e.g., fixed IP addresses of Tor bridges). The status quo
in the current censorship-resistance landscape is that the
tight coupling between proxies and their fixed network loca-
tions render them easily blockable once their addresses are
identified [19]-[22]. Moreover, the impact of this blocking
is both precise (i.e., only the targeted proxy gets blocked,
with little collateral damage) and enduring (i.e., no other
service instances can be offered at the same address). Shuffle
proxies aim to confuse the censor and drastically increase
its blocking cost by moving away from static identifiers,
making precise blocking impossible.

For ease of deployment, NetShuffle uses existing edge
network resources (e.g., network equipment and IP space)
with minimal changes. Operators need only upgrade an edge
network’s border router to a programmable device (e.g.,
an Intel Tofino P4 switch [32]) to perform programmable
packet processing at hardware speeds, and allow NetShuffle
to interface with its authoritative name server to ensure
synchronization between domain names and shuffled IPs.
Programmable switches are available off-the-shelf, compa-
rable with non-programmable counterparts in cost, and have
been deployed in several production data centers [33], [34].
Executing inside the switch, NetShuffle presents a shuffled
view to external users regarding the proxy service/identifier
mapping, while keeping the internal edge network structure
unchanged and staying transparent to internal users and ser-
vices. Censored clients use NetShuffle by obtaining a proxy
identifier, which is an innocuous-looking domain name (e.g.,
abc.university.edu). When a client queries this do-
main name, NetShuffle’s DNS resolver reveals a temporary,
client-facing IP address for the proxy that is not the actual
internal IP address and may differ across clients even for
the same proxy. Inbound and outbound connections to this
client-facing address are translated by the border router.

The main technical challenge that NetShuffle addresses
is to perform a transparent shuffle in which several key secu-
rity and operational properties must be met simultaneously:
(1) external network views must obfuscate the internal net-
work configuration, (2) shuffling must not degrade or disrupt
other services’ performance, (3) shuffling must impose only
a minimal resource footprint (e.g., usage of the IPv4 address
space), and (4) any in-network modifications (e.g., TCP or

IP header rewriting) must not break existing services. We
achieve these properties by a hardware/software codesign at
the programmable switch, and build a prototype running in
both a testbed and a small-scale live deployment. It took us
one person-day to deploy NetShuffle on a campus network
slice that has been in use for five years, and NetShuffle has
been operating seamlessly with existing services and clients
for over a month. We present a comprehensive evaluation
to demonstrate its practicality.

Ethics. The IPv4 subnet used for live experiments is op-
erated by the authors, and all additional users of this slice
of the university network were made aware of this project
before we performed any experimentation. We inspected
only our own traffic and did not add additional monitoring
of traffic not produced by the authors. Our live experiments
were designed to minimize harm—the primary risk was
degraded performance, which did not occur.

2. A Case for Circumvention at the Edge

We make a case for edge networks’ untapped potential
by contrasting them against existing support bases for cen-
sorship circumvention. Anti-censorship is a constant arms
race and a community endeavor. This points to two ways to
tilt the balance in favor of online freedom: (1) enhance the
anti-censorship ecosystem with new evasion mechanisms,
thus raising the censor’s cost; and (2) make it easier for
different network entities to volunteer in evasion efforts, thus
enlarging the support base. Operating at the edge, NetShuffle
contributes to both dimensions. Figure 1 depicts the network
landscape.

2.1. Strengths/weaknesses of end user proxies

Individual users have played an instrumental role in anti-
censorship efforts, with notable services including Tor [4]
and Lantern [11] proxies. User proxies are easy to operate
and lightweight, and have led to volunteer-driven commu-
nities with many supporters.

However, end user proxies are susceptible to enumer-
ation attacks as they are easy to block with little to
no collateral damage. To counter this, Tor assigns prox-
ies (i.e., bridges) to users using out-of-band mechanisms
(e.g., e-mail, CAPTCHA) to reduce enumeration speed. Re-
searchers have also studied distribution methods grounded
in game theory [21], social network trust [35], [36],
and reputation systems [37]-[39]. Flash proxies [40] and
Snowflake [41] allow common Internet users to conveniently
deploy ephemeral proxies in their web browsers, which
further increases proxy counts at the cost of limited com-
munication performance [42] and possible detection [43].
Despite these efforts, censors often block such proxies [19]—
[22], as end users typically do not provide critical services.

Tradeoffs: (+) Very large support base, (-) Very little
collateral damage.

Edge Core net
network
UniversityA

Server 2
’\)'
\¥% \
e

Proxy
server NetShufl
router

Decoy
router / "')
/ " "/\ \

\/{. 2\ Edge

Core net 2R)

Server 1

Core net
Tier-1 ISP

/" End-user ™

X User L ,'
. proxy

Alice Censor

= _ network
Censored ey e (57 Corg et EnterpriseB
5 Regional
Region Uncensored 'SP

region

Figure 1: Simplified networking landscape. Edge networks are small ASes,
or entities that obtain IP address blocks from an upstream provider. They
are mostly customers, rather than providers of Internet access/transit.

2.2. Strengths/weaknesses of core net services

Core network infrastructure (e.g., ISPs, CDNs) can also
provide circumvention solutions since such infrastructure
controls a vast set of network resources essential to the
economic or social well-being of a censoring state [41]. The
collateral damage of blocking core networks is substantial,
as blocking them effectively takes down a sizeable portion
of the Internet for the censored region.

Decoy routing redirects Internet traffic transiting through
ISP networks to a covert destination [24], [44], with recent
approaches providing reduced overhead with switch-based
solutions [7], [45]. For CDN networks, domain fronting [23]
makes creative use of the plaintext SNI (Server Name Indi-
cation) field that is part of HTTPS requests. A client requests
an innocuous domain name in the SNI field and includes
an encrypted “Host” header in the payload requesting a
censored domain; CDNBrowsing [31], [46] and domain
shadowing [13] introduced recent improvements to this idea.

A key limitation, however, is the small number of core
networks that can assist with anti-censorship, and conse-
quently the significance that an opt-out has on the underly-
ing circumvention service. Decoy routing remains far from
being widely implemented by ISPs, while major CDNs have
disabled support for domain fronting [25], [26], [47], [48] in
the interest of maintaining business relationships with cen-
soring states. In addition, the proliferation of CDNs around
the world (and within censored regions) has resulted in the
majority of traffic destined to these core infrastructures to
never actually exit the region [49], subjecting it to a region’s
censorship policies [31] or the provider’s own censorship
policies [50]-[53].

Tradeoffs: (+) Very large collateral damage, (-) Very
small support base.

2.3. Distinct tradeoffs/opportunites at the edge

We argue that edge networks, such as campus, enterprise,
and other organization networks, are uniquely positioned
and hold great potential to act as a new support base.

First, given the large number and distributed nature of
edge networks, these networks are strategically located to
exploit a large support base whose characteristics resemble
those of end users. A recent study [54] conservatively
estimates that there are 48k autonomous systems (ASes)
at the edge, even without counting edge networks that do
not possess their own AS numbers. These edge networks
substantially outnumber core networks, thus having the po-
tential to provide a very large support base.

Furthermore, just like core networks, edge networks are
an integral part of the Internet infrastructure. They possess
a substantial amount of resources, both in terms of the
web services and content that they serve, and also their
network resources (e.g., domain names and IP spaces) and
equipment (e.g., network switches) that end users typically
do not possess. In fact, edge networks are collectively
the de-facto and decentralized source of collateral damage
for blocking adversaries (at the core ISP level), since the
negative impact of blocking a core ISP network eventually
stems from the inability to access the content served by
individual edge networks. Further, maintaining block lists
at the address block granularity can be error-prone, and
mistakes are compounded when over-blocking IP prefixes at
a wrong granularity, creating further difficulty for the censor.

New operating point at the edge: (¢) Substantial
collateral damage, (#) Substantial support base.

However, we lack an effective design that leverages the
edge resources for anti-censorship. Today, edge networks
can only contribute by setting up regular user proxies (e.g.,
Tor bridges)—which they often do—but this does not ad-
equately put their substantial edge resources to use. We
believe that edge-native evasion techniques will be a strong
supplement to the existing anti-censorship apparatuses.

3. NetShuffle Overview

NetShuffle works by raising regular proxies to a new
degree of unblockability, leveraging the edge network’s sup-
port. An edge network participates by (1) setting up one or
more existing proxies out of the box, and then (2) deploying
NetShuffle to protect these proxies via shuffling. We call the
resulting service “shuffle proxies.” NetShuffle is agnostic
to the specific choice of proxies, so it inherits any proxy-
native defenses against active probing and fingerprinting
attacks [55] (or the lack thereof). Like many existing cir-
cumvention services [24], [56], [57], NetShuffle relies on
the altruism of its operators for deployment. Thus, beyond
fulfilling its main mission of censorship resistance, we also
aim at lowering its deployment barrier as key design goals.

« Unblockability. It should be difficult for a censor
to identify and block proxies hosted by NetShuffle
without incurring high collateral damage.

Proxy Distribution

Service @ [ExtiP-IntiP ing Table |

B. Proxy hostname
& shared secret
beta.shuffle.edu

proxy server
93.184.216.200

s

A. Proxy request

E. Proxy access request

R
Alice C. Resolve rr cs.shuffle.edu www.shuffle.edu
. NetShuffle
Censored proxy hostname gitch 93.184.216.231 93.184.216.143

Region beta.shuffle.edu

D. Proxy IP @l,{-ﬁ
DNS server

(a) NetShuffle’s workflow from a client’s perspective.

Edge Network
shuffle.edu
93.184.216.0/24

to-ExtIP

DNS ing Table
www.shuffle.edu| 93.184.216.2
cs.shuffle.edu | 93.184.216.67
beta.shuffle.edu| 93.184.216.1

core.shuffle.edu| 93.184.216.1
data.shuffle.edu| 93.184.216.3

***shuffle.edu | 93.184.216.254

ExtIP-IntIP ing Table
93.184.216.2 | 93.184.216.143
93.184.216.67 | 93.184.216.231
93.184.216.1
93.184.216.3

93.184.216.200

93.184.216.254

Epoch 1

ExtIP-IntIP Mapping Table <}
93.184.216.1 | 93.184.216.143 | Address
93.184.216.27 | 93.184.216.231 | Shuffling
93.184.216.2
93.184.216.3

DNS Mapping Table
www.shuffle.edu | 93.184.216.1
cs.shuffle.edu | 93.184.216.27
beta.shuffle.edu| 93.184.216.2

core.shuffle.edu| 93.184.216.3
data.shuffle.edu| 93.184.216.3

***.shuffle.edu | 93.184.216.254

93.184.216.200

93.184.216.254

Epoch 2

v

(b) Address shuffling between two epochs (Bold: proxies).

Figure 2: NetShuffle’s workflow across two epochs. In the basic version (§4.1), ExtIP-to-IntIP mapping is a full permutation.

o Drop-in deployment. NetShuffle allows for a mod-
ular deployment. The biggest change is to replace a
border device with a programmable switch!.

o Transparent shuffle. NetShuffle shuffles addresses
in a transparent manner without impacting normal
edge services and their clients, and does not require
configuration changes on edge services or clients.

o Low resource footprint. IPv4 addresses are a scarce
resource. NetShuffle does not require (but is compat-
ible with) IPv6 since it would create a high barrier to
entry due to low (single-digit in many nations) [59]—
[61] and stalling [62] adoption at the edge.

Non-goals. There are other protections against proxy enu-
meration attacks which are orthogonal to our key innovation.
Recent work has developed advanced proxy distribution
schemes [21], [35], [38], obfuscation techniques to protect
against statistical traffic analysis [55], [63], [64], and probe-
resistant proxies (that can, for example, send legitimate-
looking responses to unauthenticated clients) [63], [65]. We
do not advance the state of the art in these aspects, but note
that they can be directly applied to shuffle proxies.

Threat model. NetShuffle assumes a standard threat model
in censorship circumvention, and we state it for complete-
ness. NetShuffle clients are located within geographical re-
gions under the control of a state-level adversary. The censor
is able to monitor and tamper with clients’ traffic within its
jurisdiction, operate legitimate NetShuffle clients to obtain
proxy identifiers, and perform active probing. However, we
assume a rational adversary that is sensitive to the collateral
damage of blunt coarse-grained tools (e.g., outright blocking
of entire address spaces). The adversary is also computa-
tionally bounded and cannot break standard cryptographic
assumptions. Traffic analysis and active probing attacks are
realistic but widely studied concerns [55], [63]-[65], so we
assume that some existing countermeasures are in place.

1. NetShuffle currently only supports single-switch execution. We leave
the incorporation of multi-switch support using existing work on distributed
shared-state for programmable switches [58] as interesting future work.

4. The NetShuffle Defense

We now present a basic version of NetShuffle to illus-
trate its workflow, and then describe several enhancements.

4.1. The basic network shuffle

Figure 2(a) depicts NetShuffle’s workflow. In this sce-
nario, Alice is a client located within a censored region who
wishes to communicate with the free Internet. Alice will
use NetShuffle to help her reach the unfiltered Internet via
Shadowsocks [66]—which is deployed as a shuffle proxy—
hosted within an edge network, e.g., a university that owns
shuffle.edu. (NetShuffle is agnostic to the proxy used.)

Registration and authentication. To access a shuffle proxy,
Alice starts (A) by accessing an out-of-band proxy distri-
bution system (e.g., email, moat [18], or those mentioned
in §3) The distribution system replies back to Alice with
the information for a NetShuffle proxy, which includes a
proxy hostname (e.g., beta.shuffle.edu) and a shared
secret® that Alice will later use to establish a secure channel
with the proxy (B); the distribution system shares the same
information with the proxy. Alice then issues a DNS query
for the proxy hostname (C), and waits for a DNS response
that contains the proxy IP (D). Alice then establishes a
connection with her proxy by contacting this IP (E). The
NetShuffle switch converts this IP to the proxy’s true IP
(see below), and forwards Alice’s traffic to the proxy (F).
Finally, the proxy authenticates Alice using the previously
shared secret. Clients that access a shuffle proxy domain
name without a valid shared secret, on the other hand, would
receive seemingly “genuine” responses— e.g., existing work
(§3) uses timeout or 4xx HTTP error codes [63], [65].

Per-epoch shuffle. To prevent a censor from blocking Al-
ice’s connections towards a proxy, NetShuffle presents an
external view of a continuously shuffling set of IP addresses
for the hostnames served by the NetShuffle-enabled edge

2. This is analogous to Tor’s “bridge lines” which contain key material
for accessing a bridge. Bridge lines are communicated via Tor’s bridge
distribution mechanism. Similar to Tor, we also assume that a censor can
access the proxy distribution system to learn about NetShuffle proxies.

network. This external view is updated at a set time interval
(i.e., an epoch). This shuffle decouples proxy nodes from
their static IP addresses by (1) identifying proxies using a
large space of subdomain names under a domain belonging
to the edge network, but that are not allocated to legitimate
edge services, and (2) resolving them to changing IP ad-
dresses over time. This procedure is shown in Algorithm 1.
(In §7, we discuss why censors cannot block uncommon
subdomains without incurring sizable collateral damage.)

Let ALLIPS denote all IP addresses for the net-
work,> then a shuffle is a random permutation IIp:
ALLIPS—ALLIPs. To distinguish between external and in-
ternal views of the IP space, we use EXTIPSCALLIPS to
denote the external-facing IP addresses that are visible to
clients, and INTIPSCALLIPs to denote the true IP addresses
for edge services, which are never affected by the shuffle.
Indexing II;p with a particular EXTIP will yield its true
INTIP. This mapping resides in the border switch, which
translates incoming packets’ destination IP addresses from
EXTIPs to INTIPs. Its reverse mapping HI}I is also installed
on the switch to translate the source IP addresses of outgoing
packets from INTIPS to EXTIPS, so that internal addresses
are never revealed to the clients.

Each epoch generates a random shuffle IIjp and its
reverse prl, as well as a third DNS mapping Ilpns,
which maps all advertised subdomain names to their current
ExTIPs and is installed to the authoritative DNS server to
answer resolution requests.

Algorithm 1 The basic network shuffle

1: function BASICSHUFFLE(ALLIPS)

2 II;, <+~ RANDPERM(ALLIPSx ALLIPS)

3 for each edge service (IntIP, subdomain) do
4: ExtIP < II;,[IntIP]
5.
6
7

Mgns < Hgns U { ExtIP, subdomain)
! INV(IT;p);

return (Ty, 11,1, T)

> Inverse

Confusing the censor. We now describe how address
shuffling enables circumvention with our running exam-
ple in Figure 2(b). Consider the DNS mapping for the
first epoch, which shows two subdomains for legitimate
services (www.shuffle.edu and cs.shuffle.edu), and
many other subdomains that are resolved to EXTIPs, whose
corresponding INTIPS map to a proxy. Since Alice’s assigned
proxy is beta.shuffle.edu, she establishes a connection
to 93.184.216.1 as the EXTIP and NetShuffle’s switch
would redirect Alice’s connection to the proxy node at
93.184.216.200 as the INTIP after address translation.
Once the first epoch elapses, NetShuffle’s mappings will
be randomly shuffled, so that the censor cannot easily enu-
merate and permanently block EXTIPs associated with the
hosted proxies. This is because an EXTIP that was used to ac-
cess a proxy can now point to a legitimate service—see that
the EXTIP 92.184.216.1, which was originally used by

3. Note the operator can specify a list of STATICIPS to be excluded from
the shuffle, and hence excluded from ALLIPS. This is useful to enable
services directly accessed via IP without first performing DNS resolutions.

hostnames beta.shuffle.edu and core.shuffle.edu,
now maps to the legitimate www.shuffle.edu service.
Thus, if a censor observes Alice’s DNS resolution response
for beta.shuffle.edu on steps C and D and perma-
nently blocks the resulting EXTIP—or equivalently, Alice
acts on behalf of the censor to obtain the subdomain name
and ExTIP—it will likely block access to some legitimate
service over subsequent epochs, causing collateral damage.
In a similar vein, an EXTIP that pointed to a legitimate
service can now be used to access a proxy—see that the
EXTIP 92.184.216.2 that was originally attributed to
www.shuffle.edu is now used by beta.shuffle.edu.
Thus, creating an allowlist for EXTIPs associated to legit-
imate services is also a futile exercise for the censor. The
censor can, however, resort to blocking the subdomain name
beta.shuffle.edu at the DNS level, but new subdomain
names can be constantly supplied to clients as they are
abundant* and easy to create (we explore this facet of Net-
Shuffle in §7). Another brute-force strategy is to block the
entire ALLIPs address space, but this may incur significant
collateral damage (see §7).

In most cases, the client’s DNS resolver will reside in
the censored region. However, regardless of the location of
the resolver, requests to . shuffle.edu will ultimately be
resolved using the edge network’s authoritative name server.
(We discuss DNS caching in the next section.) The censor
can block responses from this name server, but it incurs a
collateral damage that is equivalent to blocking the edge
network entirely.

4.2. Performing an asynchronous shuffle

Despite its usefulness in helping to grasp the general
idea of our solution, the basic shuffle described above does
not consider an important practical aspect of NetShuffle’s
deployment: dealing with network asynchrony. First, DNS
updates experience a propagation delay from the authorita-
tive servers to the clients. This delay is due to the combined
effect of the DNS TTL (time-to-live) caching mechanism,
which holds on to previously resolved DNS records until
TTL timeout [69], and potentially other forms of latency
(e.g., DNS caching in resolvers, network delays). Thus,
NetShuffle cannot assume that all clients have instantaneous
access to the new IIpns mappings. Second, long-lived con-
nections may span multiple epochs, whereas modifications
to Iljp and Hl_p1 may change an EXTIP’s current mapping
and disrupt such connections. Below, we propose two tech-
niques to tackle these issues and accomplish asynchronous
address shuffling. This shuffle is detailed in Algorithm 2.
Handling DNS propagation delay. NetShuffle handles the
DNS propagation delay using a technique called IP address
space segregation. We divide ALLIPS into non-overlapping
address partitions, {IPPART;, PPARTq,--,IPPARTR}, and
cycle through these partitions in a round robin manner

4. Proxies use legitimate domains belonging to the hosting edge network.
Subdomains could be resupplied by, for instance, sampling from a corpus
of hundreds of millions of existing subdomains [67], [68].

Partition 1

93.184.216.1 ExtIP-to-IntIP ExtIP-to-IntIP (old)

ExtIP-to-IntIP

ExtIP-to-IntIP (old) ExtIP-to-IntIP

93.184.216.2 ExtIP IntlP ExtIlP IntlP ExtIP

IntiP ExtIP IntiP ExtlP IntlP

93.184.216.128

93.184.216.1 |93.184.216.128 93.184.216.1 |93.184.216.128
93.184.216.127 93.184.216.2 | 93.184.216.129 :>

93.184.216.129

93.184.216.83 93.184.216.128 | 93.184.216.83 | | 93.184.216.1 [93.184.216.168
|:> 93.184.216.124 | 93.184.216.202 |:>

93.184.216.99 93.184.216.129 | 93.184.216.99
93.184.216.127 | 93.184.216.145

Partition 2 93.184.216.127 | 93.184.216.254

93.184.216.2 | 93.184.216.129
93.184.216.127 | 93.184.216.254

93.184.216.254

93.184.216.34 93.184.216.254 | 93.184.216.34

93.184.216.128
93.184.216.129

s s
Epoch 1 Epoch 2

93.184.216.254
[C— ¢
r

s
Epoch 3

IP partitioning Round 1

-

Round 2

Figure 3: IP address space segregation for R=2. NetShuffle splits all IP addresses into two random partitions. (IP addresses shown in ascending order for
clarity of presentation.) It cycles through the partitions across epochs to generate active ExtIPs.

Algorithm 2 The asynchronous shuffle

1: function ASYNCSHUFFLE(ALLIPS)

2 (TPParty, - - -, IPPartgp) + PARTITION(ALLIPS)
3 for each epoch i++ do

4: i<+ imodR

5: (Mp, ...) < BASICSHUFFLE(IPPart;)

6: WAITUPONNEWCONN(timeout)

7: function NEWCONN(SrclP, SrcPort, DstIP, II;;)

8 key < (SrcIP, SrcPort, DstIP)

9 val < IL;,[DstIP]

10: Conn « Conn U (key, val)

11: Conn—! «+ INV(Conn)

across epochs. For epoch i, we use IPPART; to construct
the active mappings Ilp,, Hl_Pt, and IIpns,, but in the
switch we remember all mappings used in the most recent
R epochs. Assuming for now |IPPART;|> |INTIPS|—i.e.,
a single partition of addresses is sufficient to support all
active edge services—then the mappings are constructed as
follows. Instead of the full shuffle II;p: ALLIPS—INTIPS,
we construct II¢: TPPART;—INTIPs, where we randomly
assign an EXTIP chosen from IPPART; to support the service
running at each INTIP. Since partitions do not overlap and
we keep state for the R most recent epochs, clients with
expired DNS records will only match exactly one (expired)
partition, say IPPART;» where i’ < i, and packet destinations
will be translated into the correct INTIPs used by the ¢’-th
epoch. The HI_Pli and IIpns, mappings are constructed based
on IIjp,. Figure 3 shows an example for R = 2 with two
randomly partitioned halves.

We note that INTIPS are collected from the network
operator as the true composition of the network. Each
edge server that hosts some legitimate or proxy services
will produce an entry in INTIPS, whereas unused IP ad-
dresses that do not provide active Internet services are in
ALLIPS\INTIPs. In other words, this technique assumes that
there is resource slack in terms of allocated but unused IP
addresses at the edge. Specifically, the size of a partition,
which is |ALLIPS|/r, must be sufficient for all active services
INTIPS. Measurements show that the utilization of publicly
routable IPv4 address spaces sits between 50% to 60% [70]—
[73]. This gets us close to R = 2, but we will significantly
reduce this requirement (deferred to §4.3) so that address-
constrained edge networks can also deploy NetShuffle.

Supporting long-lived connections. NetShuffle cycles
through all partitions {IPPARTy,IPPARTy, ...,IPPARTR} in
R epochs, finishing a round. At this point, it needs to
regenerate a fresh mapping using addresses in IPPART,
cycling through the partitions in a second round. The shuffle
generated for the (R+1)-th epoch (in the second round)
will be different from that for the 1-st epoch (in the first
round), because every shuffle is randomly generated and
independent. Nevertheless, the same set of EXTIPS in Iljp,
are now provided to external clients, so ambiguity arises.
When we receive a packet destined to some EXTIPEIPPART1,
we are no longer sure whether this connection was served
with mappings from the first or second round; i.e., for long-
lived connections that span more than R epochs (one round),
the previous method of distinguishing the mapping based on
non-overlapping partitions would no longer work.

Our solution keeps two connection tables, CONN and
CoNN~1, for long-lived connections in the incoming and
outgoing directions, respectively. For these connections, we
expire their full mappings but two entries remain in these
connection tables to keep state. Consider a connection (Fig-
ure 4) that started in the 1-st epoch (in the 1-st round) and
continued onto the (R+1)-th epoch (in the 2-nd round). Its
CONN entry uses (SRCIP, SRCPORT, DsTIP) as key, where
SRCIP and SRCPORT are from the external client, and DSTIP
records the EXTIP provided to the client earlier. The value
is the service’s INTIP in the expired mapping of the 1-st
epoch, even though we are currently using a newly generated
shuffle in the (R+1)-th epoch. Similarly, a CoNN~! entry
performs the reverse translation for the same connection.
Long-lived connections’ expired mappings are thus main-
tained in CoNN and CoNN~!. Insertions to the connection
tables are performed when the first packet from a connection
arrives, and deletions are upon connection teardown (e.g.,
TCP RST/FIN) or timeout. The latter relies on a switch
mechanism, where the control plane software sweeps entries
that have not been triggered for a threshold, and garbage-
collects them if resources run low. This enables us to clear
UDP state, where the communication does not have an
explicit teardown process. The switch consults connection
tables before the full mappings, to ensure the former takes
precedence for a correct translation.

connectionin
srclP srcPort dstiP IntlP
1111111 94332 93.184.216.110 93.184.216.200
tionOut
srclP dstPort dstIP ExtIP
93.184.216.200 94332 11.11.11.11 93.184.216.110

Figure 4: Connection tables when a client at 11.11.11.11 connects
to the beta.shuffle.edu proxy hosted at 93.184.216.200, and
whose Ext IP at connection time (i.e., potentially multiple epochs in the
past) is 93.184.216.110.

4.3. Compacting the shuffle

We now address the problem that the asynchronous shuf-
fle requires an R-way partition of ALLIPs and a considerable
resource slack—i.e., |INTIPs| < |ALLIPS|/r. The Internet’s
IPv4 address space has been fully allocated, so the current
50%-60% IPv4 utilization will increase over time [70]-
[73]. In fact, the address efficiency of network services is
important in many settings [74]-[76], as [Pv4 addresses are
universally scarce. For the same reason, NetShuffle must
minimize its footprint to increase deployability.

We draw insights from a recent address efficiency so-
lution [74], but tilt it sideways for switch-resident execu-
tion. The idea is that a service provider with limited IPv4
addresses can host many services that are using hostname-
based protocols (e.g., HTTPS) at the same server IP and
port. Clients visiting different HTTPS domains access the
same IP, and TLS’ Server Name Indication (SNI) extension
is used to determine which service is actually requested.
Our compacted shuffle uses a similar strategy for hostname-
based protocols (HP), with distinct challenges arising from
switch hardware execution. Further, we also compact the
shuffle for non-hostname-based protocols (NHPs).

Compacting NHP services. We start with NHP services
(e.g., FTP, SSH), where no hostname is included in the
protocol itself so disambiguation must happen at the TCP/IP
level. Our key idea is to assign the same EXTIP to multiple
internal INTIPs as long as their services are listening on
different ports. This amplifies the available mapping space
by accounting for the ports, while still avoiding ambiguity
in the mapping. For instance, consider a network with three
servers (and thus three INTIPs), which provide SSH and FTP
services (see Figure 5(a)). We will denote the list of distinct
NHP service ports as INTPORTS={22, 21}. A single EXTIP
can be assigned to multiple INTIPs, as their clients will
connect to distinct service ports. This idea is akin to DNAT
(destination network address translation), but NetShuffle
is different in that (1) this is transparently applied to an
already-deployed network without modifying its address-
ing scheme, and (2) the mapping is constantly changing.
Thus, the full shuffle is ALLIPS X INTPORTS— INTIPS with an
amplification factor |INTPORTS|, and the partitioning gives
IPPART; X INTPORTS—INTIPS for the i-th epoch. This signif-
icantly cuts slack requirements, by a factor of |INTPORTS].

Compacting HP services. For HP, NetShuffle unlocks even
more flexibility by disambiguating clients above the TCP/IP

NHP ExtIP-to-IntIP table HP ExtIP-to-IntIP table
ExtlP IntPort IntlP ExtIP IntPort IntlP
93.184.216.110 | 22 | 93.184.216.200 93.184.216.110 | 443 | 93.184.216.231
93.184.216.110 | 21 |[93.184.216.143 93.184.216.122 | 443 | disambiguation

93.184.216.122 | 21 | 93.184.216.200 93.184.216.122 | 443 required

(a) NHP compaction. (b) HP compaction.

Figure 5: Examples of NHP/HP compaction mechanisms.

level. As shown in the last two rows of Figure 5(b), we have
a single (EXTIP, INTPORT) pair representing two different
INTIPs. At the extreme, NetShuffle can map all HP services
of the same type (e.g., all HTTPS services at the edge)
to a single pair. This is possible because HPs will embed
hostnames, which NetShuffle uses for disambiguation (see
§4.4). NetShuffle only requires one (EXTIP, INTPORT) pair
in a given epoch to undergo disambiguation. All other pairs
are allocated the same way as in NHP compaction, to reduce
the frequency of disambiguation.

4.4. Compacted HP disambiguation

To achieve greater address efficiency, Fayed et al. [74]
propose a compacted HP connection scheme using a reverse
proxy. To disambiguate requested domains, a reverse proxy
uses the server’s TCP stack to finish the three-way hand-
shake with a client (without yet knowing the HTTPS domain
being requested) and then waits until the CLIENTHELLO
TLS message (carrying the SNI). The proxy then forwards
the packets to the correct HTTPS instance on the server.
However, in NetShuffle, the switch dataplane does not have
a TCP stack, necessitating a different approach with a
hardware/software codesign.

Switch-mediated TCP handshakes. Upon receiving a TCP
SYN to an EXTIP that hosts compacted HP services, the
switch hardware will generate a random sequence number
for the reverse direction (as a regular TCP stack would),
and constructs a SYN/ACK packet to finish the handshake.
At this point, we do not yet know which server is the
intended destination, so the switch will also pump the SYN
packet into its control plane software via the PCle bus
for buffering until the next CLIENTHELLO message arrives.
When the message arrives, the switch hardware extracts
the SNI field (see below), and matches this field with a
known server name within the edge network to produce
the (INTIP,INTPORT) pair. This information is again sent
to control plane software, which now releases the buffered
SYN packet to the actual server, and completes another
TCP handshake “on behalf of” the client. Thus, the switch
now holds two TCP connections and serves like a “reverse
proxy.” Finally, it offloads the proxying process to hardware
by installing an entry to CONN and CONN~!. These tables
perform address/port translation and edit the TCP sequence
numbers to splice the two connections together. Subsequent
packets from this connection only go through hardware
editing without software overheads.

Accelerating hostname extraction. NetShuffle extracts
hostnames from CLIENTHELLO messages in hardware when-
ever possible, by parsing TLS headers until the SNI field
is extracted. The challenge lies in parsing variable-length
fields in TLS/TCP headers, which produces large header
parsing state [77]. We optimize for the common cases in
several ways. First, we leverage measurements from billions
of CLIENTHELLO packets [55], [78] to encode in hardware
common TLS header variations (e.g., due to cipher suites)
covering 75% of the cases. Similarly, we use results from
another measurement [79] to support 99% of TCP header
variations. Second, we observe that our parser need not
recognize arbitrary hostname lengths but only those used
in the specific edge network. This enables optimizations for
parsing hostnames of interest. NetShuffle addresses unsup-
ported corner cases by relegating them to the control plane
software.

5. Implementation

We have implemented NetShuffle using ~8 000 lines of
code (LoC). Our data plane implementation uses ~4 000
LoC in P44, allowing us to express custom packet parsing
and packet processing operations. Our control plane imple-
mentation consists of another ~4 000 LoC written in Python.
We have released our code as free open source software [80].
The Tofino switch. NetShuffle is implemented on the Intel
Tofino 1 programmable switching ASIC, which is available
off-the-shelf. Figure 6 depicts its architecture. Packets ar-
riving at the switch ingress interface follow through a num-
ber of match+action units (MAUSs), organized into stages.
MAUs contain entries (matching against specific packet
headers or metadata) and their corresponding actions (e.g.,
modifying packet headers). These entries are populated by
the controller after the MAUSs are initialized by the P4 pro-
gram running in the data plane. We use Tofino’s incremen-
tal checksum update engine to recompute checksums after
header modification within the hardware, and send packets
to the controller via PCle for buffering. The switch also
exposes an efficient hardware mechanism called “digests”
that can compress per-flow data (sending a subset of header
fields), and performs automatic deduplication and batching
which we use for connection table entry installation.
NetShuffle’s layout on Tofino’s switch architecture. As
shown in Figure 6, Stage 1 includes MAUs for processing
traffic that is not shuffled. In Stage 2, MAUs will determine
if a packet is incoming/outgoing and whether the packet is
NHP or HP-compacted. This influences the Conn and Iljp
tables that the packet will be matched against in subsequent
stages. A packet that is part of an existing connection will
stop matching after Stage 5. New packets are sent to their
associated IIjp, table and dropped if no matches are found;
otherwise it is forwarded and a digest is created for CONN
entry installation. Depending on the header fields that have
been parsed/modified, a different checksum engine will be
applied to it (specified by the checksum engine MAU) within
the deparser. The TCP state MAU is applied to new HP-
compacted packets for custom processing (see §4.4).

Ingress Pipeline

Packet Header & Metadata

TCP State

; Incoming/
_1“"“ ooy _1
Comn, | |3 .
: Conn? e T
H Checksum
H ARP, ICMP NHPHP Engine

Jasied o|qewweibold
JEGENETRITEITE

J1as1ed-aq s|qewwelboid
soepU| sseIb3

=
=
@
@
1)
=
(5}
32
o
Q
@

Stage 1 Stage 2 Stage 3 Stage 6 Stage 7

Figure 6: Simplified layout of NetShuffle on a Tofino switch.

6. Evaluation

We evaluate NetShuffle in three dimensions: a) How fast
can NetShuffle perform the shuffle for networks of varying
sizes (§6.2)? b) How much overhead does NetShuffle incur
to the network deployment (§6.3)? and c¢) How well does
NetShuffle work with live network deployments (§6.4)?

6.1. Experimental setup

We use two setups for NetShuffle evaluation. Our festbed
experiments are conducted in a local cluster which allows
us to drill down into the detailed operations of NetShuffle
and perform various stress tests. Our /ive experiments are
conducted over the Internet, where the NetShuffle switch
is deployed as the border router of a dedicated /24 IPv4
subnet in a university network. This setup enables us to
observe the behaviors of Internet clients with and without
NetShuffle. In both cases, NetShuffle executes in a NetBerg
Aurora 710 hardware switch equipped with Intel Tofino P4
programmable ASICs. The switch has 32x100Gbps ports in
the data plane, and a 4-core 2.20 GHz Intel Xeon D-1527
CPU as the control plane. The authoritative DNS server for
this network uses bind9 and is hosted in a GCE (Google
Cloud Engine) e2-medium instance (1 vCPU and 4GB
RAM). We use R = 2 (two epochs per shuffling round).

Setting appropriate NetShuffle epoch durations. Existing
studies have shown that DNS TTLs are by and large re-
spected on the Internet. Using 15k vantage points, Moura
et al. [81] show that DNS TTLs are honored by the vast
majority of recursive resolvers. Further, prior work shows
that common browsers (e.g., Chrome, Safari, Firefox) and
OSes (e.g., MacOS, Linux, and Windows) generally upper
bound additional DNS TTL caching to one minute [82],
[83]. To ensure these results still hold, we validated these
findings by running our own experiments (see Appendix A
for details). Our results matched the prior studies with the
exception that the current version of Microsoft Edge now
exhibits TTL caching of up to one minute as well.

Unless otherwise noted, we use an epoch duration of
one minute. There are two main motivations for this: First,
we do not expect a censor to possess the resources to keep
up with mapping updates at a sub-minute granularity—
indeed, censors have been found to update their blocklists at
much larger timescales [84]. Second, censors already face
an additional hurdle to link particular clients to long-term
NetShuffle proxy usage. Specifically, censors would need

v

@ rpys update time (outsourced)

3.917

%4, 1, update time (BfRt Python) a
§ @A mpys +mp compute time . [3
m
83 @ Q
o .
£ 8 B 3
S2- Qe —
8] ‘\‘.
© 3% e
-g‘ 1 9 o E g o o n
c B R E E
2S5 -o S =) =3 = 12,
100 1000 2000 4000 6000 8000 10000

Number of subdomains/services

Figure 7: Overhead: Compute and install IIpng and ITjp.

to keep track of any clients’ historical connections to the
NetShuffle-enabled edge network to determine if a client
is accessing a proxy at any given time, since EXTIPs are
frequently shuffled. Third, DNS TTLs are typically set to
at least one minute [85] (e.g., the minimum TTL is one
minute in CloudFlare DNS [86], and ten minutes in Google
Domains [87]). Thus, we design NetShuffle to operate com-
fortably at minute-scale TTL values, and we use one minute
as the strictest TTL value.

6.2. Shuffle speeds

We first measure the shuffling speeds for various net-
work sizes in the testbed setup to understand the mini-
mum epoch time—thus the fastest shuffling speed—that is
achievable with a practical setup. At the NetShuffle side,
the shuffling speeds are determined by the time it takes
to perform mapping updates to IIjp, which is located at
the NetShuffle switch, and IIpns, which is hosted at the
DNS authoritative name server. At the client side, Internet
asynchrony and DNS caching further introduce additional
sources of shuffle speed constraints.

NetShuffle mapping updates. We present microbench-
marks that measure the speed of mapping updates at the
NetShuffle side, and break it down into two components:
i) the controller computes new entries for both Iljp and
IIpns, and ii) the controller then installs these entries into
the switch and the DNS server. Further, we test NetShuffle
with varying network sizes by changing the numbers of
subdomains as well as the online services (that is, the
services hosted in the edge network), both from 100 to
10000. We perform 50 trials for each setting and record
the average and standard deviation (o).

Figure 7 shows the results: larger network sizes roughly
linearly increase the time it takes for the shuffle. Moreover,
computing the shuffles takes negligible time—e.g., only
65ms for the largest tested setting. The shuffle speed is pred-
icated upon the time to update the II;p and IIpNs mappings,
and the former takes more time since the controller needs
to operate on the programmable switch ASIC to install a set
of control plane entries. Nevertheless, even with 10000 ser-
vices, it only takes 3.9s on average (o = 0.12s) to populate
all II;p to the switch. The DNS updates are performed by
initiating the new mappings from the NetShuffle controller

-
N

1.008

®mE ipys update time (local)
B 1 update time (BfRt C++)
. P8 nipys + mp compute time

=
o

o
©
0.539
0.705
0.891

Update time (Seconds)
o
o
0.43

0.4- n
g m 0 & ™ 2 [T}
02 Besmrc Mo @S BSE @SS @SS
SS9 2\ a2 =2p] =P S =]
0.0 =m2° S0 2. NN XX XX)
: 100 100 2000 400 6000 8000 10000

Number of subdomains/services

Figure 8: NetShuffle can be optimized for even faster shuffle.

to our outsourced DNS server (see §6.1). The DNS update
time (< 3s across sizes) includes the network latency.

This is already much faster than our proposed epoch
duration of one minute, but we present an additional ex-
periment to demonstrate that the shuffle time can be eas-
ily improved, if desired, by implementation optimizations.
Figure 8 plots the same data with two optimizations. First,
for the II;p mapping, we used the C++ API provided by
the switch instead of the Python bindings which are the
default for NetShuffle. This optimized version is able to
install entries in batches, reducing the Iljp installation time
from 3.9s to 0.1s (0 = 3ms) with the largest setup. For the
IIpns mapping, we colocated the authoritative server to be
a local Dell PowerEdge R350 machine (eight CPUs and 32
GB memory) in the same cluster, eschewing the network
latency to the GCE instance. This further reduces the IIpnsg
installation time from 3s to 1s (o = 6ms).

To conclude, NetShuffle’s mapping update times are
fast and stable (low o). By initiating update instructions
taking into account this overhead, we can ensure updates
will complete in a timely manner.

6.3. NetShuffle switch overhead

Next, we measure the overheads of the NetShuffle switch
at both the data plane and the control plane.
Data plane overhead. Packets traversing the NetShuffle
switch are matched against different II;p and CoNN tables
in the P4 program, whereas a basic switch does not incur
such additional processing. To quantify this overhead, we
measured the per-packet latency through the NetShuffle
switch across 1000 packets, and found the latency to be
350 nanoseconds. When installed with a basic forwarding
program, the P4 switch incurs a per-packet latency of 290
nanoseconds. Thus, NetShuffle incurs an additional latency
of 60 nanoseconds, a negligible overhead given that typical
Internet RTTs are on the order of tens to hundreds of
milliseconds [88], [89]. In terms of throughput, the switch
hardware uses pipelined processing, and we found the data
plane throughput to be stable at 99.8Gbps per port (100Gbps
linespeed) when stress-tested with an in-switch hardware
packet generator. Thus, the additional latency does not de-
grade throughput.
Hardware resource utilization. Next, we measure the
Tofino switch’s resource usage when NetShuffle is deployed

with all the configurations detailed so far. Figure 9 shows
varying numbers of concurrent connections that NetShuffle
is configured to support and their SRAM usage. This is bot-
tlenecked by the capacity of the CoNN and CONN™! switch
tables, which hold one entry each for a single connection
and only consume SRAM resources as they perform exact
matches. We note that P4 programs are compiled onto the
hardware in an “all or nothing” fashion, i.e., a P4 program
only compiles successfully if it fits within the switch’s
resource constraints. This means the maximum number of
connections a P4 program can support is determined at
compilation time rather than runtime.

To assess the maximum number of concurrent con-
nections supported by our switch, we iteratively compiled
our P4 with larger table sizes until compilation failure.
The results show that NetShuffle can support up to ~220k
concurrent connections (using 52.40% of switch SRAM).
To put this number into perspective, a typical top-of-rack
switch at cloud datacenter scale only needs to support 10k to
100k simultaneous connections at any given time [90]. Thus,
NetShuffle is able to support a large number of connections
at the edge network.

Table 1 further breaks down the resource utilization

for 220k connections, with reasonably low utilization over-
all. NetShuffle uses VLIWs for action instruction memory,
gateways that implement control flow branches, and hash
bits for packet header transformations. ALUs are typically
used to access registers, but NetShuffle only keeps state
in the control plane software. The above results suggest
that NetShuffle allows for the simultaneous execution of
other typical functions that are needed at the border switch,
such as encapsulation, rate limiting, or other security func-
tionalities such as DDoS protection. Finally, these resource
constraints are specific to Tofino 1, which is our switch
model, and newer versions (e.g., Tofino 2 [91]) have even
more abundant resources.
Control plane overhead. Next, we quantify the overhead
due to the TCP handshake mediation. As discussed in §4.3,
this only occurs for the TCP handshaking phase for a single
HP compacted (EXTIP, INTPORT) pair.

First, we measured the maximum amount of such TCP
handshake traffic NetShuffle can buffer for mediation. We
saturated the switch with SYN packets sent by the hardware
generator to compacted HP services, since such packets
represent the bottleneck as they trigger the generation of
both a digest and a copy of the packet to be sent to the
controller (§4.3). We found that NetShuffle was able to
perform packet buffering at a rate of ~100k packets per
second (pps). To place this value into perspective, we note
that this is significantly larger than the median flow arrival
rate reported for popular Facebook services [92], at 500 new
flows per second, and is more than sufficient to support our
expected user base.

Second, we found the additional end-to-end latency of
mediated handshake process to be 48 ms. Thus, the TCP
mediation process only incurs minimum overhead at the
control plane and for the mediated connections. To improve
performance, one may rewrite the control plane software

10

using C++, use more cores for processing, or offload the
controller to a stronger standard server. This communication
bottleneck can be further alleviated by using, for exam-
ple, an RDMA connection that could achieve much higher
bandwidth between the P4 switch and the server (34Gbps
over 40Gbps NIC) [93]. These are interesting optimizations
relegated to future work.

Control plane resource utilization. NetShuffle requires the
usage of the control plane for performing the disambigua-
tion of compacted ExTIPs for HP services (§4.4). First,
NetShuffle uses only 4 out of the 8 available CPU threads
(mentioned in §6.1) to perform the computation. Second,
as shown in Figure 10, in our most demanding scenario
with 220k incomplete connections, the memory used for
holding packet digests and buffer space is only 31MB, which
is only a fraction of the available memory on the control
plane. Further, we note that memory usage scales linearly,
because each connection requires the same amount of state
(in terms of digests and packet buffer space), which are
cleared after connection establishment with connection table
rule installment. Thus, NetShuffle only incurs minimum
overheads at the switch control plane.

6.4. Live network deployment

Next, we present experimental results of a NetShuffle
deployment in a dedicated slice of a university network
with a /24 IPv4 subnet. This subnet has been publicly
accessible to Internet clients for over five years, and we
have upgraded its border router to execute NetShuffle. The
network hosts a variety of services, such as web, email, and
download servers. We also set up additional services for
experimentation. On a regular day, the network exchanges
about 2 TB of Internet traffic. The upstream and downstream
links from/to this edge network use 1Gbps links.

Deploying NetShuffle—including switch installation,
topology setup, and service configuration—only took less
than one person/day. It was a drop-in deployment that
did not require modifications to clients or services, nor to
protocols (e.g., DHCP) or existing firewalls. At the time of
writing, NetShuffle has been in deployment for a month and
we have never experienced any anomalies due to its use.

We perform our evaluation using our lowest epoch dura-
tion of one minute (see §6.1). In the following tables/figures,
the baseline refers to the deployment without NetShuffle.
Transparent shuffle. To demonstrate that NetShuffle oper-
ates transparently to the existing network deployment, we
measure the throughput over time for connections estab-
lished between an Internet client (deployed on an external
network) and various services provided by the edge network.

For this experiment, we have set up six dedicated ser-
vices that are only used by our Internet clients, to ensure
that the measurements are from clients that we can control.
SCP bulk file download results in long-lived connections
that span multiple epochs, while the rest produce short-lived
connections that usually complete within a single epoch.
The Apache server was configured to accept HTTP+HTTPS

TABLE 1: Resource utilization on the Tofino switch.

% SRAM used

Resource | Map RAM | TCAM Hash bits Meter ALU
Utilization 18.75 % 2.43 % 16.95 % 0 %
Resource VLIW Gateway | Hash units | Logical TableID
Utilization 10.23 % 13.54 % 0 % 32.29 %

Figure 9: SRAM util. with different
number of connections.

>
S)

N
o

0-

N
[S)

Cache size (MB
=
O

120 140 160 180 200 220
Number of incomplete connections (thousand)

120 140 160 180 200 220
Number of connections (thousand)

Figure 10: Memory overhead of HP
compaction.

TABLE 2: Apache benchmarks (ab) with increasing concurrent connections (C). NetShuffle incurs negligible differences.

Setup Property NetShuffle Baseline NetShuffle Baseline NetShuffle Baseline NetShuffle Baseline
C:10 C:10 C:100 C:100 C:1000 C:1000 C:3000 C:3000
Apach HTTP Average time/request* 14.859 ms 14.877 ms 1.492 ms 1.493 ms 0.246 ms 0.236 ms 0.322 ms 0.324 ms
1%205661)) Transfer rate 1.07 MBps 1.07 MBps 10.63 MBps ~ 10.62 MBps 6442 MBps ~ 67.22 MBps ~ 49.22 MBps 48.97 MBps
(yes) Completion rate 100% 100% 100% 100% 100% 100% 100% 100%
Apache HTTPS Average time/request® 25.647 ms 25.667 ms 2.623 ms 2.612 ms 0.899 ms 0.923 ms 0.942 ms 0.943 ms
(1%356 bytes) Transfer rate 633.22 KBps 632.73 KBps 6.04 MBps 6.07 MBps 17.65 MBps 17.18 MBps 16.84 MBps 16.82 MBps
yies Completion rate 100% 100% 100% 100% 100% 100% 100% 100%
*Mean across all concurrent requests.
ZA Bascline mmm NetShuffle HTTP error codes in the 4xx and 5xx ranges are considered
e failures. Note that we exclude various forms of non-errors,

1188.85
1193.02
1190.36
1170.85
1186.3:
1188.2
1202.4
1201.78

=
%) o
o S
S oS

4
n
L4
Jul

GET PING_| ‘BULK PING_| INLINE
Key-value operation

Requests per second

Figure 11: Redis K-V store benchmarks with 50 concurrent connections.
NetShuffle incurs negligible overhead.

traffic. Hysteria [94] and Shadowsocks [66] are two popu-
lar proxy services used to circumvent censorship; a single
webpage access (e.g., querying www.wikipedia.orq)
through either proxy establishes two distinct connections—
between the client and proxy, and between the proxy and
the webpage (covert destination).

We show the results for five consecutive epochs (2.5
rounds), where every epoch lasts for one minute, in Fig-
ure 12. For all services, we observe negligible through-
put variations across epochs (and across rounds). We also
conducted a more fine-grained evaluation for Apache and
Redis, which come with standard benchmarking toolsets
(i.e., ab for Apache and redis-benchmark for Redis).
ab produces similar results for varying numbers of HTTP
and HTTPS connections (document size is 16356 bytes)
with and without NetShuffle (Table 2). Figure 11 shows
similar takeaways with Redis.

Client diversity. Next, we performed two experiments that
demonstrate that NetShuffle also operates transparently to
the existing clients in the wild. First, we conducted a
measurement study on the campus networks’ existing Li-
breOffice mirror server. Figure 13 shows the CDF of the
percentage of clients that failed to complete their downloads
(every 3 minutes), with or without NetShuffle enabled, and
it shows negligible difference. For both cases, our measure-
ments directly rely on our server logs, where downloads with

11

such as error 404s paired with download URLSs that are not
served whatsoever by the campus network.

Table 3 presents additional statistics. Since we captured
results for NetShuffle and the baseline at different times,
we examined the number of unique clients and aggregate
transfer volumes to make sure that our results in Figure 13
are of comparable volume. We also conducted an ab bench-
mark test against the mirror server during the two time
windows, targeting the homepage of the mirror URL from
a controlled client. Since the metrics with NetShuffle are
nearly equivalent to the baseline, this shows that the mirror
service was indeed accessible even with NetShuffle enabled
(at least from the viewpoint of our controlled client).

Next, we conducted a separate test using the RIPE Atlas
globally distributed infrastructure to measure transparent
forwarding, from the viewpoint of the clients themselves.
We used 100 unique RIPE Atlas probes selected uniformly
from each geographic location offered by the platform to
validate worldwide accessibility (e.g., China, Albania, and
Russia). Each probe repeatedly issued TLS requests to our
target server located within the campus network, for a
period that spanned over 4 epochs (2 rounds) to verify that
connectivity can be established despite the constant shuffles.

The results in Figure 14 demonstrate that the request
completion times are negligibly different with and without
NetShuffle. The overall completion rate is ~ 97% for both
NetShuffle and the baseline due to instability with the prob-
ing infrastructure; we reran probes that had any failures until
only successes were observed throughout the period.

Circumvention efficacy. As a final experiment, we de-
ployed a dozen vanilla Tor bridges on AWS (without Net-
Shuffle) and in our campus network (with and without Net-
Shuffle enabled). We intentionally instantiated unobfuscated
bridges (as opposed to more covert censorship circumven-
tion systems) to make it as easy as possible for the censor
to detect and block their use.

~
o

a '3 200- 93
[20] 2] o
2 2100- 230
260- = S a0
3 —— NetShuffle 3 s0- —— NetShuffle 328 —— NetShuffle
5557 | ‘ ‘ ‘ Bf\seline ‘ é ol | | ,: B‘as‘eline ‘ ‘»5_26' | i i i B‘aéeline :
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds) Time (seconds)
(a) Apache HTTP web server. (b) Hysteria proxy. (c) Redis K-V store.
Z75- 15000~ - 110
o j=3 Q
o o o
¥ 70- ¥ ¥ 100-
] +10000- =
265 I3 i 2 g0 |
o o [=2
3 60- —— NetShuffle 3 5000- —— NetShuffle 3 —— NetShuffle
5557 ***** B‘aseline E | Ba‘seline E 8o- [| || B?seline
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds) Time (seconds)
(d) Apache HTTPS web server. (e) SCP bulk file download. (f) Shadowsocks proxy.
Figure 12: NetShuffle operates transparently across multiple epochs, demarcated by vertical lines, for a variety of services.
TABLE 3: NetShuffle processes similar amounts of
L0 10 LibreOffice traffic (vs. baseline) at near equivalent
08 [08 performance.
—~ i —
206 | 206 Property | NetShuffle | Baseline
L w
a a) i i
S04 Soa Unique clients 335 390
Transfer volume 110.90 GB 129.11 GB
0.2 — NetShuffle 0.2 —— Baseline Window length 2.5 hours 2.5 hours
Baseline / NetShuffle ab: doc. length 1152 bytes 1152 bytes
W, . :
0.045 01 03 03 02 0.0-5 500 400 600 800 ab: avg. time/req. 173.25 ms 173.53 ms
Failed to successful requests ratio Completion time (ms) ab: transfer rate 7.56 KBps 7.57 KBps

Figure 13: NetShuffle transparently serves

large traffic volumes to LibreOffice clients. 100 RIPE Atlas probes.

We also created virtual machines in two datacenters
located in China (Beijing and Shanghai) that hosted Tor
clients that attempted to connect to our bridges. Our baseline
experiment disabled NetShuffle, and we measured the time it
took for the censor to block the bridge addresses. We then
enabled NetShuffle for the bridges located in our campus
network, and conducted the same experiment.

In the baseline case, the average time to blocking is
13 minutes, but when protected by NetShuffle, the bridges
never experienced any blocking. This indicates that our
shuffle speed is faster than the Great Firewall (GFW) is
able (or willing) to probe bridges. We further repeated the
experiments with a range of NetShuffle epochs ranging from
1 to 5 minutes. This suggests that even for vanilla Tor
bridges, which are known to be easy to block (and indeed
targeted by the censor), NetShuffle can raise them to a new
degree of unblockability out of the box.

A limitation of evaluating any newly proposed cen-
sorship resistance system (including NetShuffle) against a
mature censorship system (e.g., the GFW) is that the latter
necessarily has no knowledge of the former. We do not claim
that our current success at evading the GFW is indicative of
future evasion against a NetShuffle-aware GFW or against
other censors. However, we highlight two takeaways from
our live deployment experiment: as discussed in the paper,

12

Figure 14: TLS request completion times from

NetShuffle is designed to be robust against a censor who
is aware of its usage. Even if the GFW did block our
bridge, it would need to keep pace with the shuffling to
prevent future accesses. The significant time lapse between
our accesses and the GFW’s probes suggests that the GFW
at least currently does not have the resources (or is unwill-
ing) to quickly perform its probe and blocking operations.
In order to match our current shuffling speed, the GFW
needs to operate an order of magnitude faster, so NetShuffle
raises the bar for censorship significantly. Second, we stress
that deploying NetShuffle was easy. Unlike decoy routing
systems that are difficult to deploy due to their dependence
upon a cooperating core service (e.g., an ISP), we were able
to easily switch to NetShuffle and use it for over a month at
zero cost on our edge network (besides the switch purchase
costs). This makes opt-ins much easier and can engage a
larger support base to further raise the censorship cost.

7. Security Analysis

Next, we discuss several potential attacks to NetShuffle
and describe how we can foil or mitigate such attacks.
Controller buffer flooding. An adversary may attempt to
trigger a denial-of-service attack by sending a large number
of packets for compacted HP services without completing

a TCP connection handshake. This will cause excessive
buffering at the switch control plane. To mitigate this at-
tack, NetShuffle monitors connections’ 4-tuple access fre-
quency until a configurable access threshold is met and can
then a) reset a connection and drop its associated buffers,
b) enforce per-client rate limiting, or c¢) issue compaction
changes, where the controller changes the single HP com-
pacted (EXTIP, INTPORT) pair used at the next epoch, so
that their packets do not need to be mediated anymore.

Connection table flooding. An adversary can also attempt
to overwhelm the CoNN tables by flooding the switch with
packets with unique 4-tuples so each packet triggers an entry
installation. If left unattended, this can quickly consume all
available table space. To mitigate this, NetShuffle places
inactive connections (after observing a source IP for more
than a given threshold) into a blocklist for a pre-determined
amount of time, using the same control plane mechanisms
for managing hardware idle-timeouts. The controller can
directly terminate blocklisted flows through the analysis of
the digests before installing them to the CONN tables.

Finally, we note the above SYN flooding and other types
of DoS attacks can be addressed by well-studied techniques
developed in programmable switches [95], [96]. We leave
their integration as interesting future work.

Subdomain blocking. Censors can register as a client and
obtain proxy identifiers. However, it is hard for a censor to
build an effective blocklist. First, advanced proxy distribu-
tion schemes as well as probe-resistant proxy implementa-
tions are well-studied, and they can be applied to NetShuffle
to mitigate against enumeration. Second, given the large
space of subdomain names (see §4.1) or even new second-
level domains, NetShuffle provides a steady supply of new
subdomain names for shuffle proxies, turning subdomain
name enumeration into a continuous grind for the censor.

To better understand this, we analyzed the certificate
transparency logs provided by Scheitle et al. [67] and found
over 9 million distinct subdomain names that are deployed in
operation. To illustrate the frequent use of infrequent domain
names, we find that more than 25% of subdomains used in
US university campuses and Fortune 500 companies (who
are reasonable candidate edge networks for NetShuffle) fall
outside the top-600K most frequently used names. Thus,
censors cannot easily block subdomain names that are un-
commonly seen without potentially incurring high collateral
damage. Finally, studies show that censors typically choose
not to use allowlists [9], [97] due to the added complexity
of maintaining up-to-date allowlists as new Internet services
are constantly added or updated.

Full edge network blocking. While it is not easy to
gauge a censor’s perceived collateral for taking down an
entire network, we believe that the common assumption
about the censor’s aversion to collateral damage applies
here as well. Like core networks, edge networks host many
domains, services and IP ranges that are useful to the
censored region. It is known that censors prefer fine-grained
approaches (e.g., keyword blocking, and targeted DNS and
IP based blocking) [98]; in fact, techniques have been de-

13

veloped specifically to avoid overblocking [41] as it results
in negative economic impact [99]-[102]. Censors blocking
entire IP ranges has been reported before, but only in a
temporary manner (e.g., during elections) [99], [103] and
intentionally targeting a complete Internet shutdown instead
of narrowly at specific circumvention services. Moreover,
even if a censoring nation does not make use of a given edge
network’s services, their international peers may. Analogous
to the risk of spillover DNS pollution [104]-[106], the
potential unintended consequences of blocking an entire
edge network can act as an additional deterrent. Censoring
nations typically have their own censorship policies and do
not behave congruently [98], [107], [108]. Thus, even if one
nation decides to block a given edge network, we expect
there will be other nations that want to avoid overblocking.

8. Discussion

We hope NetShuffle will start a discussion in our com-
munity on edge networks’ role in censorship resistance.
Collateral damage quantification. Although censors’ prior
behavior gives us some insights into how they might respond
to techniques deployed at the edge (see §7), a precise
quantification of collateral damage via measurement stud-
ies would be useful as future work. Such studies require
significant operational experience and extensive follow-up
research on edge-based resistance systems, since they are
an underexplored support base and existing data is scant.
As a comparison, after the initial publication of DR in
2011, significant subsequent studies [27], [109]-[112] were
needed to quantify its collateral damage. (Even if censors
are capable of rerouting traffic around certain core networks
to reduce collateral damage, edge-based resistance systems
are not as easily bypassed by routing-based evasion.)
Future deployment. By providing a solution that is easy
to deploy, performant, and functionally correct, NetShuffle
expands the possible deployment locations of censorship-
resistance systems beyond end-user proxies and core net-
works, thus potentially promoting follow-up studies of edge
networks as an additional deployment base to expand the
anti-censorship arsenal. In terms of incentives, since Net-
Shuffle targets a new support base at the edge, which is
currently a blank space, a reliable assessment of their full
deployment incentives is best done by the test of time.
This is analogous to the trajectory of DR from its initial
conception [5] to a real-world deployment [44] over several
years. We believe NetShuffle could follow a similar if not
faster trajectory, since we were able to deploy the first
NetShuffle instance with one person/day effort.

9. Related Work

In-network traffic deflection. Decoy routing (DR) [5], [8],
[10], [24], [113] envisions cooperative ISPs deploying traf-
fic redirection routers within their networks. Unfortunately,
most proposed DR systems operate at software speeds,
comporting significant costs for network operators [9].

A few approaches aim to combat this overhead. Siege-
breaker [7] leverages software-defined networks to break-
down DR functionality over multiple network elements and
defray these costs, but requires extensive modifications to
proxies and wastes bandwidth on regular hosts. Conjure [9]
allows clients to connect to a large amount of “free” IP
addresses managed by cooperating ISPs. However, at the
edge, such free IP addresses are harder to come by (see
§3). NetShuffle is a defense that is tailored for the edge
and operates within minimal address space requirements.
A recent idea, REDACT [114], argues for deploying decoy
routers at the border of public cloud data centers, but it
does not design a concrete system. Moreover, its goal is
to lessen the impact of routing around decoys attacks [27],
[109]-[111], significantly different from NetShuffle.

Shuffle-based reconnaissance defenses. This class of tech-
niques aims to prevent an attacker from performing a reliable
reconnaissance operation on a target network infrastruc-
ture, e.g., by periodically shuffling the server’s network
address [115]-[117]. The high-level idea is also similar in
spirit to DNS fast-fluxing [118]-[121] attacks. Recent work
aimed at protecting user privacy, such as MIMIQ [122] and
RAVEN [123], prevent network adversaries from identifying
the source of a given flow within an edge network or corre-
lating several flows. Both tools require QUIC protocol’s con-
nection migration capabilities to perform frequent changes
to clients’ IP addresses without breaking the connections.
Similar to RAVEN, NetShuffle also relies on programmable
switches for IP shuffling, but toward a different goal — to
prevent adversaries from identifying to which hosts within
the edge network an external client is connected. NetShuffle
does not aim to prevent an adversary from associating which
packets belong to the same flow. Another related work,
SPINE [124], prevents an intermediate AS from inferring
which two hosts are communicating across two trusted,
SPINE-enabled ASes. It leverages programmable switches
to encrypt packets’ source and destination IP addresses, as
well as TCP sequence and acknowledgment numbers to
thwart the grouping of packets into a given flow. In contrast,
NetShuffle targets a censorship circumvention setting and
aims at making proxy services hard to block.

10. Conclusion

By separating proxy services from their identifiers, and
by performing continuous network shuffles for moving tar-
get defense, NetShuffle raises regular proxies to a new
degree of unblockability. It further engages a support base—
edge networks—which so far have received little attention in
censorship evasion techniques. NetShuffle leverages emerg-
ing programmable switches for in-network execution that
is transparent to the network deployment and services. Our
testbed and live deployment results show that NetShuffle
integrates with real-world services seamlessly and executes
with negligible overhead while performing the shuffle.

14

Acknowledgments

We thank Lior Zeno of the Technion Accelerated Com-
puting Systems Lab (ACSL) for his unwavering guidance
and insight on all aspects related to the Tofino switch
hardware, and the anonymous reviewers at IEEE S&P 2024
for their helpful comments and suggestions. This work was
partially funded by the National Science Foundation through
grants CNS-1704189, CNS-1801884, CNS-1942219, CNS-
2016727, CNS-2106388, CNS-2106751, and CNS-2214272;
a VMware Early Career Faculty Grant; the Georgetown
University Callahan Family Chair Fund; and NSERC under
grant RGPIN-2023-03304.

References

[1] S. Hellmeier, R. Cole, S. Grahn, P. Kolvani, J. Lachapelle,
A. Liihrmann, S. F. Maerz, S. Pillai, and S. I. Lindberg, “State of the
world 2020: autocratization turns viral,” Democratization, vol. 28,

no. 6, pp. 10531074, 2021.
[2]

Freedom House, “Freedom on the net. the rise of digital authoritari-
anism,” Washington, DC, 2018, https://freedomhouse.org/sites/defau

1t/files/2020-02/10192018_FOTN_2018_Final_Booklet.pdf.

[3] C. Bocovich and I. Goldberg, “Secure asymmetry and deployability
for decoy routing systems.” Proceedings on Privacy Enhancing

Technologies, vol. 2018, no. 3, pp. 43-62, 2018.

[4] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th USENIX Secu-

rity Symposium, San Diego, CA, 2004.

[5] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov, “Cir-
ripede: Circumvention infrastructure using router redirection with
plausible deniability,” in Proceedings of the 18th ACM conference

on Computer and communications security, 2011, pp. 187-200.

E. Wustrow, C. M. Swanson, and J. A. Halderman, “TapDance: End-
to-Middle Anticensorship without Flow Blocking,” in Proceedings
of the 23rd USENIX Security Symposium, 2014, pp. 159-174.

P. K. Sharma, D. Gosain, H. Sagar, C. Kumar, A. Dogra, V. Naik,
H. Acharya, and S. Chakravarty, “Siegebreaker: An sdn based
practical decoy routing system.” Proceedings on Privacy Enhancing
Technologies, vol. 2020, no. 3, pp. 243-263, 2020.

E. Wustrow, S. Wolchok, 1. Goldberg, and J. A. Halderman, “Telex:
Anticensorship in the network infrastructure,” in Proceedigns of the
20th USENIX Security Symposium, 2011.

S. Frolov, J. Wampler, S. C. Tan, J. A. Halderman, N. Borisov,
and E. Wustrow, “Conjure: Summoning proxies from unused ad-
dress space,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 2215-2229.

J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P.
Mankins, and W. T. Strayer, “Decoy routing: Toward unblockable
internet communication,” in USENIX workshop on free and open
communications on the Internet (FOCI 11), 2011.

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

“Lantern,” https://getlantern.org/.
“Psiphon,” http://psiphon.ca/.

M. Wei, “Domain shadowing: Leveraging content delivery networks
for robust blocking-resistant communications,” in Proceedings of the
30th USENIX Security Symposium, 2021, pp. 3327-3343.

[14] R. MacKinnon, “China’s censorship 2.0: How companies censor

bloggers,” First Monday, 2009.

[15] E. Morozov, “Liberation technology: whither internet control?”

Journal of Democracy, vol. 22, no. 2, pp. 62-74, 2011.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

P. M. Figliola, Promoting Global Internet Freedom: Policy and
Technology. Congressional Research Service, 2013, vol. 23.

“[torproject] Tor blocking events in Belarus from 2020-2021,”
https://gitlab.torproject.org/tpo/anti-censorship/censorship-analysis/
-/blob/main/reports/2020/belarus/2020-belarus-report.md.

Tor Project, Inc., “Tor Manual: Bridges,” https://tb-manual.torproje
ct.org/bridges/#using-moat, 2022.

R. Dingledine, “Research problems: Ten ways to discover Tor
bridges,” https://blog.torproject.org/research-problems-ten-ways-dis
cover-tor-bridges/, Tor, Blog Post, 2011.

“How the great firewall of china is blocking tor,” in Proceedings of
the 2nd USENIX Workshop on Free and Open Communications on
the Internet, Bellevue, WA, 2012.

M. Nasr, S. Farhang, A. Houmansadr, and J. Grossklags, “Enemy
at the gateways: Censorship-resilient proxy distribution using game
theory,” in Proceedings of the 26*" Annual Network & Distributed
System Security Symposium, 2019.

A. Dunna, C. O’Brien, and P. Gill, “Analyzing china’s blocking
of unpublished Tor bridges,” in Proceedings of the S8th USENIX
Workshop on Free and Open Communications on the Internet, 2018.

D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson,
“Blocking-resistant communication through domain fronting.” Pro-
ceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp.
46-64, 2015.

B. VanderSloot, S. Frolov, J. Wampler, S. C. Tan, I. Simpson,
M. Kallitsis, J. A. Halderman, N. Borisov, and E. Wustrow, “Run-
ning refraction networking for real,” Proceedings on Privacy En-
hancing Technologies, vol. 2020, no. 4, 2020.

“[tor-project] domain fronting to app engine stopped working,” https:
/lgitlab.torproject.org/legacy/trac/-/issues/25804.

“Verge: Amazon web services starts blocking domain-fronting, fol-
lowing google’s lead,” https://www.theverge.com/2018/4/30/17304
782/amazon-domain-fronting-google-discontinued.

D. Gosain, A. Agarwal, and S. Chakravarty, “The devil’s in the
details: Placing decoy routers in the internet,” in Proceedings of the
33rd Annual Computer Security Applications Conference, 2017, pp.
577-589.

C. MacCarthaigh, “[AWS Security Blog] Enhanced
domain protections for Amazon CloudFront requests,”
https://aws.amazon.com/blogs/security/enhanced-domain- protec
tions-for-amazon-cloudfront-requests/, 2018.

S. Gallagher, “Gogle Disables “Domain Fronting”
Capability Used to Evade Censors,” Ars Technica,
https://arstechnica.com/information-technology/2018/04/google-

disables-domain- fronting- capability-used-to-evade-censors/, 2018.

“Microsoft: Securing our approach to domain fronting within
Azure,” https://www.microsoft.com/en-us/security/blog/2021/03/26
/securing-our-approach-to-domain- fronting- within-azure/.

J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chi-
nese censorship without proxies using cached content,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, Colorado, USA, 2015, pp. 70-83.

“Wedge 100bf-32x 100gbe data center switch,” https://www.edge-c
ore.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335.

B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou, L. Dai, F. Yan,
M. Ma, M. Tang et al., “Aquila: a practically usable verification sys-
tem for production-scale programmable data planes,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2021, pp. 17-32.

T. Pan, N. Yu, C. Jia, J. Pi, L. Xu, Y. Qiao, Z. Li, K. Liu, J. Lu, J. Lu
et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-service
gateways with programmable switches,” in Proceedings of the ACM
Special Interest Group on Data Communication Conference, 2021,
pp. 194-206.

15

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

F. Douglas, W. P. Rorshach, W. Pan, and M. Caesar, “Salmon: Ro-
bust proxy distribution for censorship circumvention.” Proceedings
on Privacy Enhancing Technologies, vol. 2016, no. 4, pp. 4-20,
2016.

Y. Sovran, A. Libonati, and J. Li, “Pass it on: social networks stymie
censors.” in Proceedings of the 7th international conference on Peer-
to-peer systems, 2008.

Z. Zhang, W. Zhou, and M. Sherr, “Bypassing Tor exit blocking with
exit bridge onion services,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, Virtual
Event, USA, 2020, pp. 3-16.

L. Tulloch and I. Goldberg, “Lox: Protecting the social graph in
bridge distribution,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2023, no. 1, 2023.

Q. Wang, Z. Lin, N. Borisov, and N. Hopper, “rBridge: User
reputation based Tor bridge distribution with privacy preservation.”
in Proceedings of the 20th Annual Network & Distributed System
Security Symposium, 2013.

D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh, R. Din-
gledine, and P. Porras, “Evading censorship with browser-based
proxies,” in International Symposium on Privacy Enhancing Tech-
nologies Symposium. Springer, 2012, pp. 239-258.

D. Fifield, Threat modeling and circumvention of Internet censor-
ship. University of California, Berkeley, 2017, https://www?2.eecs.
berkeley.edu/Pubs/TechRpts/2017/EECS-2017-225.pdf.

——, “Turbo tunnel, a good way to design censorship circumvention
protocols,” in Proceedings of the 10th USENIX Workshop on Free
and Open Communications on the Internet, 2020.

K. MacMillan, J. Holland, and P. Mittal, “Evaluating snowflake as
an indistinguishable censorship circumvention tool,” https://arxiv.or
g/abs/2008.03254, 2020.

S. Frolov, E. Wustrow, F. Douglas, W. Scott, A. McDonald, B. Van-
derSloot, R. Hynes, A. Kruger, M. Kallitsis, D. G. Robinson,
S. Schultze, N. Borisov, and J. A. Halderman, “An ISP-Scale De-
ployment of TapDance,” in Proceedings of the Applied Networking
Research Workshop, Montreal, QC, Canada, 2018.

B. Lawson and J. Rexford, “Decoy switching: Circumventing cen-
sorship with emerging switch hardware,” https://www.cs.princeton.e
du/~jrex/papers/written_final_report.pdf.

H. Zolfaghari and A. Houmansadr, “Practical censorship evasion
leveraging content delivery networks,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 2016, pp. 1715-1726.

“Signal: A letter from amazon,” https://signal.org/blog/looking-back
-on-the-front/.

“AWS: Enhanced Domain Protections for Amazon CloudFront Re-
quests,” https://aws.amazon.com/blogs/security/enhanced-domain-pr
otections-for-amazon-cloudfront-requests/.

D. Gosain, M. Mohindra, and S. Chakravarty, “Too close for com-
fort: Morasses of (anti-) censorship in the era of CDNs,” Proceedings
on Privacy Enhancing Technologies, vol. 2021, no. 2, pp. 173-193,
2021.

“Tor blog: The Trouble with CloudFlare,” https://blog.torproject.or
g/trouble-cloudflare/.

“[CNBC] Amazon drops Parler from its web hosting service, citing
violent posts,” https://www.cnbc.com/2021/01/09/amazon-drops- par
ler-from-its- web-hosting-service.html.

“[Cloudflare blog] Why We Terminated Daily Stormer,” https://blog
.cloudflare.com/why-we-terminated-daily-stormer/.

“Tor: Fact Sheet: Cloudflare and the Tor Project,” https://people.tor
project.org/~lunar/20160331-CloudFlare_Fact_Sheet.pdf.

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Ziv, L. Izhikevich, K. Ruth, K. Izhikevich, and Z. Durumeric,
“ASdb: a system for classifying owners of autonomous systems,” in
Proceedings of the ACM Internet Measurement Conference, 2021,
pp. 703-719.

S. Frolov and E. Wustrow, “The use of TLS in Censorship Circum-
vention,” in NDSS, 2019.

“Tor: Bridges,” https://tb-manual.torproject.org/bridges/.
“Snowflake,” https://snowflake.torproject.org, accessed: 2022-05-13.

L. Zeno, D. R. Ports, J. Nelson, D. Kim, S. Landau-Feibish, I. Kei-
dar, A. Rinberg, A. Rashelbach, 1. De-Paula, and M. Silberstein,
“{SwiSh}: Distributed shared state abstractions for programmable
switches,” in 19th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 22), 2022, pp. 171-191.

“[Akamai] IPv6 Adoption Visualization,” https://www.akamai.com
/internet-station/cyber-attacks/state-of-the-internet-report/ipv6-ad
option-visualization.

“[Cisco] 6lab - The place to monitor IPv6 adoption,” https://6lab.c
isco.com/stats/.

“[Google] IPv6 statistics,” https://www.google.com/intl/en/ipv6/stat
istics.html.

S. Jia, M. Luckie, B. Huffaker, A. Elmokashfi, E. Aben, K. Clafty,
and A. Dhamdhere, “Tracking the deployment of IPv6: Topology,
routing and performance,” Computer Networks, vol. 165, p. 106947,
2019.

S. Frolov and E. Wustrow, “{HTTPT}: A {Probe-Resistant} proxy,”
in 10th USENIX Workshop on Free and Open Communications on
the Internet (FOCI 20), 2020.

B. Birtel and C. Rossow, “Slitheen++: Stealth TLS-based decoy
routing,” in Proceedings of the 10th USENIX Workshop on Free
and Open Communications on the Internet, 2020.

S. Frolov, J. Wampler, and E. Wustrow, “Detecting probe-resistant
proxies” in Proceedings of the 27" Annual Network and Dis-
tributed System Security Symposium, 2020.

“shadowsocks-libev,” https://github.com/shadowsocks/shadowsocks
-libev.

Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle,
R. Holz, T. C. Schmidt, and M. Wihlisch, “The rise of certificate
transparency and its implications on the internet ecosystem,” in
Proceedings of the Internet Measurement Conference 2018, 2018,
pp. 343-349.

L. Izhikevich, G. Akiwate, B. Berger, S. Drakontaidis, A. Ascheman,
P. Pearce, D. Adrian, and Z. Durumeric, “ZDNS: a fast DNS toolkit
for internet measurement,” in Proceedings of the 22nd ACM Internet
Measurement Conference, 2022, pp. 33-43.

P. Mockapetris, “Domain Names: Implementation and Specifica-
tion,” IETF, RFC 1035, 1987.

P. Richter, M. Allman, R. Bush, and V. Paxson, “A primer on
IPv4 scarcity,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 2, pp. 21-31, 2015.

A. Dainotti, K. Benson, A. King, K. Clafty, M. Kallitsis, E. Glatz,
and X. Dimitropoulos, “Estimating internet address space usage
through passive measurements,” ACM SIGCOMM Computer Com-
munication Review, vol. 44, no. 1, pp. 42-49, 2013.

A. Dainotti, K. Benson, A. King, B. Huffaker, E. Glatz, X. Dim-
itropoulos, P. Richter, A. Finamore, and A. C. Snoeren, “Lost in
space: improving inference of IPv4 address space utilization,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 6, pp.
1862-1876, 2016.

S. Zander, L. L. Andrew, and G. Armitage, “Capturing ghosts:
Predicting the used IPv4 space by inferring unobserved addresses,”
in Proceedings of the ACM Internet Measurement Conference, 2014,
pp. 319-332.

16

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]
[88]

[89]

[90]

[91]

[92]

[93]

M. Fayed, L. Bauer, V. Giotsas, S. Kerola, M. Majkowski,
P. Odintsov, J. Sitnicki, T. Chung, D. Levin, A. Mislove, C. A. Wood,
and N. Sullivan, “The Ties that un-Bind: Decoupling IP from web
services and sockets for robust addressing agility at CDN-scale,” in
Proceedings of the 2021 ACM SIGCOMM Conference, 2021, pp.
433-446.

P. Gigis, M. Calder, L. Manassakis, G. Nomikos, V. Kotronis,
X. Dimitropoulos, E. Katz-Bassett, and G. Smaragdakis, “Seven
years in the life of hypergiants’ off-nets,” in Proceedings of the

ACM Special Interest Group on Data Communication Conference,
2021, pp. 516-533.

R. P. Singh, T. Brecht, and S. Keshav, “IP address multiplexing for
VEEs,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 2, pp. 36-43, 2014.

S. Bai, H. Kim, and J. Rexford, “Passive OS fingerprinting on
commodity switches,” in Proceedings of the 8th IEEE International
Conference on Network Softwarization, 2022, pp. 264-268.

“TLSFingerprint.io,” https://tIsfingerprint.io/.

T. Barbette, C. Tang, H. Yao, D. Kosti¢, G. Q. Maguire Jr, P. Pa-
padimitratos, and M. Chiesa, “A high-speed load-balancer design
with guaranteed per-connection-consistency,” in Proceedings of the
17th USENIX Symposium on Networked Systems Design and Imple-
mentation, 2020, pp. 667-683.

“NetShuffle Source Code.” 2023, https://github.com/patrickkon/Ne
tShuffle.

G. C. Moura, J. Heidemann, M. Miiller, R. d. O. Schmidt, and
M. Davids, “When the dike breaks: Dissecting DNS defenses during
DDoS (extended),” in Proceedings of the ACM Internet Measure-
ment Conference, 2018.

T. Hernandez-Quintanilla, E. Magafia, D. Moratd, and M. Izal, “On
the reduction of authoritative dns cache timeouts: Detection and
implications for user privacy,” Journal of Network and Computer
Applications, vol. 176, p. 102941, 2021.

A. Klein and B. Pinkas, “Dns cache-based user tracking.” in NDSS,
2019.

D. Fifield and L. Tsai, “Censors’ delay in blocking circumvention
proxies,” arXiv preprint arXiv:1605.08808, 2016.

G. C. Moura, J. Heidemann, R. d. O. Schmidt, and W. Hardaker,
“Cache me if you can: Effects of DNS time-to-live,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 101-115.

“CloudFlare DNS,” https://www.cloudflare.com/dns/.
“Google Domains,” https://domains.google.com/registrar/.

U. Bauknecht and T. Enderle, “An investigation on core network
latency,” in Proceedings of the 30th IEEE International Telecommu-
nication Networks and Applications Conference, 2020, pp. 1-6.

J. Kwon, J. A. Garcia-Pardo, M. Legner, F. Wirz, M. Frei,
D. Hausheer, and A. Perrig, “SCIONLab: A next-generation Internet
testbed,” in Proceedings of the 28th IEEE International Conference
on Network Protocols, 2020, pp. 1-12.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, 2017, pp. 15-28.

“Intel® tofino™ 2. https://www.intel.com/content/www/us/en/prod
ucts/network-io/programmable-ethernet- switch/tofino-2-series.htm
L.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communica-
tion, 2015, pp. 123-137.

D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, 2018, pp. 1-7.

[94]
[95]

[96]

[97]

(98]

(991

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

“Hysteria.network,” https://github.com/apernet/hysteria.

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin,
V. Braverman, M. Yu, and V. Sekar, “Jagen: A {High-
Performance } { Switch-Native} approach for detecting and mitigat-
ing volumetric {DDoS} attacks with programmable switches,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
3829-3846.

D. Scholz, S. Gallenmiiller, H. Stubbe, and G. Carle, “SYN flood
defense in programmable data planes,” in Proceedings of the 3rd P4
Workshop in Europe, 2020, pp. 13-20.

C. Bocovich, Recipes for Resistance: A Censorship Circumvention
Cookbook. University of Waterloo, 2018, http://hdl.handle.net/100
12/13595.

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi, “Censored
planet: An internet-wide, longitudinal censorship observatory,” in
Proceedings of the ACM SIGSAC conference on computer and
communications security, 2020, pp. 49-66.

“[Carnegie Endowment] Government Internet Shutdowns Are
Changing. How Should Citizens and Democracies Respond?”
https://carnegieendowment.org/2022/03/31/government-internet-shu
tdowns-are-changing.-how-should-citizens-and-democracies-respo
nd-pub-86687.

“[Bloomberg] World’s Worst Internet Clampdown Cost Myanmar
$3 Billion in 2021,” https://www.bloomberg.com/news/articles/20
22-01-04/world-s-worst-internet-clampdown-cost-myanmar- 3- billi
on-in-2021.

S. Woodhams and S. Migliano, “[ToplOVPN] Cost of Internet
Shutdowns 2021: Government Internet Shutdowns Cost $5.5 Billion
in 2021,” https://www.top10vpn.com/research/cost-of-internet-shutd
owns/2021/.

“[Deloitte] The economic impact of disruptions to Internet
connectivity,” https://globalnetworkinitiative.org/wp-content/uploa
ds/2016/10/GNI-The- Economic-Impact-of-Disruptions-to- Internet-
Connectivity.pdf.

“[accessnow] #KeepltOn update: who is shutting down the internet
in 2021?” https://www.accessnow.org/who-is-shutting-down-the-int
ernet-in-2021/.

S. Cho, R. Nithyanand, A. Razaghpanah, and P. Gill, “A churn for
the better: Localizing censorship using network-level path churn
and network tomography,” in Proceedings of the 13th International

Conference on emerging networking experiments and technologies,
2017, pp. 81-87.

N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak,
M. Crete-Nishihata, P. Gill, and M. Polychronakis, “How great is the
great firewall? measuring China’s DNS censorship,” arXiv preprint
arXiv:2106.02167, 2021.

R. Padmanabhan, A. Filastd, M. Xynou, R. S. Raman, K. Middleton,
M. Zhang, D. Madory, M. Roberts, and A. Dainotti, “A multi-
perspective view of internet censorship in Myanmar,” in Proceedings
of the ACM SIGCOMM 2021 Workshop on Free and Open Commu-
nications on the Internet, 2021, pp. 27-36.

“[Freedom House] Countering an Authoritarian Overhaul of the
Internet,” https://freedomhouse.org/report/freedom-net/2022/counter
ing-authoritarian-overhaul-internet.

A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Razaghpanah,
N. Christin, and P. Gill, “ICLab: A global, longitudinal internet
censorship measurement platform,” in Proceedings of the 41st IEEE
Symposium on Security and Privacy, 2020, pp. 135-151.

M. Nasr and A. Houmansadr, “Game of decoys: Optimal decoy
routing through game theory,” in Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 2016, pp. 1727-1738.

M. Nasr, H. Zolfaghari, and A. Houmansadr, “The waterfall of
liberty: Decoy routing circumvention that resists routing attacks,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2037-2052.

17

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

M. Schuchard, J. Geddes, C. Thompson, and N. Hopper, ‘“Routing
around decoys,” in Proceedings of the ACM Conference on Com-
puter and Communications Security, Raleigh, North Carolina, USA,
2012, pp. 85-96.

A. Houmansadr, E. L. Wong, and V. Shmatikov, “No direction home:
The true cost of routing around decoys.” in NDSS. Citeseer, 2014.

C. Bocovich and I. Goldberg, “Slitheen: Perfectly imitated decoy
routing through traffic replacement,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 2016, pp. 1702-1714.

A. Devraj, L. Wang, and J. Rexford, “REDACT: refraction network-
ing from the data center,” ACM SIGCOMM Computer Communica-
tion Review, vol. 51, no. 4, pp. 15-22, 2021.

T. E. Carroll, M. Crouse, E. W. Fulp, and K. S. Berenhaut, “Analysis
of network address shuffling as a moving target defense,” in Pro-
ceedings of the IEEE international conference on communications,
2014, pp. 701-706.

J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the 1st workshop on Hot topics in
software defined networks, 2012, pp. 127-132.

G. Cai, B. Wang, X. Wang, Y. Yuan, and S. Li, “An introduction
to network address shuffling,” in Proceedings of the 18th IEEE
international conference on advanced communication technology,
2016, pp. 185-190.

J. Gardiner, M. Cova, and S. Nagaraja, “Command & control: Under-
standing, denying and detecting-a review of malware c2 techniques,
detection and defences,” arXiv preprint arXiv:1408.1136, 2014.

T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks.” in Proceedings of the 16th
Annual Network & Distributed System Security Symposium, 2008.

J. Nazario and T. Holz, “As the net churns: Fast-flux botnet ob-
servations,” in Proceedings of the 3rd International Conference on
Malicious and Unwanted Software, 2008, pp. 24-31.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
analysis of a botnet takeover,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009, pp.
635-647.

Y. Govil, L. Wang, and J. Rexford, “MIMIQ: Masking IPs with
migration in QUIC,” in /0th USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2020.

P. M. Liang Wang, Hyojoon Kim and J. Rexford, “RAVEN: Stateless
Rapid IP Address Variation for Enterprise Networks,” Proceedings
on Privacy Enhancing Technologies, vol. 2023, no. 3, 2023.

T. Datta, N. Feamster, J. Rexford, and L. Wang, “Spine: Surveillance
protection in the network elements,” in 9th USENIX Workshop on
Free and Open Communications on the Internet, 2019.

“nsupdate,” https://linux.die.net/man/8/nsupdate.

Appendix A.
Validating browser and OS DNS TTL Caching

We sought to confirm prior work’s finding that common
browsers (e.g., Chrome, Safari, Firefox) and OSes (e.g.,
MacOS, Linux, and Windows) generally upper bound addi-
tional DNS TTL caching to one minute [82], [83]. Violations
of DNS cache TTL policies—in particular, instances in
which cached DNS responses are used beyond their spec-
ified lifetimes—could endanger NetShuffle’s transparency
goals since affected clients may use stale IP addresses that
would no longer be associated with the intended service.

We confirmed that Linux 4.15, Linux 5.3, Windows 11,
and Mac OSX 12.6 honor DNS TTLs and do not cache DNS
results longer than the TTL indicates. For our experiments,
we modified our TTLs from 5 minutes down to 1 second.
To measure this, we issued DNS queries from different
platforms to the recursive DNS resolver serving our testbed,
initially with a TTL of 5 minutes, to populate the client’s
local DNS cache, and then checked if the client environment
respects the TTL as specified in the DNS record (whether it
would issue a new DNS query when the domain is requested,
as soon as the TTL expires). We then repeat the experiment
by updating the DNS record (using the nsupdate [125]
utility) on our network’s authoritative DNS server (§6.1)
with a TTL value that is decremented by 1, until we reach
a TTL of 1 second. We repeated the test for 30 trials for
further confirmation.

Prior work notes that browsers sometimes implement
their own DNS caches [81]-[83]. Using an approach sim-
ilar to our aforementioned experiment, we tested the DNS
caching behavior of Chrome (on Windows, Mac, and An-
droid), Firefox (on Windows and Mac), Edge (on Windows
and Mac), and Safari (on Mac). In more detail, for each
browser, we fetched a webpage under our control. We
experimented with different TTL values for the authorita-
tive record for that domain. When the TTL expired, we
mapped the domain to a different IP address. We then evalu-
ated whether subsequent fetches from the browser (without
restarting it) would honor the TTL (in which case a new
lookup would occur and the browser would successfully
render the page) or use a stale cached resolution (that
would result in an unsuccessful page fetch). Our evaluation
used TTL values down to one minute since prior work
reported a one minute upper bound for most browsers’ DNS
caching [82], [83]. In all cases, we found that the browser
successfully rendered the page, indicating their support of
DNS TTLs of one minute.

18

Appendix B.
Meta-Review

B.1. Summary

This paper presents “NetShuffle”, a censorship circum-
vention system that discourages a censor from blocking a
prohibited site by putting it behind a shared public access
IP, that the censor might not be willing to block because
of “collateral damage”. The technique is similar to domain
fronting, but differs in implementation and in the size and
amount of networks that could use the approach.

B.2. Scientific Contributions
« Provides a Valuable Step Forward in an Established

Field
e Creates a New Tool to Enable Future Science

B.3. Reasons for Acceptance

1) This work presents a new point in the design space
of censorship circumvention technologies.

2) The output of this work could enable future science
on how to efficiently deploy/utilize proxies.

3) The work could support subsequent research to-

wards understanding how to optimize deployments
of such systems.

B.4. Noteworthy Concerns

The core contribution of this work relies on the claim
that censors would be less willing to block the smaller
networks using the “NetShuffle” approach, as opposed to
larger networks using the existing and established “domain
fronting” approach. This claim is asserted but not justified in
the paper, meaning the efficacy of the approach is currently
unknown. Understanding the ultimate impact of this work
would therefore require wider deployment and follow-up
evaluation of “NetShuffle” systems.

Appendix C.
Response to the Meta-Review

Our argument in relation to core networks isn’t that they
are more likely to be blocked by censors when compared
with edge networks; instead, our main argument is that
core networks are not perfect and have their own disad-
vantages (e.g., core networks can and have performed self-
censorship), which we have discussed in paragraph 3 of
§1 and §2.2. This motivates the search for new solutions
in other domains (we advocate for an edge-network-centric
solution in this paper).

However, it is true that our contribution relies on the
claim that edge networks should pose some level of deter-
rence to censors, which we have argued for in §7 and §8.

	Introduction
	A Case for Circumvention at the Edge
	Strengths/weaknesses of end user proxies
	Strengths/weaknesses of core net services
	Distinct tradeoffs/opportunites at the edge

	NetShuffle Overview
	The NetShuffle Defense
	The basic network shuffle
	Performing an asynchronous shuffle
	Compacting the shuffle
	Compacted HP disambiguation

	Implementation
	Evaluation
	Experimental setup
	Shuffle speeds
	NetShuffle switch overhead
	Live network deployment

	Security Analysis
	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Validating browser and OS DNS TTL Caching
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix C: Response to the Meta-Review

