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Abstract: Legged robot locomotion on sand slopes is challenging due to the com-
plex dynamics of granular media and how the lack of solid surfaces can hinder
locomotion. A promising strategy, inspired by ghost crabs and other organisms
in nature, is to strategically interact with rocks, debris, and other obstacles to fa-
cilitate movement. To provide legged robots with this ability, we present a novel
approach that leverages avalanche dynamics to indirectly manipulate objects on
a granular slope. We use a Vision Transformer (ViT) to process image repre-
sentations of granular dynamics and robot excavation actions. The ViT predicts
object movement, which we use to determine which leg excavation action to ex-
ecute. We collect training data from 100 real physical trials and, at test time,
deploy our trained model in novel settings. Experimental results suggest that
our model can accurately predict object movements and achieve a success rate
> 80% in a variety of manipulation tasks with up to four obstacles, and can
also generalize to objects with different physics properties. To our knowledge,
this is the first paper to leverage granular media avalanche dynamics to indirectly
manipulate objects on granular slopes. Supplementary material is available at
https://sites.google.com/view/grain-corl12024/home.

Keywords: Granular media, Avalanche dynamics, Legged robots, Manipulation
of deformable substrate.

1 Introduction

Legged locomotion across granular surfaces such as sand is a formidable challenge due to factors
such as insufficient support offered by the sand surface and the complex dynamics of leg-sand in-
teractions [1, 2, 3]. It is particularly challenging for robots to climb up steep granular slopes, as
the sand could easily flow underneath robot legs due to the reduced shear resistance forces [4]. Re-
cent studies on obstacle-aided robot locomotion show the potential for legged robots to strategically
leverage large obstacles within sand, such as rocks and boulders, to traverse granular and uneven ter-
rains [5, 6, 7, 8]. However, such “obstacle-aided locomotion” strategies require specific leg-obstacle
contact locations [5], thus the ability to move rocks and boulders to desired locations became es-
sential for these strategies to apply. To address this challenge, this study aims to propose a method
for a legged robot to effectively reposition obstacles on granular slopes by primarily leveraging in-
direct manipulation. Prior work has shown that external disturbances on a sand incline can trigger
avalanche behavior [9, 10, 11], suggesting the potential for a legged robot to exploit this property to
advantageously relocate obstacles on a granular surface.

In this work, we propose Granular Robotic Avalanche INteraction (GRAIN), a novel learning-based
method for leveraging granular avalanche dynamics for indirectly manipulating objects on a granular
slope. Due to a lack of accurate simulators for simulating legged robots and avalanche behavior on
granular slopes, we do all experiments in the real world. We use an RHex [12] family robot leg as an
external disturbance source which performs excavation actions within a grain tank with mechanical
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Figure 1: Top: (a) our quadrupedal robot and (b) a granular slope with the robot and obstacles; (c) our setup
to collect data from one robot leg (highlighted in yellow) manipulating obstacles, with our designed gantry
system (highlighted in cyan) for moving the leg over the granular slope. Bottom: (d), (e), (f) an example trial
of our proposed system to manipulate obstacles on the granular slope. The three blue arrows in (d) represent
the change in each obstacle’s location after applying the excavation, and the red shaded areas are targets.

support to form a slope. We also design a gantry structure to enable the robot leg to move to different
positions for performing leg excavations. We collect training data through physical interaction and
deploy our trained model in the real world with a quadrupedal robot. See Figure 1 for our setup.

Accurately predicting the granular media dynamics is essential for our proposed task, but is funda-
mentally challenging [1, 11, 13, 14]. To address this, we leverage learning methods in this study. We
place a rigid 3D-printed obstacle on the granular slope and collect data by applying continuous robot
leg excavation actions to investigate avalanche behavior. We represent the granular surface state via
the current depth image and the change in depth between sequential robot leg excavations, and we
also use an image to represent the leg excavation action. This enables a unified image-based input
to our granular media dynamics model. We train a ViT [15] to take our proposed granular media
and robot excavation action representations as input and output the object movement on the granular
slope. Experiments over 30 trials suggest that our model can accurately predict object movements
on a granular slope, and can generalize to objects with different physics properties.

In summary, our main contributions are as follows:

1. A novel problem formulation of using legged robots and leg excavation actions to indirectly
manipulate obstacles to targets over complex, granular terrains.

2. GRAIN, a novel approach that uses image-based representations of granular dynamics and legged
excavation actions to predict object movements on a granular surface.

3. Experimental results showing that a legged robot using GRAIN can move obstacles to targets,
and that GRAIN outperforms an ablation and a non-learning baseline.

2 Related Work

Robot interaction with granular media: Researchers have explored robotics and granular media
in locomotion and manipulation contexts. For example, researchers have enabled crawling [16, 4],
hopping [17, 18], running [19, 2, 3], climbing [20], and rapid turning [21] over granular media by
leveraging advances in granular force models [1, 13] and machine learning methods [22, 23]. We
focus on the orthogonal task of leveraging the properties of granular media to manipulate objects
on it. This requires some understanding of how granular media behave, which could be from direct
physics analysis [24, 25, 26] or learned models [27, 28]. These models can aid common manip-
ulation tasks involving granular media, which include pouring [29, 30, 31, 32, 33, 34], scooping
and bulldozing [35], trenching [36, 14] or adjusting soil with plates [37]. Among relevant prior



work, Wang et al. [38] and Xue et al. [39] study particle-based and density field-based represen-
tations, respectively, to learn dynamics models for planar tabletop manipulation of granular media,
and Schenck et al. [40] use image representations and train a convolutional neural network to predict
changes in the granular media from scooping or pouring actions. As in [40], we use image-based
representations of granular media, but our actions are based on leg excavations instead of scoop-
ing, pouring, or other tabletop manipulation actions. Moreover, we use legs of a legged robot to
indirectly manipulate objects on granular media surfaces.

Locomotion over diverse terrains: Recent research has proposed methods that enable legged
robots to traverse over a variety of terrains, including outdoor settings that may have sand, vege-
tation, rocks, or other granular media. A promising technique is reinforcement learning coupled
with advanced simulators, which can help avoid significant manual engineering [41, 42]. To better
handle diverse terrains, one line of work proposes adaptation methods, either via rapid motor adap-
tion [43, 44] or by encoding a family of gait methods which facilities tuning to new terrains [45].
Other works study navigation over challenging terrains [46], which may involve climbing, jump-
ing [47], and crawling under parkour-style settings [48, 49]. While impressive, these works study
locomotion over terrains that are much sturdier than our granular surface. Furthermore, they primar-
ily consider locomotion, whereas we focus on manipulating objects on a granular surface.

Manipulation with legged robots: While legged robots primarily use legs to move to a target
location, they can also use legs for manipulation. For example, researchers have proposed methods
for using legs to kick soccer balls [50, 51] and to push obstacles [52, 53]. A legged robot can also
use two legs to stand up to better enable other legs to press against higher objects such as door
buttons [54]. Other works mount an arm on top of a legged robot, and leverage methods such as
optimization [55, 56] or machine learning [57, 58, 59] to allow the arm to manipulate objects. These
works use legged robots for manipulation via direct contact with an object. To our knowledge, our
work is the first to show a legged robot indirectly manipulating an object to make it reach a desired
pose. To do this, the robot adjusts a granular surface that supports the object.

3 Preliminaries and Problem Statement

We consider the RHex [12] family of legged robots, with 1 DOF for each leg. We generate an
excavation action, per leg, by commanding the leg to rotate at a constant angular speed for one
circular cycle. We assume the robot lies on a granular (sand-like) surface which has a slope of ¢
degrees. This surface has K > 1 rigid obstacles, and we indicate their respective positions at a
given time ¢ as {sgl)7 .. ,SEK)}. The task is to move all obstacles from their initial locations to
pre-specified desired locations {p(l) .., pE )}. After doing this, we may also want to move the
obstacles to a second target location, and we indicate these optional (per-obstacle) target locations as
{a®, ..., q")}. Here, each s{*) € R2, p(®) € R2, and q¥) € R2fork € {1,2,..., K}, since we
specify 2D positions over an image of the granular surface. For notational convenience, when K = 1
we may suppress the superscript (k). We assume access to an overhead camera, which provides
(H x W) depth image observations x;. The objective is to learn a policy which produces a leg
excavation action a, at time ¢, where the robot rotates one of its legs. A frial consists of executing the
robot’s policy until a termination criteria. We evaluate a trial’s performance by averaging the mean
absolute error (MAE) distance among all obstacle positions and their respective target positions. We
also use MAE to evaluate models which predict where obstacles move based on robot actions.

4 Approach: GRAIN

4.1 Image Representations of Granular Dynamics

Prior work has shown that external disturbances can trigger avalanche behavior on granular
slopes [60]. Inspired by this, we aim to leverage robot leg excavation actions to cause avalanche
behaviors to move obstacles to desired locations. Intuitively, the robot leg excavation location af-
fects the avalanche area, and an obstacle’s relative position to the excavation affects how much
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Figure 2: Overview of GRAIN. (a) The ViT has three inputs: the depth image of the granular surface x,
the change in depth before and after excavation Ax;, and the image representation of the action I(a;). The
output of the ViT is the prediction of the obstacle’s post-excavation location which is a 2D vector. (b) We use
the trained ViT to predict object movements based on leg excavation actions. The ViT combines the current
observation with candidate actions as input and predicts corresponding object movement. The ViT considers
one obstacle in its output; see Sec. 4.3 for handling > 2 obstacles at test time. See Sec. 4 for details on notation.

it is influenced by the avalanche. Due to the complexities of modeling avalanche dynamics and
obstacle movements on the granular surface, we learn an action-conditioned dynamics machine
learning model to predict obstacle movement. Similar learned models have predicted complex
physical interactions for planning robot manipulation [61, 62, 63], suggesting their utility for our
task. To represent the obstacle and the granular slope surface, we use a top-view depth image, x;.
Furthermore, during preliminary experiments, we ob-
served that successfully relocating obstacles often re- :
quired consecutive excavations at the same location. See . .
Figure 3 for a visualization of grain flows with sequen- R
tial excavations. To highlight this physical finding in our
model, we use the change in the depth images of the gran-
ular slope surface between sequential excavation actions,
denoted as Ax; = x; — x;_1 for t > 0, with Ax; = 0
(all pixels zero) if t = 0. We also introduce an image rep- Figure 3: Granular flow for 2 sequential ex-
resentation of robot leg excavation locations, which en- cavations. Red vectors represent the change
Lo . . . of particle positions between two frames.
ables the action input to be spatially aligned with x; and
Ax;. This may help the network better learn the avalanche behavior compared to if the action is
processed separately and concatenated with downstream visual features. We discretize excavation
locations to 15 locations in a 5 x 3 grid (see Figure 5). We plot a white square with a side length the
same as the robot leg length on a black background to represent the robot leg excavation location,
I(a;), where a; is the excavation location on the 2D planar surface, and [ is a function that generates
the RGB image representation of a;.

4.2 Training Objective for the Dynamics Model

We train a ViT to learn granular avalanche dynamics from C-shape robot leg excavations. The
ViT predicts one obstacle movement on the granular slope, and we deal with multiple obstacles at
test-time by repeatedly querying the model (see Sec. 4.3). The training loss £ is defined as:

L(x¢, Axy,a;,8i41) = || Fo(x¢, Axq, I(ay)) — s41|2, (D

where Fy is the ViT parameterized by 6 that takes, as input, a channel-wise concatenation of three
spatially-aligned images: the depth image x;, the change in depth Ax;, and the action representation
I(a;). The ViT outputs the predicted post-excavation obstacle position §;11 = Fy(x¢, Axy, I(ay)),
which we compare with the ground truth obstacle position s;4; on the inclined 2D surface at time
t + 1. Since the ViT predicts continuous values, we modify the ViT’s default MLP classification
header with an MLP regression header. See Figure 2 (left) for an overview of training.



4.3 Leg Manipulation Policy

We propose a greedy strategy for manipulation, which means the robot leg performs the excava-
tion action at the location that has a maximum obstacle movement projection on the current line
connecting the desired location and obstacle center toward the target area, described in Eq. 2:

a; = arg ;ng/}f\ ef(Fg(xt, Axy, I(a)) — st), 2)

where A is the set of 15 possible actions (see Figure 5), and e] is a
2D unit vector that points from the obstacle center to the target location
at time ¢ (see Figure 4, target is the shaded red square). Parameters
such as leg insertion depth and the angle of the excavation could also
offer additional terrain-manipulation opportunities. As an initial step,
we focus on demonstrating the effect of leg excavation location. Prior
work has shown that a greedy policy for planning can be useful for object
relocation [64], and we hypothesize the same may be true in our setting.

o . . . . : L et
Our model is trained using robot excavation actions with a single obsta- B

cle. To use the model with multiple obstacles, we treat multiple obstacle
movement prediction as a collection of independent predictions of a sin-
gle obstacle movement. In particular, we randomly select an obstacle
and mask out other obstacles on the depth image input, x;, where we use a window that has a length
3 times the obstacle radius to compute the average pixel values in the windows and replace the pixel
value of the obstacle with the computed averaged pixel value. Furthermore, we mask out other ob-
stacles in Ax;, where we set the pixel values to 0 corresponding to other obstacle positions. We
repeat this process for all obstacles and get the predictions of all obstacle movements. We mod-
ify our manipulation policy to fit the task; the policy now considers the sum of obstacles projected
movement on lines that connect their centers to their desired locations as described in Eq. 3:

* T ~ A
= F, Axy, I —
ay argglgfl Z e; (Fo(Xt, Axy, I(ar)) — st), 3)

T
et »St

Figure 4: Example of e
vector, pointing to the ob-
stacle’s target.

where images x; and Ax; are masked versions of x; and Ax;.

5 Experiment Setup

Existing simulators used in learning-based legged robot manipulation research, such as PyBul-
let [65], MuJoCo [66], or IsaacGym [67], do not support realistic robot interaction on granular
media surfaces. Thus, we do all data collection, training, and experiments directly in the real world.

Experiment environment: Figure 1 illustrates our experiment setup. The main structure of the
testbed is a granular trackway (60cm L x 60cm W x 20cm D) filled with 6 mm plastic BBs
(Matrix Tactical Systems). The 6 mm particles were chosen as they behave rheologically similar
with natural sand and soil [68, 1, 69], while the simpler geometry and larger size facilitate image-
based model training. The granular trackway can be tilted up to 35 degrees to emulate a wide variety
of sand slopes [11] in natural environments. To study the avalanche dynamics and object movement
upon different leg excavation actions, we build a gantry system with two linear actuators (one moves
along the x axis and another along the y axis) to move a C-shape robot leg on a 2D surface above
the granular slope. The C-shape robot leg has a diameter of 6.0 cm and a width of 2.0 cm, and the
rotation center of the leg is 1.0 cm above the initial granular slope surface. The rotation frequency of
the robot leg is fixed at 0.33 Hz. This is sufficiently above the granular surface, so the robot avoids
touching it while transitioning between consecutive excavation actions. We mount an RGBD camera
(Intel RealSense 435-i) above the granular slope to record the granular flow and obstacle movement.

Data collection: We collect a dataset of 100 trials, where each trial has 10 excavation actions. The
time interval between two consecutive excavation actions is 12 s to enable the robot leg to transit to
different locations. Before each trial, a human operator manually smoothed the granular media to a



Figure 5: Obstacle movement with different excavation actions, visualized with colored squares (5 actions per
image above). These 5 x 3 = 15 colored squares are the 15 discretized excavation actions we consider. The
corresponding solid color circles and empty color circles are the trained model’s predicted obstacle positions
and experiment-measured obstacle positions, respectively. (This figure is best viewed zoomed-in.)

(roughly) even granular slope with an inclination angle & = 18 degrees. This inclination angle is
close to the angle of repose [70] of the granular material used in our work, which facilitates the study
of the avalanche dynamics. Once the granular surface is prepared, the human placed a 3D-printed
(PLA) obstacle on the granular surface at different locations relative to the leg. For all 100 trials,
a semi-spherical obstacle with a 5 cm diameter is used. The RGBD camera has a video streaming
rate of 15 Hz, and it collects 640x480 RGBD images after every excavation action. The ground truth
obstacle movement is calculated based on the post-excavation RGBD image. Among the 100 trials,
36 use the same excavation location but different initial obstacle positions, 30 use the same initial
obstacle position but different excavation locations, and 34 vary both the initial obstacle positions
and excavation locations for each action. We use this data to train Fy.

Evaluation: For each trial, after the human places the obstacles, a computer program randomly
selects target location(s) for each obstacle. Targets can be anywhere in the robot excavation action
space, as long as they do not overlap with each other. Then, the program randomly selects a method
among a set of methods we test (GRAIN, a baseline, or an ablation, see Sec. 6.2) for manipulation,
to reduce human bias in making initial settings easier for our method. We evaluate our dynamics
model and manipulation outcomes based on the prediction error for each excavation action, using
Mean Absolute Error (MAE). In test trials, we compute performance based on the final distance
between the obstacle center and its desired location. The success threshold is below 2.5 cm (the
radius of the obstacle) which we measure via converting pixel distances in images to centimeters.
We also use the average error between prediction and ground truth as a performance evaluation.

6 Experiment Results and Discussions

6.1 Model Performance on Predicting Obstacle Movements

To evaluate our model’s performance in predicting obstacle movements, we place an obstacle on an
undisturbed granular slope and test 15 excavation action locations; we reset the obstacle to the same
spot after each action. See Figure 5 for a comparison between the predictions and the ground truth
locations. The MAE for these 15 excavation actions is 1.13 cm, below our 2.5 cm threshold. Based
on the promising MAE results, we use our trained model for planning in Sec. 6.2 and Sec. 6.3.

6.2 Single Leg Manipulation Performance
We evaluate GRAIN in real-world experiments with a single leg using four types of tasks:

Single obstacle with a single task: Using K = 1 obstacle, with a target position p.

Single obstacle with sequential tasks: Using K = 1 but with an additional (second) target q.
Multiple obstacles: Using K = 4 obstacles with targets {p("), p(»), p(3), p(1.

Unseen obstacle: Using X' = 1 obstacle with a target position p, but where the new obstacle
has a star shape and weighs twice as much as the standard obstacle we use.

bl NS
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Subtask2

Figure 6: Single leg manipulation results, showing one trial of “Single obstacle with sequential tasks”. The red
shaded boxes are the obstacle targets. The green dots are the predicted post-excavation locations of obstacles
after the leg performs an excavation at its location.

We compare GRAIN against a baseline and an ablation. Our baseline is an algorithmic, non-learning
manipulation strategy. The baseline randomly selects an obstacle, and the robot performs the exca-
vation at the closest available location to the target until the obstacle has met one of two termination
criteria (see next paragraph). Then, this baseline randomly selects one of the remaining obstacles to
manipulate and repeats until all obstacles are selected. Our ablation investigates the importance of
our image representation of the robot excavation action to the successful training of our model. We
train a ViT with a lower-dimensional, 2D vector representation of the robot excavation action. This
cannot be directly channel-wise combined with the depth-based image observations, so we instead
input it to the regression header of our ViT.

A manipulation trial terminates upon either of these conditions: (i) none of the excavation actions
can take obstacles closer to their targets, or (ii) all obstacles have a small accumulated movement
(£ 0.5 cm) over 3 sequential excavations. In (i), for the baseline method, we terminate when we
observe that the previous excavation action took the obstacle away from its target or reached it.

Results from Tab. 1 suggest that GRAIN outperforms the baseline and the vector representation
ablation. GRAIN has a success rate > 80% on all manipulation tasks, while the baseline has trouble
with the “Multiple Obstacles” task, and the ablation has trouble with the “Unseen obstacle” task.
The baseline particularly struggles when manipulating multiple obstacles (20% success), as it does
not consider other obstacle movements when manipulating one obstacle. The ablation’s granular
dynamics model has a higher (i.e., worse) MAE in the predictions, which results in lower success
rates versus GRAIN. We show one trial each of “Single obstacle with sequential tasks” and “Multiple
obstacles” in Figure 6. We refer the reader to the supplementary website for videos.

Success
i1l §
Task Method MAE' (cm) MAE?® (cm) rate (%)
Sinele obstacle with Baseline N/A 1.78(£ 0.96) 80%
gsin le task Vector representation 2.34(+ 0.94) 1.76(% 0.63) 80%
g GRAIN 1.66(+£ 0.62) 1.39(£ 0.41) 100%
Sinele obstacle with Baseline N/A 2.24(£ 1.12) 60%
sg uential tasks Vector representation 2.51(% 0.96) 2.17(£ 0.72) 60%
! GRAIN 1.78(£ 0.62) 1.42(£ 0.45) 100%
Multinle obstacles Baseline N/A 5.12(% 3.44) 20%
(II)( = 4) Vector representation 2.89(+ 1.11) 2.21(% 0.88) 60%
B GRAIN 2.21(+ 0.91) 1.85(£ 0.74) 80%
Baseline N/A 4.34(£ 2.87) 60%
Unseen obstacle Vector representation 2.67(+ 1.42) 2.49(+ 1.38) 40%
GRAIN 1.96(+£ 0.90) 1.91(£ 0.73) 80%

fMAE for model predictions versus ground truth. *MAE for final obstacle positions versus target positions.

Table 1: We compare the quantitative performance of our method (GRAIN) versus alternative methods on four
manipulation tasks. We report MAE in two columns, both using the format: Mean(=% Standard Deviation), over
5 trials each. The “Baseline” method involves no prediction, hence the “N/A” in the first MAE column.
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6.3 Quadruped Robot Manipulation Experiments

We evaluate GRAIN on the quadrupedal robot with 2 front legs as manipulators; we do not use the
back legs since the robot body would likely block obstacles. Specifically, we use the same trained
model as in Sec. 6.2 but we query the model at the 2 excavations where the legs are located, instead
of the full set of 15. We show one trial in Figure 7. Results in Tab. 2 suggest that GRAIN achieves
higher performance (i.e., lower MAE) than the baseline or vector representation methods.

Success
T §
Task Method MAE' (cm) MAES (cm) rate (%)
. Baseline N/A 456(+£2.46)  30%
M“Itzfl’lfefb;;ades Vector representation  3.19(% 1.34)  2.67(£ 1.12)  40%
= GRAIN 2.52(% 1.08) 191(£097)  70%

TMAE for model predictions versus ground truth. *MAE for final obstacle positions versus target positions.

Table 2: We compare the performance of GRAIN and alternative methods on the multiple obstacles task (with
3 obstacles) using the quadrupedal robot, in a similar format as Tab. 1, except statistics are over 10 trials each.

Figure 7: One trial of a quadruped robot manipulating three obstacles to reach targets (indicated with red shaded
boxes). The yellow boxes highlight the leg that performs the excavation action at each step, and the green dots
are the predicted post-excavation locations of obstacles after the leg performs the action.

6.4 Failure Cases and Limitations

A common failure of GRAIN with multiple obstacles occurs when the robot
leg moves one obstacle to its target while simultaneously moving other ob-
stacles too far from their targets. See Fig. 8 for an example, where two obsta-
cles are already at their target locations (red shaded boxes), but the robot has
trouble moving the third obstacle to its target (white arrow and green shaded
box). The rightmost obstacle has reached its target, and further excavations
will move it away from its target. Our manipulation policy only predicts ob-
stacle movements for one step, and thus can have difficulty with tasks that
require multiple-step planning, which we plan to address in future work.

Figure 8: The arrow
shows the robot cannot
move the obstacle to its
target (green square).

7 Conclusion

In this work, we present GRAIN, a method for a legged robot to indirectly manipulate obstacles on
a granular surface. Our method trains a neural network to predict where an obstacle on a granular
surface moves as the result of a legged robot’s excavation action, enabling a quadrupedal robot to
leverage granular avalanche dynamics to relocate obstacles. To our knowledge, this is the first work
to explore indirect manipulation on deformable surfaces via legged robots. As the first step towards
the complex problem of indirectly manipulating obstacles via strategic granular avalanches, we used
granular particles of relatively simple geometry, and primarily focused on individual obstacle move-
ment prediction with minimal inter-obstacle interactions. Prior work has shown that these simpler
geometry particles behavior qualitatively similar in terms of rheology and interaction force laws [1],
suggesting strong potential for GRAIN to be extended to more complex scenarios in future work.
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A Additional Details of GRAIN

A.1 Algorithm for Image Representation of Robot Excavation Action

To highlight the relationship among the robot excavation action, avalanche behavior and obstacle
movement, we introduce our image representation of the excavation actions in Sec. 4.1. The pseu-
docode in Alg. 1 shows how we obtain this representation. We show several examples of the image
representation in Figure 9, for different locations of the robot leg.

Algorithm 1 Image Representation of Robot Excavation Action

Require: White square size A, coordinates of robot excavation action location a; = (¢, y¢)
Ensure: Output image O of size (H, W)
O < Zero matrix of size (H, W)
Ttart < max(0, xy — é)
D Ystart < maX O Yt —
Tend < min(H, z; +
¢ Yend < min(W, g, +
: for i = Ty 1O Teng d0
fOl‘j = Ystart L0 Yend do
Oli, j] < 255
end for
end for

2)
2)
2)

PRXIADIDN KRN

—_—

Figure 9: Additional examples of image representations of excavation actions. Top: RGB images of robot
excavation actions. Bottom: The corresponding image representations of robot excavation actions.

A.2 Algorithm for Masking Obstacles in x;

Sec. 4.3 discusses how we handle multiple obstacles. In Alg. 2, we formalize our method to mask
other unselected obstacles. This lets the masked images look similar to images from the single
obstacle case, which we use for training the ViT. See Figure 10 for an example of an image and
its corresponding masked version (obtained via Alg. 2). During training, we use cv2.colormap, a
package in opencv, to convert depth to RGB, as shown in the figure. For visual clarity, we overlay
“Obstacles” and “Masked Obstacles.”
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Algorithm 2 Masking Unselected Obstacles in Multiple Obstacles Manipulation

Require: Input image I of size (H,W), window size B, list of obstacle center coordinates

{(z1, yr) 2,1, list of pixels sets (obstacles) { Py, } & for each coordinate
Ensure: Output image O of size (H, W)

1: O« 1

2: for each (z,y) € {(x, yx)}+_,' with corresponding pixels set P do
3: Zstarr < max(0,z — %)

4: Ystart < max(0,y — %)

5: Zend < min(H, z + %)

6: Yend < min(W,y + %)

7: S+ {I[Zvj] | xstlart <4 < Tend, Ystart < J < yend}
B AVE & G e 2a(ig)es 110]

9: for each (i,5) € P do
10: if T < 1 < Tend and Ysrart < J < Yena then
11: Oli, j] < avg
12: end if
13: end for
14: end for

Figure 10: Example of masked image x;. The left image is an example of x; and the right image is the
corresponding masked image x;. Specifically, the second to the right most obstacle is the selected obstacle and
other 3 obstacles are masked.

A.3 Neural Network and Hyperparameter Details

Our overall data includes 10,437 images, which we obtain from 100 experiment trials. We split this
data into 70% for training, 15% for validation, and the last 15% for testing. The input to our ViT is
an image representation stacked channel-wise into a 7 x 128 x 128 input. Our ViT has 46M trainable
parameters, and is a smaller version of the ViT-Base model [15] so that we could fit it on our GPU.
We train the ViT from scratch. To apply ViT to our task, we change the last layer of the ViT so that it
has an MLP header that outputs a 2D vector corresponding to the predicted obstacle center position
on the granular slope. Moreover, as we have a continuous prediction instead of a discrete prediction,
we used MAE as the loss function instead of cross-entropy loss. We include our hyperparameters in
Table 3.
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Hyperparameter

GRAIN Value

learning rate

weight decay

# encoder layers

# MLP layers

# heads

feedforward dimension
hidden dimension
embedding dimension
input size

patch size

dropout

attention dropout probability

5e-6
le-3
6
2
6
768
3072
768
7x128x128
16
0.1
0.1

Table 3: Hyperparameters for the Vision Transformer (ViT) we used in GRAIN.

B Additional Experiment Details

B.1 Single Leg Manipulation Results

Figure 11 shows one experiment trial for three manipulation tasks: ‘“Multiple obstacles (K = 4),”
“Single obstacle with single task,” and “Unseen obstacle.” We refer the reader to Section 6.2 for
a description of what the tasks mean, and for example trials from other tasks. The statistics of all

manipulation trials are shown in Tab. 1.

Figure 11: Single leg manipulation experiment results: (a) is Multiple obstacles (K = 4), (b) is ““Single obstacle
with single tasks,” and (c) is “Unseen obstacle.” In the above, red shaded areas are target areas. The green dots
are the prediction of post-excavation locations of obstacles after the leg performs the action.
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B.2 Multiple Unseen Obstacles Manipulation

To test our trained model’s generalization ability, we use obstacles with different shapes and weights
in this task. Specifically, we use a star shape obstacle, a cuboid obstacle that has half of the weight
of the obstacles used in the training dataset, and a hemisphere obstacle the same size but 4 times the
weight of the obstacles used in the training dataset. All obstacles are 3D-printed. We place these
unseen obstacles on the granular slope plus the obstacle we use in the training dataset as a total of
K = 4 obstacles with a random distribution and executed the manipulation policy. We show one
manipulation trial in Figure 12. Our system succeeds in 3 out of 5 trials.

Figure 12: Multiple Unseen Obstacles Manipulation. Red shaded areas are target areas. The green dots are the
prediction of post-excavation locations of obstacles after the leg performs an action at its current location.
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