

Highlights

Oxygen Vacancy Effects in the Electronic and Magnetic Structure of $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ Epitaxial Thin Films from First Principles

Zachary Romestan^{ID}, Xu He^{ID}, A. C. Garcia-Castro^{ID}, Navid Mottaghi^{ID}, Mikel Holcomb^{ID}, Aldo H. Romero^{ID}

- Oxygen vacancies near the LSMO/STO interface redistribute charge to low spin configurations.
- Low spin configurations result in magnetization deterioration.
- Oxygen vacancies cause competing super-exchange via charge redistribution.

Oxygen Vacancy Effects in the Electronic and Magnetic Structure of $\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ Epitaxial Thin Films from First Principles

Zachary Romestan^{✉,a,*}, Xu He^b, A. C. Garcia-Castro^c, Navid Mottaghi^b, Mikel Holcomb^b, Aldo H. Romero^b

^a*Department of Physics, West Virginia University, 135 Willey Street, Morgantown, 26506, WV, United States*

^b*Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain*

^c*School of Physics, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia*

Abstract

$\text{La}_{0.7}\text{Sr}_{0.3}\text{MnO}_3$ (LSMO) is a promising material for spintronic applications due to its robust ferromagnetism and complete spin polarization. However, these properties are known to degrade in thin films. Oxygen vacancies are believed to be a critical factor in this degradation, but experimentally isolating their effects has proven challenging. In this work, we use first-principles calculations to theoretically investigate how oxygen vacancies affect the magnetic structure of LSMO thin films. Our results reveal that oxygen vacancies act as scattering centers, leading to charge redistribution within the bulk layers. This redistribution disrupts the ferromagnetic double-exchange interaction and introduces competing

*Corresponding author

Email addresses: zlromestan@mix.wvu.edu (Zachary Romestan^b), mailhexu@gmail.com (Xu He^b), acgarcia@saber.uis.edu.co (A. C. Garcia-Castro^b), mottaghi.navid@gmail.com (Navid Mottaghi^b), mikel.holcomb@mail.wvu.edu (Mikel Holcomb^b), Aldo.Romero@mail.wvu.edu (Aldo H. Romero^b)

super-exchange interactions, causing local spin flipping and ultimately reducing the overall magnetization.

Keywords: Manganites, Vacancies, Half-metals, Local DOS, DFT, Exchange Interactions

1. Introduction

1 Rare earth manganites of the form $RMnO_3$ (R = rare earth) have been a focal
2 point of materials design for decades due to their exceptional sensitivity to cation
3 substitution [1-5]. In particular, the $La_xSr_{1-x}MnO_3$ family exhibits colossal
4 magnetoresistance (CMR), orbital order, multiple charge ordered phases, mag-
5 netic transitions, and metal-insulator transitions by varying the Sr content [1-5].
6 The rich physics that results from cation substitution is enticing for applications
7 in magnetic tunnel junctions [1], solid oxide fuel cells [2], and memristors [3].
8 While $SrMnO_3$ and $LaMnO_3$ are both antiferromagnetic (AFM) insulators at
9 room temperature [1-3], the alloys become ferromagnetic (FM) with metallic
10 and half-metallic behavior for $0.1 \leq x \leq 0.5$ [1] through the double exchange
11 interaction. $La_{0.7}Sr_{0.3}MnO_3$ (LSMO) is exceptional due to its large magnetic mo-
12 ment, complete spin-polarization at the Fermi level, Curie point above room tem-
13 perature [1], and highly efficient CMR [1]. These properties make LSMO an
14 excellent candidate for spintronic device applications. These applications neces-
15 sitate reduced dimensionality, but the magnetic properties of thin films are found
16 to deviate from their bulk counterparts [1-3]. In LSMO the reduction of film
17 thickness [1] leads to magnetic deterioration at the film surface, known as the
18 magnetic dead layer (MDL). In addition to the MDL, there is further evidence
19 that demonstrates a variety of complex magnetic phenomena in manganites such
20

21 as interfacial dead layers [], competing magnetic domains [?], and sponta-
22 neous magnetic reversal [? ?] as a consequence of the reduced dimensionality.
23 Likewise, the electrical conductivity degrades with film thickness [? ?] which fur-
24 ther hinders potential developments based on LSMO. Property degradation is well
25 documented, but there is no global consensus on the precise underlying mecha-
26 nisms that are responsible. While the dependence on film thickness is clear, the
27 reduction of dimensionality invites the consideration of new degrees of freedom,
28 such as epitaxial strain [], interfacial charge redistribution [? ? ?], and point
29 defects [? ?], that might increasingly influence the material properties and perfor-
30 mance as thin-films thickness is reduced. As each of these occur simultaneously,
31 discerning the mechanism is ambiguous. Oxygen vacancies are believed to play
32 a crucial role, as evidence suggests they significantly impact the magnetic and
33 electronic properties of $(\text{La},\text{Sr})\text{MnO}_3$ materials [].

34 In this work, we carefully investigate the effects that oxygen vacancies have
35 on the magnetic and electronic structure of LSMO thin-films. We introduce oxy-
36 gen vacancies into our theoretical modeling of LSMO/STO thin films in order to
37 unveil and understand the key features relative to experimental findings. From the
38 oxygen-deficient thin film models, we are able to reproduce the formation of mag-
39 netic dead layers near the surfaces. Additionally, we find further magnetization
40 degradation throughout caused by the redistribution of charge induced by the
41 presence of vacancies.

42 **2. Computational and Theoretical Methods**

43 To study the effects of oxygen vacancies in bulk LSMO we employed first
44 principles calculations within Density Functional Theory [? ?] (DFT) as it is

45 implemented in VASP [18] (version 5.4.4), using the PAW method [19]. The
46 exchange correlation functional was approximated with the PBEsol [20] GGA
47 exchange-correlation functional, and the plane wave basis was expanded up to a
48 cutoff of 600 eV to ensure accurate total energies and forces. The pseudopotentials
49 included 11 electrons from La, 10 from Sr, 13 from Mn, and 6 from O
50 with the electronic configurations of La:5s²5p⁶5d¹6s² (version La 06Sep2000),
51 Sr:4s²4p⁶5s² (version Sr_{sv} 07Sep2000), Mn:3p⁶4s²3d⁵ (version Mn_{pv} 02Aug2007),
52 and O:2s²2p⁴ (version O 08Apr2002). To account for the localization of the Mn
53 *d*-electrons we used the LDA+U correction within the Liechtenstein [21] formalism
54 for the Mn 3*d* elections, setting U to a value of 2.7 eV and J to a value of 1.0 eV.
55 The Sr content was modeled using the Virtual Crystal Approximation [22] (VCA).
56 The chosen value for (*J*, *U*) in combination with the VCA treatment that we use
57 in this study has been shown to arrive at results that are consistent with experi-
58 mental measurements in our prior work [23]. Likewise, in the present study we
59 reproduce the expected half-metal electronic structure. Utilizing VCA, the effects
60 of the OV are isolated from the effects of the Sr ordering. Within the 20 atom unit
61 cell the Brillouin zone was sampled using a 6 × 6 × 4 Monkhorst-Pack mesh grid.
62 The thin film structure consists of 5 cubic layers of SrTiO₃ (STO), where we have
63 fixed the first layer of the substrate to simulate the bulk. The remaining 4 layers
64 of STO and all of the layers of La_{0.7}Sr_{0.3}MnO₃ (LSMO) were allowed to freely
65 relax. On top of the 5 layers of STO, we placed 8 layers of LSMO. To avoid arti-
66 ficial effects caused by the interaction with periodic images, we have added a 16
67 Å vacuum above the LSMO surface. The geometries were optimized with respect
68 to the cell parameters, cell volume and ionic positions until the interatomic forces
69 were converged below 10⁻⁴ eV/Å.

70 The OV formation energy ΔE was calculated as

$$\Delta E = E_v + \mu_O - E_p \quad (1)$$

71 where E_v is the DFT total energy of the unit cell containing vacancies, E_p is the
72 DFT total energy of the corresponding pristine structure and μ_O is the chemical
73 potential of oxygen. μ_O was taken to be half of the DFT total energy for the
74 oxygen dimer. The systems considered in this work are not within the diffuse
75 limit, therefore the calculated formations energies are not equivalent to the amount
76 of energy needed to create a vacancy. Rather, we chose to model the effects of
77 vacancy clusters that may form in physical samples, where the formation energy
78 informs the relative stability of each system.

79 To understand the first principles results for the magnetic structure of these
80 systems, the magnetic exchange coupling parameters were calculated from the
81 Heisenberg Hamiltonian, written as

$$E = - \sum_{ij, i \neq j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j \quad (2)$$

82 where each \mathbf{S}_i is normalized to 1. The exchange parameters were calculated using
83 the TB2J [1] python package, which calculates the exchange integrals directly
84 from a projected tight-binding Hamiltonian [2, 3]. We used Wannier90 [4] to
85 create the tight-binding model where the Kohn-Sham orbitals were projected
86 over Wannier functions for the (La,Sr) *d*-orbitals, Mn *d*-orbitals, and O *p*-orbitals.
87 Projections were considered to be maximally localized when the difference of the
88 spread functional between iterations was less than 10^{-10} . The maximally localized
89 Wannier functions were then used to calculate the exchange interactions between
90 Mn ions.

91 **3. Results and Discussion**

92 *3.1. Structural features:*

93 The four oxygen-deficient heterostructures were created by separately intro-
94 ducing a single oxygen vacancy in each of the four positions of the pristine slab
95 as highlighted in Fig. 1. In each case, the in-plane lattice parameter was fixed to
96 the bulk value of the STO substrate, imposing a tensile strain of +1.7% to match
97 experimental conditions near the interface. The internal coordinates were allowed
98 to relax, but the volume of the cell was constrained to retain the added vacuum.
99 In this procedure, we see the layer-by-layer variation of the pseudocubic *c* lat-
100 tice parameter as a function of the vacancy position. The theoretically obtained
101 layer-by-layer profiles, shown in Fig. 2, contain three distinct regions for all of the
102 heterostructures. These regions are the behaviors of the STO parameter just before
103 the interface, the pronounced expansion seen at the interface, and the relaxation
104 behavior of the LSMO moving towards the surface.

105 The expansion seen at the interface is often reported in perovskite thin films.
106 Frequently, the peak is attributed to oxygen vacancy formation at the interface ?]
107 as a response to the strain caused by the lattice mismatch. However, this assumes
108 a purely elastic response to strain. In perovskites, elastic lattice distortions are
109 indeed a stress compensation mechanism, but the coordination network offers ad-
110 ditional degrees of freedom to respond to the interfacial stress. For example, the
111 O-Mn-O bonding chains may buckle or straighten, modifying the rigid octahedral
112 tilting. The additional degrees of freedom can serve as a so-called symmetry com-
113 pensation ?] mechanism that has been observed in LSMO/STO thin films, where
114 the LSMO octahedral tilts are suppressed and the STO octahedra gain tilting in or-
115 der to match the symmetry at the interface. This results in an out-of-plane (OOP)

116 expansion accompanied by a reduction in the substrate parameter just before the
117 interface in a manner that is similar to what we observe in our models. Although
118 this expansion is frequently attributed to vacancies near the interface, we find that
119 the expansion also occurs for the pristine LSMO model film as shown in Fig. 2.
120 In fact, the position of a vacancy in our heterostructures has no appreciable effect
121 on the interfacial peak unless the vacancy occurs in an Mn-O-Ti bonding chain
122 across the interface. In this instance, the interface expansion nominally increases
123 by 0.05 Å and suppresses the dip in the STO parameter that is seen in the other
124 cases. Therefore, we find that the interfacial expansion is a general property of
125 the LSMO/STO interface that results from symmetry compensation which is in-
126 dependent of vacancy formation.

127 On the other hand, the location of the vacancy does impact the relaxation
128 of the lattice parameter into the bulk of the LSMO sample as shown in Fig. 2.
129 Vacancies near the interface show a reduction in the lattice parameter from that of
130 bulk LSMO. The vacancies away from the interface result in local expansion of
131 the lattice parameter from that of bulk LSMO. Lattice parameter expansion that
132 has been observed in X-ray diffraction experiments [] has been correlated with
133 delocalization of the excess electrons from the vacancies and weakening of the
134 Mn bonding covalency which leads to increased Mn-Mn distance in the presence
135 of vacancies []. Recent first-principles work indicates that localization of the
136 excess electrons in occupied defect states is correlated with the shortening of the
137 Mn-Mn distance []. In Fig. S1, we present the layer-by-layer density of states
138 for each of the thin film models with vacancies. We find sharply localized defect
139 levels below the Fermi energy for vacancies near the interface and the absence
140 of occupied defect levels for vacancies away from the interface. This correlation

141 between the lattice parameter and the presence of occupied defect levels indicates
142 that the proximity of vacancies to the interface influences the localization of the
143 excess electrons.

144 *3.2. Magnetization and Dead Layer:*

145 We find a total magnetization of $3.06 \mu_B$ per Mn for the pristine model film.
146 Despite the vacancy concentration being fixed in each of the deficient heterostruc-
147 ture models, we find varied behavior depending on the location of the vacancy.
148 The vacancies in positions 1, 2, and 4 each decrease the magnetization to between
149 2.7 - $2.8 \mu_B$ per Mn, see Fig. 3. The vacancy in position 3 results in a more consid-
150 erable reduction of the magnetization to $2.2 \mu_B$ per Mn. The excess electrons are
151 expected to occupy the majority spin e_g orbitals of the Mn $4+$ ions, increasing the
152 magnetization. However, the magnetization reduction is consistent with experi-
153 mental observation [1]. In Fig. S1, we find charge redistribution throughout the
154 layers. For the vacancies near the interface, a low spin t_{2g} configuration is favored
155 over the high spin e_g filling for some layers. For each of the cases, the surface
156 layer takes a low-spin insulating configuration.

157 Looking at the layer-by-layer magnetization in Fig. 4(a), we find clear de-
158 velopment of a magnetic dead layer near the LSMO surface for each of the het-
159 erostructure models, which is consistent with the insulating low spin configura-
160 tion. Dead layers are known to reduce the overall magnetization and lead to the
161 destruction of the magnetization below a critical thickness. The presence of dead
162 layers in the simulations is consistent with the reduced magnetization that we
163 found for vacancies in position 1, 2, and 4. The greater reduction of the magne-
164 tization seen in the position 3 case is correlated with a reduced magnetization in
165 the bulk layers in addition to the surface dead layers. In both cases, the layers

166 with reduced magnetization align with the low spin configurations caused by the
167 electronic redistribution.

168 *3.3. Electrostatic Potential and Electronic Reconstruction:*

169 Dead layer formation is often understood within the polar catastrophe model,
170 in which the charge from the surface moves to the interface to screen the interfa-
171 cial dipole that is created due to the oxidation state mismatch of the cations across
172 the interface. Here, we consider the layer-by-layer average oxidation state of the
173 Mn cations, presented in Fig. 5 to gain further insight into the transfer of charge.
174 In each of the thin films, we find that the oxidation state reduces from the nom-
175 inal value of 3.3+ to between 2.8+ and 3.0+ in the bulk layers. Reduction at the
176 interface is consistent with our prior work which demonstrated a reduction of the
177 oxidation state to an approximate value of 2.5+ [?], but the lesser reduction indi-
178 cates that less charge is transferred to the interface in the presence of vacancies.
179 The accumulation of charge at the interface is consistent with the polar catastrophe
180 model in which charge moves to the interface in order to partially screen the dipole
181 that arises from the valence mismatch with the Ti^{4+} cations. However, other ex-
182 perimental work demonstrates that oxygen vacancies are expected to cause the
183 formation of Mn^{2+} cations [?]. Looking at the intermediate layers, we also find
184 a reduction in the oxidation state to between 3.0+ and 3.1+ which indicates ac-
185 cumulation of charge throughout the material in addition to the interface. In the
186 polar catastrophe model, charge accumulation at the interface is compensated by
187 the transfer of electrons away from the surface. Here, we find little to no oxi-
188 dation at the surface layers, which indicates that the charge at the surface does
189 not migrate in contrast with the expected behavior and in contrast with our prior
190 work where we found that the surface oxidation state increased to around 3.7+ [?]

191]. From this analysis, we find that the excess charge from the vacancies localizes
192 near the interface but also redistributes throughout the material.

193 To gain insight into the redistribution of the excess charge, we calculated the
194 macroscopic average of the local electrostatic potentials for each of the deficient
195 films. The electrostatic potential shown in Fig. 6 has distinct behaviors across the
196 interface between 17.5-21.8 Å, from the interface to the position of the vacancy,
197 and from the vacancy to the bulk of the LSMO. In each of the thin film models,
198 we find a potential gradient across the interface as expected from the polar mis-
199 match. For the pristine heterostructure, the average change in the potential is 384
200 $\text{meV}\cdot\text{\AA}^{-1}$. Introducing vacancies reduces the average change in potential across
201 the interface to 364 $\text{meV}\cdot\text{\AA}^{-1}$ for the vacancy positioned farthest from the inter-
202 face. The vacancy positioned immediately at the interface reduces the average
203 change in potential to 287 $\text{meV}\cdot\text{\AA}^{-1}$.

204 Although it is evident that excess charge from the vacancies reduces the inter-
205 facial dipole, it does not entirely prevent the field from entering the bulk layers of
206 the LSMO. This can be seen in the behavior of the potential in the region spanning
207 from the interface to the vacancy as well as in the region spanning from the va-
208 cancy to into the bulk of the LSMO. The potential takes a local maximum near the
209 position of the vacancy in each of the cases. In contrast, the pristine case displays
210 monotonic behavior over the same regions. From an electrostatic standpoint, the
211 emergent potential barriers near the vacancy site are repulsive to nearby charges.
212 This result is consistent with recent work that has indicated that vacancies may
213 act as scattering centers that disrupt the flow and transfer of charge ?]. The emer-
214 gence of the scattering potentials prevents charge from transferring from the sur-
215 face to the interface as we found with the oxidation state analysis. This leads to the

216 charge redistribution that can be seen in the layer-by-layer DOS presented in Fig.
217 S1, which is consistent with the reduction that we found for the oxidation states in
218 the bulk layers. Since the double-exchange mechanism delicately depends on the
219 Mn oxidation state ?], the prevalence of $Mn^{2.8+}$ - $Mn^{3.1+}$ throughout the LSMO
220 layers may lead to local spin flipping which could be responsible for the deteri-
221 oration of magnetization seen throughout the heterostructure with the vacancy in
222 position 3.

223 *3.4. Local Properties in the Bulk Crystal:*

224 To consider the local impact of the vacancies on the magnetic structure, we
225 turn our attention to the bulk LSMO structure with varying degrees of oxygen
226 deficiency looking to build an atomistic model that describes the magnetic conse-
227 quences that may arise due to the redistribution of charge that results from the
228 vacancies acting as scattering centers. To do so, we surveyed a landscape of
229 oxygen-deficient LSMO structures. Starting from the pristine reference, we cre-
230 ated oxygen-deficient $La_{0.7}Sr_{0.3}MnO_{3-\delta}$ structures for $\delta = 0.125, 0.250$, keeping
231 the La:Sr ratio fixed. In increasing order, the defect concentrations correspond to
232 1 vacancy per 40-atoms cell and 1 vacancy per 20-atoms cell. In the orthorhom-
233 bic phase, LSMO has two independent oxygen lattice sites. Namely, oxygen may
234 occupy the apical vertices of the coordination octahedra or the planar vertices.
235 For $\delta = 0.125$ and 0.250 , we created the two symmetry inequivalent vacancies by
236 removing an apical oxygen and a planar oxygen, separately, to create the distinct
237 structures as shown in Fig. 7(a).

238 Furthermore, we addressed the possible impact on the magnetic structure by
239 considering type *A*-, *C*-, and *G*-AFM order as well as the FM state for each va-
240 cancy arrangement as defined schematically in Fig. 7(b). After optimization, we

241 calculated the formation energy for each structural and magnetic configuration to
242 understand the relative stability as detailed in Fig. 7(c). For $\delta = 0.125$, the apical
243 site is more favorable than the planar site for each of the magnetic configura-
244 tions. Although the FM configuration is the most energetically favorable, the type
245 *A*-AFM configuration is nearly degenerate with an energy difference of 8 meV.
246 Similarly, the type *C*-AFM apical site and the FM planar site have a difference
247 of 20 and 24 meV, respectively. Comparatively, AFM order in the planar site and
248 the type *G*-AFM order as a whole are unfavorable with energy differences greater
249 than 50 meV. The close energy differences indicate that vacancies likely form in
250 a mixture of these configurations in physical samples, and that vacancy forma-
251 tion may introduce local spin flipped sites. The $\delta = 0.250$ continues this trend,
252 whereby the type *A*-AFM apical site is entirely favored with a formation energy
253 of 1.07 eV. In this case, the FM order is unfavorable with an energy difference of
254 34 meV for the apical site and 70 meV for the planar site. Likewise, the planar
255 site is unfavorable with differences ranging between 60-90 meV.

256 To better understand how the tendency towards spin flipping may be associated
257 with the transfer of charge, we will focus on the lowest energy configuration for
258 both the apical and planar vacancies for both concentrations. First looking into the
259 electronic density of states (DOS) presented in Fig. 8. For apical vacancies with
260 $\delta = 0.125$ shown in Fig. 8(a), the d_{z^2} states of the deficient Mn sites shift to lower
261 energies as a result of the vertical square pyramidal coordination. The excess
262 electrons from the vacancy formation can be seen to localize in the d_{z^2} states of
263 the deficient Mn. In addition to the spin-up states, the vacancies introduce states
264 into the spin-down channel at the Fermi level. The new spin down d_{z^2} states do
265 not reflect the crystal field and can be seen clearly as dangling bonds in the charge

266 density shown in Fig. S2. The $d_{x^2-y^2}$ states are affected to a lesser extent and
267 remain at the Fermi level. However, the number of states near the Fermi level
268 reduces for the vacant Mn. In particular, the depletion in available states just
269 above the Fermi level coincides with an increase in the Fermi level states of the
270 neighboring Mn.

271 The apical vacancies in the $\delta = 0.250$ structure shown in Fig. 8(b) demon-
272 strate more splitting between the e_g states as seen by the complete separation of
273 the d_{z^2} and $d_{x^2-y^2}$ states near the Fermi level. As in the lower concentration, the
274 broken bonds result in square pyramidal coordination of the vacant Mn. The d_{z^2}
275 states now shift completely below the Fermi level. The d_{z^2} states form dangling
276 bonds (see Fig. S3), as in the $\delta = 0.125$ concentration. The $d_{x^2-y^2}$ states remain
277 at the Fermi level, but the number of states reduces considerably. The reduction
278 coincides with an increase in the number of $d_{x^2-y^2}$ and d_{z^2} states for the neigh-
279 boring Mn. Additionally, the shifts in the d_{z^2} states of the deficient Mn and the
280 $d_{x^2-y^2}$ states of the neighboring Mn give rise to orbital ordering at the Fermi level
281 as seen by the site-based occupation of either d_z^2 or $d_{x^2-y^2}$ at the Fermi level.

282 For the planar vacancies with $\delta = 0.125$ in Fig. 8(c), the extended planar
283 bonds and horizontal square pyramidal coordination of the deficient Mn reduce
284 the energy of the $d_{x^2-y^2}$ states and increase the energy of the d_{xy} states. Newly
285 occupied spin-down $d_{x^2-y^2}$ and d_{xy} states emerge, indicating that the excess elec-
286 trons from the vacancy formation localize on the deficient Mn ions. The local
287 electronic structure of the neighboring Mn ions remains nearly identical to that of
288 the pristine crystal.

289 For the planar vacancies with $\delta = 0.250$ in Fig. 8(d), the additional excess
290 electrons due to the increased concentration of vacancies begin to fill the d_{z^2} states

291 of the deficient Mn, reorganizing the electronic structure to accommodate type *C*-
292 AFM order. The neighboring Mn ions now experience e_g splitting as a result of
293 the sustained distortions. The d_{z^2} states are lower in energy as a result of the
294 extended apical bonds with new spin-down states emerging.

295 The spatial effects significantly impact the electronic structure. The localiza-
296 tion of dangling bonds and the distribution of the excess electrons influence the
297 balance of the Mn^{3+} and Mn^{4+} states, affecting the magnetic structure. The charge
298 transfer observed in both of the apical vacancy structures suggests that the mobile
299 electrons may scatter from the dangling bonds.

300 By integrating the t_{2g} states up to the Fermi level and the e_g states from -4.0
301 eV to the Fermi level, we find that in each case the deficient Mn sites reduce to
302 an oxidation state between 3.0+ and 3.1+. For the 0.125 structures, the rest of the
303 Mn sites retain an average oxidation state of 3.3+. The non-deficient sites in the
304 0.250 structures reduce to an average of 3.15+. Given the tendency for the excess
305 charge to localize near the vacancy and the reduction that we find in the Fermi
306 level states of the deficient Mn sites, it is clear that the vacancies act as scattering
307 centers as we found in the thin film models.

308 The evolution of the magnetic order can be understood by examining the mag-
309 netic exchange coupling between Mn atoms. In the pristine material, the FM state
310 is driven by the double exchange mechanism. In Fig. 9(a) the exchange param-
311 eters of the pristine structure are relatively uniform and strongly ferromagnetic,
312 reflecting the underlying mechanism. For $\delta = 0.125$ with apical vacancies, we
313 find a weak AFM interaction directly across the broken bond. Additionally, the
314 FM interactions between the deficient Mn and its neighbors weaken due to the
315 reduced number of states near the Fermi level for the deficient sites. On the other

316 hand, the interactions between Mn with completed octahedra remain strongly FM
317 which is consistent with the prevalence of $Mn^{3.30+}$ away from the vacancy.

318 For the $\delta = 0.250$ concentration, the AFM interaction directly across the va-
319 cancy increases dramatically. The dangling bond state retains the spatial local-
320 ization as in the lower concentration. In contrast, the fully spin-polarized states
321 of the dangling bonds strengthen the interaction. The interaction across the api-
322 cal bond of the vacant Mn is also strongly AFM. Since the deficient Mn retains
323 $d_{x^2-y^2}$ states at the Fermi level, the electron from the neighboring Mn can hop to
324 the deficient Mn. This hopping is prominent as the bonding network is broken
325 along the c -axis, whereas the network is intact within the $a - b$ plane. To replace
326 the hopped electron of the octahedral Mn, an electron can hop from a neighbor
327 through a double exchange. As a result, the interactions between non-deficient
328 Mn are strongly FM. The resultant magnetic exchange locally favors spin flipping
329 along the c -axis, because the direct exchange across the vacancy is dominant and
330 intralayer coupling in the $a-b$ plane remains FM.

331 For the planar vacancies, the $d_{x^2-y^2}$ defect levels are fully localized even for
332 the $\delta = 0.125$ structure, reducing the number of states near the Fermi level. This
333 leads to a nearly vanishing FM interaction directly across the vacancy. On the
334 other hand, the interaction across the remaining planar bonds becomes strongly
335 AFM through the emerging super-exchange as a consequence of the lessened ox-
336 idation states of the deficient Mn. Away from the vacancy, the double exchange
337 interactions dominate as the Mn^{3+} remains prevalent. Although the emergent
338 super-exchange does not drive a complete magnetic transition, the overall FM in-
339 teractions are weakened as the reduced oxidation state of the vacant Mn disrupts
340 the electron hopping. The emergent super-exchange persists in the $\delta = 0.250$

341 structure. Due to the increased concentration, the structure is composed of al-
342 ternating vacancy and vacancy-free layers along the *c*-axis. The alternating oc-
343 cupancy between these layers drives a weak FM double-exchange interaction for
344 electron hopping along the *c*-axis. Conversely, the oxidation state of the intra-
345 planar neighbors approaches 3.0+ leading to the emergence of additional weak
346 super-exchange in the intraplanar interactions. Since the deficient Mn retains d_{z^2}
347 states at the Fermi level, the electron from the neighboring Mn can hop to the defi-
348 cient Mn. This hopping is prominent as the bonding network is broken within the
349 *a* – *b* plane, whereas the network is intact along the *c*-axis. To replace the hopped
350 electron of the octahedral Mn, an electron can hop from a neighbor through a dou-
351 ble exchange. As a result, the interactions between non-deficient Mn are strongly
352 FM. The resultant magnetic exchange locally favors spin flipping within the *a* – *b*
353 plane, because the super-exchange between deficient Mn is dominant and the cou-
354 pling along the *c*-axis remains FM.

355 **4. Conclusions and general remarks**

356 In this work we examined, from theory, the impact of oxygen vacancies on
357 the electronic and magnetic structure of LSMO thin films as deposited on top of
358 SrTiO_3 (001). Although the formation of dead layers reduces the overall magne-
359 tization of thin films, further deterioration above the critical thickness where the
360 magnetization vanishes can be associated with oxygen vacancy formation. Glob-
361 ally, we found that oxygen vacancies play a compensating role to partially screen
362 the interfacial dipole. However, the tendency for the excess charge to localize near
363 the vacancy sites in dangling bonds introduces scattering potentials that impede
364 the transfer of charge from the surface according to the polar catastrophe model.

365 This leads to redistribution of charge that causes the Mn oxidation states to reduce
366 throughout the bulk layers LSMO. Locally, we found that reduction away from
367 the nominal $Mn^{3.3+}$ state due to the introduction of vacancies disrupts and weak-
368 ens the FM double-exchange and introduces competing super-exchange interfaces
369 due to the depletion of Fermi level states. These competing magnetic interactions
370 favor local spin flipping, which is consistent with the further deterioration of the
371 net magnetization that could be explained by surface dead layers.

372 **5. Acknowledgements**

373 We acknowledge Robbyn Trappen, Chih-Yeh Huang, Aubrey N. Penn and
374 James LeBeau for fruitful discussions. We thank the Pittsburgh Supercomputer
375 Center (Bridges2) and San Diego Supercomputer Center (Expanse) through allo-
376 cation DMR140031 from the Advanced Cyberinfrastructure Coordination Ecosys-
377 tem: Services & Support (ACCESS) program, which is supported by National Sci-
378 ence Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.
379 We also recognize the computational resources provided by the WVU Research
380 Computing Dolly Sods HPC cluster, which is funded in part by NSF OAC-2117575.
381 The work by AHR and Z. Romestan was supported by the grant DE-SC0021375
382 funded by the U.S. Department of Energy, Office of Science. XH thanks the sup-
383 port of the EU H2020-NMBP-TO-IND-2018 project "INTERSECT" (Grant No.
384 814487). A.C.G.C. acknowledges the grant No. 4211 entitled "Búsqueda y estu-
385 dio de nuevos compuestos antiperovskitas laminares con respuesta termoeléctrica
386 mejorada para su uso en nuevas energías limpias" supported by the VIE – UIS.
387 Additionally, ACGC also acknowledge the support from the GridUIS-2 experi-
388 mental testbed, being developed under the Universidad Industrial de Santander

389 (SC3-UIS) High Performance and Scientific Computing Centre, development ac-
390 tion with support from UIS Vicerrectoría de Investigación y Extension (VIE-UIS)
391 and several UIS research groups as well as other funding resources. This work was
392 performed in part at the Analytical Instrumentation Facility (AIF) at North Car-
393 olina State University, which is supported by the State of North Carolina and the
394 National Science Foundation (award number ECCS-2025064). The AIF is a mem-
395 ber of the North Carolina Research Triangle Nanotechnology Network (RTNN),
396 a site in the National Nanotechnology Coordinated Infrastructure (NNCI). This
397 material is based upon work supported by the National Science Foundation under
398 Grant No. DGE-1633587. This work was partially funded in thanks to support
399 provided by NASA EPSCoR Award #80NSSC22M0173.

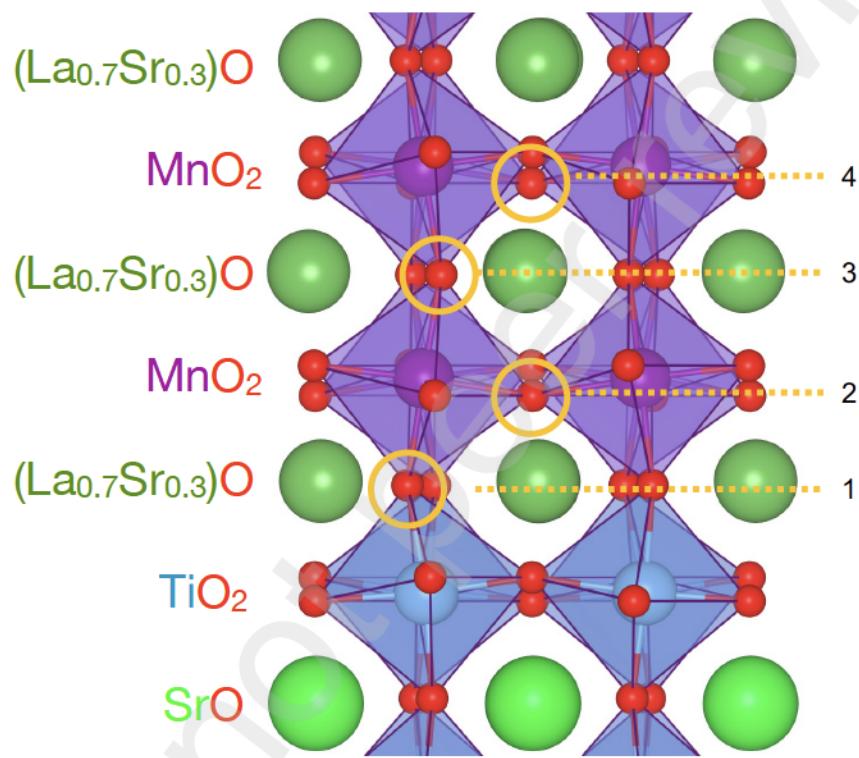


Figure 1: (Color online) (a) Pristine LSMO/STO heterostructure is shown near the interface with orange circles highlighting the four OV positions that were studied. The red atoms are O, the purple atoms are Mn, the blue atoms are Ti, the light green atoms are Sr, and the dark green atoms are the La/Sr pseudoatoms.

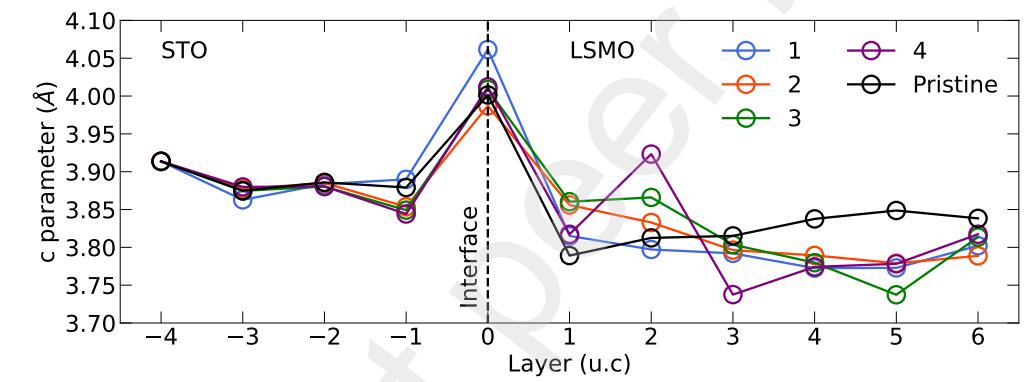


Figure 2: (Color online) Pseudocubic c lattice parameter for each layer of the four deficient heterostructures obtained theoretically. As it can be noticed, the largest parameter is observed at the interface potentially due to the strong electronic interactions.

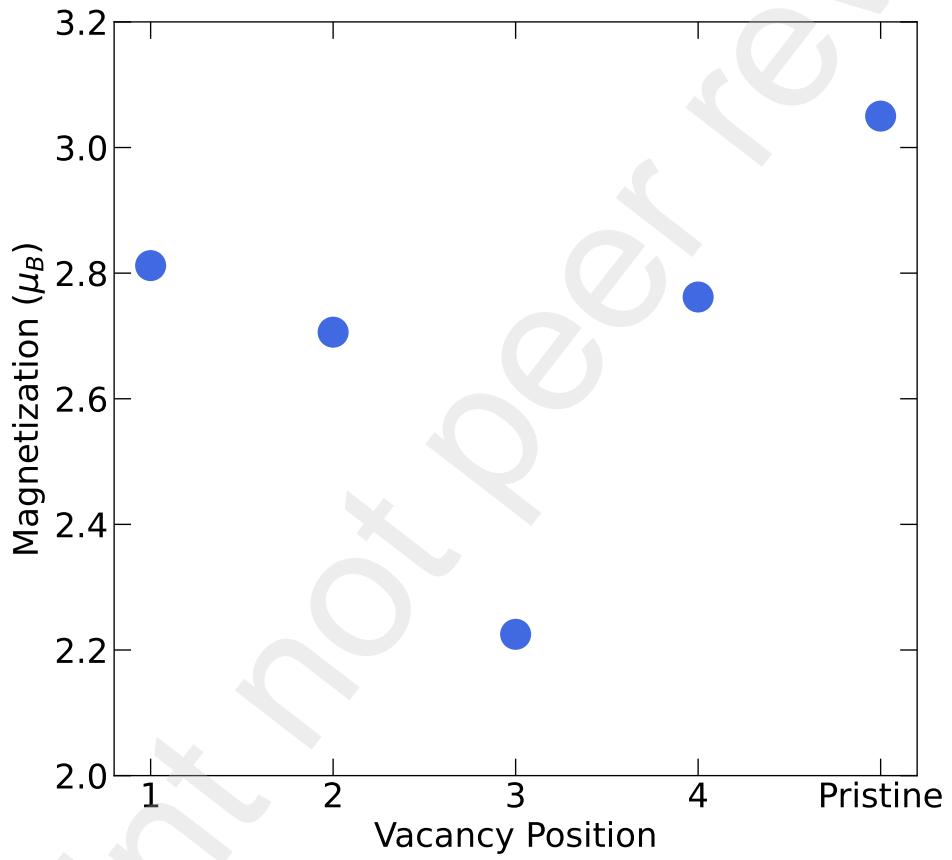


Figure 3: (Color online) The magnetization per Mn for the four vacancy thin film structures.

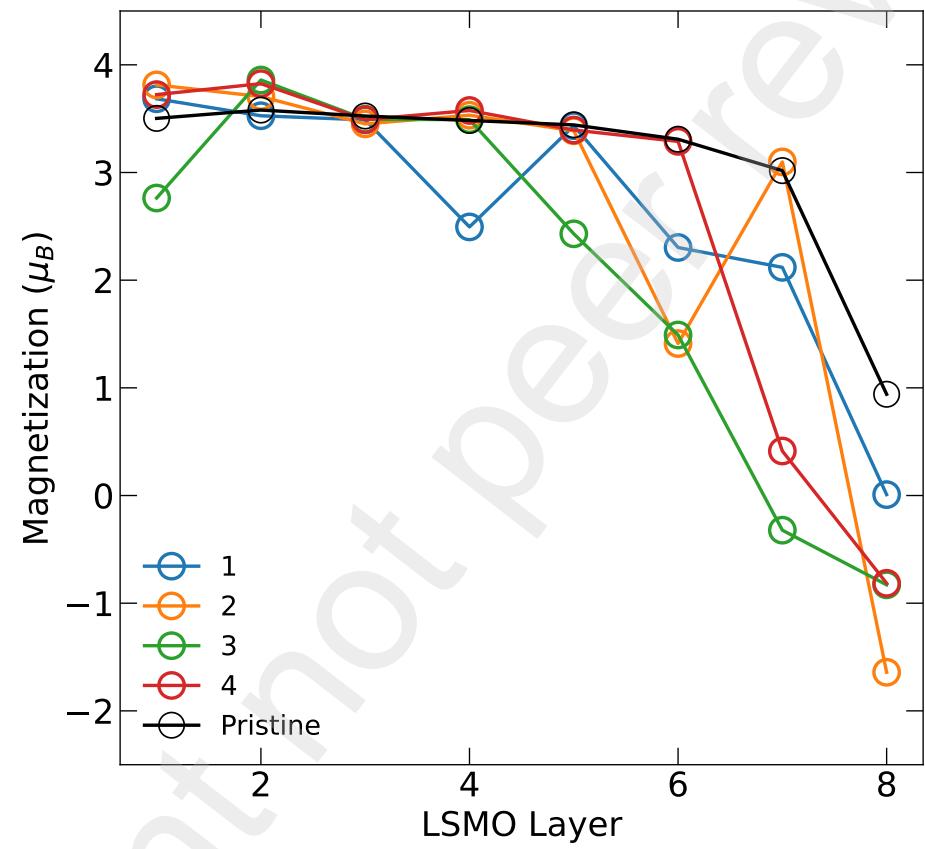


Figure 4: (Color online) Extracted magnetization per layer of the four deficient heterostructures. As observed, the magnetization consistently decreases towards the surface.

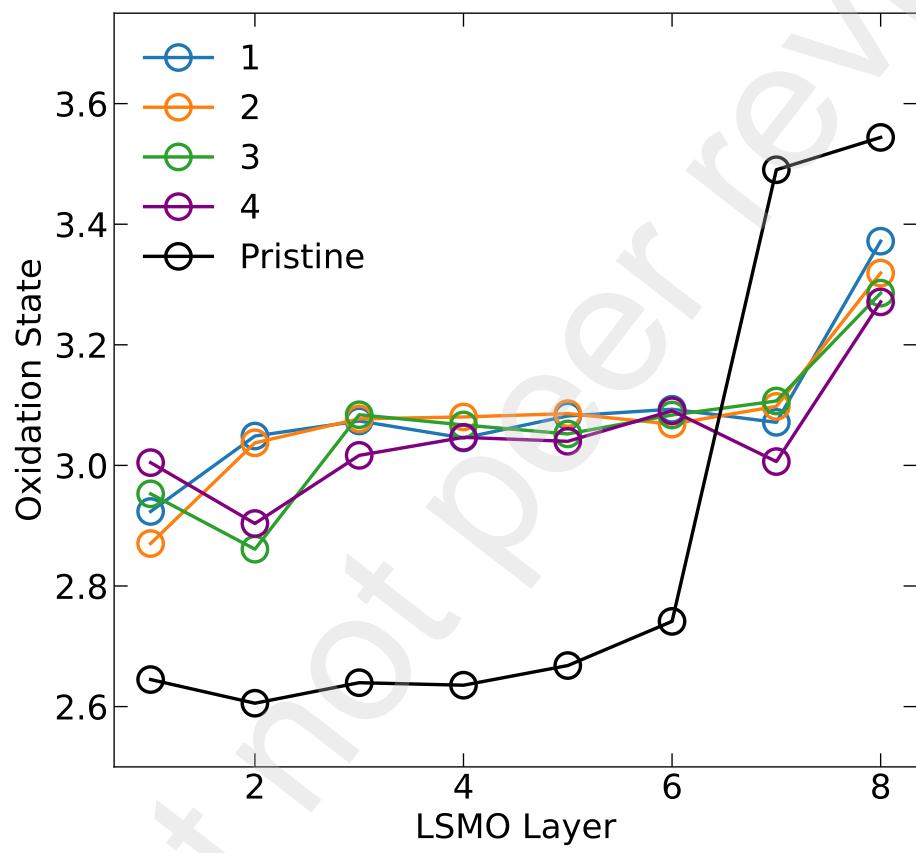


Figure 5: (Color online) Average oxidation state per layer of the four deficient heterostructures, computed via integrating the Mn t_{2g} states up to the Fermi level and the e_g states from -4 eV up to the Fermi level and subtracting the computed charge from the 7 valence electrons of the neutral Mn atom.

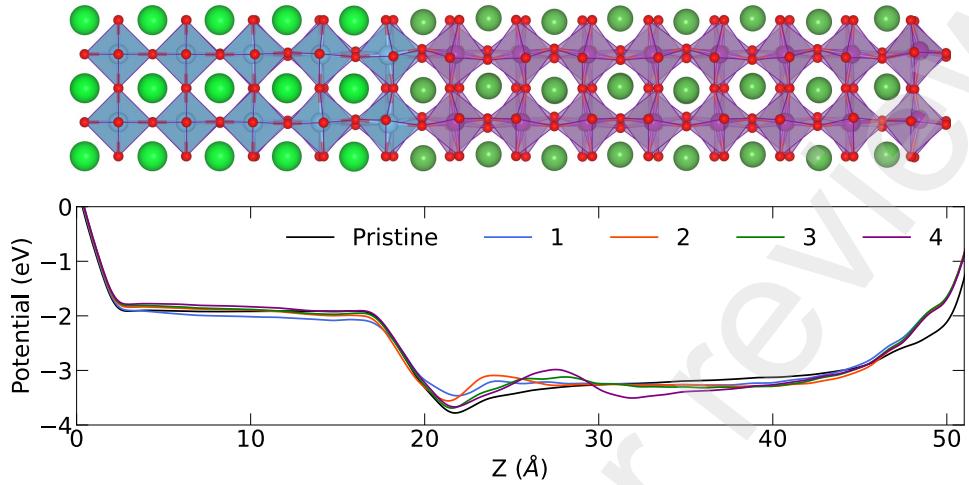


Figure 6: (Color online) Macroscopic average of the electrostatic potential in the four deficient heterostructures in comparison to that of the pristine heterostructure.

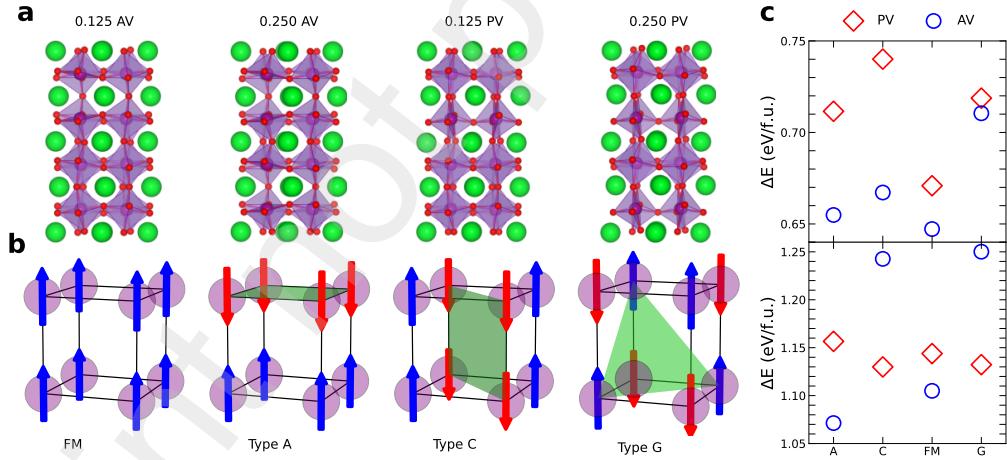


Figure 7: (Color online) OV can form either of the two Wyckoff positions for oxygen in the *Pnma* unit cell of pristine LSMO, which are indicated by the highlights. The optimized structures for planar and apical vacancies where $\delta = 0.125$ and 0.250 are in (a). In (b), The magnetic configurations are schematically defined over the Mn sub-lattice. The computed formation energies are shown in (c) for $\delta = 0.125$ (top) $\delta = 0.250$ (bottom).

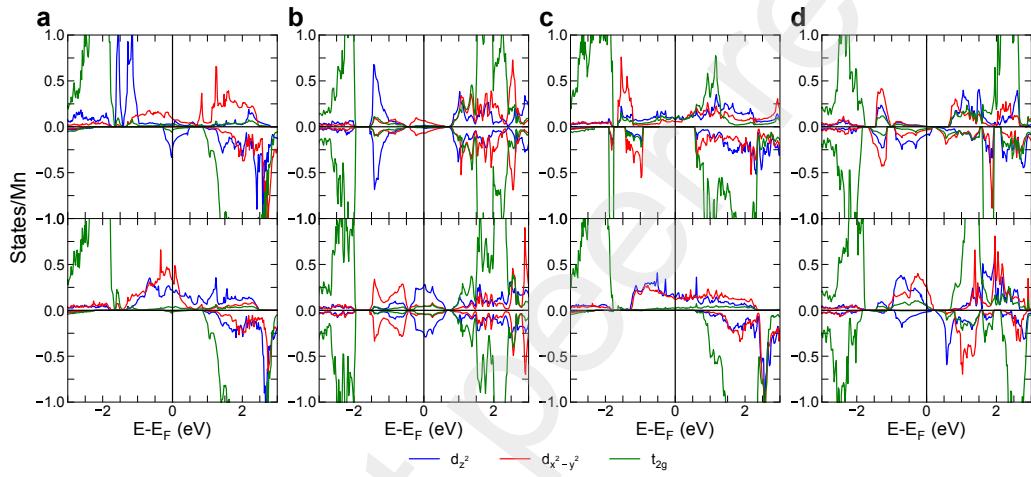


Figure 8: (Color online) Spin and d -orbital resolved density of states are shown for **(a)** $\delta = 0.125$ with apical vacancies, **(b)** $\delta = 0.250$ with apical vacancies, **(c)** $\delta = 0.125$ with planar vacancies, and **(d)** $\delta = 0.250$ with planar vacancies details. The top panels are for M_{NN} to the vacancy, and the bottom panels are for M_{NNN} to the vacancy. The changes in the electronic structure are a result of the structural distortions and additional electrons from the vacancy formation. In each plot, the positive counts indicate spin-up states, and the negative counts indicate spin-down states.

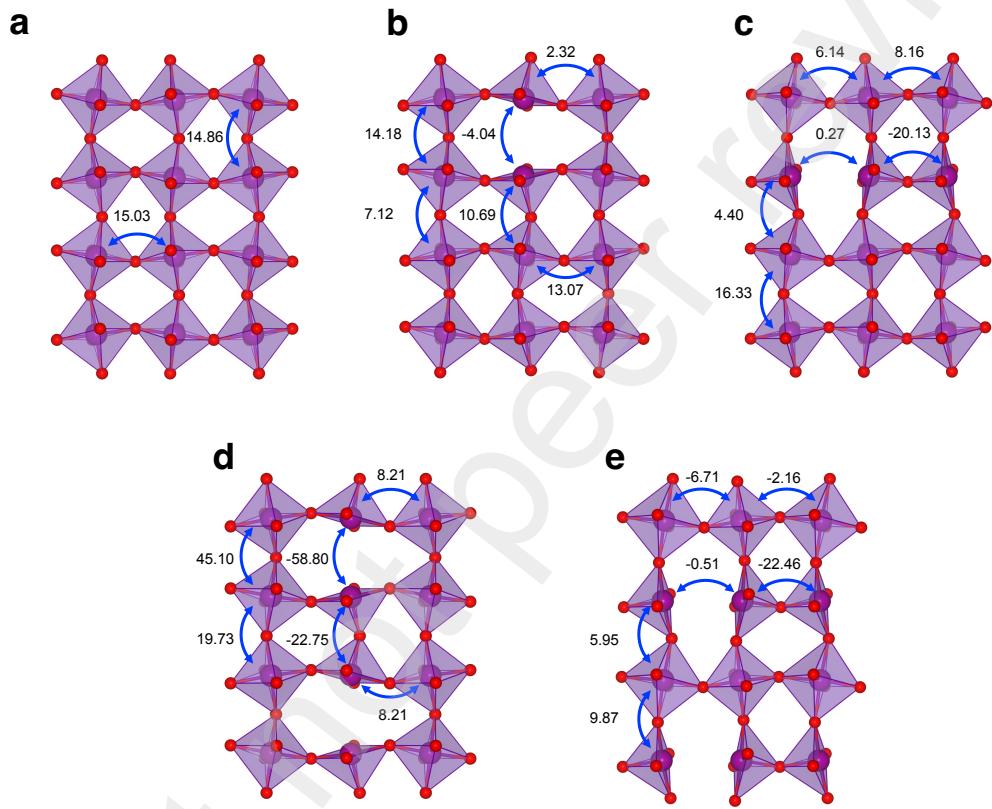


Figure 9: (Color online) The magnetic exchange parameters are presented schematically for (a) $\delta = 0$, (b) $\delta = 0.125$ with apical vacancies, (c) $\delta = 0.125$ with planar vacancies, (d) $\delta = 0.250$ with apical vacancies, and (e) $\delta = 0.250$ with planar vacancies in meV.