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(Lahijanian et al., 2015; Cauchi et al., 2019; Lavaei et al., 2022), or via stochastic barrier functions
(Jagtap et al., 2020; Mazouz et al., 2022; Santoyo et al., 2021; Lechner et al., 2022). However,
all those works assume a known model and known disturbances, i.e., no epistemic uncertainty. To
tackle this issue and account for epistemic uncertainty, data-driven formal approaches have been re-
cently developed to estimate model dynamics from data (Martin et al., 2023; Jackson et al., 2021b;
Schön et al., 2023). These works generally employ concentration inequalities to estimate the sys-
tem dynamics from noisy measurements of the system and then rely on existing formal methods
for verification and control of the estimated model. However, these approaches generally assume
that the noise distribution of the system is known and only the vector field of the dynamics needs
to be learnt. In addition, they often restrict themselves to linear disturbances. The complementary
case where the noise distribution is unknown and needs to be estimated from data is considered in
(Badings et al., 2023b; Mathiesen et al., 2023; Gracia et al., 2023), which however, are specific for
linear systems or additive noise.

In this paper, we propose a formal data-driven approach for controller synthesis of nonlinear
stochastic systems with unknown disturbances against linear temporal logic specifications over fi-
nite traces (LTLf) (De Giacomo and Vardi, 2013). Our approach combines tools from optimal
transport theory with abstractions methods. In particular, given a dataset, we first exploit results
from (Fournier, 2022) to build an ambiguity set for the disturbance distribution, that is, a set of
distributions that contains the unknown law of the disturbance with high confidence. Then, we
abstract the resulting uncertain model into a robust Markov decision process (RMDP) (Nilim and
El Ghaoui, 2005), which formally accounts for both aleatoric and epistemic uncertainty in the sys-
tem. The resulting abstraction is employed to synthesize a controller that maximizes the probability
that the system satisfies an LTLf property and is robust against the uncertainties, thus guarantee-
ing correctness. The efficacy of our framework is illustrated on various benchmarks showing how
our approach can successfully synthesize high-confidence formal controllers for uncertain nonlinear
stochastic systems from data.

The key contributions of this paper are:
• a novel strategy synthesis framework for nonlinear switched stochastic systems with general

(e.g., non-additive) disturbances of unknown distributions under LTLf specifications,
• an efficient procedure to obtain a finite and sound abstraction of said class of systems,
• probabilistic satisfaction guarantees whose confidence is independent of the abstraction size,
• extensive case studies and empirical evaluations involving five different systems, several

choices of hyperparameters, and comparisons with the state-of-the-art approaches.
Basic Notation The set of non-negative integers is defined as N0 = N → {0}. For a set X , |X|
denotes its cardinality. Given X ↑ Rn we denote by 1X its indicator function, that is 1X(x) = 1 if
x ↓ X and 0 otherwise. We let B(X) be the Borel ω-algebra of X and P(X) denote the set of prob-
ability distributions on (X,B(X)). For P ↓ P(X) and x ↓ X , P (x) denotes the probability of the
(singleton) event {x}. Given a continuous cost c : X ↔X ↗ R→0, we denote by Pc(X) the set of
distributions P ↓ P(X) with

∫
X c(x, x↑)P (dx) < ↘ for some x↑ ↓ X . The optimal transport dis-

crepancy between P, P ↑ ↓ Pc(X) is defined as T c(P, P ↑) = infω↓!(P,P →)

∫
X↔X c(x, x↑)ε(dx, dx↑),

where !(P, P ↑) is the set of distributions on P(X ↔ X) with marginals P and P ↑. For an l-norm
≃ · ≃l, with l ↓ [1,↘], and s ⇐ 1, if c(x, x↑) = ≃x ⇒ x↑≃sl for all x, x↑ ↓ X , we use the notation
T (l)
s (P, P ↑). Furthermore, if X ↑ Rd, then Ws(P, P ↑) :=

(
T (l)
s (P, P ↑)

)1/s is the s-Wasserstein
distance between P and P ↑. We let ϑx ↓ P(X) be the Dirac measure located at x ↓ X . We use
bold symbols, e.g., x, to denote random variables.
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2. Problem Formulation

In this work, we focus on discrete-time switched stochastic processes described by

xk+1 = fak(xk,wk), (1)

where xk ↓ Rn is the state and ak ↓ A := {a1, . . . , a|A|} is the control (mode or action) at time
k. Noise term wk ↓ W is an i.i.d. random variable taking values in a bounded set W ⇑ Rd with
probability distribution Pw identical at each time step k. Distribution Pw, however, is assumed to be
unknown. For each a ↓ A, fa : Rn↔W ↗ Rn is the vector field, which is assumed to be Lipschitz
continuous in w with Lipschitz constant Lw(x, a) ⇐ 0, i.e., ≃fa(x,w)⇒fa(x,w↑)≃ ⇓ Lw(x, a)≃w⇒
w↑≃ for all w,w↑ ↓ W. Consequently, Process (1) describes a general model of nonlinear switched
stochastic process, which encompasses many models commonly used in practice.

For x0, . . . , xK ↓ Rn and K ↓ N0, ϖx = x0
a0⇒↗ x1

a1⇒↗ . . .
aK↑1⇒⇒⇒↗ xK represents a finite

trajectory of Process (1), and ”x is the set of all finite trajectories (of any length). We denote by
ϖx(k) the state of ϖx at time k ↓ {0, . . . ,K}. A switching strategy ωx : ”x ↗ A is a function
that assigns an action a ↓ A to each finite trajectory. For x ↓ Rn, a ↓ A and B ↓ B(Rn), the
transition kernel of Process (1) is T a(B | x) =

∫
W 1B(fa(x, v))Pw(dv). Given a strategy ωx and

an initial condition x0 ↓ Rn, the transition kernel uniquely defines a probability measure P εx
x0

over
the trajectories of Process (1) (Bertsekas and Shreve, 1996) such that P εx

x0
[ωx(k) ↓ X] represents

the probability that, under strategy ωx, xk is in set X ↑ Rn starting from x0.
Given a bounded set X ⇑ Rn, we are interested in the temporal properties of Process (1) w.r.t. a

set of regions of interest R := {r1, . . . , r|R|↗1, ru} with ri ↑ X for all i ⇓ |R|⇒1, and ru = Rn\X .
To each region ri ↓ R, we associate an atomic proposition pi, and say that pi ⇔ ↖ (i.e., pi is true)
at x ↓ Rn iff x ↓ ri. Denote by AP := {pi, . . . , p|R|↗1, pu} the set of all atomic propositions and
define the labeling function L : Rn ↗ 2AP as the function that maps each state x ↓ Rn to the set
of atomic propositions that are true at that state, i.e., pi ↓ L(x) iff x ↓ ri. Then, to each trajectory
ϖx = x0

a0⇒↗ x1
a1⇒↗ . . .

aK↑1⇒⇒⇒↗ xK , we can associate the (observation) trace ϱ = ϱ0ϱ1 . . . ϱK ,
where ϱk := L(xk) for all k ↓ {0, . . . ,K}.

To specify temporal properties of Process (1), we use LTLf (De Giacomo and Vardi, 2013),
which is a formal language commonly employed to express finite behaviors. An LTLf formula
ς is defined from a set of atomic propositions AP and is closed under the Boolean connectives
“negation” (¬) and “conjunction” (↙), and the temporal operators “until” (U ) and “next” (X ):

ς := ↖ | p | ¬ς | ς1 ↙ ς2 | Xς | ς1Uς2

where p ↓ AP and ς1,ς2 are LTLf formulas themselves. The temporal operators “eventually”, F ,
and “globally”, G, are defined as Fς := ↖Uς and Gς := ¬F(¬ς). The semantics (interpretation)
of LTLf are defined over finite traces (De Giacomo and Vardi, 2013). We say a trajectory ϖx satisfies
a formula ς, denoted by ϖx |= ς, if a prefix of its trace ϱ satisfies the formula.

We are interested in synthesizing a strategy that maximizes the probability that Process (1)
satisfies a given LTLf formula, while accounting for the uncertainty coming from the fact that Pw

is unknown and can only be estimated from data. A formal statement of the problem is as follows.

Problem 1 Consider the switched stochastic Process (1), a set {w(i)}Ni=1 of N i.i.d. samples of
Pw, a bounded set X ⇑ Rn, and an LTLf formula ς defined over the regions of interest R. Then,
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given a confidence level 1⇒φ ↓ (0, 1), synthesize a switching strategy ωx such that, for every initial
state x0 ↓ X , with confidence at least 1⇒ φ, ωx maximizes the probability that the paths ϖx ↓ ”x

satisfy ς while remaining in X , i.e., ωx ↓ argmaxεx P
εx
x0

[ϖx |= ς ↙ G¬pu].

Note that in Problem 1 the noise distribution Pw is unknown. Consequently, Pw must be estimated
from data. This inevitably leads to a confidence probability on the resulting strategy, which irrespec-
tive of the method of quantification, depends on the data. Problem 1 requires this confidence to be at
least 1⇒ φ. We should also remark that we assume that a set of N samples from the noise is given.
This may seem like a strong assumption as, in general, only observations {y(i)}N+1

i=1 of the state can
be collected. However, in several cases, e.g., when successive full-state observations y(i) = x(i) are
available, one can use the system’s dynamics y(i+1) = fa(i)(y

(i),w(i)) and knowledge of its actions
a(i) to obtain i.i.d. samples {w(i)}Ni=1 of the noise distribution Pw. For instance, this is possible
when f is linear in w or, more generally, if the data are collected where fa(i)(y

(i), ·) : W ⇒↗ Rn is
injective. Such regions can be easily identified in many non-linear systems commonly employed in
practice, as shown in the examples in Section 6.

Overview of the approach Since Pw is unknown and the state space of the process is uncountable,
obtaining the exact solution to Problem 1 is generally infeasible. Hence, we follow an abstraction-
based approach instead and synthesize an optimal strategy that is robust against the uncertainty in
estimating Pw from data. First, in Section 4.1, we use the noise samples to learn an ambiguity set of
probability distributions that contains Pw with confidence 1⇒ φ. Next, in Section 4.3.1, we obtain
an interval MDP (IMDP) abstraction of Process (1) by considering that w is distributed according to
a fixed distribution supported on the samples. In Section 4.3.2, to account for all the distributions in
the ambiguity set, we expand the set of transition probabilities of the IMDP, obtaining a robust MDP.
Then, in Section 5, we synthesize a (robust) optimal strategy for the robust MDP via robust dynamic
programming. Finally, we refine this strategy to the original system, obtaining a guaranteed lower
bound on the satisfaction of the LTLf specification for Process (1).

3. Preliminaries on Robust Markov Decision Processes

A robust MDP (RMDP) is a generalization of a Markov decision process in which the transition
probability distributions are uncertain and belong to an ambiguity set (Nilim and El Ghaoui, 2005;
Wiesemann et al., 2013).

Definition 1 (Robust MDP) A labelled robust Markov decision process (RMDP) M is a tuple
M = (Q,A,#, q0, AP, L), where

• Q and A are respectively a finite set of states and actions with q0 being the initial state,
• # = {#q,a : q ↓ Q, a ↓ A}, where #q,a ↑ P(Q) is the set of transition probability distribu-

tions for state-action pair (q, a) ↓ Q↔A,1

• AP is a finite set of atomic propositions, and L : Q ⇒↗ 2AP is the labeling function.

A finite path of RMDP M is a sequence of states ϖ = q0
a0⇒↗ q1

a1⇒↗ . . .
aK↑1⇒⇒⇒↗ qK such that

ak ↓ A and there exists ↼ ↓ #qk,ak with ↼(qk+1) > 0 for all k ↓ {0, . . . ,K ⇒ 1}. We denote the

1. Notice that for two distinct state-action pairs, the respective sets of transition probability distributions of M are
independent. This is the well-known rectangular property of robust MDPs (Nilim and El Ghaoui, 2005; Wiesemann
et al., 2013).
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set of all paths of finite length by ”. Given a path ϖ ↓ ”, we let ϖ(k) = qk be the state of ϖ at time
k ↓ {0, . . . ,K}, and last(ϖ) be its last state. A labelled interval-valued MDP (IMDP) I, also called
bounded-parameter MDP (BMDP) (Givan et al., 2000), is an RMDP I = (Q,A,#, q0, AP, L)
where the transition probabilities lie within independent intervals. That is, #q,a = {↼ ↓ P(Q) :
P (q, a, q↑) ⇓ ↼(q↑) ⇓ P (q, a, q↑) for all q, q↑ ↓ Q, a ↓ A}.

Given a finite path of an RMDP or IMDP, a strategy ω chooses the next action. Formally,
ω : ” ↗ A is a function that assigns an action a ↓ A to each finite path ϖ ↓ ” of M. Any
given strategy ω ↓ $ restricts the set of feasible transition probability distributions of the RMDP,
thus yielding a set of Markov chains, or robust Markov chain. To further reduce this set to a single
Markov chain, we define the adversary function (Givan et al., 2000) that chooses the distribution of
the next state. Formally, an adversary is a function ↽ : ” ↔ A ↗ P(Q) that maps each finite path
ϖ ↓ ” and action a ↓ A(last(ϖ)) to an admissible distribution ↼ ↓ #q,a. The set of all adversaries
is denoted by %. Given an initial condition q0 ↓ Q, a strategy ω ↓ $ and an adversary ↽ ↓ %, the
RMDP collapses to a Markov chain with a unique probability distribution Prq0,εϑ on its paths.

4. Robust MDP Abstraction

Our approach is based on finite abstraction of Process (1) to an RMDP via ambiguity set learn-
ing. First, in Section 4.1 we show how we can build an ambiguity set that contains Pw with
high confidence, and then, in the rest of the Section, we show how to build an RMDP abstraction
M = (Q,A,#, AP, q0, L) that formally accounts for this uncertainty.

4.1. Learning the Unknown Probability Distribution

In this section, we make use of the samples of w to obtain a formal representation of the unknown
distribution Pw. Specifically, we learn an ambiguity set, i.e., a set of probability distributions that is
guaranteed to contain Pw with high confidence. In particular, Lemma 2 below allows us to build an
ambiguity set of distributions centered on the empirical distribution generated by the samples.

Lemma 2 (Ambiguity set) Given s ↓ N, l ↓ [1,↘], and N i.i.d. samples w(1), . . . ,w(N) from
Pw, define their empirical distribution as P̂w := 1

N

∑N
i=1 ϑw(i) . Further, let ⇀ be the diameter of W

in the ↘-norm, φ ↓ (0, 1), and g(N,⇀, d, s, l) be the upper bound on the expected transport cost
E[T (l)

s (Pw, P̂w)] between Pw and P̂w given in Fournier (2022). Then the Wasserstein ball

D := {P ↓ P(W ) : Ws(P, P̂w) ⇓ ⇁(N,φ)}, (2)

where ⇁(N,φ) := g(N,⇀, d, s, l)
1
s + ⇀

∝
d(2 log 1/φ)

1
2sN↗ 1

2s , contains Pw with confidence 1⇒ φ.

Proof In analogy to the proof of (Boskos et al., 2023, Proposition 24 of arXiv version), we
leverage the fact that Ws(Pw, P̂w) concentrates around its mean (Boissard and Le Gouic, 2014):
P
(
W(l)

s (Pw, P̂w) ⇐ E[W(l)
s (Pw, P̂w)] + τ

)
⇓ e↗Nϖ2s/(2ϱ2s), ′τ ⇐ 0. By the definition of

the s-Wasserstein distance and Jensen’s inequality, E[W(l)
s (Pw, P̂w)] := E[

(
T (l)
s (Pw, P̂w)

)1/s
] ⇓

E[T (l)
s (Pw, P̂w)]1/s, so ′τ ⇐ 0, P

(
W(l)

s (Pw, P̂w) ⇐ E[T (l)
s (Pw, P̂w)]1/s + τ

)
⇓ e↗Nϖ2s/(2ϱ2s).

Selecting τ such that φ = e↗Nϖ2s/(2ϱ2s) and setting ⇁ := E[T (l)
s (Pw, P̂w)]1/s + τ , we arrive at the

desired result.

It is important to stress that in all cases g ↗ 0 as N increases. Thus, the radius of the ambiguity
set D shrinks with more data.
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4.2. States, Actions and Labeling Function of the Abstraction

The state-space of the abstraction is obtained as follows. First, we partition set X into the set of non-
empty, non-overlapping regions Qsafe := {q1, . . . , q|Qsafe|}, i.e., q ∞ q↑ = ∈ for all q ∋= q↑ ↓ Qsafe

and →q↓Qsafeq = X . Furthermore, this partition must respect the regions of interest, i.e., for every
r ↓ R and q ↓ Qsafe, q ∞ r ↓ {∈, q}. The state space is then defined by associating each state
of the abstraction with a region in Qsafe and the additional “unsafe" region qu = Rn \ X , i.e.,
Q := Qsafe → {qu}. With a small abuse of notation, we let q ↓ Q denote at the same time a state of
the abstraction and a region in Rn. We also let the actions of the abstraction A be the same as those
of Process (1), with A(q) := A for all q ↓ Q. Furthermore, with an additional abuse of notation,
we define the abstraction labeling function as L : Q ↗ 2AP such that L(q) := L(x) if x ↓ q for all
q ↓ Q. Note that we do not fix the initial state, since our approach yields results for every q0 ↓ Q.

4.3. Transition Probability Distributions of the Abstraction

4.3.1. ACCOUNTING FOR THE DISCRETIZATION ERROR

To embed the discretization error into the abstraction, we first abstract Process (1) to an IMDP I :=
(Q,A, #̂, q0, AP, L), namely the “empirical IMDP”, under the assumption that wk is distributed
according to the empirical distribution P̂w. Components Q, A, q0, AP , and L of I are as defined
above. The following proposition defines the transition probability intervals #̂ of I.

Proposition 3 Let T u
P̂w

be the transition kernel of Process (1) when wt △ P̂w, i.e., for B ↓ B(Rn),

x ↓ X , and a ↓ A, T a
P̂w

(B | x) =
∫
W 1B(fa(x, v))P̂w(dv). Further, define Reach(q, a,w(i)) :=

{fa(x,w(i)) ↓ Rn : x ↓ q}. Then, for every q ↓ Qsafe, q↑ ↓ Q, and a ↓ A,

min
x↓q

T a
P̂w

(q↑ | x) ⇐ 1

N
|{i ↓ {1, . . . , N} : Reach(q, a,w(i)) ↑ q↑}| (3a)

max
x↓q

T a
P̂w

(q↑ | x) ⇓ 1

N
|{i ↓ {1, . . . , N} : Reach(q, a,w(i)) ∞ q↑ ∋= ∈}|. (3b)

Proof Let x ↓ X , a ↓ A. Then, from the definition of the empirical distribution, we have T a
P̂w

(q↑ |
x) =

∫
W 1q→(fa(x, v))P̂w(dv) =

1
N

∑N
i=1 1q→(fa(x,w

(i))) for all q↑ ↓ Q. For all x ↓ q, q ↓ Qsafe,
the previous probability is upper bounded by T a

P̂w
(q↑ | x) ⇓ 1

N

∑N
i=1maxx↓q 1q→(fa(x,w

(i))) =
1
N |{i ↓ {1, . . . , N} : Reach(q, a,w

(i)) ∞ q↑ ∋= ∈}|, which yields (3b). Analogously, we obtain the
lower bound (3a), which completes the proof.

We complete the abstraction I by defining the transition probability bounds P (q, a, q↑), P (q, a, q↑)
of I as the bounds in (3) for all q ↓ Qsafe, q↑ ↓ Q, and a ↓ A. In this paper, following the
approach in (Adams et al., 2022), we over-approximate the reachable sets by using affine relaxations
of f , which yields sound and tight transition probabilities. To further ensure that the paths of I
that exit Qsafe do not satisfy the specifications, we make qu absorbing by setting P (qu, a, qu) =
P (qu, a, qu) = 1 for all a ↓ A. These bounds define the set of transition probability distributions of
I: for all q ↓ Q, a ↓ A,

#̂q,a = {↼ ↓ P(Q) : P (q, a, q↑) ⇓ ↼(q↑) ⇓ P (q, a, q↑) for all q↑ ↓ Q}. (4)
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4.3.2. ACCOUNTING FOR THE DISTRIBUTIONAL AMBIGUITY

In section 4.3.1, we obtain an abstraction of Process (1) when the disturbance is distributed accord-
ing to the center of the ambiguity set D in (2), i.e., P̂w. To obtain a sound abstraction of Process (1),
we now need to account for all the distributions in said ambiguity set D. To this end, we take I
as a starting point and expand its set of transition probabilities according to D, which yields the
RMDP M. However, since we consider nonlinear disturbances, we must first translate the distribu-
tional ambiguity in P(W ) to distributional ambiguity on P(Rn). Then, we leverage the results from
optimal control of RMDPs (Gracia et al., 2023, 2022) to conclude correctness of the abstraction.

Define the cost c : Q2 ⇒↗ R→0 s.t. c(q, q↑) := inf{≃x⇒ x↑≃sl , x ↓ q, x↑ ↓ q↑} for all q, q↑ ↓ Q.
The sets of transition probability distributions of the RMDP abstraction are defined as follows.

Definition 4 (Transition Probability Distributions of the RMDP Abstraction) Consider the
cost c and the set #̂ of I as defined in (4). Let Lw(q, a) = maxx↓q Lw(x, a) for all q ↓ Qsafe,
a ↓ A and ⇁(N,φ) be as in Lemma 2 with φ ↓ (0, 1). We define the sets of transition probability
distributions of M as #q,a := {↼ ↓ P(Q) : ▽ ↼̂ ↓ #̂q,a s.t. T c(↼, ↼̂) ⇓ (Lw(q, a)⇁(φ, N))s} for all
q ↓ Qsafe, a ↓ A, and #qu,a = #̂qu,a for all a ↓ A, so the unsafe state remains absorbing.2

The following proposition guarantees that the RMDP constructed per Def. 4 is a sound abstraction
of Process (1), i.e., that every P ↓ D, when propagated through f , has a discrete equivalent in #.

Proposition 5 (Soundness of the abstraction) Consider the RMDP M = (Q,A,#, q0, AP, L) as
described in this section. Define, for all x ↓ X , a ↓ A, the distributions ↼x,a ↓ P(Q) such that
↼x,a(q↑) := T a(q↑ | x) for all q↑ ↓ Q. Then it holds that P(↼x,a ↓ #q,a ′x ↓ q, ′q ↓ Q, ′a ↓
A) ⇐ 1⇒ φ.

Proof Let x ↓ Rn, a ↓ A denote by fa(x, ·)#Pw the push-forward measure of Pw through
fa(x, ·). Start by assuming that Pw and P̂w are ε-close in the sense of Ws. Then it holds that
(Villani, 2021) Ws(T a(· | x), T a

P̂w
(· | x)) = Ws(fa(x, ·)#Pw, fa(x, ·)#P̂w) ⇓ Lw(x, a)ε. Next,

define the distribution ↼̂x,a ↓ P(Q) with ↼̂x,a(q↑) := T a
P̂w

(q↑ | x) for all q↑ ↓ Q. By the construction

of #̂q,a, ↼̂x,a ↓ #̂q,a. Furthermore, from (Gracia et al., 2023, Lemma 2), Ws(T a(· | x), T a
P̂w

(· |
x)) ⇓ Lw(x, a)ε ≠ T c(↼x,a, ↼̂x,a)1/s ⇓ Lw(q, a)ε. By Lemma 2, when ε ⇔ ⇁(N,φ), this
conclusion holds with probability 1 ⇒ φ for all x ↓ q, q ↓ Q, a ↓ A. This in turn implies by
Definition 4 that also ↼x,a ↓ #q,a for all x ↓ q, q ↓ Q, a ↓ A with the same probability.

Remark 6 (Clustering Samples) As shown in Sections 4.1 and 4.3.1, while the computational
complexity of the abstraction is proportional to the number of samples, the ambiguity in the learned
distribution and therefore the conservatism of the abstraction decrease with N . A straightforward
way to deal with this trade-off is to reduce the number of samples used to construct the abstraction
via clustering. By doing so, we obtain another discrete distribution P̃w, supported on Ncluster 7 N
points, and which is very close (in the Wasserstein sense) to P̂w. By adding this small discrepancy
to the original ambiguity radius and using the triangle inequality, we construct an ambiguity ball
around P̃w that retains the exact same guarantees of containing Pw as our original ambiguity set.

2. We can obtain a tighter representation of the uncertainty in !q,a by restricting ourselves to distributions in P(Qq,a),
where Qq,a := {q→ → Q : ↑x → q, w → W s.t. q→ ↓Reach(x, a, w) ↔= ↗}, i.e., leveraging boundedness of W .
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Remark 7 Notice that the confidence on M being a sound abstraction of Process (1) is the same
as that of our ambiguity set containing Pw. This is an advantage of using an ambiguity set to
represent learning uncertainty, instead of obtaining bounds on individual transition probabilities,
as is commonly done in the literature, e.g., Badings et al. (2023a,b); Ashok et al. (2019). In fact,
these approaches lead the resulting confidence bounds to decrease with the abstraction size and to
the paradox that large abstractions can be more uncertain than coarser ones.

5. Strategy Synthesis

To obtain a strategy for Process (1), we compute a strategy ω↘ for the abstraction M that maximizes
the probability of satisfying ς and is robust against all uncertainties in the abstraction. Since M is
a sound abstraction of (1), ω↘ can be refined to a strategy on (1) with correctness guarantees. To
synthesize such ω↘, we first construct a deterministic finite automaton (DFA) that represents formula
ς (De Giacomo and Vardi, 2013).

Definition 8 (DFA) Given an LTLf formula ς defined over a set of atomic propositions AP , a
deterministic finite automaton (DFA) constructed from ς is a tuple A = (Z, 2AP , ϑ, z0, ZF ) where
Z is a finite set of states, 2AP is a finite set of input symbols, ϑ : Z ↔ 2AP ⇒↗ Z is the transition
function, z0 ↓ Z is the initial state, and ZF ↑ Z is the set of accepting states.

Trace ϱ = ϱ0ϱ1 . . . ϱK ↓ (2AP )↘ induces run z = z0z1 . . . zK+1 on A, where zk+1 = ϑ(zk, ϱk)
for all k ↓ {0, . . . ,K}. Per construction of A introduced by De Giacomo and Vardi (2013), trace
ϱ satisfies ς iff zK+1 ↓ ZF , in which case run z is called accepting for A. Next, we generate the
product of RMDP abstraction M and A to capture the paths of M that induce accepting runs in A.

Definition 9 (Product RMDP) Given RMDP M and DFA A, the product Mς = M ∀ A is an-
other RMDP Mς = (Qς, Aς,#ς, qς0 , Q

ς
F ), where Qς = Q↔ Z is the set of states, Aς = A is the

set of actions, qς0 = ϑ(z0, L(q0)) is the initial state, Qς
F = Q↔ZF is the set of accepting states, and

#ς = {#ς
(q,z),a : (q, z) ↓ Qς, a ↓ Aς((q, z)) with #ς

(q,z),a := {↼ς ↓ D(Qς) : ▽↼ ↓ #q,a s.t. ′q↑ ↓
Q, ↼ς((q↑, z↑)) = ↼(q↑) iff z↑ = ϑ(z, L(q↑))}.

By construction, a path of Mς is accepting if and only if its projection onto M is a path ϖ
whose trace ϱ satisfies ς, i.e., ϱ is accepting by A. Therefore, obtaining a strategy ω↘ that robustly
maximizes the probability of M satisfying ς boils down to solving a robust maximal reachability
probability problem in Mς. To this end, since # and, consequently, #ς, are built extending the
independent intervals of probabilities in the empirical IMDP with ambiguity sets of distributions in
the sense of T c, we can rely on the efficient robust dynamic programming algorithm in (Gracia et al.,
2022), which involves linear programming, and enjoys polynomial and exponential time complexity
in the size of M and ς, respectively. The resulting strategy ω↘

ς of Mς can be mapped to a memory-
dependent strategy ω↘ of M, where the memory corresponds to the current state in A. Besides ω↘,
the synthesis process also yields bounds on the probability of M satisfying ς under strategy ω↘

from each q ↓ Q, i.e., p(q) := minϑ↓” Prq,ε
↓

ϑ [ϖ |= ς] and p(q) := maxϑ↓” Prq,ε
↓

ϑ [ϖ |= ς].

5.1. Correctness

In this section, we refine the strategy ω↘ to a strategy ωx of Process (1), ensuring its correctness.
First, let J : Rn ↗ Q be the function that maps each continuous state to the corresponding region,
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i.e., for all q ↓ Q, J(x) := q iff x ↓ q. Given ϖx = x0
a0⇒↗ . . .

aK↑1⇒⇒⇒↗ xK , we let J(ϖx) :=

J(x0)
a0⇒↗ . . .

aK↑1⇒⇒⇒↗ J(xK) denote the corresponding path of M. A switching strategy of (1) is
obtained as ωx(ϖx) := ω↘(J(ϖx)) ′ϖx ↓ ”x. The following theorem ensures correctness of ωx.

Theorem 10 (Correctness) Let M be a sound RMDP abstraction of Process (1) with confidence
1 ⇒ φ and ς be an LTLf formula. Let ω↘ be an optimal robust strategy of M w.r.t. ς and ωx
the corresponding switching strategy of (1). Then it holds that, with confidence 1 ⇒ φ, P εx

x0
[ϖx |=

ς ↙ G¬pu] ↓ [p(q), p(q)] for all x0 ↓ q, q ↓ Q, where p(q) and p(q) are the bounds on the
probability of M satisfying ς.

Proof If M is a sound abstraction of (1), then the theorem follows by making use of Theorem 2 in
Jackson et al. (2021a) and letting the path length grow unbounded. Since the soundness argument
holds with confidence 1⇒ φ, ωx is a correct strategy for (1) with the same confidence.

6. Case Studies

We consider various stochastic systems from the literature and use our framework to synthesize
optimal strategies against various LTLf specifications. All experiments were run on an Intel Core i7
3.6GHz CPU with 32GB RAM. We consider φ = 10↗9, l = ↘, and s = 1 in all experiments. In
Table 1 we report our results on 3 nonlinear and 2 linear systems. These models include a nonlinear
pendulum in the presence of random wind and where the aerodynamic torque is proportional to
⇒(▷̇t⇒wt cos ▷t)|▷̇t⇒wt cos ▷t|, and a 3D car model (Rajamani, 2011) where (nonlinear) Coulomb
friction is modeled by adding a random perturbation to the linear velocity. We also reproduce the
results in (Skovbekk et al., 2023) for a system with multiplicative noise, and the results in (Gracia
et al., 2023) for a 2D unicycle with additive noise. The specification considered for these systems
is a reach-avoid one, i.e., ς1 = G(safe)↙F(goal). To show that our approach can also tackle more
complex formulas, we consider a 2D unicycle under specification ς2 := G(safe) ↙ G(water ↗
(¬charge Ucarpet))) ↙ F(charge) (Vazquez-Chanlatte et al., 2018), which represents the task of
simultaneously reaching a charge station while remaining safe and, if the system goes through a
region with water, then it should first dry in a carpet before charging.

The results illustrate how our framework is able to provide non-trivial certificates of correctness
and synthesize controllers for each of the examples. As expected from the theoretical results in
Section 4.1, it is possible to observe how the precision of our approach increases with the number

(a) N = 104 (b) N = 8↔ 104 (c) N = 105 (d) N = 106

Figure 1: Lower bound on the probability of satisfying ς1 for the pendulum system as a function
of N , together with sampled trajectories. Boxes represent the goal regions.
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Table 1: Results of the case studies. We denote by eavg the average difference between the lower
and upper bounds in the satisfaction probabilities. Abstraction and synthesis times are
given in minutes, for which respective timeouts of 8 and 2 hours are fixed. We denote by
⇁ and ⇁cluster the radius of the ambiguity set before and after clustering, respectively.

System (Spec.) |Q| |A| N ⇁ Ncluster ⇁cluster eavg Abstr. Time Synth. Time

Pendulum (ς1) 4↔ 104 5 104 0.177 43 0.186 0.744 5.484 7.474
0.177 ⇒ ⇒ ⇒ timeout ⇒

8↔ 104 0.063 48 0.071 0.219 5.438 120.000
105 0.056 47 0.065 0.076 5.406 120.000
106 0.018 49 0.027 0 5.273 61.167

3D Unicycle (ς1) 6.4↔ 104 10 107 0.0014 393 0.00245 0.517 22.632 51.942
0.0014 ⇒ ⇒ ⇒ timeout ⇒

108 0.0047 453 0.0161 0.498 25.438 43.183
5↔ 108 0.0022 4505 0.006 0.453 235.950 46.117

0.0022 8869 0.0048 0.447 457.431 43.342

Multiplicative 104 1 4.74↔ 103 0.034 119 0.041 0.452 1.598 4.659
noise (ς1) 0.034 ⇒ ⇒ 0.440 59.947 4.691

(Skovbekk et al., 2023) 4.67↔ 104 0.012 262 0.017 0.387 3.241 4.036
0.012 ⇒ ⇒ ⇒ timeout ⇒

4.66↔ 105 0.004 1066 0.0065 0.323 13.149 3.863

2D Unicycle (ς1) 1.6↔ 103 8 4↔ 105 0.009 385 0.01 0.334 0.224 3.598
(Gracia et al., 2023) 0.009 ⇒ ⇒ 0.284 341.463 3.978

2↔ 106 0.013 162 0.015 0.180 0.438 3.582
0.015 ⇒ ⇒ ⇒ timeout ⇒

5↔ 107 0.004 741 0.005 0.051 0.735 3.208

2D Unicycle (ς2) 3.6↔ 103 8 104 0.283 16 0.292 0.494 0.049 5.538
0.283 ⇒ ⇒ 0.484 19.567 5.260

105 0.100 17 0.109 0.210 0.044 5.423
0.100 ⇒ ⇒ 0.195 180.454 4.072

106 0.035 44 0.039 0.079 0.1021 3.470
0.035 ⇒ ⇒ ⇒ timeout ⇒

107 0.012 46 0.016 0.03 0.106 3.043

of samples, i.e., eavg, the difference between upper and lower bound in the probability of satisfying
the LTLf property, decreases with N . This can also be observed in Figure 1, where we show the
lower bound on the satisfaction probability for the pendulum system, for different values of N ,
while keeping all the other parameters constant. Similarly, eavg decreases by increasing |Q|, the
size of the abstraction. As a trade-off, the computation times increases with both |Q| and N . This
highlights the importance of clustering the samples, which we can observe in Table 1 to only have
a relatively small effect in conservatism, while leading to substantial improvements in the time to
build the abstraction. Finally, we empirically validated the theoretical bounds in the satisfaction
probabilities via thousands of Monte Carlo simulations for random initial conditions.

7. Conclusion and Future Work

We present a framework to perform formal control of switched stochastic systems with general
nonlinear dynamics and unknown disturbances under LTLf specifications. The experimental results
show the generality and effectiveness of our approach. Future research directions include increasing
the tightness of our results and analyzing convergence of our solution to the optimal one.
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