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Abstract—Emotion recognition in social situations is a complex
task that requires integrating information from both facial
expressions and the situational context. While traditional ap-
proaches to automatic emotion recognition have focused on
decontextualized signals, recent research emphasizes the impor-
tance of context in shaping emotion perceptions. This paper
contributes to the emerging field of context-based emotion recog-
nition by leveraging psychological theories of human emotion per-
ception to inform the design of automated methods. We propose
an approach that combines emotion recognition methods with
Bayesian Cue Integration (BCI) to integrate emotion inferences
from decontextualized facial expressions and contextual knowl-
edge inferred via Large-language Models. We test this approach
in the context of interpreting facial expressions during a social
task, the prisoner’s dilemma. Our results provide clear support
for BCI across a range of automatic emotion recognition methods.
The best automated method achieved results comparable to
human observers, suggesting the potential for this approach to
advance the field of affective computing.

Index Terms—facial emotion recognition, bayesian cue integra-
tion, large language models

I. INTRODUCTION

People readily make inferences about others from emotions

expressed in social situations and use these inferences to

guide social actions. Yet the field of affective computing has

struggled to endow machines with this basic level of emotional

intelligence. Recent research has highlighted the importance

of situational knowledge in shaping emotion perceptions [1].

Whereas automatic emotion recognition has traditionally fo-

cused on recognizing emotions from decontextualized signals

(e.g., facial expressions labeled without knowledge of the sit-

uation that evoked the expression [2], [3]), research on human

social cognition highlights that people integrate cues from

both expressions and their rich understanding of the social

situation [4]. Yet “context-based” emotion recognition is still

in its infancy. This paper contributes to this growing field by

demonstrating how psychological theories of human emotion

perception can inform the design of automated methods.

There are obvious benefits if emotion perceptions could be

predicted from decontextualized signals alone, as was claimed

possible by early psychological theories [5], [6]. Expressions

could be easily collected and annotated without regard for

context and the resulting algorithms utilized in any domain.

Unfortunately, it is now clear that impressions formed from

de-contextualized expressions often have little bearing on

predicting what people feel, nor can they predict the inferences

of observers knowledgeable of the social situation [7].

As a consequence, knowledge of the situational context

must be incorporated into the recognition process. One obvious

approach is to train recognition methods for specific contexts

(e.g., emotional states of a driver [8] or patient in a mental

health screening [9]), but this limits the generality of the

resulting algorithm to these specific contexts. As an alternative,

recent computer vision approaches have tried to infer the

context by examining information in the background of an

image or video (e.g., recognizing that a particular expression

was produced in the context of a birthday party [10]). Unfortu-

nately, the information that can be inferred in this way is often

quite limited. In contrast, people engaged in social interactions

often have rich semantic knowledge about the nature of the

shared task including each party’s recent actions.

Two recent innovations suggest how to incorporate situa-

tional knowledge while maintaining the advantages of decon-

textualized emotion recognition. First, research indicates peo-

ple infer emotion from expressions using context-free methods

and adjust based on situational knowledge. For example, Ong

and colleagues’ Bayesian Cue Integration (BCI) model shows

that context-specific emotion judgments can be decomposed

into judgments based on the expression alone and from the

situation alone, then integrated via Bayesian inference [11]

(see [12] for a similar approach). This implies that affective

computing could similarly decompose the problem: i.e., utilize

existing context-free emotion recognition methods to recog-

nize emotions from expressions alone and then “post-process”

the output of these algorithms assuming it was possible to

make emotional inferences about situations.

Second, research into the emotional reasoning capabilities of

Large Language Models (LLMs) suggests they are surprisingly

accurate at predicting the emotions people feel across a wide

range of situations. For example, Tak and Gratch found that

GPT models accurately predict human emotional responses

and appraisals across a wide range of situations [13], and

Broekens demonstrated GPT’s zero-shot abilities in tasks

such as sentiment analysis and appraisal-based emotion elic-

itation [14]. Additionally, Resendiz and Klinger’s work on

emotion-conditioned text generation further highlights LLMs’
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Fig. 1: Illustrates knowledge-based recognition: (1) an emotion distribution is estimated from facial cues alone (2) from

knowledge of the situational context (3) then integrated to predict context-based emotion perceptions.

capabilities in handling emotion-related tasks [15].

Together, this suggests a general approach to context-

dependent emotion recognition: First, predict the emotions

people are likely to perceive from an emotional expression

without context. Second, predict the emotions people are likely

to perceive from a situational description. Finally, combine

these separate sources of information with psychologically-

inspired models such as BCI (see Fig. 1).

We test this idea by examining how observers interpret facial

expressions produced during an emotional social task (playing

the prisoner’s dilemma game for money). We first replicate

prior findings that human observers need context (emotion

ratings from decontextualized videos differ considerably from

ratings when fine-grained details of the context are provided).

We next systematically explore the utility of BCI for fully-

automated methods. Specifically, we apply the Bayesian ap-

proach to several context-free emotion recognition algorithms

to assess the generality of the approach. We further investigate

alternative LLMs for their ability to reason about emotional

situations. Finally, we contrast BCI with alternative integration

methods. To preview, our results provide clear support for

BCI. The method improved accuracy across all of the context-

free methods we tested. Second, GPT-4 was found to be an

effective method for predicting emotions from situations. The

best-performing results achieved human-level performance (as

judged by comparing it with the predictions of BCI using

human, rather than machine judgments), We discuss these

results and future directions, including the need to verify these

findings on a broader range of situations.

II. BAYESIAN CUE INTEGRATION

We first introduce BCI [11] and illustrate how it captures

human judgments in the Prisoner’s Dilemma task before

turning to automated approaches. BCI predicts context-based

emotion judgments (i.e., judgments by human observers with

extensive knowledge of the social context) from context-free

judgments (i.e., judgments by human observers without any

Fig. 2: Facial reactions were annotated either without context

(context-free), with instruction about the joint outcome of the

game (in this case mutual cooperation) seeing the reaction of

both players reactions (context-based).

knowledge of the context) and context-only judgments (i.e.,

human judgments based on information about the context but

without knowledge of the expression. Each of these judgments

is represented as a probability distribution (i.e., the probability

that a given human observer would make this judgment).

The model assumes observers employ an intuitive theory for

interpreting expressive and contextual cues: observers assume

that the outcome of a social task (e.g., the joint decision in

the prisoner’s dilemma), influences emotions, which in turn

affects facial expressions. The equation below captures this

assumption (see [11] for details on its derivation),

P (e|c, f) ∝ P (e|f)P (e|c)
P (e) (1)

In Eq (1), P (e|f) is the probability of reporting someone

feels an emotion from the face alone. P (e|c) is the probability

that someone would be rated as experiencing an emotion given

only the situation (e.g., without seeing a person’s face, how

likely is a person to experience joy if we know they were

just exploited). P (e) is the a priori probability that different

emotions tend to occur.
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(a) Context-free (b) Context-based (c) Context-only

Fig. 3: (a) Context-free, (b) Context-based, (c) Context-only. CC (mutual cooperation), DC (Player A exploit), CD (Player A

exploited), DD (mutual defection).

BCI predicts observers’ beliefs about what someone feels,

not the actual feelings of the person producing the expression.

Thus, it is most applicable to predicting how the observer

will behave in social settings [16], [17], though prior psycho-

logical research also suggests that context-based perceptions

are more consistent with self-reported feelings than context-

free perceptions [18]. As BCI predictions are expressed as a

probability distribution over labels, rather than a specific class,

BCI is aligned with recent innovations in affective computing

that leverage annotator variability as crucial information for

improving recognition accuracy [19], [20].

A. Archival Data

We first replicate the utility of BCI on a novel dataset,

USC’s Split-Steal corpus [21], [22], before integrating it with

automated methods. This is a large collection of participants

that engaged in a 10-round prisoner’s dilemma task. Partici-

pants could see each other but not speak and were incentivized

by playing for lottery tickets for several $100 USD lotteries.

The corpus consists of 7-second “reaction shots” when players

learn of their joint choice on a given round. In each round,

players can choose to cooperate (C) or defect (D), where

cooperating is an attempt to split ten lottery tickets and defect

is an attempt to steal all the tickets. The possible outcomes

depend on the joint choice: both choose to equally split the

tickets (CC), one player successfully steals from their partner

(DC), one player is stolen from (CD); or both attempt to steal

from each other (DD) with each receiving a single ticket.

For our replication, we chose 25 of the most expressive

videos for each possible outcome in the game as we wanted

to focus on how these expressions would alter inferences.

The USC Split-Steal corpus includes automatically derived

expressivity ratings and we simply selected the 25 most

expressive clips for each possible outcome in the game. This

resulted in a database of 100 7-second video clips, 25 from

each of the four actual game outcomes: CC, DC, CD, and DD.

B. Emotion Perception Ratings

We augmented this corpus following the procedure of

Ong and colleagues [11]. We recruited multiple annotators

to estimate probability distributions that correspond to the

probability that an emotion is perceived from the face alone

(context-free), from the context alone (context-only) and from

the face and context together (context-based). Annotators were

recruited through Amazon Mechanical Turk and pre-tested to

filter inattentive annotators. For each video, annotators were

asked to identify one of 6 basic emotion (or neutral) they

perceived the person to be feeling. Basic emotions were chosen

to allow direct comparison to prior BCI results and because

these are a natural language for rating perceived emotion

(though the approach is easily extended to other schemes).

Separate groups of annotators were recruited to judge the

videos with or without context. Within each group, each

annotator rated 10 randomly selected videos and twenty ratings

were obtained for each video in each context.

Context-free: For P (e|f), annotators were asked to rate

emotions only seeing the video and without being told any

other information. The only thing that could be inferred from

the background was they are sitting in a room full of computers

(see Fig. 2). They were simply told to watch the video and

answer the questions. They were free to watch the video as

many times as possible.

Context-based: For P (e|c, f), annotators first were pro-

vided a description of the game context, including the payoff

for different choices, and quizzed to verify their understanding

of the structure of the game. They then rated 10 videos,

each showing the joint outcome of a round and the nonverbal

reactions of the two players involved (see Fig. 2) For each

video, annotators were instructed to evaluate the emotional

reaction of the player (Player A) highlighted in the red box.

They were allowed to watch the video multiple times to ensure

an accurate assessment of the player’s emotional expression.

Context-only: For P (e|c), annotators first received the same

description of the game and quiz provided in the context-based

annotation task. Rather than seeing a video, they only saw a

text description of one of the four possible game outcomes and

were asked to predict what a player experiencing this outcome

was likely to feel. We recruited 141 annotators from Amazon

Mechanical Turk, of which 20 annotations were discarded due

to failing the attention check.
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C. Emotion Probability Distribution

BCI adopts a probability distribution approach for emotion

recognition, utilizing “soft” labels to represent the probability

of each emotion, rather than producing a single label (e.g.,

Anger) from a video. This method addresses the challenges

of subjective perception in image emotion recognition, as

highlighted in previous research [23], [24]. Significantly, this

approach is supported by research in emotion recognition.

For example, Lotfian and Busso [19] formulated emotion

perception as a probabilistic model, and Prabhu et al. [20]

advocated for label uncertainty modeling in speech emotion

recognition. These studies highlight the importance of using

a probabilistic perspective in affective computing to better

capture the complexities of emotional expression.

D. Aggregate Analysis of Emotion Ratings

Fig. 3 visualizes the elicited emotion probability distribu-

tions. For the sake of simplicity, rather than showing the

human ratings for each individual video, we average across

all the videos with the same game outcome.

For context-free perceptions (Fig. 3a), Joy is the predom-

inant emotion across all game outcomes, with the CC very

likely to be rated as joyful (71%), DD being perceived as

the least joyful (45%), and DC and CD falling in the middle.

Despite the prevalence of joy, most individual videos failed to

reach strong annotator consensus. Table I shows the fraction

of videos with a clear majority label (over 50% agree on the

label) and clear consensus (over 66% agree on the label).

Fig. 3b illustrates the context-based results, where annota-

tors had knowledge of both facial cues and the game outcome.

Joy was still prevalent in the CC condition at 69%, and DC

it was at 56%. However, the CD condition was marked by a

33% prevalence of Surprise, and DD by 34% Neutral. These

results indicate that emotions in the CD and DD conditions

are not overwhelmingly dominated by a single emotion label

but rather display a mixed (for instance, CD has 33% Sur-

prise and 32% Joy), supporting the necessity of an emotion

distribution approach for more precise emotion recognition.

Table I illustrates a diminished consensus for outcomes such

as CD and DD, underscoring the insufficiency of a single-label

approach. These results support that soft labeling strategies to

more accurately capture the varied emotional nuances revealed

when contextual information is incorporated.

In the context-only annotations (Fig. 3c), there was a notable

overestimation of Sadness and Anger in the CD condition

when compared to context-based perceptions. Again, multiple

emotions were again prominent, as in CD, 32% was Sadness

and 29% was Anger, which also supports the need for an

emotion distribution approach. A more detailed evaluation will

be discussed in Section 4.

III. AUTOMATIC APPROACHES FOR FACIAL AND

CONTEXTUAL EMOTION RECOGNITION

As illustrated in Fig. 1, we automate context-based pre-

dictions by (1) estimating P (e|f) from facial videos, (2)

estimating P (e|c) from a textual description of the game

Outcome %Majority class
%Supermajority

class (≧ 2/3)

Context-free CC 0.92 0.64
DC 0.72 0.44
CD 0.80 0.52
DD 0.72 0.36

Context-based CC 0.92 0.56
DC 0.72 0.48
CD 0.24 0.08
DD 0.44 0.08

TABLE I: Comparison of majority and super-majority class

consensus in context-free and context-based.

context, and (3) integrating these estimates. To demonstrate

generality, we evaluate several alternative techniques at each

stage. Additional details found in supplemental materials [25].

A. P (e|f) - Emotion Probability given by Face

We compare three alternatives for automatically recognizing

emotions from decontextualized videos. This allows us to

compare the accuracy of different approaches but also to

examine if knowledge-based recognition can benefit a range of

methods. We evaluate a commercial approach (FACET) and a

state-of-the-art pre-trained model (EAC model). Each of these

methods recognizes emotions frame-by-frame and may miss

important information encoded in the dynamics of the video.

Thus, we also train a dynamic LSTM model that can make

predictions based on changes in expressions within a video.

In evaluating each method, we use treat Context-free human

annotations as ground truth (i.e., how well can each method

predict what emotions are perceived by observers without

access to the game context?).

1) FACET: FACET is a commercial expression recognition

method based on the Computer Expression Recognition Tool-

box [26] and produces a distribution of emotion labels for each

frame of video. Specifically, FACET provides ’evidence val-

ues’ for each frame, indicating the likelihood of an expression

corresponding to a specific emotion, with values ranging from

-4 to +4. We set negative values to zero, average the evidence

across all video frames and re-scale the result to ensure that

the sum of probabilities equals 1.

2) EAC: Erasing Attention Consistency (EAC) model [27],

is a state-of-the art emotion recognition method based on

ResNet. EAC analyzes videos frame-by-frame and we extract

and average emotion probabilities from the softmax layer to

determine the overall emotional distribution for each video.

Specifically, we use a pre-trained EAC model with the RAF-

DB dataset (Real-world Affective Faces) [28]. The extracted

probabilities are re-scaled to ensure that their sum equals 1.

3) LSTM: The previous two methods ignore how expres-

sions change across the 7-second video, yet some emotion

impressions, such as surprise, might arise from quick facial

movements. To capture these, we train an LSTM model that

incorporates dynamics features. The model is trained using

human context-free annotations as the ground truth and utilizes
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a range of input features, including sequences of Action Units

(AUs), facial optical flows, gaze, and head pose data.

We employ OpenFace 2.0 [29] to extract 12 Facial Ac-

tion Units1, focusing on those commonly co-occurring AUs

identified by prior work [30]. For optical flows, the ZFace

tool [31] is used to track the movement of dense facial

landmarks (512 points) over time, allowing us to calculate the

flow between each frame. This data helps the LSTM model

to capture the dynamic expressions and subtle changes in

the face that are crucial for dynamic emotions. Additionally,

OpenFace provides gaze direction vectors and gaze angles.

Also, head pose direction vectors are provided. To train the

model, we pre-process and regularize the input. These include

the normalization of input features to reduce potential bias,

the incorporation of dropout layers to prevent overfitting, and

scaling to accelerate the convergence of the training process.

The validation strategy employed is Leave-One-Out Cross-

Validation (LOOCV), providing a thorough assessment of the

model’s performance. Note, that as LSTM is fine tuned on

the Split-Steal corpus, whereas the other approaches are pre-

trained, LSTM can be seen also as an attempt to create an

upper-bound on the accuracy of context-free judgments.

B. P (e|c) - Emotion Probability given by Context

We compare GPT-3.5, GPT-4 2, Llama 2, and Gemini 3

LLM models for their ability to infer likely emotions from a

textual description of situational context. Models are given the

identical descriptions and questions that were provided to the

human annotators, with minor changes to get the models to

produce standardized outputs (see Fig 4). The prompt contains

three main components:

• A general description of the prisoner’s dilemma game.

• The game outcome of each turn (CC,DC,CD, and DD).

• A request for the emotional distribution (Basic emotion).

For evaluation, human context-only annotations are used as

ground truth (mentioned in Section 3c). We set the temperature

parameter of each LLM model to the default when conducting

the experiment. Each version was prompted 20 times for each

description, and the results were averaged.

C. Best method for P (e|f) and P (e|c)

We next compare the performance of different models for

de-contextualized facial emotion recognition (P (e|f)) and

context-based emotion recognition (P (e|c)).
Evaluation Metrics: To assess the performance of our

models, we employ three standard metrics. Kullback-Leibler

divergence (KLD) [32] and Root Mean Square Error (RMSE)

are standard metrics to compare the distance between two

probability distributions [23], [33], which is most appropri-

ate given the variability in labels provided by the human

annotators. KLD directly measures the discrepancy between

two probability distributions, with lower values indicating

1The selected AUs are AU 1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 25, and 26.
2GPT-3.5 and GPT-4 versions as of February 1, 2024
3Llama 2 and Gemini versions as of May 15, 2024

GPT Prompt - P (e|c)

Imagine a scenario where two people, Player A and

Player B, play a competitive game called “Split or

Steal.” Players play multiple rounds with each other. In

each round of the game, players each decide whether to

split or steal from a pot of $10. If both choose “split”,

they each get $5. “If both choose “steal”, they each

get $1. If one chooses “split” but the other chooses

“steal”, the stealer gets all $10. They make their

choices secretly and their choices are revealed at the

end of the round. Scenarios describe one round of the

game. Imagine the feelings of Player A. In this round,

Player A chooses “steal” and Player B chooses “split.”

How does Player A experience emotions? Provide a

probability distribution based on the following emotion

list: Joy, Neutral, Surprise, Anger, Disgust, Fear, Sad.

Ensure that the sum of probabilities is 1. Provide

answer in the following format: “Joy: prob 1, Neutral:

prob 2, Surprise: prob 3, Anger: prob 4, Disgust: prob

5, Fear: prob 6, Sad: prob 7.”

Fig. 4: GPT Prompt depicting a “Split or Steal” game scenario

used to P (e|c) data on emotion probability distribution.

better model performance. RMSE provides a measure of the

average magnitude of the errors, again with lower values

being preferable. Finally, we include F1 (weighted) to assess

performance if the model was forced to provide a single label,

though caution that F1 can be misleading as only about half

of the videos had strong agreement amongst the annotators.

Best model for P (e|f): The LSTM model is distinguished

by the lowest RMSE (0.095) and KLD (0.134), suggesting

strong predictive accuracy and a high correlation with human-

annotated data for capturing facial emotion nuances (as refer-

enced in Table II). While the LSTM model is fine-tuned for

IPD dataset, our emphasis is not on its distinct advantages.

Rather, we focus on demonstrating how BCI enhances a range

of facial emotion recognition methods.

Face Context RMSE(↓) KLD(↓) F1-score(↑)

FACET - 0.119 0.688 0.689

EAC - 0.155 2.421 0.658

LSTM - 0.095 0.134 0.660

- GPT-3.5 0.197 2.579 0.333

- GPT-4 0.061 0.101 0.750

- Llama 2 0.149 0.343 0.1

- Gemini 0.137 0.491 0.333

TABLE II: P (e|f) and P (e|c), showing the match between

automated predictions and the distribution of human context-

free and context-only perceptions (lower RMSE, KLD indicate

a better match, while a higher F1 indicates better accuracy)
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Best model for P (e|c): GPT-4, with the lowest RMSE

(0.061) and KLD (0.101), indicates that its predictions for

context-based emotions closely mirror human judgments (as

seen in Table II). These results support our decision to employ

LSTM for facial emotion recognition and GPT-4 for contextual

emotion recognition for integration model P (e|c, f), which

promises to align closely with human emotional perception.

IV. INTEGRATION OF FACIAL AND CONTEXTUAL

EMOTION RECOGNITION

We compare alternative methods for integrating facial and

contextual cues for context-aware emotion recognition. We

explore two methods: BCI and GPT-4 Integration method.

1) Bayesian Cue Integration (BCI): We apply BCI as

detailed in Eq. 1, using results of P (e|f) from three facial

emotion recognition methods 4 and P (e|c) from GPT-3.5 and

GPT-4. Following [11], we do not explicitly calculate P (e) but

normalize the product into a proper distribution by dividing

each probability by the sum of the posteriors.

2) GPT-4 Integration: We explore if GPT-4 by itself could

integrate facial cues and contextual information to generate

P (e|c, f). This method leverages the advanced capabilities of

GPT-4 to directly generate a context-aware emotion probability

distribution. The integration process involves GPT-4 with a

representation of P (e|f) estimated by a context-free facial

emotion recognition method. Based on previous research [34],

[35], LLMs have a better understanding when the input is

represented in natural language rather than numerical value.

Therefore, we add natural language descriptions corresponding

to the probability levels to enhance the model’s interpretability.

For example, a Joy probability above 0.5 would be described

as “a high level of happiness” within the input prompt.

A. Overall Result

We compare the performance of knowledge-based recog-

nition with the distribution of human context-based percep-

tions (see Table III). Two broad observations are immediately

clear. First, GPT-4 generally yielded better performance when

compared with GPT-3, though this benefit was strongest in

combination with LSTM. Second, LSTM (which incorpo-

rated dynamic facial movements), clearly dominated the other

context-free methods in predicting the distribution of human

perceptions (even exceeding the performance of BCI using

human labels as measured by KLD).

Looking in more detail, using GPT-4 to predict P (e|c)
yielded strong improvements in performance with LSTM

across all three measures of performance, when compared with

GPT-3. For FACET and EAC, performance was improved in

only two of the three measures. This is interesting as GPT-4

was far better at capturing human context-only perceptions,

suggesting there is some interaction between errors in the

context-based distribution when combined with the context-

free judgments in these two methods. An analysis of the

confusion matrices of EAC and FACET suggests they were

harmed by their inability to recognize surprise.

4FACET, EAC, and LSTM

GPT-4 with BCI (denoted as LSTM+GPT-4 (BCI)) showed

essentially equivalent performance with BCI using human

perceptions as measured by KLD and RMSE, but not for

F1. Note that KLD and RMSE capture the closeness between

two distributions. In contrast, F1 forces the model to pick the

most likely class, even if another class was almost equally

likely. To understand the difference, we examine the individual

videos and found that the difference in accuracy between

LSTM+GPT-4 (BCI) and BCI with human distributions is due

to differences in videos where the player was exploited (CD).

Most of these videos showed an almost equivalent likelihood

of being labeled as joy or surprise but the human context-

based labels tended to assign somewhat weight to joy, whereas

LSTM+GPT-4 (BCI) assigned more way to surprise. This

highlights the problematic consequences of using hard labels

when the probability of perceiving multiple classes is high.

Interestingly, using GPT-4 to perform the integration, in

addition to reasoning about the situational context, yielded

remarkably strong results. This approach actually improved

over BCI for FACET and EAC, but yielded slightly worse

performance than BCI with LSTM. A disadvantage of GPT-

4 integration is this is a black box so it more difficult to

gain insight into why the method produced improvements or

deficits. Nonetheless, this suggests that there is promise it

using LLMs as a replacement for the BCI approach.

We also look at improving integration with a nonlinear

approach (training a Neural Network), but this performed

somewhat worse than BCI and LSTM (GPT-4) (see supple-

mental materials [25]).

Face+Context (Integration) KLD(↓) RMSE(↓) F1(↑)

FACET+GPT-3 (BCI) 1.713 0.215 0.525

FACET+GPT-4 (BCI) 1.829 0.200 0.565
EAC+GPT-3 (BCI) 1.340 0.200 0.519

EAC+GPT-4 (BCI) 1.330 0.210 0.527

LSTM+GPT-3 (BCI) 0.809 0.162 0.454
LSTM+GPT-4 (BCI) 0.346 0.104 0.649

Human+Human (BCI) 0.441 0.092 0.782

FACET (GPT-4) 0.648 0.150 0.528

EAC (GPT-4) 0.597 0.155 0.503

LSTM (GPT-4) 0.354 0.112 0.530

LSTM+GPT-4 (NN) 0.580 0.151 0.151

TABLE III: Comparison of alternative integration methods

for P (e|c, f) using different combinations of facial (FACET,

EAC, LSTM) and context (GPT-3 and GPT-4) and integration

methods (BCI and GPT-4). The best results for each measure.

B. How Integration improves Performance?

We perform further analysis to examine how BCI improves

recognition performance. Fig. 5 illustrates the change in

recognition performance as a function of the different game

outcomes. Specifically, it shows the change distance between

context-free and context-based estimates that result from using

BCI with GPT-4 (measured by the change in KLD). Positive

numbers indicate improved performance. This figure indicates
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that all methods improved their performance in predicting per-

ceived emotions when the game outcome was disadvantageous

to the player. For example, whereas a context-free method

might predict joy, learning the person was exploited might

change this to surprise). This did come at some cost in that

methods became somewhat worse at predicting emotions when

the game outcome was advantageous to the player. Across all

game outcomes, performance improved. This emphasizes the

significant role that context plays in accurately interpreting

emotional perception across various integration methods.

Fig. 5: Enhancement in model performance (KLD) through

facial and context integration.

V. CONCLUSION

In this study, we explored the potential benefits of

knowledge-based emotion recognition. Inspired by a psycho-

logical theory of human emotion perception – Bayesian Cue

Integration – we find that context-free automatic recognition

improved (across all methods tested) by incorporating zero-

shot inferences from LLMs about the situational context.

Specifically, we evaluated methods using naturalistic expres-

sions produced during a two-person prisoner’s dilemma task

and found that the integration of facial cues and contextual

information using BCI accurately predicted the ratings by

human annotators knowledgeable of the situational context.

Performance improved across all methods, with the LSTM and

GPT-4 combination achieving the best performance (though it

should be noted that LSTM was trained on the Split-Steal

corpus while other methods used pre-trained models).

Knowledge-based recognition showed the strongest im-

provements when the player experienced a negative outcome

(i.e., they were exploited by their partner or both partners

tried to exploit each other). This seems to be because players

often showed smiles that, in the absence of context, were

interpreted as joy but when seen in the light of context were

interpreted more negatively. For example, in one anecdote, a

player can be seen mouthing profanity at her partner while

wryly smiling (a detail missed by annotators without access to

the context). In contrast, context failed to improve the accuracy

of emotion predictions when the player experienced a positive

outcome. This seems to be because players almost always

showed some smile as a result of the outcome. Together, these

emphasize the accuracy of context-free emotion recognition

will depend heavily on the context, highlighting that the

integration of situational context as a vital component in

interpreting emotional states, particularly in complex social

situations. Thus, findings highlight the promise of knowledge-

based approaches as a direction for future research in the field

of affective computing.

Our findings further reinforce prior studies that highlight

the zero-shot social and emotional intelligence of LLMs.

Without any fine-tuning, GPT-4 showed consistency with

the emotions reported by humans given a description of an

emotional situation. While here we only tested on a single

task, in light of other studies, this suggests a robustness and

adaptability to various domains and datasets. This universality

is an advantage, broadening the applications of our approach

across different areas of research and practical deployment.

The findings of this study open several avenues for future re-

search in emotion recognition and affective computing. While

our results show the potential of integrating facial expressions

and situational context using BCI and LLMs, there is still room

for refinement in closing the gap between automated methods

and human emotion perception. BCI uses a simplified model

of human emotion perception, which might not fully account

for situations where display norms constrain emotional expres-

sion. For example, research on the prisoner’s dilemma [36]

reveals discrepancies between first-person and second-person

reports of emotion, likely due to emotion regulation strategies

not captured by BCI. Additionally, our focus was on perceived

emotion, but we did not examine how well these perceptions

align with actual feelings.

Culture may also play a role in our findings. Research

suggests that the influence of others’ facial expressions is

strongest in interdependent cultures [37]. Given that our an-

notators were US-based and the culture of the US is low

in interdependence, this might explain our results. Moreover,

LLMs have been noted for their anglocentric tendencies, which

may impact their efficacy in interpreting emotions from diverse

cultural contexts [38]. This highlights the need for caution in

extrapolating our findings to other tasks, contexts, or cultures.

Moreover, the use of probabilistic programming could offer

a more sophisticated approach to modeling the complex inter-

play between facial expressions, context, and emotion percep-

tion [39]. By developing more advanced probabilistic models,

researchers could further reduce the gap between automated

emotion recognition and human-like emotion understanding.

Our method shows promise for structured scenarios with

clear outcomes, like poker games or negotiations, where

outcomes can be easily described for LLM prompts. How-

ever, extending this method to more unfolding scenarios, like

depression interviews, poses challenges due to the difficulty

in describing events in video in real-time for LLM prompts.

Finally, though BCI has shown promise in explaining

human context-based predictions across a range of settings,

our current study only explored a single corpus. While it

is encouraging that our computational findings mirror (and

replicate) these psychological findings, future research must

validate and extend our findings to other social tasks.
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