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The exponential increase in orbital debris and active satellites will lead to congested orbits,
necessitating more frequent collision avoidance maneuvers by satellites. To minimize fuel
consumption while ensuring the safety of satellites, enforcing a chance constraint, which
poses an upper bound in collision probability with debris, can serve as an intuitive safety
measure. However, accurately evaluating collision probability, which is critical for the effective
implementation of chance constraints, remains a non-trivial task. This difficulty arises
because uncertainty propagation in nonlinear orbit dynamics typically provides only limited
information, such as finite samples or moment estimates about the underlying arbitrary non-
Gaussian distributions. Furthermore, even if the full distribution were known, it remains
unclear how to effectively compute chance constraints with such non-Gaussian distributions.
To address these challenges, we propose a distributionally robust chance-constrained collision
avoidance algorithm that provides a sufficient condition for collision probabilities under limited
information about the underlying non-Gaussian distribution. Our distributionally robust
approach satisfies the chance constraint for all debris position distributions sharing a given
mean and covariance, thereby enabling the enforcement of chance constraints with limited
distributional information. To achieve computational tractability, the chance constraint is
approximated using a Conditional Value-at-Risk (CVaR) constraint, which gives a conservative
and tractable approximation of the distributionally robust chance constraint. We validate
our algorithm on a real-world inspired satellite-debris conjunction scenario with different
uncertainty propagation methods and show that our controller can effectively avoid collisions.

I. Nomenclature

a𝑑𝑟𝑎𝑔 = atmospheric drag
𝐴 = effective area of the object for atmospheric drag
𝐶𝑑 = drag coefficient of the object
𝑚 = mass of the object
𝑟0 = sea level altitude for the atmospheric model
𝜇𝐸 = standard gravitational parameter of the Earth
𝜌0 = atmospheric pressure at sea level
𝝎𝐸 = rotational velocity of the Earth
r = position of the object in ECI frame
v = ¤r = velocity of the object in ECI frame
x = [r, v] = full state of the object in ECI frame
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R 𝑓 𝑟𝑒𝑒 = a set of debris positions where debris is collision-free with the satellite
𝜀 = allowable probability of collision
𝑉𝑎𝑅 = Value-at-Risk
𝐶𝑉𝑎𝑅 = Conditional Value-at-Risk
𝑇𝑟{·} = matrix trace operator
𝑐ℎ𝑜𝑙 (·) = Cholesky decomposition operator

II. Introduction
Over the past two decades, the exponential increase in operational satellites, coupled with a significant accumulation

of space debris, residuals from defunct satellites or previous space missions, has started to increase collision risk,
particularly in Low Earth Orbits [1]. This intensifying orbital congestion poses substantial risks not only to the
functional integrity of satellites [2], but also to the safety and sustainability of future space initiatives [3]. Consequently,
the development of an advanced satellite collision avoidance algorithm, capable of intelligently predicting potential
collisions and autonomously adjusting satellite orbits, is imperative [4].

In collision avoidance maneuvers, accounting for uncertainties in orbit propagation is paramount since accurately
forecasting the orbital position and velocity of approaching space debris comes with considerable challenges [5]. These
uncertainties arise primarily due to inaccuracies inherent in state estimation and dynamics models. Therefore, collision
avoidance maneuvers must be - and generally are - based on accurate risk assessment. The latter generally accounts for
uncertainties associated with space debris trajectories as well as the potential severity of a collision event.

In this work, we formulate the collision avoidance problem under debris position uncertainty as a chance-constrained
optimal control problem, enforcing an upper bound on the collision probability. Accurate estimation of obstacle
uncertainty is crucial for computing the chance constraint, which required accurately propagating uncertainty under
complex orbital dynamics. Previous studies on chance-constrained collision avoidance maneuvers have relied on
the assumption that orbit covariances remain Gaussian [6, 7]. However, in highly nonlinear orbital dynamics, even
if the initial uncertainty is Gaussian, it tends to evolve rapidly into a non-Gaussian distribution due to the system’s
inherent nonlinearity [8]. While other methods as the Unscented Transform [9, 10] have been also proposed for orbital
uncertainty propagation, they typically provide only limited information about the uncertainty distribution, such as the
first two moments, rather than providing the full probability density function required for precise evaluation of chance
constraints.

Even for known distributions, evaluating chance constraints for non-Gaussian uncertainty becomes computationally
intractable [11]. Therefore, evaluating chance constraints with non-Gaussian uncertainty typically relies on Monte Carlo
simulations to evaluate the ratio of samples encountering a collision compared to the total number of samples [12, 13].
However, this approach requires a large sample size for accurate approximation of the posterior distributions. Specifically,
the required sample size for chance constraint approximation is proportional to the log of the inverse of the collision
probability [14], which makes this method impractical for evaluating collision in orbit, where collision avoidance
guidelines often require collision probability to be very small.

To overcome these challenges, we propose a distributionally robust chance-constrained collision avoidance algorithm
that aims to satisfy upper bounds in collision probability under limited information about the uncertainty distribution in
a computationally efficient way. Our controller extends chance constraints to distributionally robust chance constraints,
ensuring the satisfaction of the chance constraint for all debris uncertainty distributions within a specified ambiguity
set [15]. This ambiguity set covers all distributions sharing the same mean and covariance, including non-Gaussian
distributions which can arise in nonlinear orbit dynamics. Ensuring distributionally robust chance constraints over
this ambiguity set results in a conservative approximation of the chance constraints when only mean and covariance
information is available. Consequently, our controller is agnostic to the uncertainty propagation method, provided that
the mean and covariance information can be obtained, which offers flexibility in choosing the uncertainty propagation
approach. To make evaluating the distributionally robust chance constraint computationally tractable, we leverage
concepts from risk-sensitive control [16]. Specifically, we demonstrate the equivalence between the chance constraint
and Value-at-Risk (VaR), which ultimately leads to a conservative, computationally tractable Conditional Value-at-Risk
(CVaR) approximation [17, 18].

To validate that our controller is agnostic to the choice of uncertainty propagation method, we implement it with three
different approaches: a Linear Gaussian uncertainty propagator [6], an Unscented Transform uncertainty propagator [9],
and a Monte Carlo uncertainty propagator [12]. We evaluate our controller in a real-world-inspired [19] close approach
scenario and demonstrate that it consistently maintains a minimum safe distance from the debris, thereby avoiding
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collisions effectively.
To summarize, our main contributions in this work are as follows.
1) We design a distributionally robust chance-constrained collision avoidance controller that is agnostic to the

uncertainty propagation method requiring only the mean and covariance of the debris’s position distribution.
2) Our controller provides a conservative approximation of the collision avoidance chance constraint that is

computationally tractable for non-Gaussian uncertainty.
3) We validate our controller with different uncertainty propagation methods and show that our controller can

successfully avoid collision.
The remainder of this paper is structured as follows. Section III reviews related works on uncertainty propagation

and collision avoidance under uncertainty. We precisely formulate our problem of interest in Section IV. Section V
introduces the concept of distributionally robust constraints and the approximation of chance constraints by CVaR
constraints. The details of our proposed approach are described in Section VI. Section VII outlines our experimental
setup, and the simulation results are presented in Section VIII. Finally, Section IX summarizes this paper and discusses
future directions of work.

III. Related Works

A. Orbit Uncertainty Propagation
As consideration of uncertainty is necessary for safe and efficient maneuvers in complex in-orbit scenarios, numerous

works have investigated uncertainty propagation in the orbit [5]. While Monte Carlo simulations often provide accurate
uncertainty propagation [20], they require a large number of samples to provide statistical guarantees, which makes
them computationally inefficient. A common alternative to model uncertainties in orbital mechanics is to use Gaussian
probability distributions with linear uncertainty propagation [6]. This approach is suitable for onboard autonomous
navigation thanks to its simplicity and computational efficiency. However, such a linear uncertainty propagation
accumulates significant error over long-horizon propagation of the highly nonlinear spaceflight dynamics [21]. Especially,
long-term uncertainty tends to be curved and stretched along the object’s nominal orbit [21]. To address these challenges,
several works have proposed nonlinear uncertainty propagation methods including polynomial chaos expansions [22],
state transition tensors [23], and Gaussian mixture models [24]. Still, integrating these nonlinear uncertainty propagators
with collision avoidance maneuvers is a complex task since they tend to give limited information about the distribution
or pose certain assumptions about the distribution. In this work, we utilize distributionally robust chance constraints
that can provide collision probability bound while being agnostic to the uncertainty propagation method.

B. Collision Avoidance Maneuvers under Uncertainty
Uncertainties in the dynamics and states are important factors in the planning of collision avoidance maneuvers

involving space debris. Within the earlier works on collision avoidance under uncertainty, [25] employs a stochastic
model to calculate collision likelihood, propagating uncertainties in initial conditions, dynamic perturbations, and
state estimation through linearized equations of motion. This method minimizes collision risks while conserving
fuel through energy-efficient maneuvers informed by the evolving uncertainties. Building on this approach, our work
integrates a distributionally robust constraint, maintaining collision probability bounds and optimizing fuel use while
addressing potentially non-Gaussian uncertainty distributions beyond linearized models. Similarly, [26] introduces a
game-theory-based strategy for satellite collision avoidance, treating interactions as a repeated game. Satellites adopt
probabilistic strategies to maneuver or hold course, dynamically adjusting decisions based on collision probabilities and
time to closest approach. While this method excels in operator-operator settings, our approach focuses on collision
with space debris, where only one active player is capable of modifying the interaction between objects. Another
work [27] develops a stochastic optimal control framework for multi-satellite collision avoidance, utilizing non-convex,
probabilistic constraints and risk allocation via difference-of-convex programming. Instead, our approach enforces
collision probability by employing a distributionally robust method that is agnostic to specific uncertainty propagation
models, enabling scalability for unknown uncertainty distributions. Finally, [6] proposes a convex optimization approach
using Gaussian distributions to model collision risks, integrating Mahalanobis distance and instantaneous collision
probability. In contrast, we adopt a distributionally robust approach and a CVaR approximation, accommodating a
broader range of uncertainty distributions over Gaussian assumptions.
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IV. Problem Formulation
In this section, we formally define our collision avoidance problem. We consider an orbital debris avoidance scenario

in low Earth orbit. While satellite dynamics and state estimation are assumed to be deterministic which is motivated by
the fact that most active satellites have GNSS trackers on board, we will take into account that there is uncertainty in
debris dynamics and initial state estimation, and we aim to ensure an upper bound on the collision probability under
these uncertainties.

A. Satellite and Obstacle Dynamics
We use Cartesian coordinates in the Earth-Centered Inertial frame to model the general nonlinear dynamics of the

objects, including the considered satellite and space debris. We use subscript 𝑠 and 𝑑 to denote variables associated
with the satellite and debris respectively. We denote the space object’s position vector as r, velocity vector as v, and
state vector as x = [r𝑇 , v𝑇 ]𝑇 . We denote vector variables using bold symbols, such as the satellite’s position vector r𝑠 ,
while we denote their Euclidean norms using non-bold symbols, e.g., 𝑟𝑠 = | |r𝑠 | |. Following [6], the satellite dynamics
are as follows

¤x𝑠 =
[
¤r𝑠
¤v𝑠

]
=

[
v𝑠

− 𝜇𝐸
𝑟3
𝑠

r𝑠 + a𝑠,𝑑𝑟𝑎𝑔

]
+
[

0
u𝑠

]
(1)

where 𝜇𝐸 is standard gravitational parameter of the Earth, a𝑑𝑟𝑎𝑔 is atmospheric drag, and u𝑠 is control input for the
satellite.

The debris is not actuated and hence we assume that it follows the same dynamics as the spacecraft with the exception
of the control term u. Furthermore, since the exact dynamics of the debris may not be perfectly known, we include
system uncertainties, denoted by w𝑑 .

¤x𝑑 =

[
¤r𝑑
¤v𝑑

]
=

[
v𝑑

− 𝜇𝐸
𝑟3
𝑑

r𝑑 + a𝑑,𝑑𝑟𝑎𝑔

]
+ w𝑑 . (2)

In both satellite (1) and debris dynamics (2), the only perturbation considered is atmospheric drag. However, other
perturbative forces, such as J2 perturbation [28], can also be incorporated. We model atmospheric drag as

a𝑑𝑟𝑎𝑔 = −
1
2
𝜌(𝑟) 𝐴𝐶𝑑

𝑚
𝑣0v0

with v0 = v − 𝝎𝐸 × r, where 𝜌(𝑟) is atmosphere density at altitude 𝑟, 𝐴 is effective area of the object for atmospheric
drag, 𝐶𝑑 is drag coefficient, 𝑚 is the mass of the object, and 𝝎𝐸 is rotational velocity of the Earth. We employ the
exponential atmosphere model to predict atmosphere density at altitude 𝑟

𝜌(𝑟) = 𝜌0 𝑒𝑥𝑝
(
− 𝑟 − 𝑟0

𝑟0

)
where 𝑟0 is the sea level altitude for the atmospheric model.

As we need discrete-time dynamics for the numerical simulation, we use the fourth-order Runge-Kutta (RK4)
method for discretizing the continuous-time dynamics. Then, we can denote the discrete-time dynamics model of the
satellite and the debris as

x𝑘+1𝑠 = 𝑓𝑠 (x𝑘𝑠 , u𝑘𝑠 ) (3a)

x𝑘+1𝑑 = 𝑓𝑑 (x𝑘𝑑 ,w
𝑘
𝑑) (3b)

where superscript 𝑘 denotes the time step.

B. Model Predictive Control with Collision Avoidance Chance Constraints
While conventional worst-case robust constraints [29, 30] can provide hard safety guarantees, they are not suitable

for uncertainties with unbounded support such as orbital uncertainty. Therefore, we use chance constraints to enforce an
upper bound on the collision probability under unbounded support of the uncertainty. We consider that a collision
occurs when the distance between the satellite and the debris becomes smaller than a certain threshold 𝑑𝑡ℎ𝑟𝑒𝑠 . Then, we
can define the system as safe if the debris’ position is within the collision-free set R 𝑓 𝑟𝑒𝑒, as illustrated in Figure 1.

R 𝑓 𝑟𝑒𝑒 := {r𝑑 ∈ R3 : | |r𝑑 − r𝑠 | | > 𝑑𝑡ℎ𝑟𝑒𝑠} (4)
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Fig. 1 Based on the satellite position r𝑠, the region outside of the collision threshold 𝑑𝑡ℎ𝑟𝑒𝑠 is defined as the
collision-free set R 𝑓 𝑟𝑒𝑒 for debris.

With this definition, we can define our collision avoidance chance constraint as follows.

Definition 1 (Chance constraints for collision avoidance). For a random position vector for debris r𝑑 ∈ R3 whose
underlying distribution is P∗, we require

ProbP
∗ (r𝑑 ∈ R 𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀, (5)

where 𝜀 is the upper bound of the collision probability.

This chance constraint enforces collision probability under 𝜀, providing intuitive safety measures for satellite
navigation. Then, we formulate our collision avoidance maneuver as a fuel-optimal model predictive control (MPC)
problem with chance constraints to enforce the upper bound in collision probability. MPC objective is to minimize fuel
consumption cost J over a receding-horizon 𝐾 assuming that the initial debris state follows Gaussian distribution with
mean x̄0

𝑑
and covariance 𝑃0

𝑑
. While we model initial uncertainty for the debris state as Gaussian, the future debris state

uncertainty quickly diverges from Gaussian due to its nonlinear dynamics, which makes collision avoidance chance
constraint computationally intractable.

Problem 1. Given the satellite dynamics 𝑓𝑠 (3a), debris dynamics 𝑓𝑑 (3b), and uncertainty in debris’ initial state
N(x̄0

𝑑
, 𝑃0

𝑑
), we solve a receding horizon optimal control problem with a collision avoidance chance constraint (5)

min
u0:𝐾−1
𝑠

J :=
𝐾−1∑︁
𝑘 = 0
(u𝑘𝑠 )𝑇𝑅(u𝑘𝑠 ) (6a)

𝑠.𝑡. x𝑘+1𝑠 = 𝑓𝑠 (x𝑘𝑠 , u𝑘𝑠 ), (6b)

x𝑘+1𝑑 = 𝑓𝑑 (x𝑘𝑑 ,w
𝑘
𝑑), (6c)

x0
𝑑 ∼ N(x̄

0
𝑑 , 𝑃

0
𝑑) (6d)

ProbP
∗ (r𝑘𝑑 ∈ R

𝑘
𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀 ∀ 1 ≤ 𝑘 ≤ 𝐾, (6e)

where u0:𝐾−1
𝑠 := (u0

𝑠 , . . . , u𝐾−1
𝑠 ) are the satellite thrust inputs over horizon 𝐾 , and 𝑅 is a positive definite matrix that

assigns different weights to the components of u𝑠 .

V. Preliminaries
In this section, we give mathematical preliminaries for how to evaluate chance constraints when there is limited

information about the underlying non-Gaussian uncertainty associated with debris position. First, we show that
distributionally robust chance constraints can be a sufficient condition for the satisfaction of a chance constraint
when only limited information for the debris state distribution is given. Then, we introduce relationships between
chance constraints with Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), which gives tractable solutions of
distributionally robust chance constraints.

5



A. Distributionally Robust Chance Constraints
While chance constraints provide an intuitive measure of safety, evaluating chance constraint (5) requires an exact

characterization of the probability distribution of the debris location P∗. This requirement is challenging for in-orbit
collision avoidance scenarios for several reasons. First, nonlinear orbit dynamics make analytical uncertainty propagation
using a linearized model diverge quickly from the true uncertainty [8]. Moreover, while Monte Carlo simulation can be
applied to consider nonlinear orbit dynamics and non-Gaussian uncertainty, it requires too many samples to accurately
capture the probability density function of the uncertainty. Finally, while several other methods such as unscented
transform [9] or curvilinear coordinate system [21] can be applied for nonlinear uncertainty propagation, they provide
limited information about moments of distributions rather than the exact model.

To address this issue, we adopt a distributionally robust approach where we aim to satisfy chance constraint (5) not
only for a single distribution but for a group of distributions termed the ambiguity set P. Under the assumption that true
distribution P∗ is in the ambiguity set P, distributionally robust chance constraint yields a conservative approximation
of the chance constraint.

inf
P ∈ P

ProbP (r𝑑 ∈ R 𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀 ⇒ ProbP
∗ (r𝑑 ∈ R 𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀 if P∗ ∈ P . (7)

Therefore, when only limited information about the distribution is available, we can enforce the chance constraint
using a distributionally robust chance constraint by constructing an ambiguity set that encompasses the true distribution
based on the available information.

B. Chance Constraints and their CVaR Approximations
While a distributionally robust chance constraint gives a conservative and intuitive measure of safety when only

limited information about the distribution is available, evaluating distributionally robust chance constraints (7) remains
computationally intractable. In fact, evaluating chance constraint (5) for a single distribution remains computationally
intractable for non-Gaussian distributions [11], as it requires the computation of multi-dimensional integral of an
arbitrary probability density function. Moreover, a feasible set of chance-constrained problems is typically non-convex
and disconnected, making it difficult to find a solution to the chance-constrained optimization problem [31]. Therefore,
we approximate the chance constraint as a CVaR constraint which is known as a tight convex approximation of chance
constraint [32]. Before defining the CVaR, we introduce the safety cost which is a continuous and smooth function that
can represent a collision-free set R 𝑓 𝑟𝑒𝑒.
Definition 2 (Safety cost). We assume that we can characterize collision-free set R 𝑓 𝑟𝑒𝑒 (4) as a sublevel set of a safety
cost function 𝑙 (r𝑑):

R 𝑓 𝑟𝑒𝑒 =
{
r𝑑 ∈ R3 | 𝑙 (r𝑑) ≤ 0

}
where 𝑙 : R3 → R. (8)

Therefore, positive safety cost indicates that there is potential for a collision between the satellite and debris, while
negative safety cost means their configuration is collision-free. Then, we can re-write our chance constraint for collision
avoidance (5) using the safety cost function as

ProbP
∗ (𝑙 (r𝑑) ≤ 0) ≥ 1 − 𝜀. (9)

This safety cost provides a continuous mapping from the position of debris to a scalar value that quantifies the potential
risk for collision. Based on this safety cost, we can translate our chance constraint (9) to the Value-at-Risk (VaR)
constraint.

Definition 3 (Value-at-Risk (VaR)). For a random position vector of debris r𝑑 ∈ R3 with true probability distribution
P∗ and safety cost function 𝑙 (·) defined as (8), the VaR related to the safety cost distribution 𝑙 (r𝑑) is defined as:

VaRP
∗
𝜀

(
𝑙 (r𝑑)

)
B inf

{
𝛾 ∈ R|ProbP

∗ (𝑙 (r𝑑) > 𝛾) ≤ 𝜀
}
.

The definition of VaR shows that the probability of having a safety cost larger than VaR should be less than 𝜀, i.e.,
ProbP∗ (𝑙 (r𝑑) > VaRP∗𝜀 ) ≤ 𝜀. Therefore, following [17], we can easily find an equivalence between chance constraint (9)
and VaR as follows

VaRP
∗
𝜀

(
𝑙 (r𝑑)

)
≤ 0⇔ ProbP

∗ (𝑙 (r𝑑) > 0) ≤ 𝜀 ⇔ ProbP
∗ (𝑙 (r𝑑) ≤ 0) ≥ 1 − 𝜀.

Evaluating the distributionally robust version of the VaR constraint is still intractable as VaR remains a non-convex risk
measure for 𝑙 (r𝑑) [17]. To address this, we approximate the VaR constraint with a Conditional Value-at-Risk (CVaR)
constraint which is known as a convex conservative approximation of VaR.
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Definition 4 (Conditional Value-at-Risk (CVaR)). For a random position vector of debris r𝑑 ∈ R3 with true probability
distribution P∗ and safety cost function 𝑙 (·) (8), the CVaR of safety cost related to that position distribution is defined as:

CVaRP
∗
𝜀

(
𝑙 (r𝑑)

)
B inf

𝛽∈R

{
𝛽 + 1

𝜀
EP∗

{
(𝑙 (r𝑑) − 𝛽)+

}}
, where (·)+ = max{·, 0}. (10)

It is known that (10) is equivalent to a conditional expectation of safety cost above VaR [33].

CVaRP
∗
𝜀

(
𝑙 (r𝑑)

)
= EP∗

[
𝑙 (r𝑑) > VaRP

∗
𝜀

(
𝑙 (r𝑑)

]
.

Because of this conditional expectation property, CVaR is always larger than or equal to VaR. Thus, we can show that
the CVaR constraint is a sufficient condition for satisfying the chance constraint:

CVaRP
∗
𝜀

(
𝑙 (r𝑑)

)
≤ 0⇒ VaRP

∗
𝜀

(
𝑙 (r𝑑)

)
≤ 0⇔ ProbP

∗ (r𝑑 ∈ R 𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀. (11)

Finally, this relationship between CVaR and chance constraint can be extended to their distributionally robust counterparts:

sup
P ∈ P

CVaRP𝜀 (𝑙 (r𝑑)) ≤ 0⇒ sup
P ∈ P

VaRP
∗
𝜀

(
𝑙 (r𝑑)

)
≤ 0⇔ inf

P ∈ P
ProbP (𝑙 (r𝑑) ≤ 0) ≥ 1 − 𝜀. (12)

VI. Risk-Sensitive Collision Avoidance using Distributionally Robust Chance Constraints
In this section, we will introduce how we utilize distributionally robust chance constraints to guarantee the satisfaction

of the chance constraint when only the mean and covariance of debris position distribution are given. We show
that enforcing the distributionally robust CVaR constraint gives closed-form sufficient conditions for enforcing the
distributionally chance constraint. Finally, we provide details on how we solve the reformulated optimal control problem
using sampling-based optimization methods.

A. Reformulation of Chance Constraint by Distributionally Robust CVaR Constraints
Using the relationship between distributionally robust CVaR constraint and chance constraint (12), we aim to

approximate chance constraint (6e) in Problem 1 by its relevant distributionally robust CVaR constraint. More specifically,
we construct a moment-based ambiguity set for debris position r𝑘

𝑑
at time 𝑘 as the set of all distributions sharing the

same estimated mean 𝜇𝑘
𝑑

and covariance Σ𝑘
𝑑

obtained from an uncertainty propagation method.

P𝑘 =
{
P | EP [r𝑘𝑑] = 𝜇

𝑘
𝑑 , EP [(r

𝑘
𝑑 − 𝜇

𝑘
𝑑) (r

𝑘
𝑑 − 𝜇

𝑘
𝑑)
𝑇 ] = Σ𝑘𝑑

}
. (13)

We chose a moment-based ambiguity set since many analytical uncertainty propagation methods, such as linear Gaussian
propagation [6] or unscented transform [9], can provide estimations of the mean and covariance. With this assumption
in mind, distributionally robust CVaR constraint provides sufficient conditions for satisfying the chance constraint under
limited knowledge about the distribution, relying solely on the mean and covariance of the position distribution:

sup
P ∈ P

CVaRP𝜀 (𝑙𝑘 (r𝑘𝑑)) ≤ 0⇒ ProbP
∗ (r𝑘𝑑 ∈ R

𝑘
𝑓 𝑟𝑒𝑒) ≥ 1 − 𝜀 if EP∗ [r𝑘𝑑] = 𝜇

𝑘
𝑑 , EP∗ [(r

𝑘
𝑑 − 𝜇

𝑘
𝑑) (r

𝑘
𝑑 − 𝜇

𝑘
𝑑)
𝑇 ] = Σ𝑘𝑑 .

As we discussed before, we will use a convex safety cost function 𝑙𝑘 (r𝑘
𝑑
). While the whole region outside of the

collision threshold is a collision-free area (blue area in Figure 1), this leads to a non-convex feasible set and safety cost
function. Therefore, we under-approximate R 𝑓 𝑟𝑒𝑒 as an ellipsoid centered on the debris mean position 𝜇𝑘

𝑑
to convexify

the safety cost function. Our ellipsoidal collision-free set and safety cost function for debris at time 𝑘 are as follows:

R𝑘𝑓 𝑟𝑒𝑒 =
{
r ∈ R3 | 𝑙𝑘 (r) ≤ 0

}
, where 𝑙𝑘 (r) = (r − 𝜇𝑘𝑑)

𝑇𝐸 𝑘 (r − 𝜇𝑘𝑑) − 1, 𝐸 𝑘 ≻ 0, 𝐸 𝑘 ∈ R3×3. (14)

where 𝐸 𝑘 defines the shape of a collision-free set ellipsoid.
Then, our distributionally robust CVaR constraint can be reformulated as a function of the shape of the ellipsoidal

safe set 𝐸 𝑘 and covariance Σ𝑘
𝑑

[17].
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Fig. 2 Under approximation of the collision-free set R𝑘
𝑓 𝑟𝑒𝑒
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Theorem 1. For the random position vector r𝑘
𝑑
, if collision-free set is defined as an ellipsoid R𝑘

𝑓 𝑟𝑒𝑒
=
{
r | 𝑙𝑘 (r) =

(r − 𝜇𝑘
𝑑
)𝑇𝐸 𝑘 (r − 𝜇𝑘

𝑑
) − 1 ≤ 0

}
, and P𝑘 consists of all distributions of r𝑘

𝑑
that have mean 𝜇𝑘

𝑑
and covariance Σ𝑘

𝑑
(13),

then
sup
P ∈ P𝑘

CVaRP𝜀 (𝑙 (r𝑘𝑑)) = −1 + 1
𝜀
𝑇𝑟{Σ𝑘𝑑𝐸

𝑘}, (15)

where 𝑇𝑟{·} is the trace operator for matrices.

Proof. See Proof of Corollary 1.3 in [17].

This closed-form solution (15) comes from solving dual problem of supP ∈ P𝑘 CVaRP𝜀 (𝑙 (r𝑘𝑑)) with ambiguity set
constraint (13). We can observe that the value of closed-form solution (15) increases as satisfying chance constraint
becomes restrictive, such as small allowable collision probability 𝜀, large debris position covariance Σ𝑘

𝑑
, or large 𝐸 𝑘

which implies small collision-free set R 𝑓 𝑟𝑒𝑒.
Finally, we can reformulate (6e) by using Theorem 1 for a tractable, conservative approximation of our distributionally

robust chance-constrained optimal control problem.

min
u0:𝐾−1
𝑠

J :=
𝐾−1∑︁
𝑘 = 0
(u𝑘𝑠 )𝑇𝑅(u𝑘𝑠 ) (16a)

𝑠.𝑡. x𝑘+1𝑠 = 𝑓𝑠 (x𝑘𝑠 , u𝑘𝑠 ), (16b)

x𝑘+1𝑑 = 𝑓𝑑 (x𝑘𝑑 ,w
𝑘
𝑑), (16c)

x0
𝑑 ∼ N(x̄

0
𝑑 , 𝑃

0
𝑑) (16d)

− 1 + 1
𝜀
𝑇𝑟{Σ𝑘𝑑𝐸

𝑘} ≤ 0 ∀ 1 ≤ 𝑘 ≤ 𝐾. (16e)

B. Constrained Cross-Entropy Method
While we obtained closed-form approximation of chance constraint (16e), solving a constraint optimization

problem (16) remains challenging due to the complex nonlinear dynamics of the satellites (16b) and debris (16c). We
address the reformulated MPC problem (16) using a sampling-based optimization based on the Cross-Entropy Method
(CEM) [34] to avoid the computationally expensive linearization or gradient computation of the nonlinear dynamics.
CEM solves the optimization problem by iteratively sampling a set of candidate solutions from a predefined sampling
distribution, evaluating their performance on objective, and updating the sampling distribution using a subset of the
highest performing candidates.

Following [18, 35], we use a variant of CEM to solve constrained MPC problems. First, we propagate debris
trajectory and its initial uncertainty distribution based on its dynamics to obtain 𝜇0:𝐾

𝑑
and Σ0:𝐾

𝑑
. Concurrently, we

sample a set of candidate control sequences {u0:𝐾−1
𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑 and propagate them through satellite dynamics (1) to

compute associated trajectories {x0:𝐾
𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑 . For each sampled trajectory, we evaluate the distributionally robust

CVaR constraint (16e) and reject trajectories that violate the constraints. After this rejection step, we define an elite set,

8



Algorithm 1 CEM optimization
Input Current satellite state x0

𝑠 , Initial debris state distribution x0
𝑑
∼ N(x̄0

𝑑
, 𝑃0

𝑑
)

Output Control input for satellite u0
𝑠

1: 𝜇1:𝐾
𝑑
, Σ1:𝐾
𝑑
← 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦_𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(x̄0

𝑑
, 𝑃0

𝑑
) ⊲ Estimate mean and covariance of debris future position

2: for iter = 1:max_iteration do
3: {u0:𝐾−1

𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒(𝜇𝐶𝐸𝑀 , 𝜎𝐶𝐸𝑀 ) ⊲ Sample a set of control sequences candidates
4: {x0:𝐾

𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ← 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠(x0
𝑑
, {u0:𝐾−1

𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑) ⊲ Propagate sampled control sequences
5: Evaluate constraint (16e)
6: Evaluate objective function J (16a)
7: if All trajectories not feasible then ⊲ If all trajectory is not feasible,
8: Sort with 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑅𝑖𝑠𝑘 (17) ⊲ select control sequences with minimum risk
9: {u0:𝐾−1

𝑠 }𝑒𝑙𝑖𝑡𝑒 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐸𝑙𝑖𝑡𝑒({u0:𝐾−1
𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑)

10: else
11: {u0:𝐾−1

𝑠 } 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒({u0:𝐾−1
𝑠 }𝑠𝑎𝑚𝑝𝑙𝑒𝑑) ⊲ Reject unsafe control sequences

12: Sort with J (16a)
13: {u0:𝐾−1

𝑠 }𝑒𝑙𝑖𝑡𝑒 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐸𝑙𝑖𝑡𝑒({u0:𝐾−1
𝑠 } 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒) ⊲ Select control sequences with minimum objectives

14: end if
15: 𝜇𝐶𝐸𝑀 , 𝜎𝐶𝐸𝑀 ← 𝑈𝑝𝑑𝑎𝑡𝑒

(
{u0:𝐾−1
𝑠 }𝑒𝑙𝑖𝑡𝑒

)
16: end for
17: Get first control sequence in {u0:𝐾−1

𝑠 }𝑒𝑙𝑖𝑡𝑒
18: Output first control input 𝑢∗

{u0:𝐾
𝑠 }𝑒𝑙𝑖𝑡𝑒, comprising control sequences that achieve optimal fuel consumption while satisfying the distributionally

robust CVaR constraints. Finally, we update the parameters of the control sequence sampling distribution using this
elite set and iterate the process until the maximum number of iterations is reached.

In the initial iterations of CEM, it may be challenging to identify feasible control sequences from the predefined
sampling distribution. In such cases, it is crucial to update the sampling distribution to regions that produce safer control
sequences. Therefore, we introduce Trajectory Risk metric, defined as the discounted sum of (16e), which evaluates the
overall risk associated with a control sequence:

𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦_𝑅𝑖𝑠𝑘 (x0:𝐾
𝑠 , 𝜇1:𝐾

𝑑 , Σ1:𝐾
𝑑 ) =

𝐾∑︁
𝑘=1

𝛾𝑘
(
−1 + 1

𝜀
𝑇𝑟{Σ𝑘𝑑𝐸

𝑘}
)

(17)

where 𝛾 is the discount factor. When there is no feasible control sequence that satisfies the distributionally robust CVaR
constraint (16e), we select elite set {u0:𝐾

𝑠 }𝑒𝑙𝑖𝑡𝑒 based on the minimum Trajectory Risk, which guides the control sequence
sampling distribution towards safer control values. A summary of our MPC framework using CEM optimization is
provided in Algorithm 1.

VII. Experiment Settings
In this section, we will provide detailed settings of our simulation experiments. We will first provide context for the

specific collision avoidance scenario we selected and the identification of the respective spacecraft. Then, as we test our
controller with different uncertainty propagation methods, we will give brief overviews of the respective approaches.

A. Satellite-Debris Collision Scenario

1. Identification of Spacecraft and System Constraints
We first identify a close approach scenario of satellite and debris through the SOCRATES Plus tool [19] on

CelesTrak. This tool utilizes STK’s Conjunction Analysis Tools [36] and analyzes all objects in space, searching for all
conjunctions within a distance of 5km at the Time of Closest Approach (TCA). It utilizes the Two-Line Element for all
known orbiting spacecraft around the Earth and seeks out this conjunction and their TCA [19].

For our collision scenario, we selected one of the top 10 conjunctions by minimum range. We then retrieved
the NORAD Catalog Number for the predicted conjunction and retrieved the Two-Line Element from the CelesTrak
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website∗. Then, we propagated the orbit of these two space objects in MATLAB using our satellite dynamics (1) and
debris dynamics (2) to verify the conjunction.

2. Collision Scenario Setup
For this specific collision scenario, we utilized a predicted conjunction between a SpaceX Starlink spacecraft

(NORAD: 52579) and the THEA spacecraft (NORAD: 43796). Given that the THEA spacecraft is a 3U CubeSat [37]
with no propulsion system, we can treat this as the debris in our experiment, and the SpaceX Starlink spacecraft as the
satellite. These two spacecraft were predicted to have a conjunction range of 41 meters, according to the MATLAB
simulation. Therefore, we define that there is a collision when satellite-debris distance is under 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 100𝑚, and
our controller has to take over to maintain this distance with probability 1 − 𝜀.

In our simulation, we assume the mass of the satellite and debris are 300𝑘𝑔 and 50𝑘𝑔 respectively. The system
noise of the debris dynamics, w𝑑 in (2), is modeled as white Gaussian noise, N(0, 𝑄) with 𝑄 = 0.05𝐼. The control
input for our controller is constrained within the range u𝑚𝑖𝑛 ≤ u𝑠 ≤ u𝑚𝑎𝑥 where u𝑚𝑎𝑥 = [0.05, 0.05, 0.05]𝑘𝑚/𝑠2 and
u𝑚𝑖𝑛 = [−0.05,−0.05,−0.05]𝑘𝑚/𝑠2. While our discrete-time dynamics (3) has a time step of 0.01𝑠, we compute the
MPC controller every 1𝑠 and apply the same control for 100 time steps for computation efficiency. Finally, we use a
time horizon of 10𝑠 and a collision probability of 0.05 for our controller. We note that our setup employs a relatively
short MPC time horizon and higher u𝑚𝑎𝑥 compared to conventional collision avoidance maneuvers. While this leads to
higher Δ𝑣 as the system requires greater thrust for sudden trajectory changes to avoid collisions in the near future, it can
highlight the variations in Δ𝑣 and minimum distance with respect to parameter changes, as discussed in Section VIII.

B. Uncertainty Propagation
Since our distributionally robust constraint requires only the mean and covariance information of the debris position,

our method has flexibility in the choice of uncertainty propagation method to use. In this experiment, we deploy
our distributionally robust chance-constrained MPC with three different uncertainty propagation methods: (1) Linear
Gaussian uncertainty propagation, (2) Unscented Transform, and (3) Monte Carlo simulations.

1. Linear Propagation of Gaussian Uncertainty
When initial uncertainty is Gaussian and the dynamics are linear, propagated uncertainty is also Gaussian [6].

Thanks to its computational simplicity and Gaussian assumption, it has been proposed as an effective uncertainty
propagation method for short-term estimation purposes [7]. In our experiments, to use this method of uncertainty
propagation, while we use nominal dynamics (2) to propagate the mean position of debris 𝜇𝑑 , we need linearized
dynamics to propagate the position covariance matrix Σ𝑑 . We assume to have linearized discrete-time dynamics of
debris as follows (See [6] for details on linearization):

𝛿x𝑘+1𝑑 = 𝐴𝛿x𝑘𝑑 + w𝑑 , w𝑑 ∼ N(0, 𝑄𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒)

where 𝐴 denotes the system matrix in linearized dynamics and 𝑄𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 is the covariance of white system noise w𝑑 in
this discrete-time system, which can be computed from continuous-time dynamics in (2) [38]. Then, the propagation of
debris state covariance 𝑃𝑑 can be achieved as

𝑃𝑘+1𝑑 = 𝐴𝑃𝑘𝑑𝐴
𝑇 +𝑄𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 .

We can extract position error covariance Σ from state error covariance 𝑃 since

𝑃 =

[
Σ 𝑃rv

𝑃𝑇rv 𝑃vv

]
where 𝑃rv represents the covariance between the position r and the velocity v and 𝑃vv denotes the covariance of velocity
v. Then, we can use these propagated mean and covariance of debris position for our distributionally robust chance
constraint MPC.

∗https://celestrak.org
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2. Unscented Transform
While linear propagation provides a computationally efficient approach for analytical uncertainty propagation, it

fails to capture higher-order terms in nonlinear dynamics. In contrast, the unscented transform is recognized for its
superior ability to handle nonlinearity in system dynamics [9, 39], resulting in more accurate uncertainty estimates.
The unscented transform leverages the propagation of sigma points, which are deterministically chosen sample points
designed to precisely capture the mean and covariance of the distribution. These sigma points are propagated through
the nonlinear dynamics, and the results are then used to estimate the mean and covariance of the propagated uncertainty.

Assuming that the initial state has mean x̄0
𝑑

and covariance 𝑃0
𝑑
, we can determine sigma points as

s0
0 = x̄0

𝑑

s0
𝑖 = x̄0

𝑑 + 𝑐ℎ𝑜𝑙
(√︃
𝑛𝑃0

𝑑

)
𝑖

, for 𝑖 = 1, . . . , 𝑛

s0
𝑖 = x̄0

𝑑 − 𝑐ℎ𝑜𝑙
(√︃
𝑛𝑃0

𝑑

)
𝑖−𝑛

, for 𝑖 = 𝑛 + 1, . . . , 2𝑛

where 𝑛 = 6 is the dimension of state vector x ∈ R6 and 𝑐ℎ𝑜𝑙 (·)𝑖 is the 𝑖th column of 𝑐ℎ𝑜𝑙 (·), which is the Cholesky
decomposition of its input.

We propagate these sigma points through nonlinear debris dynamics (2) to compute propagated sigma points s1:𝐾
0:2𝑛.

Then, we can estimate the mean and covariance of the debris state using these sigma points

x̄𝑘𝑑 =
1

2𝑛 + 1

2𝑛∑︁
𝑖=0

s𝑘𝑖 (19a)

𝑃𝑘𝑑 =
1
2𝑛

2𝑛∑︁
𝑖=0
(s𝑘𝑖 − x̄𝑘𝑑) (s

𝑘
𝑖 − x̄𝑘𝑑)

𝑇 , (19b)

where we can extract debris position mean 𝜇𝑘
𝑑

and covariance Σ𝑘
𝑑

from debris state mean x̄𝑘
𝑑

and covariance 𝑃𝑘
𝑑
.

3. Monte Carlo Uncertainty Propagation
While the Unscented Transform can capture up to second-order moments in nonlinear systems [40], it fails to

account for higher-order terms, which can result in divergence for cases far from the nominal orbit. In contrast, Monte
Carlo simulation, which utilizes a significantly larger number of samples compared to the sigma points in the unscented
transform, propagates these samples through the exact nonlinear dynamics, making it the most accurate method for orbit
uncertainty propagation [12, 13]. However, the primary limitation of Monte Carlo simulation lies in its computational
cost, as it requires the propagation of a large number of trajectories [5].

Typically, chance-constrained problems using Monte Carlo simulations rely on a sample approximation of the
chance constraint [12, 13], where the ratio of samples encountering a collision to the total number of samples is
evaluated. However, the drawback of this approach is the large sample size required for an accurate approximation
of the chance constraint. Specifically, the required sample size for sample approximation of a chance constraint is
proportional to log(1/𝜀) [14] when we want to enforce the chance constraint probability 1 − 𝜀. This makes the method
impractical for evaluating orbit collision probabilities, where the collision probability 𝜀 is often very small. In contrast,
we employ Monte Carlo simulation for estimating the mean and covariance of future uncertainty. This approach requires
significantly fewer samples compared to directly approximating the chance constraint and is independent of the collision
probability bound 𝜀, making it suitable for evaluating low-probability events.

For the Monte Carlo simulation, we sample 𝑁 = 50 initial sample states s0
1:𝑁 from initial state distributionN(x̄0

𝑑
, 𝑃0

𝑑
).

Then, we propagate sampled initial states using exact nonlinear debris dynamics (3b) to collect a set of future trajectories
s1:𝐾
1:𝑁 . Finally, we compute the mean and covariance of the debris state using sample mean and covariance estimation (19).

VIII. Simulation Results
In this section, we will verify our controller in simulation experiments. First, we give a qualitative analysis of our

controller with different uncertainty propagation methods, showing how the quality of the uncertainty propagation
method affects the result of our controller. Moreover, we provide the change of satellite-debris distance and required Δ𝑣

according to allowable collision probability 𝜀 and the uncertainty in debris dynamics w𝑑 .
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(a) Linear Gaussian propagation (b) Unscented transformation

(c) Monte Carlo estimation

Fig. 3 Debris position covariance and satellite position at Time of Closest Approach. We observe that while
unscented transform under-estimate debris position uncertainty compared to Monte Carlo estimation, it can
capture covariance shape similarly to Monte Carlo estimation. However, linear Gaussian propagation leads to a
different shape of covariance which yields a different avoidance maneuver.

A. Result of Uncertainty Propagation and Collision Avoidance Maneuver
First, we give a qualitative analysis of different uncertainty propagation methods and their effects on collision

avoidance maneuvers. We present debris covariance and position of the satellite at the Time of Closest Approach
(TCA) in Figure 3. We observe that while the unscented transform has under-estimated debris position uncertainty
compared to Monte Carlo estimation, it still shows a similar covariance shape. This results in a similar satellite-debris
configuration at TCA. Meanwhile, linear Gaussian propagation shows erroneous covariance estimation, which results in
a different satellite-debris configuration from the other two methods. This result shows that linear Gaussian propagation
has limitations when applied to highly nonlinear orbit dynamics, which can result in different maneuvers compared to
the Monte Carlo estimate, which is known as the most accurate uncertainty propagation method.

B. Effect of Chance Constraint Probability
We report simulation results of our collision avoidance maneuver with different values for the upper bound on

collision probability 𝜀 in Figure 4. We run 10 experiments for each specific uncertainty propagation method and chance
constraint probability 𝜀 and report the mean and standard deviation of a minimum distance between the satellite and
debris and the total Δ𝑣 used for maneuver.

In our simulation setup, we observe that as we reduce the allowable probability for collision, the controller tries to
maintain further distance from the debris, which increases the cost by spending more fuel for avoidance maneuvers. This
shows that our collision probability 𝜀 can be an intuitive risk parameter when implementing our controller. Moreover,
we observe that the controller applied with linear Gaussian propagation tends to use much more fuel to maintain overly
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(a) Minimum distance between satellite and debris
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(b) Total Δ𝑣 in collision avoidance maneuver

Fig. 4 Minimum distance between the debris and satellite during operation and total Δ𝑣 used for collision
avoidance maneuvers with different uncertainty propagation methods and different chance constraint probability
𝜀. We observe that enforcing lower collision probability leads to a conservative behavior, which maintains a
larger minimum distance and incurs a larger Δ𝑣 cost.
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(a) Minimum distance between satellite and debris
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(b) Total Δ𝑣 in collision avoidance maneuver

Fig. 5 Minimum distance between the debris and satellite during operation and total Δ𝑣 used for collision
avoidance maneuvers with different debris uncertainty 𝑄 for w𝑑 ∼ N(0, 𝑄). Our observations indicate that the
controller tends to maintain a smaller minimum distance and consume less fuel as the uncertainty in debris
dynamics decreases, corresponding to smaller values of 𝑄.

conservative distances compared to Monte Carlo or unscented transform. This shows a limitation of linear Gaussian
approximation, where inaccuracy of the uncertainty propagation can lead to inefficient maneuvers.

C. Effect of Uncertainty in Debris Dynamics
We also evaluate the effect of debris uncertainty w𝑑 in the avoidance maneuver in Figure 5, by conducting 10

experiments for each setup. We assume w𝑑 is a white Gaussian noise N(0, 𝑄) and compare the resulting minimum
satellite-debris distance and total Δ𝑣 across different values of 𝑄.

Our results indicate that assuming less noisy debris dynamics reduces the required Δ𝑣, as the satellite can more
accurately predict the debris’ future position. Additionally, the satellite maintains a closer distance to the debris,
reflecting the assumption that the debris position will deviate less from its nominal trajectory.

IX. Conclusion and Future Work
In this paper, we presented a collision avoidance algorithm that enforces chance constraints for spacecraft collision

under debris trajectory uncertainty. To address the computational challenges of chance constraints under limited
information about the uncertainty distribution, we approximated the chance constraint with a distributionally robust
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Conditional Value-at-Risk (CVaR) constraint. This approximation provides a sufficient condition for satisfying the
chance constraint based on the mean and covariance estimates of the debris position. The collision avoidance problem
was formulated within a Model Predictive Control (MPC) framework with a distributionally robust CVaR constraint and
solved using the Cross-Entropy Method (CEM), a sampling-based optimization technique. Our approach successfully
avoided collisions in a real-world-inspired scenario and demonstrated adaptability to varying parameters, including
collision probability bounds and debris position uncertainty levels.

For future work, we aim to enhance the efficiency of collision avoidance maneuvers by replacing the sampling-based
optimization method with more sophisticated solvers. Additionally, we plan to extend this work to address collision
avoidance in scenarios involving multiple objects.

Acknowledgments
This work is supported by the National Science Foundation, under grants ECCS-2438314 CAREER Award,

CNS-2423130, and CCF-2423131.

References
[1] Mehrholz, D., Leushacke, L., Flury, W., Jehn, R., Klinkrad, H., and Landgraf, M., “Detecting, tracking and imaging space

debris,” ESA Bulletin(0376-4265), , No. 109, 2002, pp. 128–134.

[2] Wattles, J., and Hunt, K., “International Space Station swerves to avoid Russian space debris, NASA says,” CNN, 2022. URL
https://www.cnn.com/2022/10/25/world/iss-maneuver-russia-space-junk-scn/index.html.

[3] Schaub, H., Jasper, L. E., Anderson, P. V., and McKnight, D. S., “Cost and risk assessment for spacecraft operation decisions
caused by the space debris environment,” Acta Astronautica, Vol. 113, 2015, pp. 66–79.

[4] Braun, V., Flohrer, T., Krag, H., Merz, K., Lemmens, S., Bastida Virgili, B., and Funke, Q., “Operational support to collision
avoidance activities by ESA’s space debris office,” CEAS Space Journal, Vol. 8, No. 3, 2016, pp. 177–189.

[5] Luo, Y.-z., and Yang, Z., “A review of uncertainty propagation in orbital mechanics,” Progress in Aerospace Sciences, Vol. 89,
2017, pp. 23–39.

[6] Dutta, S., and Misra, A. K., “Convex optimization of collision avoidance maneuvers in the presence of uncertainty,” Acta
Astronautica, Vol. 197, 2022, pp. 257–268.

[7] Chan, F. K., Spacecraft Collision Probability, American Institute of Aeronautics and Astronautics, Inc., 2008.

[8] Giza, D., Singla, P., and Jah, M., “An approach for nonlinear uncertainty propagation: Application to orbital mechanics,” AIAA
Guidance, Navigation, and Control Conference, 2009, p. 6082.

[9] Vishwajeet, K., Singla, P., and Jah, M., “Nonlinear uncertainty propagation for perturbed two-body orbits,” Journal of Guidance,
Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1415–1425.

[10] Adurthi, N., and Singla, P., “Conjugate unscented transformation-based approach for accurate conjunction analysis,” Journal of
Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1642–1658.

[11] Nemirovski, A., and Shapiro, A., “Convex approximations of chance constrained programs,” SIAM Journal on Optimization,
Vol. 17, No. 4, 2007, pp. 969–996.

[12] De Vries, W., and Phillion, D., “Monte Carlo method for collision probability calculations using 3D satellite models,” Advanced
Maui Optical and Space Surveillance Technologies Conference, 2010.

[13] Sabol, C., Binz, C., Segerman, A., Roe, K., and Schumacher Jr, P. W., “Probability of collision with special perturbation
dynamics using the Monte Carlo method,” AAS/AIAA Astrodynamics Specialist Conference, Vol. 142, 2011, pp. 1081–1094.

[14] Dagum, P., Karp, R., Luby, M., and Ross, S., “An optimal algorithm for Monte Carlo estimation,” SIAM Journal on Computing,
Vol. 29, No. 5, 2000, pp. 1484–1496.

[15] Rahimian, H., and Mehrotra, S., “Distributionally robust optimization: A review,” arXiv preprint arXiv:1908.05659, 2019.

[16] Chow, Y., Tamar, A., Mannor, S., and Pavone, M., “Risk-sensitive and robust decision-making: a cvar optimization approach,”
Advances in neural information processing systems, Vol. 28, 2015.

14

https://spp.fas.org/military/program/track/mehrholz.pdf
https://spp.fas.org/military/program/track/mehrholz.pdf
https://www.cnn.com/2022/10/25/world/iss-maneuver-russia-space-junk-scn/index.html
https://www.cnn.com/2022/10/25/world/iss-maneuver-russia-space-junk-scn/index.html
https://doi.org/10.1016/j.actaastro.2015.03.028
https://doi.org/10.1016/j.actaastro.2015.03.028
https://doi.org/10.1007/s12567-016-0119-3
https://doi.org/10.1007/s12567-016-0119-3
https://doi.org/10.1016/j.paerosci.2016.12.002
https://doi.org/10.1016/j.actaastro.2022.05.038
https://doi.org/10.2514/4.989186
https://doi.org/10.2514/6.2009-6082
https://doi.org/10.2514/1.G000472
https://doi.org/10.2514/1.G001027
https://doi.org/10.1137/050622328
https://www.osti.gov/servlets/purl/1119964
https://crbinz.github.io/Publications/Sabol-Binz-2011-Girdwood.pdf
https://crbinz.github.io/Publications/Sabol-Binz-2011-Girdwood.pdf
https://doi.org/10.1137/S0097539797315306
https://arxiv.org/abs/1908.05659
https://proceedings.neurips.cc/paper/2015/hash/64223ccf70bbb65a3a4aceac37e21016-Abstract.html


[17] Van Parys, B. P., Kuhn, D., Goulart, P. J., and Morari, M., “Distributionally robust control of constrained stochastic systems,”
IEEE Transactions on Automatic Control, Vol. 61, No. 2, 2015, pp. 430–442.

[18] Ryu, K., and Mehr, N., “Integrating Predictive Motion Uncertainties with Distributionally Robust Risk-Aware Control for Safe
Robot Navigation in Crowds,” arXiv preprint arXiv:2403.05081, 2024.

[19] Kelso, T. S., and Alfano, S., “Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES),”
Modeling, Simulation, and Verification of Space-based Systems III, Vol. 6221, edited by P. Motaghedi, International Society for
Optics and Photonics, SPIE, 2006, p. 622101. https://doi.org/10.1117/12.665612.

[20] Junkins, J. L., Akella, M. R., and Alfrined, K. T., “Non-Gaussian error propagation in orbital mechanics,” Guidance and control
1996, 1996, pp. 283–298.

[21] Vavilov, D. E., “The partial banana mapping: A robust linear method for impact probability estimation,” Monthly Notices of the
Royal Astronomical Society, Vol. 492, No. 3, 2020, pp. 4546–4552.

[22] Jones, B. A., Doostan, A., and Born, G. H., “Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos,”
Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 430–444.

[23] Lee, S., Lyu, H., and Hwang, I., “Analytical uncertainty propagation for satellite relative motion along elliptic orbits,” Journal
of Guidance, Control, and Dynamics, Vol. 39, No. 7, 2016, pp. 1593–1601.

[24] Vittaldev, V., and Russell, R. P., “Space object collision probability using multidirectional Gaussian mixture models,” Journal
of Guidance, Control, and Dynamics, Vol. 39, No. 9, 2016, pp. 2163–2169.

[25] Slater, G. L., Byram, S. M., and Williams, T. W., “Collision avoidance for satellites in formation flight,” Journal of Guidance,
Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1140–1146.

[26] Dolan, S., Qin, V., Ding, G., and Balakrishnan, H., “Satellite collision avoidance using repeated games,” AAS/AIAA
Astrodynamics Specialist Conference, American Astronautical Society, 2023.

[27] Pacula, I., Vinod, A., Sivaramakrishnan, V., Petersen, C., and Oishi, M., “Stochastic multi-satellite maneuvering with constraints
in an elliptical orbit,” American Control Conference, 2021, pp. 4261–4268.

[28] Vadali, S. R., “Model for linearized satellite relative motion about a J2-perturbed mean circular orbit,” Journal of guidance,
control, and dynamics, Vol. 32, No. 5, 2009, pp. 1687–1691.

[29] Mueller, J. B., and Larsson, R., “Collision avoidance maneuver planning with robust optimization,” International ESA
Conference on Guidance, Navigation and Control Systems, Tralee, County Kerry, Ireland, 2008.

[30] Mueller, J., “Onboard planning of collision avoidance maneuvers using robust optimization,” AIAA Infotech@ Aerospace
Conference and AIAA Unmanned... Unlimited Conference, 2009, p. 2051.

[31] Zymler, S., Kuhn, D., and Rustem, B., “Distributionally robust joint chance constraints with second-order moment information,”
Mathematical Programming, Vol. 137, 2013, pp. 167–198.

[32] Hong, L. J., Hu, Z., and Zhang, L., “Conditional value-at-risk approximation to value-at-risk constrained programs: A remedy
via Monte Carlo,” INFORMS Journal on Computing, Vol. 26, No. 2, 2014, pp. 385–400.

[33] Rockafellar, R. T., and Uryasev, S., “Optimization of conditional value-at-risk,” Journal of Risk, Vol. 2, 2000, pp. 21–42.

[34] De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein, R. Y., “A tutorial on the cross-entropy method,” Annals of Operations
Research, Vol. 134, 2005, pp. 19–67.

[35] Liu, Z., Zhou, H., Chen, B., Zhong, S., Hebert, M., and Zhao, D., “Constrained model-based reinforcement learning with robust
cross-entropy method,” arXiv preprint arXiv:2010.07968, 2020.

[36] ANSYS, “Ansys Systems Tool Kit (STK),” , 2023.

[37] SpaceQuest, L., “THEA Satellite - Technical Information,” , May 2018. Accessed: 2024-11-30.

[38] Jacod, J., Discretization of processes, Springer, 2012.

[39] Ryu, K., Kang, J., and Lee, D., “Performance comparison between EKF and UKF in GPS/INS low observability conditions,”
21st International Conference on Control, Automation and Systems (ICCAS), IEEE, 2021, pp. 1911–1916.

[40] Wan, E. A., and Van Der Merwe, R., “The unscented Kalman filter for nonlinear estimation,” Proceedings of the IEEE 2000
adaptive systems for signal processing, communications, and control symposium (Cat. No. 00EX373), Ieee, 2000, pp. 153–158.

15

https://doi.org/10.1109/TAC.2015.2444134
https://arxiv.org/abs/2403.05081
https://arxiv.org/abs/2403.05081
https://doi.org/10.1117/12.665612
https://doi.org/10.1117/12.665612
https://arxiv.org/pdf/1911.12991
https://doi.org/10.2514/1.57599
https://doi.org/10.2514/1.G001848
https://doi.org/10.2514/1.G001610
https://doi.org/10.2514/1.16812
https://www.mit.edu/~hamsa/pubs/Dolan-etal-AAS2023.pdf
https://doi.org/10.23919/ACC50511.2021.9483158
https://doi.org/10.23919/ACC50511.2021.9483158
https://doi.org/10.2514/1.42955
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=71e4b79902387f8a164556b714e5d253d38ded22
https://doi.org/10.2514/6.2009-2051
 https://doi.org/10.1007/s10107-011-0494-7
https://doi.org/10.1287/ijoc.2013.0572
https://doi.org/10.1287/ijoc.2013.0572
http://janroman.dhis.org/finance/VaR/cvar2.pdf
 https://doi.org/10.1007/s10479-005-5724-z
https://www.arxiv.org/pdf/2010.07968
https://www.arxiv.org/pdf/2010.07968
https://www.ansys.com/products/missions/ansys-stk
https://fcc.report/ELS/SpaceQuest-Ltd/0176-EX-CN-2018/209489.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-24127-7.pdf
https://doi.org/10.23919/ICCAS52745.2021.9649748
https://ieeexplore.ieee.org/abstract/document/882463?signout=success

	Nomenclature
	Introduction
	Related Works
	Orbit Uncertainty Propagation
	Collision Avoidance Maneuvers under Uncertainty

	Problem Formulation
	Satellite and Obstacle Dynamics
	Model Predictive Control with Collision Avoidance Chance Constraints

	Preliminaries
	Distributionally Robust Chance Constraints
	Chance Constraints and their CVaR Approximations

	Risk-Sensitive Collision Avoidance using Distributionally Robust Chance Constraints
	Reformulation of Chance Constraint by Distributionally Robust CVaR Constraints
	Constrained Cross-Entropy Method

	Experiment Settings
	Satellite-Debris Collision Scenario
	Identification of Spacecraft and System Constraints
	Collision Scenario Setup

	Uncertainty Propagation
	Linear Propagation of Gaussian Uncertainty
	Unscented Transform
	Monte Carlo Uncertainty Propagation


	Simulation Results
	Result of Uncertainty Propagation and Collision Avoidance Maneuver
	Effect of Chance Constraint Probability
	Effect of Uncertainty in Debris Dynamics

	Conclusion and Future Work

