
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold
Functions with Nasty Noise

Shiwei Zeng 1 Jie Shen 1

Abstract
The concept class of low-degree polynomial
threshold functions (PTFs) plays a fundamen-
tal role in machine learning. In this paper, we
study PAC learning of K-sparse degree-d PTFs
on Rn, where any such concept depends only
on K out of n attributes of the input. Our main
contribution is a new algorithm that runs in time
(nd/✏)

O(d) and under the Gaussian marginal dis-
tribution, PAC learns the class up to error rate
✏ with O(

K
4d

✏2d
· log

5d
n) samples even when an

⌘  O(✏
d
) fraction of them are corrupted by

the nasty noise of Bshouty et al. (2002), possi-
bly the strongest corruption model. Prior to this
work, attribute-efficient robust algorithms are es-
tablished only for the special case of sparse ho-
mogeneous halfspaces. Our key ingredients are:
1) a structural result that translates the attribute
sparsity to a sparsity pattern of the Chow vec-
tor under the basis of Hermite polynomials, and
2) a novel attribute-efficient robust Chow vector
estimation algorithm which uses exclusively a re-
stricted Frobenius norm to either certify a good
approximation or to validate a sparsity-induced
degree-2d polynomial as a filter to detect cor-
rupted samples.

1. Introduction
A polynomial threshold function (PTF) f : Rn

! {�1, 1}

is of the form f(x) = sign(p(x)) for some n-variate poly-
nomial p. The class of low-degree PTFs plays a fundamental
role in learning theory owing to its remarkable power for
rich representations (Mansour, 1994; Anthony & Bartlett,
1999; Hellerstein & Servedio, 2007; O’Donnell, 2014). In
this paper, we study attribute-efficient learning of degree-

1Department of Computer Science, Stevens Institute of Technol-
ogy, Hoboken, New Jersey, USA. Correspondence to: Shiwei Zeng
<szeng4@stevens.edu>, Jie Shen <jie.shen@stevens.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

d PTFs: if the underlying PTF f
⇤ is promised to depend

only on at most K unknown attributes of the input, whether
and how can one learn f

⇤ by collecting O(poly(K
d
, log n))

samples under the classic probably approximately correct
(PAC) learning model (Valiant, 1984).

A very special case of the problem, the class of sparse halfs-
paces (i.e. degree-1 PTFs), has been extensively investigated
in machine learning and statistics (Littlestone, 1987; Blum,
1990; Gentile, 2003; Plan & Vershynin, 2013a), and a fruit-
ful set of results have been established even under strong
noise models (Plan & Vershynin, 2013b; Awasthi et al.,
2016; Zhang, 2018; Zhang et al., 2020; Shen & Zhang,
2021). It, however, turns out that the theoretical and algo-
rithmic understanding of learning sparse degree-d PTFs fall
far behind the linear counterpart.

In the absence of noise, the problem can be cast as solving a
linear program by thinking of degree-d PTFs as halfspaces
on the space expanded by all monomials of degree at most
d (Maass & Turán, 1994). However, the problem becomes
subtle when samples might be contaminated adversarially.
In this work, we consider the nasty noise of Bshouty et al.
(2002), perhaps the strongest noise model in classification.

Definition 1 (PAC learning with nasty noise). Denote by
Hd,K the class of K-sparse degree-d PTFs on Rn. Let D
be a distribution on Rn and f

⇤
2 Hd,K be the underly-

ing PTF. A nasty adversary EX(⌘) takes as input a sample
size N requested by the learner, draws N instances inde-
pendently according to D and annotates them by f

⇤, to
form a clean sample set S̄ = {(xi, f

⇤
(xi))}

N

i=1. The ad-
versary may then inspect the learning algorithm and uses
its unbounded computational power to replace at most an ⌘

fraction with carefully constructed samples for some ⌘ <
1
2 ,

and returns the corrupted set S̄0 to the learner. The goal of
the learner is to output a concept f̂ : Rn

! {�1, 1}, such
that with probability 1� � (over the randomness of the sam-
ples and all internal random bits of the learning algorithm),
Prx⇠D(f̂(x) 6= f

⇤
(x))  ✏ for any prescribed error rate

✏ 2 (0, 1) and failure probability � 2 (0, 1). We say an
algorithm PAC learns the class Hd,K if the guarantee holds
uniformly for any member f⇤

2 Hd,K .

Bshouty et al. (2002) presented a computationally inefficient

1

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

algorithm for learning any concept class with near-optimal
sample complexity and noise tolerance as far as the con-
cept class has finite VC-dimension (see Theorem 7 therein).
Since the VC-dimension of Hd,K is O(K

d
log n), we have:

Fact 2. There exists an inefficient algorithm that PAC learns
Hd,K with near-optimal sample complexity O(K

d
log n)

and noise tolerance ⌦(✏).

Designing efficient algorithms that match such statistical
guarantees thus becomes a core research line.

On the one hand, for the special case of homogeneous sparse
halfspaces, Shen & Zhang (2021) gave a state-of-the-art
algorithm with sample complexity O(K

2
log

5
n) and noise

tolerance ⌦(✏) when the instance distribution D is isotropic
log-concave. On the other hand, for learning general sparse
low-degree PTFs, very little is known, since the structure
of PTFs is tremendously complex. To our knowledge, it
appears that the only known approach is to reducing the
problem to a generic approach proposed in the early work
of Kearns & Li (1988). In particular, Theorem 12 therein
implies that any concept class H can be PAC learned with
nasty noise in polynomial time provided that there exists a
polynomial-time algorithm that PAC learns it in the absence
of noise and that ⌘  O

�
✏

VCdim(H) log
VCdim(H)

✏

�
, where

VCdim(H) denotes the VC-dimension of H. We therefore
have the following (see Appendix B for the proof):
Fact 3. There exists an efficient algorithm that draws C0 ·

K
3d log3

n

✏6
log

1
�

samples from the nasty adversary and PAC
learns Hd,K provided that ⌘  O

�
d✏

Kd log
1
✏

�
, where C0 >

0 is an absolute constant.

The result above is appealing since it makes no distribu-
tional assumption and it runs in polynomial time. However,
the main issue is on the noise tolerance: the robustness of
the algorithm degrades significantly when K is large. For
example, in the interesting regime K = ⇥(log n), the noise
tolerance is dimension-dependent, meaning that the algo-
rithmic guarantees are brittle in high-dimensional problems.
See Kalai et al. (2005); Klivans et al. (2009); Long & Serve-
dio (2011); Awasthi et al. (2017); Shen (2021b); Shen &
Zhang (2021) and a comprehensive survey by Diakoniko-
las & Kane (2019) for the importance and challenges of
obtaining dimension-independent noise tolerance.

1.1. Main results

Throughout the paper, we always assume:
Assumption 1. D is the Gaussian distribution N (0, In⇥n).

Our main result is an attribute-efficient algorithm that runs
in time (nd/✏)

O(d) and PAC learns Hd,K with dimension-
independent noise tolerance.
Theorem 4 (Theorem 19, informal). Assume that D is the
standard Gaussian distribution N (0, In⇥n). There is an

algorithm that runs in time (nd/✏)
O(d) and PAC learns

Hd,K by drawing C ·
K

4d(d logn)5d

✏2d+2 samples from the nasty
adversary for some absolute constant C > 0, provided that
⌘  O(✏

d+1
/d

2d
).

Remark 5 (Sample complexity). It is known that for ef-
ficient and outlier-robust algorithms, ⌦(K2

) samples are
necessary to obtain an error bound of O(✏) even for linear
models (Diakonikolas et al., 2017). Thus, the multiplicative
factor K4d in our sample complexity bound is very close
to the best possible scaling of K2d and the best known re-
sult in Fact 3. The exponent d in the factor 1

✏2d+2 comes
from our two-step approach: we will first robustly estimate
the Chow vector (Chow, 1961) of f⇤ up to error ✏0 using
⌦(1/✏

2
0) samples, and then apply an algorithmic result of

Trevisan et al. (2009); De et al. (2014); Diakonikolas et al.
(2018a) to construct a PTF with misclassification error rate
of O(d · ✏

1/d+1
0). This in turn suggests that we have to set

✏0 = (✏/d)
d+1 in order to get the target error rate ✏. As

noted in Diakonikolas et al. (2018a), such overhead on the
scaling of ✏ is inherent when using only Chow vector to
establish PAC guarantees for degree-d PTFs.

Remark 6 (Noise tolerance). Our noise tolerance matches
the best known one given by Diakonikolas et al. (2018a),
which studied non-sparse low-degree PTFs. When the de-
gree d is a constant, the noise tolerance reads as ✏⌦(1), qual-
itatively matching the information-theoretic limit of ⌦(✏).
Yet, the existence of efficient low-degree PTF learners with
optimal noise tolerance is widely open.

Remark 7 (Comparison to prior works). Most in line with
this work are Shen & Zhang (2021) and Diakonikolas et al.
(2018a). Shen & Zhang (2021) gave a state-of-the-art algo-
rithm for learning K-sparse halfspaces, but their algorithm
cannot be generalized to learn sparse low-degree PTFs. Di-
akonikolas et al. (2018a) developed an efficient algorithm
for learning non-sparse PTFs. Their sample complexity
bound reads as 1

✏2d+2 · (nd)
O(d), which is not attribute-

efficient and thus is inapplicable for real-world problems
where the number of samples is orders of magnitude less
than that of attributes. At a high level, our result can be
thought of as a significant generalization of both.

Remark 8 (Running time). The computational cost of our
algorithm is (nd/✏)O(d) which we believe may not be sig-
nificantly improved in the presence of the nasty noise. This
is because the adversary has the power to inspect the algo-
rithm and to corrupt any samples, which forces any robust
algorithm to carefully verify the covariance matrix whose
size is nO(d)

⇥ n
O(d); see Section 1.2 and Section 3. Under

quite different problem settings, prior works leveraged the
underlying sparsity for improved computational complexity;
see Section 1.3.

2

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

1.2. Overview of main techniques

Our starting point to learn sparse low-degree PTFs is an
elegant algorithmic result from Diakonikolas et al. (2018a),
which shows that as far as one is able to approximate the
Chow vector of f⇤ (Chow, 1961), it is possible to recon-
struct a PTF f̂ with PAC guarantee in time (nd/✏)

O(d). To
apply such scheme, we will need to 1) properly define the
Chow vector since it depends on the choice of the basis of
polynomials; and 2) estimate the Chow vector of f⇤ in time
(nd/✏)

O(d). Our technical novelty lies in new structural and
algorithmic ingredients to achieve attribute efficiency.

1) Structural result: attribute sparsity induces sparse
Chow vectors under the basis of Hermite polynomials.
Prior works such as the closely related work of Diakoniko-
las et al. (2018a) tend to use the basis of monomials to
define Chow vectors. However, there is no guarantee that
such definition would exhibit the desired sparsity structure.
For example, consider that D is the standard Gaussian dis-
tribution. For K-sparse degree-d PTFs on Rn, the number
of monomials with non-zero coefficients can be as large as
(
n

d
)
b
d
2 c for any K  n/2, d � 2 (see Lemma 22). Our first

technical insight is that, the condition that a degree-d PTF
is K-sparse implies a k-sparse Chow vector with respect
to the basis of Hermite polynomials of degree at most d (k
is roughly 2K

d, see Lemma 10). This endows a sparsity
structure of the Chow vector of f⇤, which in turn is lever-
aged into our algorithmic design since we can now focus
on a much narrower space of Chow vectors and thus lower
sample complexity.

It is worth mentioning that while we present our results
under Gaussian distribution and thus use the Hermite poly-
nomials as the basis to ease analysis, the choice of basis can
go well beyond that; see Appendix B.4 for more discussions.

2) Algorithmic result: attribute-efficient robust Chow
vector estimation. Denote by m(x) the vector of all n-
variate Hermite polynomials of degree at most d. The Chow
vector (also known as Fourier coefficients) of a Boolean-
valued function f : Rn

! {�1, 1} is defined as �f :=

Ex⇠D[f(x) ·m(x)]. As we discussed, �f⇤ is k-sparse on
an unknown support set. To estimate it within error ✏0 in
`2-norm, it suffices to find some k-sparse vector u, such that
for all 2k-sparse unit vector v, we have

��hv, u� �f⇤i
��  ✏0

(see Lemma 45). We will choose u as an empirical Chow
vector, i.e. u =

P
(x,y)2S̄00 y ·m(x), where S̄

00 needs to be
a carefully selected subset of S̄0. Now recent developments
in noise-tolerant classification (Awasthi et al., 2017; Shen &
Zhang, 2021; Shen, 2023) suggest that such estimation error
is governed by the maximum eigenvalue on all possible 2k-
sparse directions of the empirical covariance matrix1

⌃ :=

1We will slightly abuse the terminology of covariance matrix
to refer to the one without subtracting the mean.

1

|S̄00|

P
x2S̄00 m(x)m(x)

>. This structural result can be cast

into algorithmic design: find a large enough subset S̄00 such
that the maximum sparse eigenvalue of (⌃� I) is close to
zero (note that Ex⇠D[m(x)m(x)

>
] = I). Unfortunately,

there are two technical challenges: first, computing the
maximum sparse eigenvalue is NP-hard; second, searching
for such a subset is also computationally intractable.

2a) Small Frobenius norm certifies a good approxima-
tion. We tackle the first challenge by considering a suffi-
cient condition: if the Frobenius norm of (⌃� I) restricted
on its (2k)2 largest entries (in magnitude) is small, then so
is the maximum sparse eigenvalue – this would imply the
empirical Chow vector be a good approximation to �f⇤ ; see
Theorem 17.

2b) Large Frobenius norm validates a filter. It remains
to show that when the restricted Frobenius norm is large, say
larger than some carefully chosen parameter , how to find
a proper subset S̄00 that is clean enough, in the sense that its
distributional properties act almost as it be an uncorrupted
sample set. Our key idea is to construct a polynomial p2
such that (i) its empirical mean on the current sample set
S̄
0 equals the restricted Frobenius norm (which is large);

and (ii) it has small value on clean samples. These two
properties ensure that there must be a noticeable fraction
of samples in S̄

0 that caused a large function value of p2,
and they are very likely the corrupted ones; these will then
be filtered to produce the new sample set S̄00 (Theorem 14).
In addition, the polynomial p2 is constructed in such a way
that it is sparse under the basis {mi(x) · mj(x)}, for the
sake of attribute efficiency.

We check the Frobenius norm condition every time a new
sample set S̄00 is produced, and show that after a finite
number of phases, we must be able to obtain a clean enough
sample set S̄00 that allows us to output a good estimate of
the Chow vector �f⇤ (Theorem 18).

We note that the idea of using Frobenius norm as a surrogate
of the maximum sparse eigenvalue value has been explored
in Diakonikolas et al. (2019); Zeng & Shen (2022) for robust
sparse mean estimation. In those works, the Frobenius-
norm condition was combined with a localized eigenvalue
condition to establish their main results, while we discover
that the Frobenius norm itself suffices for our purpose. This
appears an interesting and practical finding as it reduces the
computational cost and simplifies algorithmic design.

1.3. Related works

The problem of learning from few samples dates back to
the 1980s, when practitioners were confronting a pressing
challenge: the number of samples available is orders of
magnitude less than that of attributes, making classical al-
gorithms fail to provide guarantees. The challenge persists

3

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

even in the big data era, since in many domains such as
healthcare, there is a limited availability of samples (i.e.
patients) (Candès & Wakin, 2008). This has motivated a
flurry of research on attribute-efficient learning of sparse
concepts. A partial list of interesting works includes (Lit-
tlestone, 1987; Blum, 1990; Chen et al., 1998; Tibshirani,
1996; Tropp, 2004; Candès & Tao, 2005; Foucart, 2011;
Plan & Vershynin, 2013b; Shen & Li, 2018) that studied
linear models in the absence of noise (or with benign noise).
Later, Candès et al. (2013); Netrapalli et al. (2013); Candès
et al. (2015) studied the problem of phase retrieval which
can be seen as learning sparse quadratic polynomials. The
setup was generalized in Chen & Meka (2020) which stud-
ied efficient learning of sparse low-degree polynomials.

In the presence of the nasty noise, the problem becomes sub-
tle. Without distributional assumptions on D, it is known
that even for the special case of learning halfspaces under the
adversarial label noise, it is computationally hard when the
noise rate is ✏ (Guruswami & Raghavendra, 2006; Feldman
et al., 2006; Daniely, 2016). Thus, distribution-independent
algorithms are either unable to tolerate the nasty noise at
a rate greater than ✏ (Kearns & Li, 1988), or runs in super-
polynomial time (Bshouty et al., 2002). This motivates
the study of efficient algorithms under distributional as-
sumptions (Kalai et al., 2005; Klivans et al., 2009; Awasthi
et al., 2017; Shen & Zhang, 2021; Shen, 2023), which is
the research line we follow. In unsupervised learning such
as mean and covariance estimation, similar noise models
are investigated broadly in recent years since the seminal
works of Diakonikolas et al. (2016); Lai et al. (2016); see
Diakonikolas & Kane (2019) for a comprehensive survey.

The interplay between sparsity and robustness is more in-
volved than it appears to. Under the statistical-query frame-
work, Diakonikolas et al. (2017) showed that any efficient
and robust algorithms must draw ⌦(K

2
) samples in the pres-

ence of the nasty noise, complementing sample complexity
upper bounds obtained in recent years (Balakrishnan et al.,
2017; Diakonikolas et al., 2019; Shen & Zhang, 2021; Di-
akonikolas et al., 2022). This is in stark contrast to learning
with label noise, where O(K) sample complexity can be
established (Zhang, 2018; Zhang et al., 2020; Shen, 2021a).

Lastly, we note that orthogonal to exploring sparsity for
improved sample complexity, there are elegant works that
explore sparsity for improved computational complexity for
learning Boolean-valued functions (Hellerstein & Servedio,
2007; Andoni et al., 2014), or using low-degree PTFs as
primitives to approximate other concepts such as halfspaces
(Kalai et al., 2005) and decision lists (Servedio et al., 2012).

1.4. Roadmap

We collect notations and definitions in Section 2. The main
algorithms are described in Section 3 with a few lemmas to

illustrate the idea, and the primary performance guarantees
are stated in Section 4. We conclude this work in Section 5.
All omitted proofs can be found in the appendix.

2. Preliminaries
Vectors and matrices. For a vector v 2 Rn, we use vi

to denote its i-th element. For two vectors u and v, we
write u · v as the inner product in the Euclidean space. We
denote by kvk1, kvk2, kvk

1
the `1-norm, `2-norm, and

`1-norm of v respectively. The support set of a vector v
is the index set of its non-zero elements, and kvk0 denotes
the cardinality of the support set. We will use the hard
thresholding operator Hk(v) to produce a k-sparse vector:
the k largest (in magnitude) elements of v are retained and
the rest are set to zero. Let ⇤ ⇢ [n] where [n] := {1, . . . , n}.
The restriction of v on ⇤, v⇤, is obtained by keeping the
elements in ⇤ while setting the rest to zero.

Let A and B be two matrices in Rn1⇥n2 . We write tr(A)

as the trace of A when it is square, and write hA,Bi :=

tr(A
>
B). We denote by kAk

F
the Frobenius norm, which

equals
p
hA,Ai. We will also use kAk0 to count the num-

ber of non-zero entries in A. Let U ⇢ [n1] ⇥ [n2]. The
restriction of A on U , AU , is obtained by keeping the ele-
ments in U but setting the rest to zero.

Probability, L2-space. Let D be a distribution on Rn

and p be a function with the same support of D. We de-
note by EX⇠D[p(X)] the expectation of p on D. Let S
be a finite set of instances. We write EX⇠S [p(X)] :=
1
|S|

P
x2S

p(x) as the empirical mean of p on S. To
ease notation, we will often use E[p(D)] in place of
EX⇠D[p(X)], and likewise for E[p(S)]. Similarly, we
will write Pr(p(D) > t) := PrX⇠D(p(X) > t), and
Pr(p(S) > t) := PrX⇠S(p(X) > t) where X ⇠ S signi-
fies uniform distribution on S.

The L
2
(Rn

, D) space is equipped with the inner product
hp, qiD := Ex⇠D[p(x) · q(x)] for any functions p and q

on Rn. The induced L
2-norm of a function p is given by

kpk
L2(D) :=

p
hp, piD =

p
E[p2(D)], which we will sim-

ply write as kpk
L2 when D is clear from the context.

Polynomials. Denote by Pn,d the class of polynomials on
Rn with degree at most d. A degree-d polynomial threshold
function (PTF) is of the form f(x) = sign(p(x)) for some
p 2 Pn,d. Denote by Hed(x) =

1
p

d!
(�1)

d
· e

�
x2

2
dd

dxd e
�

x2

2

the normalized univariate degree-d Hermite polynomial
on R. The normalized n-variate Hermite polynomial is
given by Hea(x) =

Q
n

i=1 Heai(xi) for some multi-index
a 2 Nn; for brevity we refer to them as Hermite polynomi-
als. It is known that Hed := {Hea : a 2 Nn

, kak1 
d} form a complete orthonormal basis for polynomials
of degree at most d in L

2
(Rn

, D); see Prop. 11.33 of

4

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

O’Donnell (2014). It is easy to see that Hed contains
M := 1 +

P
d

t=1

�
t+n�1

t

�
members; we collect them as

a vector m(x) =
�
m1(x), . . . ,mM (x)

�
, with the first ele-

ment m1(x) ⌘ 1. In our analysis, it suffices to keep in mind
that M < (n+ 1)

d.

Given the vector m(x) and the distribution D, the Chow vec-
tor (Chow, 1961; Diakonikolas et al., 2018a) of a Boolean-
valued function f : Rn

! {�1, 1} is defined as follows:

�f := Ex⇠D[f(x) ·m(x)], (2.1)

where we multiplied each element of m(x) by f(x).
Definition 9 (Sparse polynomials and PTFs). We say a
polynomial p 2 Pn,d is K-sparse if there exists an index set
⇤ ⇢ [n] with |⇤|  K, such that p(x) = q(x⇤) for some
q 2 Pn,d. We say a PTF f(x) = sign(p(x)) is K-sparse
if p is K-sparse. The class of K-sparse PTFs on Rn with
degree at most d is denoted by Hd,K .

One important observation is that our definition of sparse
polynomials implies a sparsity pattern in the Chow vector;
see Appendix B for the proof.
Lemma 10. Let f be a K-sparse degree-d PTF. Then �f is
a k-sparse vector under the basis of Hermite polynomials,
where k = d+ 1 if K = 1 and k  2K

d otherwise.

As we discussed in Section 1.2, there will be two concept
classes involved in our algorithm and analysis. The first
is the class of polynomials that have a sparse Chow vector
under the basis of m(x):

P
1
n,d,2k :=

�
p1 : x 7! hv,m(x)i, v 2 R(n+1)d

,

kvk2 = 1, kvk0  2k

, (2.2)

which will be useful in characterizing the approximation
error to the Chow vector of interest. Another class consists
of quadratic terms in m(x),

P
2
n,d,s

:=
�
p2 : x 7! hAU ,m(x)m(x)

>
� Ii, U

>
= U,

kUk0  s,A 2 S(n+1)d
, kAUkF = 1

(2.3)

where S(n+1)d := {A : A 2 R(n+1)d⇥(n+1)d
, A

>
= A}.

Note that the polynomials in P
2
n,d,s

have degree at most
2d, and can be represented as a linear combination of at
most s elements of the form mi(x)mj(x). They will be
used to construct certain distributional statistics based on
the empirical samples for filtering.

We will often use subscript to stress the membership of a
polynomial in either class: we will write p1 2 P

1
n,d,2k and

p2 2 P
2
n,d,s

, rather than using the subscript for counting.

Reserved symbols. Throughout the paper, K always refers
to the number of non-zero attributes that a sparse PTF de-
pends on, and k is the sparsity of the Chow vector under

Algorithm 1 Main Algorithm: Attribute-Efficient Robust
Chow Vector Estimator
Require: A nasty adversary EX(⌘) with ⌘ 2 [0,

1
2 � c]

for some absolute constant c 2 (0,
1
2], hypothesis class

Hd,K that contains f⇤, target error rate ✏ 2 (0, 1), fail-
ure probability � 2 (0, 1).

Ensure: A sparse vector u 2 R(n+1)d .
1: S̄

0
 draw C ·

d
5d

K
4d

✏2
log

5d �nd
✏�

�
samples from EX(⌘).

2: k d+ 1 if K = 1 or k 2K
d if K > 1.

3: 
28
c2

·
⇥
⇢2 · (c0 log

1
⌘
+ c0d)

d
· ⌘ + ✏

⇤
.

4: lmax
4⌘k�2

✏
+ 1.

5: S̄0

1 S̄0 \ {(x, y) :
��m(x)

��
1
 �}.

6: for phase l = 1 to lmax do
7: ⌃ Ex⇠S0

l
[m(x)m(x)

>
], {(it, jt)}4k

2

t=1 index
set of the largest (in magnitude) 2k diagonal entries
and 2k

2
�k entries above the main diagonal of ⌃�I .

U {(it, jt)}t�1 [{(jt, it)}t�1.
8: if

��(⌃� I)U

��
F
  then return u

Hk

�
E(x,y)⇠S̄0

l
[y ·m(x)]

�
.

9: S
0

l+1 SPARSEFILTER(S0

l
, U,⌃, k, �, ⇢2).

10: end for

Algorithm 2 SPARSEFILTER(S0
, U,⌃, k, �, ⇢2)

1: A
1

k(⌃�I)Uk
F

(⌃� I)U .

2: p2(x) hA,m(x)m(x)
>
� Ii.

3: Find t 2 (0, 4k�
2
) such that

Pr
� ��p2(S0

)
�� � t

�
� 6 exp

�
� (t/⇢2)

1/d
/c0

�
+

3✏

k�2
.

4: return S
00
 {x 2 S

0 :
��p2(x)

��  t}.

the Hermite polynomials m(x) (see Lemma 10). We re-
serve ✏, �, ⌘ as in Definition 1. We wrote S̄0 as the corrupted
sample set, and S

0 as the one without labels.

The capital and lowercase letters C and c, and their subscript
variants, are always used to denote some absolute constants,
though we do not track closely their values. We reserve

� =
�
C1d · log

nd

✏�

�d/2
, ⇢2 = C2 · d

3
4 · (c0d)

d
. (2.4)

As will be clear in our analysis, � upper bounds
maxx2S

��m(x)
��
1

for S drawn from D. Thus, we will
only keep samples in S̄

0 with x 2 X� where

X� := {x 2 Rn
:
��m(x)

��
1
 �}. (2.5)

The quantity ⇢2 upper bound kp2kL2 ; see Lemma 30.

3. Main Algorithms
Our main algorithm, Algorithm 1, aims to approximate
the Chow vector of the underlying polynomial threshold

5

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

function f
⇤
2 Hd,K by drawing a small number of samples

from the nasty adversary. Observe that the setting of k at
Step 2 follows from Lemma 10, i.e. k is the sparsity of
�f⇤ under the basis of Hermite polynomials. With this in
mind, we design three sparsity-induced components in the
algorithm: pruning samples that must be outliers (Step 5),
certifying that the sample set is clean enough and returning
the empirical Chow vector (Step 8), or filtering samples
with a carefully designed condition (Step 9). We elaborate
on each component in the following.

3.1. Pruning

Since the outliers created by the nasty adversary may be
arbitrary, it is useful to design some simple screening rule to
remove samples that must have been corrupted. In this step,
we leverage the distributional assumption that D, the distri-
bution of instances, is the standard Gaussian N (0, In⇥n).
Since the concept class consists of polynomials with degree
at most d, it is known that any Hermite polynomial mi(x)

must concentrate around its mean with a known tail bound
(Janson, 1997). As the mean of mi(x) equals zero for all
i 6= 1 (recall that m1(x) ⌘ 1), it is possible to specify a cer-
tain radius � for pruning. Similar to Zeng & Shen (2022), we
apply the `1-norm metric for attribute efficiency, that is, we
remove all samples (x, y) in S̄

0 satisfying
��m(x)

��
1

> �.
The following lemma shows that with high probability, no
clean sample will be pruned under a proper choice of �.
Lemma 11. Let S be a set of samples drawn indepen-
dently from D. With probability at least 1 � �� , we have
maxx2S

��m(x)
��
1
 � where � :=

�
c0 log

|S|(n+1)d

��

�d/2.

Recall that the concrete value of � is given in (2.4); it is
obtained by setting |S| as the same size as in Step 1 of
Algorithm 1 and setting �� =

✏
2
�

64⇢2
2

(note that ��  O(�)).
The appearance of � in �� is not surprising. For the multi-
plicative factor ✏

2

64⇢2
2

, technically speaking, it ensures that
the total variation distance between the distribution D con-
ditioned on the event x 2 X� and D is O(✏), thus one can
in principle consider uniform concentration on the former
to ease analysis (since it is defined on a bounded domain);
see Proposition 13.

3.2. Filtering

At Step 7 of Algorithm 1, we compute the empirical co-
variance matrix ⌃ and the index set U of the (2k)

2 largest
entries (in magnitude) of ⌃� I . As we highlighted in Sec-
tion 1.2, this is a computationally efficient way to obtain
an upper bound on the maximum eigenvalue of ⌃ � I on
all 2k-sparse directions. The structural constraint on U

comes from the observation that for 2k-sparse v, we have
v
>
(⌃� I)v = h⌃� I, vv

>
i and vv

> has 2k non-zero di-
agonal entries and 4k

2
� 2k off-diagonal symmetric entries.

If the restricted Frobenius norm,
��(⌃� I)U

��
F

, is greater
than some threshold , Algorithm 1 will invoke a filtering
subroutine, Algorithm 2, to remove samples that were poten-
tially corrupted. The high-level idea of Algorithm 2 follows
from prior works on robust mean estimation (Diakonikolas
et al., 2016; 2019; Zeng & Shen, 2022): under the condition
that a certain measure of the empirical covariance matrix
is large, there must be some samples that behave in quite a
different way from those drawing from D. Our technical
novelty is a new algorithm and analysis showing that the
Frobenius norm itself suffices to validate a certain type of
test that can identify those potentially corrupted samples –
this is a new feature as existing robust sparse mean estima-
tion algorithms (Diakonikolas et al., 2019; Zeng & Shen,
2022) rely on a combination of the Frobenius norm and a lo-
calized eigenvalue condition. An immediate implication of
our finding is that one can expect lower computational cost
of our algorithm due to the lack of eigenvalue computation.

Now we discuss how to design a test to filter potentially
corrupted samples. The idea is to create a sample-dependent
polynomial p2 with the following two properties: 1) its em-
pirical mean on S

0 equals
��(⌃� I)U

��
F

; and 2) p2 is small
(in expectation) on uncorrupted samples. In this way, since
we have the condition that

��(⌃� I)U

��
F

is large, there must
be a noticeable fraction of samples in S

0 that correspond to
large function values of p2. This combined with the second
property suffice to identify abnormal samples.

Indeed, since ⌃ = Ex⇠S0 [m(x)m(x)
>
], we can show that

��(⌃� I)U

��
F

=
1��(⌃� I)U

��
F

h(⌃� I)U ,Ex⇠S0 [m(x)m(x)
>
]� Ii

= Ex⇠S0

h
1��(⌃� I)U

��
F

h(⌃� I)U ,m(x)m(x)
>
� Ii

i
.

This gives the design of p2 in Algorithm 2 which has the
desired feature: its expectation on D equals zero since m(x)

is an orthonormal basis in L
2
(Rn

, D). Yet, we remark
that the degree of p2 is as large as 2d, which leads to a
heavy-tailed distribution even for uncorrupted data; and
thus the nasty adversary may inject comparably heavy-tailed
data. In Lemma 30, we show that the L

2-norm of p2 on
D is upper bounded by ⇢2 = O(d

d
); thus the threshold 

is proportional to ⇢2. The additional multiplicative factor
in , (c0 log 1

⌘
+ c0d)

d
· ⌘, is the maximum amount that

those ⌘-fraction of heavy-tailed outliers can deteriorate the
restricted Frobenius norm without appearing quite different
from uncorrupted samples. In other words, with this scaling
of , if the outliers were to deviate our estimate significantly,
they would trigger the filtering condition.

Now we give intuition on Step 3 of Algorithm 2. We can
use standard results on Gaussian tail bound of polynomials

6

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

(Janson, 1997) to show that

Pr
� ��p2(D)

�� � t
�
 exp(�(t/⇢2)

1/d
/c0), 8t > 0.

By uniform convergence (Vapnik & Chervonenkis, 1971),
the above implies a low frequency of the event

��p2(x)
�� � t

on a set of uncorrupted samples (provided that the sample
size is large enough; see Part 5 of Definition 12.). On the
other hand, the empirical average of p2 on the input instance
set S0 (which equals

��(⌃� I)U

��
F

) is large. Thus, there
must be some threshold t such that

��p2(x)
�� � t occurs

with a nontrivial frequency, and this is an indicator of being
outliers. In Step 3 of Algorithm 2, the nontrivial frequency
is set as a constant factor of the one of uncorrupted samples –
it is known that this suffices to produce a cleaner instance
set; see e.g. Diakonikolas et al. (2016). To further guarantee
a bounded running time, we show that it suffices to find a t

in (0, 4k�
2
), thanks to the pruning step (see Lemma 30).

It is worth mentioning that our primary treatment on at-
tribute efficiency lies in applying uniform convergence to
derive the low frequency event. In fact, since the size of U is
at most 4k2, it is possible to show that the VC-dimension of
the class P2

n,d,s
that p2 resides is O(s log n

d
), with s = 4k

2.

3.3. Termination

Lastly, we describe the case that Algorithm 1 terminates and
output u at Step 8. Due to the selection of U , it is possible
to show that

��(⌃� I)U

��
F
  implies v>⌃v  + 1 for

all 2k-sparse unit vector v, i.e. the maximum eigenvalue of
⌃ on all 2k-sparse directions is as small as  + 1. This in
turn implies that the variance caused by corrupted samples
is well-controlled. Therefore, we output the empirical Chow
vector. We note that Algorithm 1 outputs u which is the em-
pirical one followed by a hard thresholding operation. This
ensures that u is k-sparse, the same sparsity level as �f⇤ .
More importantly, since we are only guaranteed with a small
maximum eigenvalue on 2k-sparse directions, it is likely
that on the full direction, the maximum eigenvalue could be
very large, which would fail to certify a good approximation
to �f⇤ . In other words, had we not applied the hard thresh-
olding operation, the empirical estimate E(x,y)⇠S̄0

l
[y ·m(x)]

could be far away from the target Chow vector.

The maximum number of iterations, lmax, comes from our
analysis on the progress of the filtering step: we will show
in Section 4 that each time Algorithm 2 is invoked, a notice-
able fraction of outliers will be removed while most clean
samples are retained, thus after at most lmax iterations, the
restricted Frobenius norm must be less than .

4. Performance Guarantees
Our analysis of filtering relies on the existence of a good
set S ⇢ Rn and shows that Algorithm 2 strictly reduces

the distance between the corrupted set and S every time
it is invoked by Algorithm 1, until the termination condi-
tion is met (Theorem 14). We then show that the output
of Algorithm 1 must be close to the Chow vector of the
underlying PTF (Theorem 17), and this occurs within lmax

phases (Theorem 18). Then, a black-box application of
the algorithmic result from Trevisan et al. (2009); De et al.
(2014); Diakonikolas et al. (2018a) leads to PAC guarantees
of a PTF that is reconstructed from our estimated Chow
vector (Theorem 19).

We will phrase our results in terms of some deterministic
conditions on S. Let S|X�

:= S \ X� and D|X�
be the

distribution D conditioned on the event x 2 X� .

Definition 12 (Good set). Given ✏ 2 (0, 1), � 2 (0, 1),
and concept class Hd,K , we say an instance set S ⇢ Rn

is a good set if all the following properties hold simultane-
ously and uniformly over all p1 2 P

1
n,d,2k (k is given in

Lemma 10), all p2 2 P
2
n,d,s

with s = 4k
2, and all t > 0:

1. S|X�
= S;

2.
��Pr(p1(S) > t)� Pr(p1(D) > t)

��  ↵1;

3.
���Pr

�
p1(S|X�

) > t
�
� Pr

�
p1(D|X�

) > t
����  ↵1;

4.
���Ex⇠S

⇥
f(x) · p1(x)

⇤
� Ex⇠D

⇥
f(x) · p1(x)

⇤���  ↵
0

1;

5.
��Pr(p2(S) > t)� Pr(p2(D) > t)

��  ↵2;

6.
���Pr

�
p2(S|X�

) > t
�
� Pr

�
p2(D|X�

) > t
����  ↵2;

7.
��E[p2(S)]� E[p2(D)]

��  ↵
0

2,

where ↵1 =
✏

k�2 , ↵0

1 = ✏/6, ↵2 =
✏

4k�2 , ↵0

2 = ✏.

We show that for a set of instances independently drawn
from D, it is indeed a good set. Note that this gives the
sample size at Step 1 of Algorithm 1.

Proposition 13. Let S be a set of C ·
d
5d

K
4d

✏2
log

5d �nd
✏�

�
in-

stances drawn independently from D. Then with probability
1� �, S is a good set.

4.1. Analysis of SPARSEFILTER

Recall in Definition 1 that the nasty adversary first draws
S according to D and annotates it with f

⇤ to obtain S̄ ⇢

Rn
⇥{�1, 1}. Then it replaces an ⌘ fraction with malicious

samples to generate the sample set S̄0 that is returned to
the learner. Denote by �(S, S

0
) the symmetric difference

between S and S
0 normalized by |S|, i.e.

�(S, S
0
) :=

��S\S0
��+

��S0
\S

��
|S|

. (4.1)

7

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

By definition, it follows that �(S, S
0
)  2⌘. The following

theorem is the primary characterization of the performance
of our filtering approach (Algorithm 2).
Theorem 14. Consider Algorithm 2. Assume that��(⌃� I)U

��
F

>  and there exists a good set S such
that �(S, S

0
)  2⌘. Then there exists a threshold t

that satisfies Step 3. In addition, the output S00 satisfies
�(S, S

00
)  �(S, S

0
)�

✏

4k�2 .

We show this theorem by contradiction: had we been unable
to find such t, the tail bound at Step 3 would have implied
small expectation of p2 on S

0. As discussed in Section 3.2,
the polynomial p2 is chosen such that

��(⌃� I)U

��
F

=

E[p2(S0
)]; this in turn suggests that we would contradict the

condition
��(⌃� I)U

��
F
>  when  is properly chosen.

Formally, let �0
(⌧, d, ⇢) := 2 ·⇢ ·

�
c0 log

1
⌧
+ c0 ·d/2

�d/2
· ⌧

and �2 := 4k
2
�
2. We have:

Lemma 15. Consider Algorithm 2. Assume that��(⌃� I)U

��
F
>  and there exists a good set S such that

�(S, S
0
)  2⌘. Let E := S

0
\S. If there does not exist a

threshold t > 0 that satisfies Step 3, then

|E|

|S0|
sup

p22P
2
n,d,s

E[
��p2(E)

��]  7(1+
1

c
)·
⇥
�
0
(⌘, 2d, ⇢2)+↵2�2

⇤
.

Lemma 16. Consider Algorithm 2. Assume that there exists
a good set S with �(S, S

0
)  2⌘. Let L := S\S

0. We have

|L|

|S|
sup

p22P
2
n,d,s

E[
��p2(L)

��]  2(1+
1

c
)
⇥
�
0
(⌘, 2d, ⇢2)+↵2�2

⇤
.

Now observe that
��S0

�� ·
��(⌃� I)U

��
F
=
��S0

�� ·E[p2(S0
)] =

|S|·E[p2(S)]+|E|·E[p2(E)]�|L|·E[p2(L)]. For the right-
hand side, we can roughly think of E[p2(S)] ⇡ E[p2(D)]

which can be bounded as D is Gaussian. This combined
with Lemma 15 and Lemma 16 can establish the existence
of t. We then use a general result that is implicit in prior
filter-based algorithms (Diakonikolas et al., 2016): given
the existence of t, there must be a nontrivial fraction of the
instances in S

0 that can be filtered; see also Lemma 38 where
we provide a generic proof. This establishes Theorem 14;
see Appendix D for the full proof.

4.2. Analysis of termination

Let �⌧ = 2
�
c0 log

1
⌧
+ c0d

�d
· ⌧ for some parameter ⌧ 2

(0, 1). The following theorem shows that whenever the
termination condition is met, i.e.

��(⌃� I)U

��
F
 , the

output must be close to the target Chow vector.
Theorem 17. Consider Algorithm 1. If at some phase l we
have

��(⌃� I)U

��
F
  and �(S, S

0

l
)  2⌘ for some good

set S, then the following holds for the output u:
��u� �f⇤

��
2


192

c2

q
⌘(�⌘ + �✏) +

✏

2
.

We note that the upper bound seems not depending on  –
this is because   O(�✏). To show the theorem, we will
first prove that the deviation of the expectation of y · p1(x)
between S̄

0 and S̄ is small, and then apply Part 4 of Def-
inition 12 to establish the closeness to the expectation on
D. To obtain the first deviation bound, we observe that it is
almost governed by the expectation on S\S

0 and on S
0
\S.

The former is easy to control since it is a subset of the good
set S. We show that the latter is also bounded since the
termination condition implies a small variance on all sparse
directions of the covariance matrix ⌃ that is computed on
S
0; this suggests that the contribution from the corrupted

instances cannot be large. See Appendix E for the proof.

4.3. Main results

Theorem 18 (Chow vector estimation). The following holds
for Algorithm 1. Given any target error rate ✏ 2 (0, 1) and
failure probability � 2 (0, 1), Algorithm 1 runs in at most
lmax =

4⌘k
✏

·
�
C1d · log

nd

✏�

�d
+ 1 phases, and outputs a

k-sparse vector u such that with probability at least 1� �,

��u� �f⇤
��
2


192

c2

q
⌘(�⌘ + �✏) +

✏

2
.

In addition, Algorithm 1 runs in O(poly((nd)
d
, 1/✏)) time.

Proof sketch. In view of Proposition 13 and Step 1 of Algo-
rithm 1, there is a good set S such that �(S, S

0
)  2⌘.

We will inductively show the invariant �(S, S
0

l+1) 

�(S, S
0

l
) �

✏

4k�2 before Algorithm 1 terminates. In fact,
by Part 1 of Definition 12, it follows that no instances in S

will be pruned at Step 1. Thus, �(S, S
0

1)  �(S, S
0
)  2⌘.

If
��(⌃� I)U

��
F
> , then Theorem 14 implies that we can

obtain S
0

2 such that �(S, S
0

2)  �(S, S
0

1) �
✏

4k�2 . By in-
duction, we can show that such progress holds for any phase
l before the termination condition is met. Since the symmet-
ric difference is non-negative, the algorithm must terminate
within the claimed lmax phases, upon when the output is
guaranteed to be close to �f⇤ in view of Theorem 17. See
Appendix E for the full proof.

Lastly, the algorithmic results from Trevisan et al. (2009);
De et al. (2014); Diakonikolas et al. (2018a) state that as
long as u is ✏-close to �f⇤ under the `2-norm, it is possible to
construct a PTF f̂ in time (n

✏
)
O(d) that has misclassification

error of O(d · ✏
1/(d+1)

). This gives our main result on PAC
guarantees (see Appendix F for the proof).

Theorem 19 (PAC guarantees). There exists an algorithm
A such that the following holds. Given any ✏0 2 (0, 1),
failure probability � 2 (0, 1), and the concept class Hd,K ,
it draws C ·

d
5d

K
4d

✏20
· log

5d � nd

✏0�

�
samples from EX(⌘) and

8

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

outputs a PTF f̂ such that with probability at least 1� �,

Prx⇠D(f̂(x) 6= f
⇤
(x))  c1 ·d·

⇣q
⌘(�⌘ + �✏0)+✏0

⌘ 1
d+1

.

In particular, for any target error rate ✏ 2 (0, 1), by setting
✏0 =

✏
d+1

c2·d
2d , we have Prx⇠D(f̂(x) 6= f

⇤
(x))  ✏ provided

⌘ 
1
2✏0. Moreover, the algorithm runs in (nd/✏)

O(d) time.

5. Conclusion
We studied the important problem of attribute-efficient PAC
learning of low-degree PTFs. We showed that for the class
of sparse PTFs where the concept depends only on a subset
of its input attributes, it is possible to design an efficient
algorithm that PAC learns the class with sample complexity
poly-logarithmic in the dimension, even in the presence
of the nasty noise. In addition, the noise tolerance of our
algorithm is dimension-independent, and matches the best
known result established for learning of non-sparse PTFs.

Acknowledgements
We thank the anonymous reviewers for valuable comments.
We thank Aughdon Breslin and Matthew Thomas for help-
ing calculate the sparsity of the Chow vector under mono-
mials. This work is supported by NSF-AF-2239376 and the
startup funding from Stevens Institute of Technology.

References
Andoni, A., Panigrahy, R., Valiant, G., and Zhang, L. Learn-

ing sparse polynomial functions. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 500–510, 2014.

Anthony, M. and Bartlett, P. L. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
1999.

Awasthi, P., Balcan, M., Haghtalab, N., and Zhang, H.
Learning and 1-bit compressed sensing under asymmetric
noise. In Proceedings of the 29th Annual Conference on
Learning Theory, pp. 152–192, 2016.

Awasthi, P., Balcan, M., and Long, P. M. The power of
localization for efficiently learning linear separators with
noise. Journal of the ACM, 63(6):50:1–50:27, 2017.

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. Computa-
tionally efficient robust sparse estimation in high dimen-
sions. In Proceedings of the 30th Annual Conference on
Learning Theory, pp. 169–212, 2017.

Blum, A. Learning boolean functions in an infinite attribute
space. In Proceedings of the 22nd Annual ACM Sympo-
sium on Theory of Computing, pp. 64–72, 1990.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth,
M. K. Learnability and the Vapnik-Chervonenkis dimen-
sion. Journal of the ACM, 36(4):929–965, 1989.

Bshouty, N. H., Eiron, N., and Kushilevitz, E. PAC learning
with nasty noise. Theoretical Computer Science, 288(2):
255–275, 2002.

Candès, E. J. and Tao, T. Decoding by linear programming.
IEEE Transactions on Information Theory, 51(12):4203–
4215, 2005.

Candès, E. J. and Wakin, M. B. An introduction to compres-
sive sampling. IEEE Signal Processing Magazine, 25(2):
21–30, 2008.

Candès, E. J., Strohmer, T., and Voroninski, V. Phaselift:
Exact and stable signal recovery from magnitude mea-
surements via convex programming. Communications on
Pure and Applied Mathematics, 66(8):1241–1274, 2013.

Candès, E. J., Li, X., and Soltanolkotabi, M. Phase re-
trieval via Wirtinger flow: Theory and algorithms. IEEE
Transactions on Information Theory, 61(4):1985–2007,
2015.

Chen, S. and Meka, R. Learning polynomials in few rel-
evant dimensions. In Proceedings of the 34th Annual
Conference on Learning Theory, pp. 1161–1227, 2020.

Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic de-
composition by basis pursuit. SIAM Journal on Scientific
Computing, 20(1):33–61, 1998.

Chow, C.-K. On the characterization of threshold func-
tions. In Proceedings of the 2nd Annual Symposium on
Switching Circuit Theory and Logical Design (FOCS),
pp. 34–38, 1961.

Daniely, A. Complexity theoretic limitations on learning
halfspaces. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, pp. 105–117, 2016.

De, A., Diakonikolas, I., Feldman, V., and Servedio, R. A.
Nearly optimal solutions for the Chow parameters prob-
lem and low-weight approximation of halfspaces. Journal
of the ACM, 61(2):11:1–11:36, 2014.

Diakonikolas, I. and Kane, D. M. Recent advances in
algorithmic high-dimensional robust statistics. CoRR,
abs/1911.05911, 2019.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of
Computer Science, pp. 655–664, 2016.

9

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Diakonikolas, I., Kane, D. M., and Stewart, A. Statisti-
cal query lower bounds for robust estimation of high-
dimensional gaussians and gaussian mixtures. In Proceed-
ings of the 58th IEEE Annual Symposium on Foundations
of Computer Science, pp. 73–84, 2017.

Diakonikolas, I., Kane, D. M., and Stewart, A. Learning ge-
ometric concepts with nasty noise. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing,
pp. 1061–1073, 2018a.

Diakonikolas, I., Kane, D. M., and Stewart, A. List-
decodable robust mean estimation and learning mixtures
of spherical gaussians. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pp.
1047–1060, 2018b.

Diakonikolas, I., Kane, D., Karmalkar, S., Price, E., and
Stewart, A. Outlier-robust high-dimensional sparse esti-
mation via iterative filtering. In Proceedings of the 33rd
Annual Conference on Neural Information Processing
Systems, pp. 10688–10699, 2019.

Diakonikolas, I., Kane, D. M., Karmalkar, S., Pensia, A.,
and Pittas, T. Robust sparse mean estimation via sum of
squares. In Proceedings of the The 35th Annual Confer-
ence on Learning Theory, pp. 4703–4763, 2022.

Feldman, V., Gopalan, P., Khot, S., and Ponnuswami, A. K.
New results for learning noisy parities and halfspaces.
In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 563–574, 2006.

Foucart, S. Hard thresholding pursuit: An algorithm for
compressive sensing. SIAM Journal on Numerical Analy-
sis, 49(6):2543–2563, 2011.

Gentile, C. The robustness of the p-norm algorithms. Ma-
chine Learning, 53(3):265–299, 2003.

Guruswami, V. and Raghavendra, P. Hardness of learning
halfspaces with noise. In Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science,
pp. 543–552, 2006.

Hellerstein, L. and Servedio, R. A. On PAC learning al-
gorithms for rich Boolean function classes. Theoretical
Computer Science, 384(1):66–76, 2007.

Janson, S. Gaussian Hilbert Spaces. Cambridge Tracts in
Mathematics. Cambridge University Press, 1997.

Kalai, A. T., Klivans, A. R., Mansour, Y., and Servedio,
R. A. Agnostically learning halfspaces. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pp. 11–20, 2005.

Kearns, M. J. and Li, M. Learning in the presence of ma-
licious errors. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pp. 267–280, 1988.

Klivans, A. R., Long, P. M., and Servedio, R. A. Learning
halfspaces with malicious noise. Journal of Machine
Learning Research, 10:2715–2740, 2009.

Lai, K. A., Rao, A. B., and Vempala, S. S. Agnostic estima-
tion of mean and covariance. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer
Science, pp. 665–674, 2016.

Littlestone, N. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. In Proceed-
ings of the 28th Annual IEEE Symposium on Foundations
of Computer Science, pp. 68–77, 1987.

Long, P. M. and Servedio, R. A. Learning large-margin
halfspaces with more malicious noise. In Proceedings
of the 25th Annual Conference on Neural Information
Processing Systems, pp. 91–99, 2011.

Maass, W. and Turán, G. How fast can a threshold gate
learn? In Proceedings of a workshop on computational
learning theory and natural learning systems (vol. 1):
constraints and prospects, pp. 381–414, 1994.

Mansour, Y. Learning boolean functions via the Fourier
transform. In Theoretical advances in neural computation
and learning, pp. 391–424. Springer, 1994.

Netrapalli, P., Jain, P., and Sanghavi, S. Phase retrieval using
alternating minimization. In Proceedings of the 27th
Annual Conference on Neural Information Processing
Systems, pp. 2796–2804, 2013.

O’Donnell, R. Analysis of Boolean Functions. Cambridge
University Press, 2014.

Plan, Y. and Vershynin, R. One-bit compressed sensing
by linear programming. Communications on Pure and
Applied Mathematics, 66(8):1275–1297, 2013a.

Plan, Y. and Vershynin, R. Robust 1-bit compressed sensing
and sparse logistic regression: A convex programming
approach. IEEE Transactions on Information Theory, 59
(1):482–494, 2013b.

Servedio, R. A., Tan, L., and Thaler, J. Attribute-efficient
learning and weight-degree tradeoffs for polynomial
threshold functions. In Proceedings of the 25th Annual
Conference on Learning Theory, pp. 1–19, 2012.

Shen, J. On the power of localized Perceptron for label-
optimal learning of halfspaces with adversarial noise. In
Proceedings of the 38th International Conference on Ma-
chine Learning, pp. 9503–9514, 2021a.

10

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Shen, J. Sample-optimal PAC learning of halfspaces with
malicious noise. In Proceedings of the 38th International
Conference on Machine Learning, pp. 9515–9524, 2021b.

Shen, J. PAC learning of halfspaces with malicious noise
in nearly linear time. In Proceedings of the 26th Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 30–46, 2023.

Shen, J. and Li, P. A tight bound of hard thresholding.
Journal of Machine Learning Research, 18(208):1–42,
2018.

Shen, J. and Zhang, C. Attribute-efficient learning of half-
spaces with malicious noise: Near-optimal label com-
plexity and noise tolerance. In Proceedings of the 32nd
International Conference on Algorithmic Learning The-
ory, pp. 1072–1113, 2021.

Tibshirani, R. Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996.

Trevisan, L., Tulsiani, M., and Vadhan, S. P. Regularity,
boosting, and efficiently simulating every high-entropy
distribution. In Proceedings of the 24th Annual IEEE

Conference on Computational Complexity, pp. 126–136,
2009.

Tropp, J. A. Greed is good: algorithmic results for sparse ap-
proximation. IEEE Transactions on Information Theory,
50(10):2231–2242, 2004.

Valiant, L. G. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

Vapnik, V. N. and Chervonenkis, A. Y. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability and its Applications,
16(2):264, 1971.

Zeng, S. and Shen, J. List-decodable sparse mean estimation.
In Proceedings of the 36th Annual Conference on Neural
Information Processing Systems, pp. 24031–24045, 2022.

Zhang, C. Efficient active learning of sparse halfspaces. In
Proceedings of the 31st Annual Conference On Learning
Theory, pp. 1856–1880, 2018.

Zhang, C., Shen, J., and Awasthi, P. Efficient active learning
of sparse halfspaces with arbitrary bounded noise. In
Proceedings of the 34th Annual Conference on Neural
Information Processing Systems, pp. 7184–7197, 2020.

11

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

We summarize a few useful results and list reserved hyper-parameters in Appendix A; they will be frequently used in our
analysis. We provide proofs for results in Section 1 and Section 2 in Appendix B. Appendix C collects statistical results on
the concept classes of interest, which are used in Appendix D and Appendix E to establish guarantees on Algorithm 2 and
Algorithm 1, respectively. We assemble all pieces and prove the main result, Theorem 19, in Appendix F.

A. Summary of Useful Facts and Reserved Hyper-Parameters
We will often need the condition that �(S, S

0
)  2⌘, which implies

(1� 2⌘) |S| 
��S0

��  |S| . (A.1)

In particular, when ⌘ 2 [0,
1
2 � c] for some absolute constant c 2 (0,

1
2], we have

��S0
��  |S| 

1

1� 2⌘

��S0
�� 

�
1 +

1

c
· ⌘
� ��S0

�� . (A.2)

The above two inequalities also imply

��S0
\S

��  2⌘ |S| 
2⌘

1� 2⌘

��S0
��  ⌘

c

��S0
�� and

��S\S0
��  2⌘ |S| 

2⌘

1� 2⌘

��S0
��  ⌘

c

��S0
�� . (A.3)

It is known that for any vector u,
kuk1 

q
kuk0 · kuk2 . (A.4)

The above will often be applied together with Holder’s inequality:

|u · v|  kuk1 · kvk1 

q
kuk0 · kuk2 · kvk1 . (A.5)

Fact 20. Let Z be a positive random variable. Then E[Z] =
R
1

0 Pr(Z > t) dt.
Fact 21 (Tail bound of Gaussian polynomials (Janson, 1997)). Let D be the standard Gaussian distribution N (0, In⇥n).
There exists an absolute constant c0 > 1 such that the following tail bound holds for all degree-d polynomials p : Rn

! R:

Prx⇠D

� ��p(x)� E[p(D)]
�� � t

p
Var[p(D)]

�
 exp(�t

2/d
/c0), 8 t > 0.

In particular, if p is such that E[p(D)] = 0, we have

Prx⇠D

� ��p(x)
�� � t kpk

L2

�
 exp(�t

2/d
/c0).

A.1. Reserved Hyper-Parameters

Recall that ✏ 2 (0, 1) is the noise rate, � 2 (0, 1) is the failure probability, d is the degree of the PTFs. Denote by
X� = {x 2 Rn :

��m(x)
��
1
 �} the instances of interest. Given an instance set S ⇢ Rn, let S|X�

= S \ X� . For a
distribution D supported on Rn, let D|X�

be the distribution D conditioned on the event that x 2 X� .

• �(⌧, d, ⇢) = ⇢
2
·
�
c0 log

1
⌧
+c0d

�d
·⌧ , which upper bounds

R
1

0 t·min{⌧, Q⇢,d(t)} dt for Qd,⇢(t) = exp(�(t/⇢)
2/d

/c0);
see Lemma 24;

• �
0
(⌧, d, ⇢) = 2 · ⇢ ·

�
c0 log

1
⌧
+ c0 · d/2

�d/2
· ⌧ , which upper bounds

R
1

0 min{⌧, Q⇢,d(t)} dt; see Lemma 27;

• � =
�
c0 log

|S|·(n+1)d

��

�d/2
=
�
C1d · log

nd

✏�

�d/2, which upper bounds maxx2S

��m(x)
��
1

with probability 1� �� for
S drawn from D; see Lemma 23 and Definition 12;

• �1 =
p
2k�, which upper bounds

��p1(x)
�� for p1 2 P

1
n,d,2k and x 2 X� ; see Lemma 29;

• �2 = 2
p
s�

2, which upper bounds
��p2(x)

�� for p2 2 P
2
n,d,s

and x 2 X� ; see Lemma 30;

• ⇢2 = C2 · d
3
4 ·

�
c0d

�d, which upper bounds kp2kL2 for p2 2 P
2
n,d,s

; see Lemma 30;

12

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

B. Omitted Proofs from Section 1 and Section 2
B.1. Proof of Fact 3

Proof. It is known from Maass & Turán (1994) that in the absence of noise, Hd,K can be PAC learned efficiently by using
linear programming to find a concept that fits all the samples since in this case, empirical risk minimization with 0/1-loss is
equivalent to solving a linear program. The number of samples is at least N� := C0 ·

1
✏2
(K

d
log n+ log

1
�
) due to uniform

convergence theory (Blumer et al., 1989) and the VC-dimension of Hd,K . Then Theorem 12 of Kearns & Li (1988) shows
that when ⌘ 

1
N1/2

logN1/2, it is possible to learn the same concept class by using 2N
2
�
log

1
�
·N� = 2N

3
�
log

1
�

samples.
Substituting N� gives the result.

B.2. Proof of Lemma 10

Proof. By definition, we know that there exists q 2 Pn,d and ⌦ ⇢ [n] with |⇤|  K, such that f(x) = sign(q(x⇤)). Let
⇤ := [n]\⇤. Since we choose Hermite polynomials as the basis, we have that mi(x) = mi(x⇤) ·mi(x⇤) where we define
mi(x⇤) = 1 if mi(x) does not depend on x⇤.

We calculate the i-th element of the Chow vector of f as follows:

Ex⇠D[f(x) ·mi(x)]

= Ex⇠D[sign(q(x⇤)) ·mi(x)]

= Ex⇠D[sign(q(x⇤)) ·mi(x⇤) ·mi(x⇤)] (B.1)
= Ex⇠D[sign(q(x⇤)) ·mi(x⇤)] · Ex⇠D[mi(x⇤)] (B.2)
= Ex⇠D[sign(q(x⇤)) ·mi(x⇤)] · 0 = 0 (B.3)

as long as mi depends on some elements in ⇤. Equivalently, the above is non-zero for all mi that depends only on ⇤. Note
that there are at most

dX

i=0

K
i


(
d+ 1, if K = 1,

K
d+1

�1
K�1  2K

d
, if K � 2

(B.4)

such mi’s. This gives the desired sparsity bound.

B.3. The basis of monomials

As a complementary discussion to Lemma 10, we also give derivation for the sparsity of the Chow parameters under the
basis of monomial polynomials.
Lemma 22. Let f be a K-sparse degree-d PTF. Then �f is a k-sparse vector under the basis of monomial polynomials,

where k �
�
n

d

�b d
2 c.

Proof. Consider the same setting as that in Lemma 10, except that the basis is now under monomial polynomials. Since
multivariate monomials are constructed by the production of univariate monomials, the i-th element of the Chow vector of f
can be written as

Ex⇠D[f(x) ·mi(x)] = Ex⇠D[sign(q(x⇤)) ·mi(x⇤)] · Ex⇠D[mi(x⇤)].

However, now the term Ex⇠D[mi(x⇤)] equals zero only when mi(x⇤) includes at least one univariate monomial x`

j
for

some j 2 ⇤ where ` 2 Z+ is an odd integer. For K  n

2 , d � 2, the total number of non-zero elements in �f is at least

b
d
2 cX

j=1

✓
n�K + j � 1

j

◆
�

b
d
2 cX

j=1

✓
n�K + j � 1

j

◆j

�

✓
n�K + b

d

2c � 1

b
d

2c

◆b
d
2 c

�

✓
n

d

◆b
d
2 c

,

which depends polynomially in the dimension n, making it undesirable in the attribute-efficient learning.

B.4. Other choices of polynomial basis

As mentioned in Section 1.2, the choice of appropriate basis that demonstrates sparsity structure of the Chow parameters
can go well beyond that of Hermite polynomials. More generally, under the assumption that D is a product distribution

13

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

(Eq.(B.2)), we require the basis to be a product basis (so Eq.(B.1) holds) with zero mean under the distribution D (so
Eq.(B.3) holds). To this end, there exist other choices of basis under different distributional assumptions. For example,
under the uniform distribution over [�1, 1]n, the multivariate Legendre polynomials also form an appropriate basis. Another
necessary property of D in our analysis is the finiteness of moments up to order 4d, so that we can obtain tail bound for any
degree-4d polynomial; this is needed to establish Lemma 30.

C. General Statistical Results
Recall that we assume D is the standard Gaussian N (0, In⇥n) in this paper.

C.1. Tail bound on
��m(x)

��
1

The tail bound of Fact 21 implies the following upper bound on the magnitude of m(x).

Lemma 23 (Restatement of Lemma 11). The following holds for all t > 1:

Prx⇠D

� ��m(x)
��
1
� t

�
 (n+ 1)

d
exp(�t

2/d
/c0),

PrS⇠D

�
max
x2S

��m(x)
��
1
� t

�
 |S| · (n+ 1)

d
· exp(�t

2/d
/c0).

In particular, with probability at least 1� �� , we have maxx2S

��m(x)
��
1
 � where � :=

�
c0 log

|S|(n+1)d

��

�d/2. When

�� =
✏
2
�

64⇢2
2

and |S| = C ·
d
5d

K
4d

✏2
log

5d �nd
✏�

�
, we have � =

�
C1d · log

nd

✏�

�d/2.

Proof. Denote M = (n+1)
d the dimension of the vector m(x). Let mi(x) be the i-th element of m(x), where 1  i M .

We note that m1(x) ⌘ 1. Now for any i 6= 1, since m(x) is orthonormal in L
2
(Rn

, D), we have E[mi(D)] = 0 and
kmikL2 = 1. By Fact 21, we have

Prx⇠D(
��mi(x)

�� � t)  exp(�t
2/d

/c0).

Taking the union bound over all i 2 {2, . . . ,M} gives

Prx⇠D

�
max

2iM

��mi(x)
�� � t

�
 (M � 1) exp(�t

2/d
/c0) M exp(�t

2/d
/c0).

Note that for all t > 1, we have

Prx⇠D

� ��m(x)
��
1
� t

�
M exp(�t

2/d
/c0). (C.1)

Now for S being a set of independent draws from D, we have by union bound that

PrS⇠D

�
max
x2S

��m(x)
��
1
� t

�
 |S| ·M · exp(�t

2/d
/c0). (C.2)

The proof is complete.

C.2. �(⌧, d, ⇢),�0
(⌧, d, ⇢)

Lemma 24. Let Qd,⇢(t) = exp(�(t/⇢)
2/d

/c0) where ⇢ is independent of t. Then
R
1

0 t ·min{⌧, Qd,⇢(t)} dt  �(⌧, d, ⇢)

where �(⌧, d, ⇢) := ⇢
2
·
�
c0 log

1
⌧
+ c0d

�d
· ⌧ .

14

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Proof. Denote ⇢0 = c0 · ⇢
2/d. Let t0 = (⇢0 log

1
⌧
)
d/2, which satisfies ⌧ = Qd,⇢(t0). It follows that

Z
1

0
t ·min{⌧, Qd,⇢(t)} dt =

Z
t0

0
t · ⌧ dt+

Z
1

t0

t · e
�t

2/d
/⇢0 dt

⇣1
=

1

2
t
2
0⌧ +

d · ⇢
d
0

2

Z
1

t
2/d
0 /⇢0

e
�u

· u
d�1

du

⇣2
=

1

2
t
2
0⌧ +

d · ⇢
d
0

2
· �(d, t

2/d
0 /⇢0)

⇣3


1

2
t
2
0⌧ +

d · ⇢
d
0

2
· exp(�t

2/d
0 /⇢0) · (t

2/d
0 /⇢0 + d)

d�1

⇣4
=

1

2
· ⌧ · (⇢0 log

1

⌧
)
d
+

d · ⇢
d
0

2
· ⌧ ·

�
log

1

⌧
+ d

�d�1


�
⇢0 log

1

⌧
+ ⇢0d

�d
· ⌧.

In the above, ⇣1 follows from the change of variables u := t
2/d

/⇢, ⇣2 follows from the definition of upper incomplete gamma
function, ⇣3 follows from Lemma 28, ⇣4 follows from the setting of t1, and the last step follows from simple algebraic
relaxation. The result follows by replacing ⇢0 with c0 · ⇢

2/d.

Corollary 25. The following holds:

sup

p12P
1
n,d,2k

Z
1

0
t ·min{⌧,Pr(

��p1(D)
�� > t)}  �(⌧, d,

p

2).

Proof. We will use the tail bound from Lemma 29. Let t0 =
p
2(c0 log

1
⌧
)
d/2. Since c0 > 1, we have t0 >

p
2. By

Lemma 29, we also have Pr(
��p1(D)

�� > t0)  ⌧ . Therefore, we can write

Z
1

0
t ·min{⌧,Pr(p1(D) � t)} dt =

Z
t0

0
t · ⌧ dt+

Z
1

t0

t · e
�(t/

p
2)2/d/c0 dt.

Using the same proof as Lemma 24 gives the desired result.

Corollary 26. The following holds:

sup

p22P
2
n,d,s

Z
1

0
t ·min{⌧,Pr(

��p2(D)
�� > t)}  �(⌧, 2d, ⇢2).

Proof. This follows immediately from the tail bound on Pr(
��p2(D)

�� > t) in Lemma 30 and Lemma 24.

The following lemma provides another type of bound.

Lemma 27. Let Qd,⇢(t) = exp(�(t/⇢)
2/d

/c0) where ⇢ is independent of t. Then
R
1

0 min{⌧, Qd,⇢(t)} dt  �
0
(⌧, d, ⇢)

where �
0
(⌧, d, ⇢) := 2⇢ ·

�
c0 log

1
⌧
+ c0 ·

d

2

�d/2
· ⌧ .

15

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Proof. Denote ⇢0 = c0 · ⇢
2/d. Let t0 = (⇢0 log

1
⌧
)
d/2, which satisfies ⌧ = Qd,⇢(t0). It follows that

Z
1

0
t ·min{⌧, Qd,⇢(t)} dt =

Z
t0

0
⌧ dt+

Z
1

t0

e
�t

2/d
/⇢0 dt

⇣1
= t0⌧ + ⇢

d/2
0

Z
1

t
2/d
0 /⇢0

e
�u

· u
d/2�1

du

⇣2
= t0⌧ + ⇢

d/2
0 · �(d/2, t

2/d
0 /⇢)

⇣3

 t0⌧ + ⇢
d/2
0 · exp(�t

2/d
0 /⇢0) · (t

2/d
0 /⇢0 + d/2)

d/2�1

⇣4
= ⌧ · (⇢0 log

1

⌧
)
d/2

+ ⇢
d/2
0 · ⌧ ·

�
log

1

⌧
+

d

2

�d/2�1

 2⇢
d/2
0 ·

�
log

1

⌧
+

d

2

�d/2
· ⌧.

In the above, ⇣1 follows from the change of variables u := t
2/d

/⇢, ⇣2 follows from the definition of upper incomplete gamma
function, ⇣3 follows from Lemma 28, ⇣4 follows from the setting of t0, and the last step follows from simple algebraic
relaxation. The result follows by noting ⇢0 = c0 · ⇢

2/d.

Lemma 28 (Claim 3.11 of (Diakonikolas et al., 2018b)). Consider the upper incomplete gamma function �(s, x) =R
1

x
t
s�1

e
�t

dt. We have �(s, x)  e
�x

· (x+ s)
s�1 for all s � 1 and x � 0.

C.3. Concept class: basic properties

Recall that m(x) is the vector of all Hermite polynomials on Rn with degree at most d. Note that m(x) has (n + 1)
d

elements. We defined two classes of polynomials:

P
1
n,d,2k := {p : Rn

! R : p(x) = hv,m(x)i, v 2 R(n+1)d
, kvk2 = 1, kvk0  k}, (C.3)

and
P

2
n,d,s

:= {p : Rn
! R : p = hAU ,mm

>
� Ii, A 2 S(n+1)d

, U
>
= U, kUk0  s, kAUkF = 1}, (C.4)

where
S(n+1)d

= {A : A 2 R(n+1)d⇥(n+1)d
, A

>
= A}. (C.5)

Note that the polynomials in P
2
n,d,s

have degree at most 2d, and can be represented as a linear combination of at most s
elements of the form mi(x)mj(x).

We collect a few basic properties of the sparse polynomial classes.

Lemma 29. For all p1 2 P
1
n,d,2k, the following holds:

• Deterministic property:
��p1(x)

�� 
p
2k ·

��m(x)
��
1

; in particular,
��p1(x)

��  �1 for all x 2 X� , where �1 :=
p
2k�;

• Distributional property: for all t �
p
2,

Pr
� ��p1(D)

�� � t
�
 e

�(t/
p
2)2/d/c0 .

Proof. By Holder’s inequality, we have

��p1(x)
�� =

��v ·m(x)
�� 

q
kvk0 · kvk2 ·

��m(x)
��
1


p

2k · 1 ·
��m(x)

��
1

,

where the first inequality follows from (A.5) and the second inequality follows from the fact that p1 2 P
1
n,d,2k.

To show the tail bound, we will decompose v = (v1, ṽ) and m(x) = (1, m̃(x)) so that E[m̃(D)] = 0. In this way, we have
p1(x) = v1 + ṽ · m̃(x) = v1 + kṽk2 · q(x), where q(x) := v̄ · m̃(x) and v̄ := ṽ/ kṽk2.

16

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Observe that E[q(D)] = 0 and Var[q(D)] = 1. By Fact 21, for all t > 0,

Pr
� ��q(D)

�� � t
�
 e

�t
2/d

/c0 . (C.6)

By simple calculation, we can show that
��p1(x)

�� =
q
(v1 + kṽk2 · q(x))

2 
p

2 ·

q
v21 + kṽk

2
2 · q

2(x) 
p

2
��q(x)

��

for q(x) � 1. Thus, for all t �
p
2, we have

Pr(
��p1(D)

�� � t)  Pr(

p

2
��q(D)

�� � t) = Pr(
��q(D)

�� � t/
p

2)  e
�(t/

p
2)2/d/c0 , (C.7)

where the last step follows from (C.6).

Lemma 30. For all p2 2 P
2
n,d,s

, the following holds:

• Deterministic property:
��p2(x)

��  2
p
s ·
��m(x)

��2
1

; in particular,
��p2(x)

��  �2 for all x 2 X� , where �2 := 2
p
s ·�

2;

• Distributional properties: E[p2(D)] = 0, kp2kL2  ⇢2 where ⇢2 := C2 · d
3
4 ·

�
c0d

�d, and

Pr
� ��p2(D)

�� � t
�
 exp(�(t/⇢2)

1/d
/c0), 8t > 0.

Proof. By the Cauchy-Schwartz inequality,
��p2(x)

��  kAUkF ·

���
�
m(x)m(x)

>
� I

�
U

���
F



q
kUk0 ·

��m(x)
��2
1

+ kIUkF 
p
s
� ��m(x)

��2
1

+ 1
�
,

where in the second inequality we use the fact that each entry of the matrix m(x)m(x)
> takes the form mi(x)mj(x) whose

magnitude is always upper bounded by
��m(x)

��2
1

, and there are at most kUk0 such entries. Since m1(x) = 1, we always
have 1 

��m(x)
��2
1

. Thus
��p2(x)

��  2
p
s ·

��m(x)
��2
1

.

Now we show the distributional properties. Since m(x) is a complete orthonormal basis in L
2
(Rn

, D), it follows that

E[p2(D)] = hAU , I � Ii = 0. (C.8)

Now we bound kp2kL2 , which equals
p
E[p22(D)]. Recall that AU is symmetric with kAUkF = 1, and thus can be written

as
AU = V

>
⇤V, (C.9)

for some orthonormal matrix V and diagonal matrix ⇤ with k⇤k
F
= 1. Let q(x) = V ·m(x). Observe that E[q(D)] = 0

and E[q(D)q(D)
>
] = I . Then

E[p22(D)] = Var

h
q(D)

>
⇤q(D)

i
= Var

hX

i

⇤iiq
2
i
(D)

i


X

i

⇤
2
ii
Var[q

2
i
(D)], (C.10)

where ⇤ii denotes the i-th diagonal element of ⇤ and qi(x) denotes the i-th component of the vector-valued function q(x),
and the last step follows from the fact that E[qi(D) · qj(D)] = 0 for i 6= j and E[qi(D)] = 0 for all i. It thus remains to
upper bound Var[q

2
i
(D)].

By the definition of variance, we have

Var[q
2
i
(D)] = E[q4

i
(D)]� (E[q2

i
(D)])

2
= E[q4

i
(D)]� 1  C

2
2 · d

3
2 ·

�
c0d

�2d
,

where we applied Lemma 31 in the last step. Plugging it into (C.10), we get

E[p22(D)]  C
2
2 · d

3
2 ·

�2d� 1

c0e

�2d�1X

i

⇤
2
ii
= C

2
2 · d

3
2 ·

�
c0d

�2d
, (C.11)

where the equality follows from the construction that k⇤k
F
= 1 and

P
i
⇤
2
ii
= k⇤k

2
F

. The proof is complete by noting that
kp2kL2 =

p
E[p22(D)].

17

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Lemma 31. Let v be a unit vector and m(x) be a collection of orthonormal polynomials of degree at most d in L
2
(Rn

, D).
Then E[(v ·m(D))

4
]  C

2
2 · d

3
2 ·

�
c0d

�2d for some sufficiently large constant C2 > 0.

Proof. Let p(x) = v ·m(x) and ⇢ = c0 · 2
1/d. We bound the desired expectation by using Fact 20 with the tail bound in

Lemma 29:

E[p4(D)] =

Z
1

0
Pr(p

4
(D) > t) dt

=

Z p
2

0
Pr(p

4
(D) > t) dt+

Z
1

p
2
Pr(p

4
(D) > t) dt



p

2 + 4

Z
1

0
t
3
· Pr(

��p(D)
�� > t) dt



p

2 + 4

Z
1

0
t
3
· e

�t
2/d

/⇢
dt

=

p

2 +
d

2
· ⇢

2d�1
·

Z
1

0
t
2d�1

e
�t

dt

⇣1
=

p

2 +
d

2
· ⇢

2d�1
· (2d� 1)!

⇣2



p

2 +
d

2
· ⇢

2d�1
·

p
2⇡(2d� 1)

�2d� 1

e

�2d�1
· e

1
12(2d�1)

where ⇣1 follows from the known fact on the value of the Gamma function, and ⇣2 follows from the Stirling’s approximation.
The result follows by noting that ⇢ = c0 · 2

1/d and choosing a large enough constant C2.

C.4. Concept class: uniform convergence and sample complexity

Lemma 32. The VC-dimension of the class H1
n,d,2k := {h : x 7! sign(p1(x)), p1 2 P

1
n,d,2k} is O(d · k log n), and that of

the class H2
n,d,s

:= {h : x 7! sign(p2(x)), p2 2 P
2
n,d,s

} is O(d · s log n).

Proof. For the class H1
n,d,k

, we can consider the class of polynomials in P
1
n,d,2k with a fixed support set. It is easy to see

that the VC-dimension of such class is k + 1. Now note that the number of the choices of such support set is

kX

i=0

✓
(n+ 1)

d

i

◆

�e(n+ 1)

d

k

�k
.

The concept class union argument states that for any H = [
M

i=1Hi, the VC dimension of H is upper bounded by
O(max{V, logM + V log

logM

V
}), where V is an upper bound on the VC dimension of all Hi. Thus, the VC-dimension of

H
1
n,d,2k is O(d · k log n) by algebraic calculations.

Likewise, for H2
n,d,s

, we can first fix the support U ⇢ [(n + 1)
d
] ⇥ [(n + 1)

d
] in the representation of p2. Let P(U) be

the class of polynomials in P
2
n,d,s

with the fixed U . It is easy that the VC-dimension of P(U) is s+ 1. Now note that the
number of choices of U is

sX

i=0

✓
(n+ 1)

2d

i

◆

�e(n+ 1)

2d

s

�s
.

Using the same argument gives that the VC-dimension of H2
n,d,s

is O(d · s log n).

Proposition 33 (Restatement of Prop. 13). Let S be a set of C ·
d
5d

K
4d

✏2
log

5d �nd
✏�

�
instances drawn independently from D,

where C > 0 is a sufficiently large constant. Then with probability 1� �, S is a good set in the sense of Definition 12.

Proof. By Lemma 11, our setting of �� and |S|, it follows that with probability at least 1� �� , we must have S|X�
= S.

This proves Part 1. From now on, we condition on this event happening.

18

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

We note that by the classical VC theory (Anthony & Bartlett, 1999) and our VC-dimension upper bound in Lemma 32,
Parts 2, 3, 5, 6 in Definition 12 all hold with probability 1� �/4 as far as

|S| � C ·
�VCdim

↵2
· log

4 ·VCdim

↵�

�
, (C.12)

where VCdim := max{d · k log n, d · s log n} = d · k
2
log n, and ↵ := min{↵1,↵2} 

✏

2k�2 .

We now show Part 4. For x 2 X� , we have
��mi(x)

��  � with certainty. Therefore, by Hoeffding’s inequality for bounded
random variables, we have that

Pr
� ���ES|X�

[f(x)mi(x)]� ED|X�
[f(x)mi(x)]

��� > t
�
 2 exp

�
�

|S| t
2

4�2

�
.

Therefore, taking the union bound over i we obtain that if

|S| �
32k�

2

(↵0

1)
2
· log

16(n+ 1)
d

�
, (C.13)

then with probability at least 1� �/8, we have

max
1i(n+1)d

���ES|X�
[f(x)mi(x)]� ED|X�

[f(x)mi(x)]

��� 
1

2
·

↵
0

1
p
2k

.

Now we observe that for any p1 2 P
1
n,d,2k, we have p1(x) = hv,m(x)i with kvk1 

p
k. Thus

���Ex⇠S|X�

⇥
f(x) · p1(x)

⇤
� Ex⇠D|X�

⇥
f(x) · p1(x)

⇤���

=

���v ·
�
Ex⇠S|X�

⇥
f(x) ·m(x)

⇤
� Ex⇠D|X�

⇥
f(x) ·m(x)

⇤����



p

k ·

���Ex⇠S|X�

⇥
f(x) ·m(x)

⇤
� Ex⇠D|X�

⇥
f(x) ·m(x)

⇤���
1


1

2
↵
0

1. (C.14)

On the other hand, recall that for any p1 2 P
1
n,d,2k, kp1kL2 = 1 in view of Lemma 29. Thus Lemma 34 tells that

sup

f :|f |1,p12P
1
n,d,2k

���Ex⇠D[f(x) · p(x)]� Ex⇠D|X�
[f(x) · p(x)]

���  4

q
Prx⇠D(x /2 X�)  4

p
�� ,

where the last step follows from Lemma 23. Since we set �� such that �� 
(↵0

1)
2

64 , we have

sup

f :|f |1,p12P
1
n,d,2k

���Ex⇠D[f(x) · p(x)]� Ex⇠D|X�
[f(x) · p(x)]

��� 
1

2
↵
0

1. (C.15)

Part 4 follows from applying triangle inequality on (C.14) and (C.15), and the conditioning S|X�
= S.

Lastly, we show Part 7. We note that for any fixed index (i, j) 2 [(n + 1)
d
] ⇥ [(n + 1)

d
], supx2X�

��mi(x)mj(x)
��  �

2

holds with certainty. Therefore, Hoeffding’s inequality for bounded random variable tells that

Pr
� ���ES|X�

[mi(x)mj(x)]� ED|X�
[mi(x)mj(x)]

��� > t
�
 2 exp

�
�

|S| t
2

4�4

�
.

Thus, by taking the union bound over all choices of (i, j), we obtain that with probability 1� �/8,

max
(i,j)2[(n+1)d]⇥[(n+1)d]

���ES|X�
[mi(x)mj(x)]� ED|X�

[mi(x)mj(x)]

��� 
1

2
·
↵
0

2
p
s

(C.16)

19

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

as far as

|S| �
16s�

4

(↵0

2)
2
· log

16(n+ 1)
2d

�
. (C.17)

Now, for any p2 2 P
2
n,d,s

, we have p2(x) = hAU ,m(x)m(x)
>
i � hAU , Ii. Thus,

���ES|X�
[p2(x)]� ED|X�

[p2(x)]

���

=

������

X

(i,j)2U

Aij

�
ES|X�

[mi(x)mj(x)]� ED|X�
[mi(x)mj(x)]

�
������



q
kUk0 · max

(i,j)2[(n+1)d]⇥[(n+1)d]

���ES|X�
[mi(x)mj(x)]� ED|X�

[mi(x)mj(x)]

���


p
s ·

1

2
·
↵
0

2
p
s

=
1

2
↵
0

2. (C.18)

On the other hand, by Lemma 30, we have kp2kL2  ⇢2 for all p2 2 P
2
n,d,s

. Thus, Lemma 34 tells that

sup

p22P
2
n,d,s

���Ex⇠D[p2(x)]� Ex⇠D|X�
[p2(x)]

���  4⇢2

q
Prx⇠D(x /2 X�)  4⇢2

p
�� .

Since we set �� such that �� 
(↵0

2)
2

64⇢2
2

, we have

sup

p22P
2
n,d,s

���Ex⇠D[p2(x)]� Ex⇠D|X�
[p2(x)]

���  4⇢2

q
Prx⇠D(x /2 X�) 

1

2
↵
0

2. (C.19)

Part 7 follows from applying triangle inequality on (C.18) and (C.19), and the conditioning S|X�
= S.

Observe that by the union bound, all these parts hold simultaneously with probability at least 1�����/4��/8��/8 � 1��

since we set ��  �/2. In addition, to satisfy all the requirements on the sample size involved in all parts, i.e. (C.12), (C.13),
and (C.17), we need

|S| � C
0
·
��4

· k
4
· log n

✏2
log

�kn
d
d

✏�

�
, (C.20)

for some large enough constant C 0
> 0. Our setting on |S| follows by plugging the setting of � in Definition 12 into the

above equation and noting that k  max{d+ 1, 2K
n
}. The proof is complete.

Lemma 34 (Total variation distance). Assume that Prx⇠D(x 2 X�) �
1
2 and let ⇢ > 0 be a finite real number. The

following holds uniformly for all functions f and p satisfying f : Rn
! [�1, 1] and kpk

L2  ⇢:

���Ex⇠D[f(x) · p(x)]� Ex⇠D|X�
[f(x) · p(x)]

���  4⇢

q
Prx⇠D(x /2 X�).

Proof. Denote z(x) = f(x) · p(x). Let 1Xc
�
(x) be the indicator function which outputs 1 if x /2 X� and 0 otherwise. By

simple calculation, we have

Ex⇠D[z(x)] = Prx⇠D(x 2 X�) · ED|X�
[z(x)] + ED[z(x) · 1Xc

�
(x)],

namely,

ED|X�
[z(x)] =

ED[z(x)]

PrD(x 2 X�)
�

ED[z(x) · 1Xc
�
(x)]

PrD(x 2 X�)
. (C.21)

20

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Therefore,
���ED|X�

[z(x)]� ED[z(x)]

��� =

�����
PrD(x /2 X�) · ED[z(x)]

PrD(x 2 X�)
�

ED[z(x) · 1Xc
�
(x)]

PrD(x 2 X�)

�����


PrD(x /2 X�)

PrD(x 2 X�)
·
��ED[z(x)]

��+

���ED[z(x) · 1Xc
�
(x)]

���
PrD(x 2 X�)


1

1/2
· PrD(x /2 X�) ·

��ED[z(x)]
��+

���ED[z(x) · 1Xc
�
(x)]

���
1/2

, (C.22)

where we applied the condition PrD(x 2 X�) � 1/2 in the last step.

Observe that ��ED[z(x)]
�� 

p
ED[z2(x)] 

p
ED[p2(x)] = kpk

L2  ⇢. (C.23)

On the other hand,
���ED[z(x) · 1Xc

�
(x)]

��� 
p
ED[z2(x)] ·

q
ED[1Xc

�
(x)]  ⇢ ·

q
PrD(x /2 X�). (C.24)

Combining (C.22), (C.23), (C.24), and noting that any probability is always no greater than its root completes the proof.

D. Analysis of Algorithm 2: Proof of Theorem 14
Proof of Theorem 14. Note that in view of our construction of p2 in the algorithm, we have E[p2(S0

)] =
��(⌃� I)U

��
F

.
Denote E = S

0
\S and L = S\S

0. Then,
��S0

�� ·
��(⌃� I)U

��
F
=
��S0

�� · E[p2(S0
)] = |S| · E[p2(S)] + |E| · E[p2(E)]� |L| · E[p2(L)]. (D.1)

Observe that Lemma 30 tells that E[p2(D)] = 0, which combined with Part 7 of Definition 12 gives E[p2(S)]  ↵
0

2. In
addition, Lemma 36 shows |L| ·

��E[p2(L)]
��  2(1 +

1
c
) |S| · (�

0
(⌘, 2d, ⇢2) + ↵2�2). Assume for contradiction that no such

threshold t exists. Then Lemma 35 gives |E| ·
��E[p2(E)]

��  7(1 +
1
c
)
��S0

�� · (�0
(⌘, 2d, ⇢2) + ↵2�2). Plugging these into

(D.1), we obtain that
��S0

�� ·
��(⌃� I)U

��
F
 |S| · ↵

0

2 + 7(1 +
1

c
)
��S0

�� · (�0
(⌘, 2d, ⇢2) + ↵2�2) + 2(1 +

1

c
) |S| · (�

0
(⌘, 2d, ⇢2) + ↵2�2).

Diving both sides by
��S0

�� and noting that (A.2) shows |S|  (1 +
1
2c)

��S0
��, we obtain

��(⌃� I)U

��
F
 7(1 +

1

c
)(1 +

1

2c
)
�
�
0
(⌘, 2d, ⇢2) + ↵

0

2 + ↵2�2) 
14

c2

�
�
0
(⌘, 2d, ⇢2) + ↵

0

2 + ↵2�2),

where the last step follows since c 2 (0,
1
2]. Recall that we set ↵0

2 = ✏ and ↵2 = ✏/�2 in Definition 12. Thus, the above
inequality reads as

��(⌃� I)U

��
F


14

c2

�
�
0
(⌘, 2d, ⇢2) + 2✏

�
= ,

which contradicts the condition of the proposition that
��(⌃� I)U

��
F
> .

Note that the existence of such threshold t combined with Lemma 38 implies the desired progress in the symmetric difference.
In particular, by combining Part 5 of Definition 12 and Lemma 30, we have

Pr(p2(S) > t)  exp(�(t/⇢2)
1/d

/c0) + ↵2, 8 t > 0. (D.2)

We also just showed that there exists t > 0 such that

Pr(p2(S
0
) > t) � 6 exp(�(t/⇢2)

1/d
/c0) + 6↵2. (D.3)

In addition, (A.2) tells
��S0

�� � 1
2 |S|. Thus, Lemma 38 asserts that

�(S, S
00
)  �(S, S

0
)� exp(�(t/⇢2)

1/d
/c0)� ↵2  �(S, S

0
)� ↵2. (D.4)

This completes the proof by noting that we set ↵2 =
✏

�2
=

✏

4k�2 .

21

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

D.1. Auxiliary results

Lemma 35 (Restatement of Lemma 15). Consider Algorithm 2. Suppose that �(S, S
0
)  2⌘ and

��(⌃� I)U

��
F
> . Let

E = S
0
\S. If there does not exist a threshold t > 0 that satisfies Step 3, then

(|E| /
��S0

��) sup

p22P
2
n,d,s

E[
��p2(E)

��]  7(1 +
1

c
) ·
⇥
�
0
(⌘, 2d, ⇢2) + ↵2�2

⇤
.

Proof. We use Lemma 37 to establish the result. We note that �(S, S
0
)  2⌘ implies |E| 

⌘

c

��S0
�� by (A.3). Since we

assumed that no threshold t satisfies the filtering condition, we have

Pr(
��p2(S0

)
�� > t)  6 exp(�(t/⇢2)

1/d
/c0) + 6↵2, 8 t > 0.

By Lemma 27, we have
R
1

0 min{⌘, exp(�(t/⇢2)
1/d

/c0)}  �
0
(⌘, 2d, ⇢2). Lastly, by Lemma 30, we have

maxx2S0
��p2(x)

��  �2. Thus, using Lemma 37 gives the result.

Lemma 36 (Restatement of Lemma 16). Consider Algorithm 2. Suppose that S is a good set and �(S, S
0
)  2⌘. We have

(|L| / |S|) sup

p22P
2
n,d,s

E[
��p2(L)

��]  2(1 +
1

c
)
⇥
�
0
(⌘, 2d, ⇢2) + ↵2�2

⇤
.

Proof. We use Lemma 37 to establish the result. Similar to Lemma 35, we can show that |L|  ⌘

c
|S| by (A.3). By

combining Lemma 30 and Part 5 of Definition 12, we have

Pr(
��p2(S)

�� > t)  exp(�(t/⇢2)
1/d

/c0) + ↵2, 8 t > 0.

By Lemma 27, we have
R
1

0 min{⌘, exp(�(t/⇢2)
1/d

/c0)}  �
0
(⌘, 2d, ⇢2). Lastly, by Lemma 30, we have

maxx2S0
��p2(x)

��  �2. Thus, using Lemma 37 gives the result.

The following lemma borrows from Lemma 2.10 of Diakonikolas et al. (2018a); the proof is included for completeness.

Lemma 37. Let c0 > 0 be an absolute constant. Let S0 be a set of instances in Rn and S1 ⇢ S0, with |S1|  !1⌧ |S0| for
some !1, ⌧ > 0. Let p be such that Pr(

��p(S0)
�� > t)  !2 ·Qd(t) + ↵0 for all t � t0, where !2, Qd(t),↵0 > 0. Assume

maxx2S0

��p(x)
��  �0. Further assume that

R
1

0 min{⌧, Qd(t)} dt  �0. Then

(|S1| / |S0|) · E[
��p(S1)

��]  !1t0 · ⌧ + (!1 + 1)(!2 + 1)�0 + ↵0�0.

Proof. Since S1 ⇢ S0, we have |S1| · Pr(
��p(S1)

�� > t)  |S0| · Pr(
��p(S0)

�� > t). Thus,

Pr(
��p(S1)

�� > t)  min

n
1,

|S0|

|S1|
· Pr(

��p(S0)
�� > t)

o
. (D.5)

22

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

By Fact 20, we have

(|S1| / |S0|) · E[
��p(S1)

��] 
Z

1

0
(|S1| / |S0|) Pr(

��p(S1)
�� > t) dt

⇣1
=

Z
�0

0
(|S1| / |S0|) Pr(

��p(S1)
�� > t) dt

⇣2



Z
�0

0
min

n
|S1| / |S0| ,Pr(

��p(S0)
�� > t)

o
dt

⇣3



Z
�0

0
min

n
!1⌧,Pr(

��p(S0)
�� > t)

o
dt

⇣4



Z
t0

0
min{!1⌧, 1} dt+

Z
�0

t0

min{!1⌧,!2 ·Qd(t) + ↵0} dt

⇣5

 !1⌧ t0 +

Z
�0

t0

min{!1⌧,!2 ·Qd(t)} dt+

Z
�0

t0

↵0 dt

⇣6

 !1t0 · ⌧ + (!1 + 1)(!2 + 1)

Z
�0

t0

min{⌧, Qd(t)} dt+ ↵0(�0 � t0)

⇣7

 !1t0 · ⌧ + (!1 + 1)(!2 + 1)�0 + ↵0�0.

In the above, ⇣1 follows from the condition that p(x)  �0 for all x 2 S1, ⇣2 follows from (D.5), ⇣3 uses the condition |S1| 

!1⌧ |S0|, ⇣4 uses the condition of the tail bound of p(S0) when t � t0, ⇣5 applies elementary facts that min{!1⌧, 1}  !1⌧

and min{a, b+ c}  min{a, b}+ c for any c > 0, ⇣6 uses the fact that both !1
(!1+1)(!2+1) and !1

(!1+1)(!2+1) are less than 1

for positive !1 and !2, and ⇣7 applies the condition on the integral and uses the fact that both ⌧ and Qd(t) are positive.

The following lemma is implicit in prior works but we give a slightly more general statement; see e.g. Claim 5.13 of
Diakonikolas et al. (2016).

Lemma 38. Let S and S
0 be two instance sets with

��S0
�� � ↵ |S| for some ↵ 2 (0, 1]. Suppose that there exists t0 > 0 such

that Pr(g(S) � t0)  h1(t0), Pr(g(S0
) � t0) > h2(t0), and h2(t0) �

3
↵
· h1(t0). Let S00

= S
0
\ {x : g(x) � t0}. Then

�(S, S
00
)��(S, S

0
)  �h1(t0).

Proof. Write E := S
0
\S and L := S\S

0. Then S
0
= S [E\L. Likewise, write E

0 := S
00
\S and L

0 := S\S
00. Then

S
00
= S [E

0
\L

0. Since S
00
⇢ S

0, we have E
0
⇢ E and L

0
� L. It is not hard to see that

�(S, S
00
)��(S, S

0
) =

��E0
��+

��L0
��

|S|
�

|E|+ |L|

|S|
=

1

|S|
·
� ��L0

\L
���

��E\E
0
�� �. (D.6)

Let V := {x : g(x) � t0}. By our assumption, it follows that

|S \ V |  h1(t0) · |S| ,
��S0
\ V

�� > h2(t0) ·
��S0

�� .

By basic set operations, we have E\E
0
= (S

0
\S) \ V = (S

0
\ V)\S = (S

0
\ V)\(S \ V). Thus,

��E\E
0
�� �

��S0
\ V

��� |S \ V | � h2(t0) ·
��S0

��� h1(t0) |S| �
�
↵ · h2(t0)� h1(t0)

�
|S| . (D.7)

On the other hand, L0
\L = (S

0
\ S) \ V . Thus,

��L0
\L

��  |S \ V |  h1(t0) · |S| . (D.8)

Combining (D.7) and (D.8), and the condition of h2(t0) �
3
↵
· h1(t0), we have

��E\E
0
�� � 2h1(t0) · |S| �

��L0
\L

��+ h1(t0) · |S| .

This combined with (D.6) completes the proof.

23

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

E. Performance Guarantees on the Output of Algorithm 1
E.1. Proof of Theorem 17

Proof of Theorem 17. We first show the following holds:

sup

p12P
1
n,d,2k

���E(x,y)⇠S̄0
l
[y · p1(x)]� Ex⇠D[f

⇤
(x) · p1(x)]

��� 
64

c2

q
⌘(�⌘ + �✏) +

✏

2
. (E.1)

To ease notation, write S0 := S
0

l
, L = S\S

0, E = S
0
\S. Let p1 be an arbitrary polynomial in P

1
n,d,2k. As S0

= S [E\L, it
is easy to see that

��S0
�� ·
���E(x,y)⇠S̄0 [y · p1(x)]� E(x,y)⇠S̄ [y · p1(x)]

���

=

���(
��S0

��� |S|)ES̄ [y · p1(x)] + |L| · EL̄[y · p1(x)]� |E| · EĒ [y · p1(x)]

���



���
��S0

��� |S|

��� ·
��ES̄ [y · p1(x)]

��+ |L| ·
��EL̄[y · p1(x)]

��+ |E| ·
��EĒ [y · p1(x)]

�� .

Note that the Cauchy–Schwarz inequality states that E[y · p1(x)] 
p
E[y2] ·

p
E[p21(x)] =

p
E[p21(x)] where the last step

follows since y 2 {�1, 1}. Therefore, continuing the above inequality, we have
��S0

�� ·
���E(x,y)⇠S̄0 [y · p1(x)]� E(x,y)⇠S̄ [y · p1(x)]

���



���
��S0

��� |S|

��� ·
q
E[p21(S)] + |L| ·

q
E[p21(L)] + |E| ·

q
E[p21(E)]



���
��S0

��� |S|

��� ·
q
1 + 2��� + ✏+

q
|L| · |S| ·

�
12�⌘ + 4⌘ + ✏

�
+

r
6

c
|E| · |S0|

�
+ �⌘ + ��� + ⌘ + ✏

�
(E.2)

where in the last step we applied Lemma 40, Lemma 41, Lemma 42, and denoted ��� = �(2�� , d,
p
2) and �⌘ =

�(⌘, d,
p
2).

On the other hand, (A.2) implies ���
��S0

��� |S|

��� 
2⌘

1� 2⌘

��S0
��  ⌘

c

��S0
��

for ⌘ 2 [0,
1
2 � c]. We also have the following estimates: max{|E| , |L|}  ⌘ |S| 

⌘

1�2⌘

��S0
��  ⌘

2c

��S0
��. Plugging these

into (E.2), we have
���E(x,y)⇠S̄0 [y · p1(x)]� E(x,y)⇠S̄ [y · p1(x)]

��� 
1

c

h
⌘

q
1 + ��� + ✏+ 4

q
⌘(+ ��� + �⌘ + ⌘ + ✏)

i
. (E.3)

On the other hand, we note that in view of Part 4 of Definition 12, we have
���E(x,y)⇠S̄ [y · p1(x)]� Ex⇠D[f

⇤
(x)p1(x)]

��� =
��Ex⇠S [f

⇤
(x)p1(x)]� Ex⇠D[f

⇤
(x)p1(x)]

��  ↵
0

1, (E.4)

where the first step follows from the condition that f⇤
(·) is the underlying PTF and S̄ is an uncorrupted sample set (which

implies y = f
⇤
(x) for any (x, y) 2 S̄). By applying triangle inequality on (E.3) and (E.4), we have

���E(x,y)⇠S̄0 [y · p1(x)]� Ex⇠D[f
⇤
(x) · p1(x)]

��� 
4

c

h
⌘

q
1 + ��� + ✏+

q
⌘(+ ��� + �⌘ + ⌘ + ✏)

i
+ ↵

0

1. (E.5)

Now recall that ↵0

1 = ✏/6, �� is such that ���  �✏, ⌘  �⌘ , and  
14
c2
(�⌘ + ✏). Thus, by rearrangement, we have

���E(x,y)⇠S̄0 [y · p1(x)]� Ex⇠D[f
⇤
(x) · p1(x)]

���


16

c2

h
⌘

p
1 + �✏ + ✏+

q
⌘(�⌘ + �✏ + ✏)

i
+

✏

6

⇣1


32

c2

q
⌘(⌘ + ⌘�✏ + ⌘✏+ �⌘ + �✏ + ✏) +

✏

6

⇣2


64

c2

q
⌘(�⌘ + �✏) +

✏

6
,

24

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

where in ⇣1 we used the elementary inequality
p
a+
p
b  2

p
a+ b, and in ⇣2 we used the fact that ⌘  �⌘ , ⌘✏ < ✏  �✏.

This proves (E.1) since the above holds for any p1 2 P
1
n,d,2k.

Now we note that for any p1 2 P
1
n,d,2k, it can be represented as p1(x) = hv,m(x)i with kvk2 = 1 and kvk0  2k. In this

way, we get
���E(x,y)⇠S̄0 [y · p1(x)]� Ex⇠D[f

⇤
(x) · p1(x)]

���

=

���E(x,y)⇠S̄0 [y · hv,m(x)i]� Ex⇠D[f
⇤
(x) · hv,m(x)i]

���

=

���hv,E(x,y)⇠S̄0 [y ·m(x)]i � hv,Ex⇠D[f
⇤
(x) ·m(x)]i

���

=

���hv,E(x,y)⇠S̄0 [y ·m(x)]� �f⇤i

��� .

Using Lemma 45 completes the proof.

E.2. Proof of Theorem 18

Proof of Theorem 18. Let S̄ be the uncorrupted sample set with the same size as S̄0. Observe that by Proposition 13, S is
a good set and �(S, S

0
)  2⌘. We show by induction the progress of filtering, which will imply that within lmax phases,

Algorithm 1 must terminate.

Suppose that the algorithm returns at some phase l̄ � 1, i.e.
��(⌃� I)U

��
F
>  for all 1  l < l̄. We show by induction

that the two invariants hold: �(S, S
0

l
)  2⌘ and �(S, S

0

l+1)  �(S, S
0

l
)�

✏

2k�2 .

Base case: l = 1. Note that since S is a good set, S|X�
= S. Thus, no samples in S are pruned in Step 1 of Algorithm 1.

Therefore, we have �(S, S
0

1)  �(S, S
0
)  2⌘. In addition, we have

��(⌃� I)U

��
F
> . Thus, Theorem 14 tells us that

�(S, S
0

2)  �(S, S
0

1)�
✏

2k�2
. (E.6)

In particular, the above implies that �(S, S
0

2)  2⌘.

Induction. Now suppose that �(S, S
0

l
)  2⌘. Then applying Theorem 14 gives us

�(S, S
0

l+1)  �(S, S
0

l
)�

✏

2k�2
, (E.7)

and in particular, �(S, S
0

l+1)  2⌘.

Therefore, by telescoping, we obtain that

�(S, S
0

l̄
)  �(S, S

0

1)�
(l̄ � 1) · ✏

2k�2
 2⌘ �

(l̄ � 1) · ✏

2k�2
. (E.8)

On the other hand, the symmetric difference �(S, S
0

l̄
) is always non-negative. This implies that

l̄ 
4⌘k�

2

✏
+ 1 =

4⌘k

✏
·
�
C1d · log

nd

✏�

�d
+ 1, (E.9)

where we realized the setting of � in the second step.

Now we characterize the output of the algorithm. In fact, by Theorem 17, we have

���Hk

�
E(x,y)⇠S̄0

l̄
[y ·m(x)]

�
� �f⇤

���
2


192

c2

q
⌘(�⌘ + �✏) +

✏

2
.

The proof is complete by noting that Hk

�
E(x,y)⇠S̄0

l̄
[y ·m(x)]

�
is the output of the algorithm.

25

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

E.3. Auxiliary results

Lemma 39. If
��(⌃� I)U

��
F
 , then

sup

p12P
1
n,d,2k

E[p21(S0
)]  + 1.

Proof. For any p1 2 P
1
n,d,2k, we can write it as p1(x) = v ·m(x) where v is 2k-sparse and kvk2 = 1. Denote by J the

support set of v. Then,

E[p21(S0
)] = E[v>m(S

0
)m

>
(S

0
)v]

= v
>
⌃J⇥Jv = v

>
(⌃� I)J⇥Jv + v

>
v 

���vv>
���
F

·
��(⌃� I)J⇥J

��
F
+ 1.

Since kvk0  2k, we know that J ⇥ J has 2k diagonal entries and 4k
2
� 2k off-diagonal symmetric entries. This implies��(⌃� I)J⇥J

��
F

��(⌃� I)U

��
F
 . Now using

��vv>
��
F
= kvk

2
2 = 1 completes the proof.

Lemma 40. Assume that S is a good set. We have

sup

p12P
1
n,d,2k

���E[p21(S)]� 1

���  2 · �(2�� , d,
p

2) + ↵1�
2
1 .

In particular, as we set ↵1 
✏

�2
1

, we have

sup

p12P
1
n,d,2k

���E[p21(S)]� 1

���  2 · �(2�� , d,
p

2) + ✏.

Proof. By Fact 20,

���E[p21(D)]� E[p21(D|X�
)]

��� =
����
Z

1

0
2t
⇥
Pr(

��p1(D)
�� > t)� Pr(|p1(D|X�

)| > t)
⇤
dt

����



Z
1

0
2tmin{2�� ,Pr(

��p1(D)
�� � t) dt

 2�(2�� , d,
p

2),

where the second step follows from Lemma 44 and the last step follows from Lemma 24.

On the other hand, by Part 3 of Definition 12, we have

���E[p21(S|X�
)]� E[p21(D|X�

)]

��� =
����
Z

1

0
2t
⇥
Pr(|p1(S|X�

)| > t)� Pr(|p1(D|X�
)| > t)

⇤
dt

����



Z
�1

0
2t↵1 dt

= ↵1�
2
1 ,

where the inequality follows since
��p1(x)

��  �1 for all x 2 X� (Lemma 29). By triangle inequality, the fact that
E[p21(D)] = 1 (Lemma 29), and S|X�

= S (S is a good set), we complete the proof.

Lemma 41. Assume that S is a good set and �(S, S
0
)  2⌘. Let L = S\S

0. We have

sup

p12P
1
n,d,2k

(|L| / |S|) · E[p21(L)]  12 · �(⌘, d,
p

2) + 4⌘ + ↵1�
2
1 .

In particular, as we set ↵1 
✏

�2
1

, we have

sup

p12P
1
n,d,2k

(|L| / |S|) · E[p21(L)]  12 · �(⌘, d,
p

2) + 4⌘ + ✏.

26

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Proof. We will use Lemma 43 to show the result. Since S is a good set, we have S|X�
= S. We have |L|  2⌘ |S| =

���S|X�

���
since �(S, S

0
)  2⌘. By Lemma 29 and Part 2

in that lemma, we set S0 = S, S1 = L, !1 = 2, ✏0 = ⌘. By Lemma 29, we set Qd(t) = e
�(t/

p
2)2/d/c0 , and t0 =

p
2.

Lemma 29 tells that we can set !2 = 1. In this way, by Corollary 25, we set �0 = �(⌘, d,
p
2). By Lemma 29, we can set

�0 = �1. Therefore, we obtain the desired bound.

Lemma 42. Assume that S is a good set, �(S, S
0
)  2⌘, and

��(⌃� I)U

��
F
 . We have

sup

p12P
1
n,d,2k

|E| · E[p21(E)] 
��S0

�� · 6
c

�
+ �(⌘, d,

p

2) + �(2�� , d,
p

2) + ⌘ + ✏
�
.

Proof. Recall S0
= S [E\L. By algebraic calculation, we have

|E| · E[p21(E)] =
��S0

�� · E[p21(S0
)] + |L| · E[p21(L)]� |S| · E[p21(S)]


��S0

�� · (+ 1) + |S| ·
�
12�(⌘, d,

p

2) + 4⌘ + ✏
�
� |S| ·

�
1� 2 · �(2�� , d,

p

2)� ✏
�


��S0

�� · + 12 |S|
�
�(⌘, d,

p

2) + �(2�� , d,
p

2) + ⌘ + ✏
�

where we applied Lemma 39, Lemma 40 and Lemma 41 in the first inequality and the fact
��S0

��  |S| in the last step. Since
�(S, S

0
)  2⌘, in view of (A.2), we have |S| 

1
1�2⌘

��S0
��  1

2c

��S0
��. Rearranging gives the desired result.

The following lemma is similar to Lemma 37, but we upper bound the expectation of the square of a polynomial.

Lemma 43. Let c0 > 0 be an absolute constant. Let S0 be a set of instances in Rn and S1 ⇢ S0, with |S1|  !1⌧ |S0|

for !1, ⌧ > 0. Let p be such that Pr(
��p(S0)

�� > t)  !2 · Qd(t) + ↵0 for all t � t0, where !2, Qd(t),↵0 > 0. Assume
maxx2S0

��p(x)
��  �0. Further assume that

R
1

0 tmin{⌧, Qd(t)} dt  �0. Then

(|S1| / |S0|) · E[p2(S1)]  !1t
2
0 · ⌧ + 2(!1 + 1)(!2 + 1)�0 + ↵0�

2
0 .

Proof. Since S1 ⇢ S0, we have |S1| · Pr(
��p(S1)

�� > t)  |S0| · Pr(
��p(S0)

�� > t). Thus,

Pr(
��p(S1)

�� > t)  min

n
1,

|S0|

|S1|
· Pr(

��p(S0)
�� > t)

o
. (E.10)

By Fact 20, we have

(|S1| / |S0|) · E[p2(S1)] 

Z
1

0
2t(|S1| / |S0|) Pr(

��p(S1)
�� > t) dt

⇣1
=

Z
�0

0
2t(|S1| / |S0|) Pr(

��p(S1)
�� > t) dt

⇣2



Z
�0

0
2tmin

n
|S1| / |S0| ,Pr(

��p(S0)
�� > t)

o
dt

⇣3



Z
�0

0
2tmin

n
!1⌧,Pr(

��p(S0)
�� > t)

o
dt

⇣4



Z
t0

0
2tmin{!1⌧, 1} dt+

Z
�0

t0

2tmin{!1⌧,!2 ·Qd(t) + ↵0} dt

⇣5



Z
t0

0
2!1⌧ t dt+

Z
�0

t0

2tmin{!1⌧,!2 ·Qd(t)} dt+

Z
�0

t0

2t↵0 dt

⇣6

 !1t
2
0 · ⌧ + 2(!1 + 1)(!2 + 1)

Z
�0

t0

tmin{⌧, Qd(t)} dt+ ↵0(�
2
0 � t

2
0)

⇣7

 !1t
2
0 · ⌧ + 2(!1 + 1)(!2 + 1)�0 + ↵0�

2
0 .

27

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

In the above, ⇣1 follows from the condition that p(x)  �0 for all x 2 S1, ⇣2 follows from (E.10), ⇣3 uses the condition |S1| 

!1⌧ |S0|, ⇣4 uses the condition of the tail bound of p(S0) when t � t0, ⇣5 applies elementary facts that min{!1⌧, 1}  !1⌧

and min{a, b+ c}  min{a, b}+ c for any c > 0, ⇣6 uses the fact that both !1
(!1+1)(!2+1) and !1

(!1+1)(!2+1) are less than 1

for positive !1 and !2, and ⇣7 applies the condition on the integral and uses the fact that both ⌧ and Qd(t) are positive.

Lemma 44. Suppose ��  1/2. The following holds for any function p:
���Pr(|p(D|X�

)| � t)� Pr(
��p(D)

�� � t)

���  min
�
2�� ,Pr(

��p(D)
�� � t)

.

Proof. Lemma 11 tells that Prx⇠D(x /2 X�)  �� . Observe that

Pr(|p(D|X�
)| � t) 

Pr(
��p(D)

�� � t)

Prx⇠D(x 2 X�)


1

1� ��
Pr(

��p(D)
�� � t)  2Pr(

��p(D)
�� � t),

implying ���Pr(|p(D|X�
)| � t)� Pr(

��p(D)
�� � t)

���  Pr(
��p(D)

�� � t). (E.11)

On the other hand, for any event A,

PrD(A) = PrD(A | x 2 X�) · PrD(x 2 X�) + PrD(A | x /2 X�) · PrD(x /2 X�).

This implies
��PrD(A)� PrD(A | x 2 X�)

��

=
��PrD(A | x 2 X�) · (PrD(x 2 X�)� 1) + PrD(A | x /2 X�) · PrD(x /2 X�)

��

=
���PrD(A | x 2 X�) · PrD(x /2 X�) + PrD(A | x /2 X�) · PrD(x /2 X�)

��

 2PrD(x /2 X�)

 2�� .

This completes the proof.

Lemma 45. For any vector w and any k-sparse vector u, if supv:kvk2=1,kvk02k

��hv, w � ui
��  ✏, then

��Hk(w)� u
��
2


3✏.

Proof. Let ⇤0 be the support set of Hk(w), ⇤1 = supp(u)\⇤0, ⇤2 = supp(u) \ ⇤0, ⇤3 = ⇤0\ supp(u). Therefore, we
can decompose ��Hk(w)� u

��2
2
= ku⇤1k

2
2 +

��(w � u)⇤2

��2
2
+ kw⇤3k

2
2 . (E.12)

Note that by choosing v = (w � u)⇤2[⇤3/
��(w � u)⇤2[⇤3

��
2
, we get

��(w � u)⇤2

��2
2
+ kw⇤3k

2
2  ✏

2
. (E.13)

On the other side, observe that
ku⇤1k2 

��(u� w)⇤1

��
2
+ kw⇤1k2 (E.14)

by triangle inequality. Since ⇤3 is a subset of ⇤0, the index set of the k largest elements of w, while ⇤1 \ ⇤0 = ;, we know
that elements of w in ⇤1 are less than those in ⇤3. This combined with the fact that |⇤1| = |⇤3| implies that

kw⇤1k2  kw⇤3k2  ✏. (E.15)

where the second step follows from (E.13). In order to upper bound
��(u� w)⇤1

��
2
, we can pick v = (u �

w)⇤1/
��(u� w)⇤1

��
2

and get ��(u� w)⇤1

��
2
 ✏. (E.16)

Plugging (E.15) and (E.16) into (E.14) gives
ku⇤1k2  2✏.

This in conjunction with (E.13) and (E.12) gives
��Hk(w)� u

��
2

p
5✏  3✏.

28

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

F. Proof of Theorem 19
Proof. The sample complexity and the first equation are an immediate result from Theorem 18 and Lemma 46. The second
equation follows from algebraic calculation.

Lemma 46 (Diakonikolas et al. (2018a)). Suppose D is N (0, In⇥n). There is an algorithm that takes as input a vector
u 2 R(n+1)d with

��u� �f⇤
��
2
 ✏, runs in time O(n

d
/✏

2
) and outputs a degree-d PTF f̂ such that

Prx⇠D

�
f̂(x) 6= f

⇤
(x)

�
 c1 · d · ✏

1
d+1 ,

for some absolute constant c1 > 0.

Proof. The result is a combination of Theorem 10 of De et al. (2014), Lemma 3.4 and Lemma 3.5 of Diakonikolas et al.
(2018a). The only difference is that when applying Theorem 10 of De et al. (2014) to our setup, we can compute Chow
vectors of a given function exactly since D is known to be Gaussian; thus no additional samples are needed and the running
time is slightly better than their original analysis. See Lemma 47 for clarification.

We reproduce the proof of Theorem 10 of De et al. (2014) but tailored to our case that D is Gaussian, and thus there is no
need to acquire additional samples.

Lemma 47. Let f be a degree-d PTF on Rn. There is an algorithm that takes as input a vector v with
��v � �f

��
2
 ✏, and

outputs a polynomial bounded function g : Rn
! [�1, 1] such that

���g � �f

��
2
 4✏. In addition, the algorithm runs in

O(n
d
/✏

2
) time.

Proof. We will iteratively construct a sequence of functions {gt} ⇢ Pn,d. Let g00 = 0 and g0 = P1(g
0

0), where P1(a) =

sign(a) if |a| � 1 and P1(a) = a otherwise. Given gt, we compute �gt . Let

⇢ :=
��v � �gt

��
2
. (F.1)

Case 1. ⇢  3✏. Then
���gt � �f

��
2

���gt � v

��
2
+
��v � �f

��
2
=
���gt � v

��
2
+
��v � �f

��
2
 4✏.

Thus we output gt.

Case 2. ⇢ > 3✏. Define

h
0

t
(x) = (v � �gt) ·m(x), g

0

t+1 = g
0

t
+

1

2
h
0

t
, gt+1 = P1(g

0

t+1). (F.2)

Consider the following potential function:

E(t) = E[(f � gt)(f � 2g
0

t
+ gt)]. (F.3)

The proof of Theorem 10 of De et al. (2014) implies the following two claims:

Claim 48. E[(f � gt)h
0

t
] � ⇢(⇢� ✏).

Claim 49. Given any g
0

t
and h

0

t
, let gt = P1(g

0

t
), g0

t+1 = g
0

t
+

1
2h

0

t
, gt+1 = P1(g

0

t+1). Then E[(gt+1 � gt)(2g
0

t+1 � gt �

gt+1)] 
1
2 E[(h

0

t
)
2
].

Observe that by our definition of h0

t
, we have

E[(h0

t
)
2
] =

��v � �gt

��2
2
= ⇢

2
. (F.4)

29

Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise

Therefore, the progress of E(t) can be bounded as follows:

E(t+ 1)� E(t) = �E[(f � gt)h
0

t
] + E[(gt+1 � gt)(2g

0

t+1 � gt � gt+1)]

 �⇢(⇢� ✏) +
1

2
⇢
2

 �✏
2
.

In addition, we have E(t) � 0 and E(0) = 1. These together imply that the algorithm terminates in at most 1
✏2

iterations. It
is easy to see that the computational cost in each iteration is dominated by the construction of h0

t
(·), which is O(n

d
). Thus,

the overall running time is O(n
d
/✏

2
).

30

