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Abstract. A non-interactive ZK (NIZK) proof enables verification of
NP statements without revealing secrets about them. However, an adver-
sary that obtains a NIZK proof may be able to clone this proof and dis-
tribute arbitrarily many copies of it to various entities: this is inevitable
for any proof that takes the form of a classical string. In this paper, we
ask whether it is possible to rely on quantum information in order to
build NIZK proof systems that are impossible to clone.

We define and construct unclonable non-interactive zero-knowledge
arguments (of knowledge) for NP, addressing a question first posed by
Aaronson (CCC 2009). Besides satisfying the zero-knowledge and argu-
ment of knowledge properties, these proofs additionally satisfy unclon-
ability. Very roughly, this ensures that no adversary can split an honestly
generated proof of membership of an instance x in an NP language £
and distribute copies to multiple entities that all obtain accepting proofs
of membership of  in £. Our result has applications to unclonable sig-
natures of knowledge, which we define and construct in this work; these
non-interactively prevent replay attacks.
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1 Introduction

Zero-knowledge (ZK) [27] proofs allow a prover to convince a verifier about the
truth of an (NP) statement, without revealing secrets about it. These are among
the most widely used cryptographic primitives, with a rich history of study.

Enhancing Zero-Knowledge. ZK proofs for NP are typically defined via the sim-
ulation paradigm. A simulator is a polynomial-time algorithm that mimics the
interaction of an adversarial verifier with an honest prover, given only the state-
ment, i.e., z € L, for an instance x of an NP language £. A protocol satisfies
zero-knowledge if it admits a simulator that generates a view for the verifier,
which is indistinguishable from the real view generated by an honest prover.
This captures the intuition that any information obtained by a verifier upon
observing an honestly generated proof, could have been generated by the verifier
“on its own” by running the simulator.
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Despite being widely useful and popular, there are desirable properties of
proof systems that (standard) simulation-based security does not capture. For
example, consider (distributions over) instances x of an NP language £ where it
is hard to find an NP witness w corresponding to a given instance z. In an “ideal”
world, given just the description of one such NP statement x € L, it is difficult
for an adversary to find an NP witness w, and therefore to output any proofs of
membership of x € £. And yet, upon obtaining a single proof of membership of
z € L, it may suddenly become feasible for an adversary to make many copies
of this proof, thereby generating several correct proofs of membership of z € L.

Unfortunately, this attack is inevitable for classical non-interactive proofs:
given any proof string, an adversary can always make multiple copies of it. And
yet, there is hope to prevent such an attack quantumly, by relying on the no-
cloning principle.

Indeed, a recent series of exciting works have combined cryptography with
the no-cloning principle to develop quantum money [2,24,34,48,49], quantum
tokens for digital signatures [16], quantum copy-protection [1,3,8,23], unclonable
encryption [6,7,19,28,39], unclonable decryption [26], one-out-of-many unclon-
able security [35], and more. In this work, we combine zero-knowledge and unclon-
ability to address a question first posed by Aaronson [1]:

Can we construct unclonable quantum proofs?
How do these proofs relate to quantum money or copy-protection?

1.1 Owur Results

We define and construct unclonable non-interactive zero-knowledge argument of
knowledge (NIZKAoK). We obtain a construction in the common reference string
(CRS) model, as well as one in the quantum(-accessible) random oracle model
(QROM). The CRS model allows a trusted third-party to set up a structured
string that is provided to both the prover and verifier. On the other hand, the
QROM allows both parties quantum access to a truly random function O.

In what follows, we describe our contributions in more detail.

Definitional Contributions. Before discussing how we formalize the concept
of unclonability for NIZKs, it will be helpful to define hard distributions over
NP instance-witness pairs.

Hard Distributions over Instance- Witness Pairs. Informally, an efficiently sam-
plable distribution over instance-witness pairs of a language £ is a “hard” distri-
bution if given an instance sampled randomly from this distribution, it is hard
to find a witness. Then, unclonable security requires that no adversary given an
instance x sampled randomly from the distribution, together with an honestly
generated proof, can output two accepting proofs of membership of x € L.

More specifically, a hard distribution (X, W) over R, satisfies the following:
for any polynomial-sized (quantum) circuit family {C)}xen,

Cx(x) € Re()] < negl(M).
(w,w)h(ix’w)\)[ )\(Z') [,(I)] < neg( )
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For the sake of simplifying our subsequent discussions and definitions, let us
fix a NP language £ with corresponding relation R. Let (X, W) be some hard
distribution over R.

A Weaker Definition: Unclonable Security. For NIZKs satisfying standard com-
pleteness, soundness and ZK, we define a simple, natural variant of unclonable
security as follows. Informally, a proof system satisfies unclonable security if,
given an honest proof for an instance and witness pair (z,w) sampled from a
hard distribution (X', W), no adversary can produce two proofs that verify with
respect to x except with negligible probability.

Definition 1. (Unclonable  Security — of NIZK). A  NIZK  proof
(Setup, Prove, Verify) satisfies unclonable security if for every language L and
every hard distribution (X, W) over R, for every poly-sized quantum circuit

family {Cx}xen,

i = (crs,td) —Setup(1*)
Verify(crs, z,m) = 1 7T<_Prove(crsfa)c,w)] < negl(A).

P )
($7w)<—(£('A7W)\) and Verify(crs, z,ma) = 1 1,73 C (2.7

In the definition above, we aim to capture the intuition that one of the
two proofs output by the adversary can be the honest proof they received, but
the adversary cannot output any other correct proof for the same statement. Of
course, such a proof is easy to generate if the adversary is able to find the witness
w for x, which is exactly why we require hardness of the distribution (X, W) to
make the definition non-trivial.

We also remark that unclonable security of proofs necessitates that the proof
7w keep hidden any witnesses w certifying membership of z in £, as otherwise
an adversary can always clone the proof 7 by generating (from scratch) another
proof for x given the witness w.

A Stronger Definition: Unclonable Extractability. We can further strengthen the
definition above to require that any adversary generating two (or more) accepting
proofs of membership of z € L given a single proof, must have generated one of
the two proofs “from scratch” and must therefore “know” a valid witness w for x.
This will remove the need to refer to hard languages.

In more detail, we will say that a proof system satisfies unclonable extractabil-
ity if, from any adversary A that on input a single proof of membership of x € £
outputs two proofs for z, then we can extract a valid witness w from A for at least
one of these statements with high probability. Our (still, simplified) definition of
unclonable extractability is as follows.

Definition 2 (Unclonable Extractability). A proof (Setup,Prove, Verify)
satisfies unclonable security there exists a QPT extractor £ which is an oracle-
aided circuit such that for every language L with corresponding relation R, and
for every non-uniform polynomial-time quantum adversary A, for every instance-
witness pair (x,w) € Re and A = A(|z|), such that there is a polynomial p(-)
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satisfying:

Pr Verify(crs,xﬂrl) =1 /\VGI’ify(CI’S7.T,7T2) =1 m«—Prove(crs,xz,w) ( )7
p

my, w2 Ax(crs,x,7,2)

,td)—Setup(1*
(crs,td)«Setup( )‘| > 1

there is also a polynomial q(-) such that

Pr[(z,w4) € Re|lwg — E4x)] > ﬁ

In fact, in the technical sections, we further generalize this definition to con-
sider a setting where the adversary obtains an even larger number (say k — 1)
input proofs on instances xi,...,z_1, and outputs k& or more proofs. Then
we require the extraction of an NP witness corresponding to any proofs that
attempt to “clone” honestly generated proofs (i.e. the adversary outputs two or
more proofs w.r.t. the same instance z; € {z1,...,2_1}). All our theorem state-
ments hold w.r.t. this general definition. Finally, we also consider definitions and
constructions in the quantum-accessible random oracle model (QROM); these
are natural generalizations of the definitions above, so we do not discuss them
here.

We also show that the latter definition of unclonable extractability implies
the former, i.e. unclonable security. Informally, this follows because the extractor
guaranteed by the definition of extractability is able to obtain a witness w for x
from any adversary, which contradicts hardness of the distribution (X, W). We
refer the reader to the full version [33] for a formal proof of this claim.

Moreover, we can generically boost the unclonable-extractor’s success prob-
ability from 1/¢(X) to 1 — negl(\) with respect to a security parameter \. For
details, see Sect. 4.2 and Sect. 5.2.

Realizations of Unclonable NIZK, and Relationship with Quantum
Money. We obtain realizations of unclonable NIZKs in both the common refer-
ence string (CRS) and the quantum random oracle (QRO) models, assuming
public-key quantum money mini-scheme and other (post-quantum) standard
assumptions. We summarize these results below.

Theorem 1 (Informal). Assuming public-key quantum money mini-scheme,
public-key encryption, perfectly binding and computationally hiding commit-
ments, and adaptively sound NIZK arguments for NP, there exists an unclonable-
extractable NIZK argument of knowledge scheme in the CRS model.

Adaptively sound NIZK arguments for NP exist assuming the polynomial
quantum hardness of LWE [40].

Theorem 2 (Informal). Assuming public-key quantum money mini-scheme
and honest verifier zero-knowledge arguments of knowledge sigma protocols for
NP, there exists an unclonable-extractable NIZK argument of knowledge scheme
in the QROM.
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Is Quantum Money Necessary for Unclonable NIZKs? Our work builds unclon-
able NIZKs for NP by relying on any (public-key) quantum money scheme (mini-
scheme), in conjuction with other assumptions such as NIZKs for NP. Since
constructions of public-key quantum money mini-scheme are only known based
on post-quantum indistinguishability obfuscation [2,50], it is natural to wonder
whether the reliance on quantum money is inherent. We show that this is indeed
the case, by proving that unclonable NIZKs in fact imply public-key quantum
money mini-scheme.

Theorem 3 (Informal). Unclonable NIZK arguments for NP imply public-key
quantum money mini-scheme.

Applications Unclonable Signatures of Knowledge. A (classical) signature
scheme asserts that a message m has been signed on behalf of a public key pk.
However, in order for this signature to be authenticated, the public key pk must
be proven trustworthy through a certification chain rooted at a trusted public
key PK. However, as [21] argue, this reveals too much information; it should
be sufficient for the recipient to only know that there exists a public key pk
with a chain of trust from PK. To solve this problem, [21] propose signatures of
knowledge which allow a signer to sign on behalf of an instance x of an NP-hard
language without revealing its corresponding witness w. Such signatures provide
an anonymity guarantee by hiding the pk of the sender.

While this is ideal for many applications, anonymity presents the following
downside: a receiver cannot determine whether they were the intended recipient
of this signature. In particular, anonymous signatures are more susceptible to
replay attacks. Replay attacks are a form of passive attack whereby an adver-
sary observes a signature and retains a copy. The adversary then leverages this
signature, either at a later point in time or to a different party, to imperson-
ate the original signer. The privacy and financial consequences of replay attacks
are steep. They can lead to data breach attacks which cost millions of dollars
annually and world-wide [32].

In this work, we construct a signature of knowledge scheme which is the
first non-interactive signature in the CRS model that is naturally secure against
replay attacks. Non-interactive, replay attack secure signatures have seen a lot
of recent interest including a line of works in the bounded quantum storage
model [11] and the quantum random oracle model [10]. Our construction is in
the CRS model and relies on the quantum average-case hardness of NP problems,
plausible cryptographic assumptions, and the axioms of quantum mechanics. We
accomplish this by defining unclonable signatures of knowledge: if an adversary,
given a signature of a message m with respect to an instance z, can produce
two signatures for m which verify with respect to the same instance x, then our
extractor is able to extract a witness for z.

Theorem 4 (Informal). Assuming public-key quantum money mini-scheme,
public-key encryption, perfectly binding and computationally hiding com-
mitments, and simulation-sound NIZK arguments for NP, there exists an
unclonable-extractable signature of knowledge in the CRS model.
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Our construction involves showing that an existing compiler can be aug-
mented using unclonable NIZKs to construct unclonable signatures of knowledge.
The authors of [21] construct signatures of knowledge from CPA secure dense
cryptosystems [44,45] and simulation-sound NIZKs for NP [42,43]. Signatures
of knowledge are signature schemes in the CRS model for which we associate
an instance x in a language £. This signature is simulatable, so there exists a
simulator which can create valid signatures without knowledge of a witness for
x. Additionally, the signature is extractable which means there is an extractor
which is given a trapdoor for the CRS and a signature, and is able to produce
a witness for x. We show that, by switching the simulation-sound NIZKs for
unclonable simulation-extractable NIZKs (and slightly modifying the compiler),
we can construct unclonable signatures of knowledge.

Relationship with Revocation. A recent exciting line of work obtains cer-
tified deletion for time-lock puzzles [46], non-local games [25], information-
theoretic proofs of deletion with partial security [22], encryption schemes [13,18],
device-independent security of one-time pad encryption with certified dele-
tion [36], public-key encryption with certified deletion [30], commitments and
zero-knowledge with certified everlasting hiding [31], and fully-homomorphic
encryption with certified deletion [9,12-14,41]. While certified everlasting dele-
tion of secrets has been explored in the context of interactive zero-knowledge
proofs [31], there are no existing proposals for non-interactive ZK satisfying vari-
ants of certified deletion. Our work provides a pathway to building such proofs.

In this work, we construct a quantum revocable/unclonable anonymous
credentials protocol in which the issuer of credentials uses a pseudonym to
anonymize themselves, receivers of credentials do not require any trusted setup,
and the issuer has the ability to remove access from other users. Our work fol-
lows a line of work on (classical) revocation for anonymous credentials schemes
using NIZK [4,15,20].

In particular, our construction involves noting that NIZK proof systems
that are unclonable can also be viewed as supporting a form of certified dele-
tion/revocation, where in order to delete, an adversary must simply return the
entire proof. In other words, the (quantum) certificate of deletion is the proof
itself, and this certificate can be verified by running the NIZK verification proce-
dure on the proof. The unclonability guarantee implies that an adversary cannot
keep with itself or later have the ability to generate another proof for the same
instance x. In the other direction, in order to offer certifiable deletion, a NIZK
must necessarily be unclonable. To see why, note that if there was an adversary
who could clone the NIZK, we could use this adversary to obtain two copies,
and provably delete one of them. Even though the challenger for the certifiable
deletion game would be convinced that its proof was deleted, we would still be
left with another correct proof.
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1.2 Related Works

This work was built upon the foundations of and novel concepts introduced by
prior literature. We will briefly touch upon some notable such results in this
section.

Unclonable Encryptions. Unclonable encryption [6,7,19,28,39] imagines an
interaction between three parties in which one party receives a quantum cipher-
text and splits this ciphertext in some manner between the two remaining parties.
At some later point, the key of the encryption scheme is revealed, yet both par-
ties should not be able to simultaneouly recover the underlying message. While
our proof systems share the ideology of unclonability, we do not have a similar
game-based definition of security. This is mainly due to proof systems offering
more structure which can take advantage of to express unclonability in terms of
simulators and extractors.

Signature Tokens. Prior work [17] defines and constructs signature tokens
which are signatures which involve a quantum signing token which can only be
used once before it becomes inert. The setting they consider is where a client
wishes to delegate the signing process to a server, but does not wish the server
to be able to sign more than one message. They rely on quantum money [2| and
the no-cloning principle to ensure the signature can only be computed once. For
our unclonable signatures of knowledge result, we focus on the setting where
a client wishes to authenticate themselves to a server and wants to prevent an
adversary from simultaneously, or later, masquerading as them.

One-shot Signatures. The authors of [5] introduce the notion of one-shot sig-
natures which extend the concept of signature tokens to a scenario where the
client and server only exchange classical information to create a one-use quantum
signature token. They show that these signatures can be plausibly constructed
in the CRS model from post-quantum indistinguishability obfuscation. Unless
additional measures for security, which we discussed in our applications section,
are employed, classical communication can be easily copied and replayed at a
later point. In contrast, we prevent an adversary from simultaneously, or later,
authenticating with the client’s identity.

Post-quantum Fiat-Shamir. Our QROM results are heavily inspired by the
recent post-quantum Fiat-Shamir result [37] which proves the post-quantum
security of NIZKs in the compressed quantum(-accessible) random oracle model
(compressed QROM). These classical NIZKs are the result of applying Fiat-
Shamir to post-quantum sigma protocols which are HVZKAo0oKs. We further
extend, and crucially rely upon, their novel proof techniques to prove extractabil-
ity (for AoK) and programmability (for ZK) to achieve extractability and pro-
grammability for some protocols which output quantum proofs.
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1.3 Concurrent Works

Unclonable Commitments and Proofs. A recent, concurrent work [29]
defines and constructs unclonable commitments and interactive unclonable
proofs. They additionally construct commitments in the QROM that are unclon-
able with respect to any verification procedures, and they show that it is impos-
sible to have (interactive) proofs with the same properties. The authors also
observe a similar relationship between non-interactive unclonable proofs and
public-key quantum money via unclonable commitments. They also briefly men-
tion a connection between unclonable commitments and unclonable credentials.

In contrast, we define unclonable-extractable proofs which we construct in
the non-interactive setting in both the crs model and the QROM. We also show a
relationship between non-interactive unclonable-extractable proofs and quantum
money in both the crs model and the QROM. Our work also formalizes the
relationship between unclonable-extractable proofs and unclonable anonymous
credentials.

2 Technical Overview

In this section, we give a high-level overview of our construction and the tech-
niques underlying our main results.

2.1 Unclonable Extractable NIZKs in the CRS Model

Our construction assumes the existence of public-key encryption, classical bit
commitments where honestly generated commitment strings are perfectly bind-
ing, along with

— Public-key quantum money mini-scheme (which is known assuming post-
quantum O and injective OWFs [50]). At a high level, public-key quantum
money mini-scheme consists of two algorithms: Gen and Ver. Gen on input a
security parameter, outputs a (possibly mixed-state) quantum banknote pg
along with a classical serial number s. Ver is public, takes a quantum money
banknote, and outputs either a classical serial number s, or | indicating that
its input is an invalid banknote. The security guarantee is that no efficient
adversary given an honest banknote pg can output two notes pgo and pg 4
that both pass the verification and have serial numbers equal to that of pg.

— Post-quantum NIZKs for NP, which are known assuming the post-quantum
hardness of LWE. These satisfy (besides completeness) (1) soundness, i.e., no
efficient prover can generate accepting proofs for false NP statements, and
(2) zero-knowledge, i.e., the verifier obtains no information from an honestly
generated proof beyond what it could have generated on its own given the
NP statement itself.
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Construction. Given these primitives, the algorithms (Setup, Prove, Verify) of
the unclonable extractable NIZK are as follows.

SETUP(1*): The setup algorithm samples a public key pk of a public-key encryp-
tion, the common reference string crs of a classical (post-quantum) NIZK for NP,
along with a perfectly binding, computationally hiding classical commitment to
0* with uniform randomness ¢, i.e. ¢ = Com(0*;¢). It outputs (pk, crs, c).

ProOVE: Given the CRS (pk,crs,c¢), instance z and witness w, output
(ps, s, ct, ) where

— The state pg <« Gen is generated as a quantum banknote with associated
serial number s.

— The ciphertext ¢t = Encpi(w;u) is an encryption of the witness w with ran-
domness wu.

— The proof string 7 is a (post-quantum) NIZK for the following statement
using witness (w,u):

EITHER (3w, u: ¢t = Encpx(w;u) A Rp(z,w) =1) OR (Ir: c= Com(s;r)),

where we recall that pk and ¢ were a part of the CRS output by the Setup
algorithm.

VERIFY: Given CRS (pk, crs, ¢), instance « and proof (pg, s, ct, ), check that (1)
Ver(pg) outputs s and (2) 7 is an accepting NIZK argument of the statement
above.

Analysis. Completeness, soundness/argument of knowledge and ZK for this con-
struction follow relatively easily, so we focus on unclonable extractability in this
overview. Recall that unclonable extractability requires that no adversary, given
an honestly generated proof for x € L, can split this into two accepting proofs
for z € L (as long as it is hard to find a witness for x). Towards a contradic-
tion, suppose an adversary splits a proof into 2 accepting proofs (pg o, 51, ct1, 71),
(pg,1, 52, cta, m2). Then,

— If s1 = s = s, the adversary given one bank note with serial number s
generated two valid banknotes pg o and pg; that both have the same serial
number s. This contradicts the security of quantum money.

— Otherwise, there is a b € {1,2} such that s, # s. Then, consider an indis-
tinguishable hybrid where the adversary obtains a simulated proof generated
without witness w as follows: (1) sample quantum banknote pg with serial
number s, (2) sample public key pk along with secret key sk, (3) generate
¢ = Com(s;t), ¢t = Encp(0;u), (4) generate proof 7 using witness ¢ (since
¢ = Com(s;t)) instead of using witness w. Send common reference string
(pk, crs, ¢) and proof (pg, s, ct, ) to the adversary. Now, the proof that the
adversary generates with s, # s must contain ct, = Encp(w;u), since ¢ being
generated as a commitment to s # s, along with the perfect binding property
implies that (Z r : ¢ = Com(sp;r)). That is, given instance z, the adver-
sary can be used to compute a witness w for x by decrypting ciphertext ct,
thereby contradicting the hardness of the distribution.
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Our technical construction in Sect. 4.4, while conceptually the same, is formal-
ized slightly differently. It uses NIZKs with an enhanced simulation-extraction
property, which can be generically constructed from NIZK (see Sect.4.1). Hav-
ing constructed unclonable extractable arguments in the CRS model, in the next
section, we analyze a construction of unclonable extractable arguments in the
QROM.

2.2 Unclonable Extractable NIZK in the QROM

We now turn our attention to the QRO setting in which we demonstrate a
protocol which is provably unclonable. Our construction assumes the existence
of public-key quantum money mini-scheme and a post-quantum sigma protocol
for NP. A sigma protocol (P,V) is an interactive three-message honest-verifier
protocol: the prover sends a commitment message, the verifier sends a uniformly
random challenge, and the prover replies by opening its commitment at the
locations specified by the random challenge.

Construction. The algorithms (PROVE, VERIFY) of the unclonable extractable
NIZK in the QROM are as follows.

PROVE: Given an instance z and witness w, output (pg, s, «, 3,) where

— The quantum banknote pg is generated alongside associated serial number s.

— P is run to compute the sigma protocol’s commitment message as « given
(z,w) as input.

— The random oracle is queried on input (c, s, z) in order to obtain a challenge
0.

— P is run, given as input (z,w, «, 8) and its previous internal state, to compute
the sigma protocol’s commitment openings as ~.

VERIFY: Given instance x and proof (pg, s, a, 3,7), check that (1) the quantum
money verifier accepts (pg, s), (2) the random oracle on input (o, s,x) outputs
B, and (3) V accepts the transcript (o, 3,~) with respect to x.

Analysis. Since the completeness, argument of knowledge and zero-knowledge
properties are easy to show, we focus on unclonable extractability. Suppose an
adversary was able to provide two accepting proofs m; = (pg o, 51,1, 51, 71)
and m = (pg.1, 52, 2, B2,72) for an instance x for which it received an honestly
generated proof m = (pg, s, @, 3,7). Then,

— Suppose s1 = sy = s. In this case, the adversary given one bank note with
serial number s generated two valid banknotes pg o and pg; that both have
the same serial number s. This contradicts the security of quantum money.

— Otherwise, there is a b € [1,2] such that s, # s. By the zero-knowledge
property of the underlying HVZK sigma protocol, this event also occurs when
the proof 7 that the adversary is given is replaced with a simulated proof.
Specifically, we build a reduction that locally programs the random oracle
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at location (o, s,x) in order to generate a simulated proof for the adversary.
Since the adversary’s own proof for s, # s is generated by making a distinct
query (ap, sp,z) # (a,s,x), the programming on («,s,z) does not affect
the knowledge extractor for the adversary’s proof, which simply rewinds the
(quantum) random oracle to extract a witness for z, following [37]. This allows
us to obtain a contradiction, showing that our protocol must be unclonable.

2.3 Unclonable NIZKs Imply Quantum Money Mini-Scheme

Finally, we discuss why unclonable NIZKs satisfying even the weaker definition
of unclonable security (i.e., w.r.t. hard distributions) imply public-key quantum
money mini-scheme. Given an unclonable NIZK, we build a public-key quantum
money mini-scheme as follows.

Construction. Let (X, W) be a hard distribution over a language £ € NP. Let
IT = (Setup, Prove, Verify) be an unclonable NIZK protocol for L.

GEN(1*): Sample (z,w) « (X, W), crs « Setup(1*, x), and an unclonable NIZK
proof m as Prove(crs, z, w). Output a (possibly mixed-state) quantum banknote
ps = 7, and associated serial number s = (crs, z).

VER(pg, s): Given a (possibly mixed-state) quantum banknote pg and a classical
serial number s as input, parse pg = 7 and s = (crs, z), and output the result of
Verify(crs, z, 7).

Analysis. The correctness of the quantum money scheme follows from the com-
pleteness of the unclonable NIZK II. We will now argue that this quantum money
scheme is unforgeable. Suppose an adversary A given a quantum banknote and
classical serial number (pg, s) was able to output two banknotes (pg o, pg.1) both
of which are accepted with respect to s. We can use A to define a reduction to
the uncloneability of our NIZK IT as follows:

— The NIZK uncloneability challenger outputs a hard instance-witness pair
(z,w), a common reference string crs, and an unclonable NIZK 7 to the reduc-
tion.

— The reduction outputs a banknote (pg, s) to the adversary, where pg = 7 and
s = (crs, x). It receives two quantum banknotes (pg ¢, pg,1) from A, and finally
outputs two proofs (mo, 1) where my = pg o and 71 = pg 1.

If A succeeds in breaking unforgeability, then the quantum money verifier accepts
both banknotes (pg o = 7o, pg,1 = 1), with respect to the same serial number
s = (crs, x). By syntax of the verification algorithm, this essentially means that
both proofs (mp,71) are accepting proofs for membership of the same instance
x € L, w.r.t. crs, leading to a break in the unclonability of NIZK.

2.4 Unclonable Signatures of Knowledge

Informally, a signature of knowledge has the following property: if an adversary,
given a signature of a message m with respect to an instance x, can produce
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two signatures for m which verify with respect to the same instance x, then the
adversary must know (and our extractor will be able to extract) a witness for .

We obtain unclonable signatures of knowledge assuming the existence of
an unclonable extractable simulation-extractable NIZK for NP. Simulation-
extractability states that an adversary which is provided any number of sim-
ulated proofs for instance and witness pairs of their choosing, cannot produce
an accepting proof 7w for an instance x which they have not queried before and
where extraction fails to find an accepting witness w. Our unclonable extractable
NIZK for NP in the CRS model can, with some extra work, be upgraded to
simulation-extractable.

We informally describe the construction of signatures of knowledge from such
a NIZK below.

Construction. Let (Setup,P,V) be non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge, unclonable-extractable
protocol for NP. Let R be the NP relation corresponding to L.

SETUP: The setup algorithm samples a common reference string crs of an
unclonable-extractable simulation-extractable NIZK for NP. It outputs crs.

SIGN: Given the CRS crs, instance z, witness w, and message m, output signature
m where

— The proof string 7 is an unclonable-extractable simulation-extractable NIZK
with tag m using witness w of the following statement:

(Fw: (z,w) €R).

VERIFY: Given CRS crs, instance x, message m, and signature 7, check that 7
is an accepting NIZK proof with tag m of the statement above.

Analysis. The simulatability (extractability) property follows from the zero-
knowledge (resp. simulation-extractability) properties of the NIZK. Suppose an
adversary A given a signature o was able to forge two signatures o3 = m; and
09 = Ta, and, yet, our extractor was to fail to extract a witness w from .A. Then,

— Either both proofs m; and w9 are accepting proofs for membership of the same
instance w.r.t. crs. However, this contradicts the unclonability of the NIZK.

— Otherwise there exists a proof m; (where ¢ € {1,2}) for an instance which
A has not previously seen a proof for. We can switch to a hybrid where our
signatures contain simulated proofs for the NIZK. But now, we have that
the verifier accepts a proof for an instance which A has not seen a simulated
proof for and, yet, we cannot extract a witness from A. This contradicts the
simulation extractability of the NIZK.

Roadmap. In Sect.4, we define and construct unclonable NIZKs in the CRS
model, and in Sect. 5, in the QROM. Along the way, we also show that unclonable
NIZKs imply quantum money (in the CRS and QRO model respectively). Later,
we show how to define and construct unclonable signatures of knowledge from
unclonable NIZKs in the CRS model.
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3 Preliminaries

We defer definitions to the full version [33]; below we recall some useful theorems.

3.1 Post-quantum Commitments and Encryption

Theorem 5 (Post-quantum Commitment). [38] Assuming the polynomial
quantum hardness of LWE, there exists a non-interactive commitment with per-
fect binding and computational hiding.

3.2 NIZKs in the CRS Model

Theorem 6 (Post-quantum NIZK Argument for NP in the CRS
Model). [40] Assuming the polynomial quantum hardness of LWE, there exists
a non-interactive adaptively computationally sound, adaptively computationally
zero-knowledge argument for NP in the common reference string model.

Theorem 7 (Simulation Sound Compiler). [/3] Given one-way functions
and a single-theorem NIZK proof system for NP, then there exists a non-
interactive simulation sound, adaptively multi-theorem computationally zero-
knowledge proof for NP in the common reference string model.

Corollary 1 (Post-quantum Simulation Sound NIZK for NP). Assum-
ing the polynomial quantum hardness of LWE, there exists a post-quantum non-
interactive simulation sound, adaptively multi-theorem computationally zero-
knowledge proof for NP in the common reference string model.

Proof. This follows from Theorem 6 and Theorem 7.

3.3 NIZKs in the QRO Model

Theorem 8 (NIZKAoK in QROM [37,47]). LetII be a post-quantum sigma
protocol. The Fiat-Shamir heuristic applied to 11 yields a classical post-quantum
NIZKAoK in the QROM.

3.4 Quantum Money

Theorem 9 (Quantum Money from Subspace Hiding Obfuscation [2,
50]). If injective one-way functions and post-quantum iO exist, then public-key
quantum money erists.
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4 Unclonable Non-interactive Zero-Knowledge in the
CRS Model

4.1 Simulation-Extractable NIZK

We defer the definition, and proofs to the full version [33]; below we state our
results.

Simulation-Extractable Non-Interactive ZK for £ € NP

Let II = (Setup, P,V) be a non-interactive simulation sound, adaptively multi-
theorem computationally zero-knowledge protocol for NP, and (Gen, Enc, Dec) be
a post-quantum perfectly correct, IND-CPA secure encryption scheme. Let R be
the relation with respect to £ € NP.

Serup(1*): Compute (pk,sk) < Gen(1*), and (crsm, tdrr) - I1.Setup(1*). Output
(crs = (pk, crsm), td = (sk, tdm)).

PRrOVE(crs, x, w):

— Compute ct = Enc(pk, w;r) for r sampled uniformly at random.
— Let zm = (pk, z,ct) be an instance of the following language Li:

{(pk,z,ct) : I(w,r) : ct = Enc(pk,w;r) A (z,w) € R}.

— Compute proof 7 < II.P(crsm, zm, (w,r)) for language L.
— Output 7 = (ct, 7).

VERIFY (crs, x, 7):

— Output IL.V(crsm, zm, 7).

Fig. 1. Unclonable Non-Interactive Quantum Protocol for £ € NP

Theorem 10 (Post-quantum Simulation-Extractable NIZK for NP in
the CRS Model). Let NP relation R with corresponding language L be given.

Let T1 = (Setup, P,V) be a non-interactive post-quantum simulation sound,
adaptively multi-theorem computationally zero-knowledge protocol for NP. Let
(Gen, Enc, Dec) be a post-quantum perfectly correct, IND-CPA secure encryption
scheme.

(Setup, P, V) as defined in Fig. 1 will be a non-interactive post-quantum
stmulation-extractable, adaptively multi-theorem computationally zero-knowledge
argument for L in the common reference string model.

Corollary 2 (Post-quantum Simulation-Extractable NIZK for NP in
the CRS Model). Assuming the polynomial quantum hardness of LWE, there
exists a simulation-extractable, adaptively multi-theorem computationally zero-
knowledge argument for NP in the common reference string model.

Proof. This follows from Corollary 1 and Theorem 10.
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4.2 TUnclonability Definitions

We consider two definitions of unclonability for NIZKs. The first one, motivated
by simplicity, informally guarantees that no adversary given honestly proofs for
“hard” instances is able to output more than one accepting proof for the same
instance.

Definition 3 ((Quantum) Hard Distribution). Let an NP relation R be
given. (X, W) is a (quantum) hard distribution over R if the following properties
hold.

- Syntax. (X, W) is indexable by a security parameter A € N. For every choice
of X € N, the support of (Xx, W) is over instance and witness pairs (x,w)
such that © € L, |z|= X, and (z,w) € R.

— Hardness. For every polynomial-sized (quantum) circuit family A =
{Axtaen,

(z,w)Hl?fk')\’Wx)[(x’AA(z)) € R] < negl()\)

Definition 4. (Unclonable Security for Hard Instances). A proof (Setup,P,V)
satisfies unclonable security for a language L with corresponding relation R if
for every polynomial-sized quantum circuit family {Cx}ren, and for every hard
distribution {Xx, Wx}aen over Ry, there exists a negligible function negl(-) such
that for every X € N,

crs—Setup(1*)
w—P(crs,z,w)
71,mo—Cy(z,m)

Pr V(ers,z,m) = 1/\V(crs,x,772) =1

< negl(\).
() —(Xr, W) < negl(})

We will now strengthen this definition to consider a variant where from any
adversary A that on input a single proof of membership of z € L outputs two
proofs for x, we can extract a valid witness w for z with high probability. In
fact, we can further generalize this definition to a setting where the adversary
obtains an even larger number (say k— 1) input proofs on instances z1, ..., Tk_1,
and outputs k£ or more proofs. Then we require the extraction of an NP witness
corresponding to any proofs that are duplicated (i.e. two or more proofs w.r.t.
the same instance x; € {z1,...,Tk—1}). We write this definition below.

Definition 5 ((k — 1)-to-k-Unclonable Extractable NIZK). Let security
parameter A € N and NP relation R with corresponding language L be given. Let
IT = (Setup,P,V) be given such that Setup,P and V are poly(\)-size quantum
algorithms. We have that for any (z,w) € R, (crs,td) is the output of Setup
on input 1*, P receives an instance and witness pair (x,w) along with crs as
iput and outputs w, and V receives an instance x, crs, and proof w as input and
outputs a value in {0,1}.

IT is a non-interactive (k — 1)-to-k-unclonable zero-knowledge quantum pro-
tocol for language L if the following holds:

- II is a quantum non-interactive zero-knowledge protocol for language L.



Unclonable Non-interactive Zero-Knowledge 109

- (k — 1)-to-k-Unclonable with Extraction: There ezists an oracle-
aided polynomial-size quantum circuit £ such that for every polynomial-
size quantum circuit A, for every tuple of k — 1 instance-witness pairs
(z1,w1), .. (Tp—1,wi—1) € R, for every instance x, if there exists a poly-
nomial p(-) such that

3T C{j:z;=x} 1
Pr st |T|> |{i: zs = x| zﬁ,
VLE[(lccisit}(:l)f:ie;l(”c)r(sl,mf,wL) and Vi € ‘7’ V(CI’S, Z, T}VL) =1 P
{#, 7 ey —Alers {z.,m bek—17)

then there is also a polynomial q(-) such that

1
Pr r,w) € Rl > ——.
W—EA(T1,..0sTl—1,T) [( ) ] q()‘)

We observe in Definition 5 that we can generically boost the extractor’s
success probability to 1 — negl(\) with respect to a security parameter \.

Definition 6 ((k — 1)-to-k-Unclonable Strong-Extractable NIZK). Let
security parameter A € N and NP relation R with corresponding language L be
given. Let II = (Setup, P, V) be given such that Setup,P and V are poly()\)-size
quantum algorithms. We have that for any (z,w) € R, (crs,td) is the output of
Setup on input 1%, P receives an instance and witness pair (x,w) along with crs
as input and outputs w, and V receives an instance x, crs, and proof m as input
and outputs a value in {0,1}.

IT is a non-interactive (k — 1)-to-k-unclonable zero-knowledge quantum pro-
tocol for language L if the following holds:

— II is a quantum non-interactive zero-knowledge protocol for language L.

— (k—1)-to-k-Unclonable with Strong-Extraction: There exists an oracle-
aided polynomial-size quantum circuit £ such that for every polynomial-size
quantum circuit A with non-uniform quantum advice aux, for every tuple of
k—1 instance-witness pairs (r1,w1), ..., (xg_1,wk—1) € R, for every instance
x if there is a polynomial p(-) where

Pr st |TI> iz =} > o’
vLe[icfiﬁfifieé?i’fsl,m?,wb) and Vv e J,V(crs,z,7T,) = 1 p
{ﬁ77?/.}L€[k]<_A(cr57{llr77TL}LE[kfl]1aux)

then there is also a polynomial poly(-) and a negligible function negl(-)
such that

Pr [(z,w) € R] > 1 — negl(A).

we—EA(x1,...,Tp_1,T,aux®Poy(X))

We describe two useful lemmas to compare the above definitions.



110 R. Jawale and D. Khurana

Lemma 1. Let IT = (Setup,P,V) be a 1-to-2-unclonable with extraction, non-
interactive zero-knowledge quantum protocol (Definition 5). Then, II satisfies
Definition /.

For a proof of Lemma 1, we refer to the full version [33].

Lemma 2. Let I = (Setup,P,V) be a (k — 1)-to-k-unclonable with extraction,
non-interactive zero-knowledge quantum protocol (Definition 5). Then, I satis-

fies Definition 6.

For a proof of Lemma 2, we refer to the full version [33].

From the above lemmas, we conclude that Definition 5 is the strongest
definition. In the following sections, we construct a protocol that satisfies
Definition 5.

4.3 Unclonable NIZK Implies Public-Key Quantum Money
Mini-scheme

Public-Key Quantum Money Mini-Scheme

Let (X, W) be a hard distribution over a language £ € NP. Let II = (Setup, P, V)
be an unclonable non-interactive zero-knowledge protocol for L.

GEN(1*): Sample a hard instance-witness pair (z,w) < (X, ), a common reference
string (crs, td) < Setup(1*, z), and a proof m < P(crs, z, w). Output (pg = 7,5 =
(crs, z)).

VERIFY(pg, s): Parse pg = m and s = (crs, z). Output V(crs, z, 7).

Fig. 2. Public-Key Quantum Money Mini-Scheme from an Unclonable Non-Interactive
Quantum Protocol

Theorem 11. Let (X, W) be a hard distribution over a language £ € NP. Let
IT = (Setup, P,V) satisfy Definition 4. Then (Setup, P,V) implies a public-key
quantum money mini-scheme as described in Fig. 2.

We defer the proof to the full version [33].

4.4 Construction and Analysis of Unclonable-Extractable NIZK
in CRS Model
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Unclonable Non-Interactive ZK for £ € NP

Let II = (Setup, P, V) be a non-interactive simulation-extractable, adaptively multi-
theorem computationally zero-knowledge protocol for NP, Com be a post-quantum
perfectly binding, computationally hiding commitment scheme, and (NoteGen, Ver)
be a public-key quantum money scheme. Let R be the relation with respect to
L € NP.

Serup(1*): Sample the common reference string (crsm, tdm) + I1.Setup(1%), and
s*, 7" uniformly at random. Define ¢ = Com(s*; ") and output (crs = (crsm, ¢), td =
tdn).

PRrOVE(crs, , w):

— Compute a quantum note and associated serial number (pg, s) + NoteGen.
— Let zm = (¢, z, s) be an instance of the following language Lm:

{(c,z,8) : Fz : (x,2) € R V ¢= Com(s;2)}.

— Compute proof 7 < II.P(crsm, zm, w) for language L.
Output 7 = (ps, s, 7).

VERIFY (crs, x, 7):

— Check that Ver(pg, s) outputs 1 and that IL.V(crsm, 1, i) outputs 1.
— If both checks pass, output 1. Otherwise, output 0.

Fig. 3. Unclonable Non-Interactive Quantum Protocol for £ € NP

Theorem 12. Let k(-) be a polynomial. Let NP relation R with corresponding
language L be given.

Let (NoteGen, Ver) be a public-key quantum money mini-scheme and Com be
a post-quantum commitment scheme. Let TI = (Setup, P, V) be a non-interactive
post-quantum simulation-extractable, adaptive multi-theorem computational zero-
knowledge protocol for NP.

(Setup, P, V) as defined in Fig. 3 will be a non-interactive quantum simulation-
extractable, adaptive multi-theorem computationally zero-knowledge, and (k—1)-
to-k-unclonable argument with extraction protocol for L in the common reference
string model (Definition 5).

Proof. Completeness follows from perfect correctness of the public key quantum
money scheme, and perfect completeness of II.

See the full version [33] for proofs of zero-knowledge and simulation
extractability.

Let I1.Sim = (I1.Simg, I1.Sim;) be the adaptive multi-theorem computation-
ally zero-knowledge simulator of II. We define Simg with oracle access to I1.Simg
as follows: Input: 1*.
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(1) Send 1* to I1.Simg. Receive (crsy, tdyy) from I1.Simg.
(2) Sample s*,r* uniformly at random. Define ¢ = Com(s*;r*).
(3) Output crs = (crsy, ¢) and td = tdpy.

We define Sim; with oracle access to I1.Sim; as follows:
Input: crs = (crsyy, ¢), td = tdpy, .

(1) Sample (pg, s) < NoteGen(1%).
(2) Define zp = (c,z,s). Send (crsp, tdm, zrr) to IL.Simp. Receive 7 from
(3) Output m = (psg, s, 7).

Claim (4.1). Let Ext be as defined earlier, in the current proof of simulation-
extractability. There exists a negligible function negl(-) such that for every
polynomial-size quantum circuit B,

Pr [H.V(CI’SH, :EH,TFH) =1Azxn € Qu N (z,w) € R] < negl()\)
(crs,td)—Simg (1)
(wyﬂ)hBSIml(crs,td,-)(Crs)
w+—Ext(crs,td,z,m)

where Qr is the list of queries forwarded by Sim; to I1.Sim;.

See the full version [33] for proof of Claim 4.1.

Unclonable Extractability. Let II.Sim = (II.Simg,I1.Sim;) be the adaptive
multi-theorem computationally zero-knowledge simulator of II. Let II.Ext be
the simulation-extraction extractor of II with respect to IL.Sim. Let Sim =
(Simg, Sim1) be the simulator, with oracle access to I1.Sim, as defined in the proof
that Fig. 3 is adaptive multi-theorem computational zero-knowledge. Let Ext be
the extractor, based on Sim, as defined in the proof that Fig.3 is simulation-
extractable. We define £ with oracle access to Sim, Ext, and some A as follows:
Hardwired: x1,...,xk_1, T

(1) Send 1* to Simg. Receive (crs, td) from Simg.

(2) For ¢ € [k — 1]: send (crs,td, z;,) to Simy, and receive 7, from Simj.
(3) Send (crs, {z,, 7, },er—1]) to A. Receive {Z,, 7, },c[x) from A.

(4) Define j’ uniformly at random from [k].

(5) Output Ext(crs,td, z,7;/) as w.

Let A, (z1,w1),...,(zp_1,wr—1) € R, z, polynomial p(-), and negligible
function negl(-) be given such that A outputs more accepting proofs for x than
A received, and yet the extractor £ is unable to extract a valid witness for x
from A. Restated more formally, that is that

Pr st |T)> [{i: @ = 2} > ——, (1)
(ers,td) —Setup(1*) and Vi€ 7, V(crs,a,7) =1 PN

Yie[k—1], 7, «P(crs,z,,w,)
{z., 7} ey —Alers{z,, 7.} velk—1))
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and for all polynomials p/(-) (there are infinitely many \) such that

[(z,w) e R] <

r .
we—EA(T1,...,Th—1,T) pl(>‘)

2)

We parse the output of the adversary A as 7, = (pg,, 5., 7m,,) for all ¢ € [K].
Given Eq. (1), we may be in one of the two following cases: either .4 generates
two accepting proofs which have the same serial number as an honestly generated
proof (for an infinite set of \), or A does not (for an infinite set of X). We consider
that either of these two scenarios occur with at least 1/(2p())) probability and
show that each reaches a contradiction.
Scenario One
Say that (for an infinite set of \) A generates two accepting proofs which have
the same serial number as an honestly generated proof with at least 1/(2p(\))
probability. Symbolically,

3JC{j:z; =x}

st |T|> iz =} 1
Pr and Ve € J,V(ers,z,m,) =1 | > ERENR (3)
rs,td)«—Setup(1 ok _ Sk Pk p
VLG[(kc—sl],)7rb<—eP(<F:’r(s,:v3,w,,) and 3i* € [k ,_1/3] ’,ﬁ € j
{&, 7 e —Alers, {2, 7 boer—1)) S.b. S« = Sjx = Spx

Through a hybrid argument, we can get a similar event with fixed indices i*, j*,
and £* which belong to their respective sets with an advantage of 1/(2k3p()\)). By
using the advantage of A in this game, we can show a reduction that breaks the
unforgeability of the quantum money scheme. We will now outline this reduction.
Reduction: to unforgeability of quantum money scheme given oracle access to

A

Hardwired with: (x1,w1),. .., (Xg—1,Wk—-1), T, 1%, j*, £*.

(1) Compute (crs,td) « Setup(1*) where crs = (crsyy, ¢) and td = td.
(2) Receive (pg, s) «— NoteGen from the challenger.
(8) Define pg ;+ = pg, si+ = s, and a1 = (¢, T4+, S+).
Compute 7y ¢ < ILP(crsm, zm, wi+ ). Define mi« = (pg =, Si=, T+ )-
(4) Define 7, «— P(crs,z,,w,) for ¢ € [k — 1]\ {i*}.
(5) Send {z,,7,},cp—1) to A.
(6) Receive {7,, 7, } e[ from A.
(7) Parse mj« = (pg =, S+, 7+ ) and T = (pg. g, So=, TMLe+ ).
(7) Send (pg j-, pg.¢+) to the challenger.

Given the event in Eq. (3) holds (for the afore mentioned fixed indices),
then the reduction will return two quantum money states with the same serial
number as the challenger sent. With advantage 1/(2k3p())), the reduction will
succeed at breaking unforgeability of the quantum money scheme, thus reaching
a contradiction.

Scenario Two.

Alternatively, say that (for an infinite set of A\) A does not generate two

accepting proofs which have the same serial number as an honestly generated
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proof with at least 1/(2p(X)) probability. By the pigeon-hole principle, this means
that A generates an accepting proof with a serial number which is not amongst
the ones it received. In summary, we have that

Pr st | T|> [{i: :~x}| S 1 .
(crs,td) —Setup(1*) and Vv € J,V(crs,z,7,) =1 = 2p(\)
Vig[k—1], m,«—P(crs,z, ,w,) and 35 € J s.t. ;- & {SL}Le[k—l]

{Z,7 e —Alers,{z,m e p—11)
(4)
Through an averaging argument, we can get a similar event with a fixed index
j* that belongs to the event’s set J with an advantage of 1/(2kp()\)). We will
now switch to a hybrid where we provide A with simulated proofs.

Claim (Claim 4.2). There exists a polynomial ¢(-) such that

st |TI> iz =z} 1
Pr R and Vo € J,V(ers,z,m,) =1 > ﬁ (5)
rs,td)«Simq (1 s q
VLE[k(fcls],t‘/r)LHSim?((crs),td,zL) ?\I/ld J e J
{z0, 7 b eepr)—Alers,{z,, 7 }iep—1]) and Sj* € {SL}LE[k—l]

We will later see a proof of Sect.4.4. For now, assuming that this claim
holds, by the definition of £, Eq. (2), and Eq. (5), there exists a polynomial ¢’(-)
such that

st |TI> iz =}

and Ve € J,V(crs,z,7,) =1 1
Pr i > —-
(crs,td) «Simg (17) andgj{ E}j q (/\)
Vie[k—1], m,+Simy (crs,td,z,) and 5’;; S belk—1]
T, T boe k) Alers {z,, T ek —
{Z0. 7 e n j’Ei[]; heer—1) and (z,w) € R

w<—Ext(crs,td,x,77)

We will additionally have that j° = j* with advantage at least 1/(kq’())).
Since V accepts 7« with respect to z, IV must accept 7y~ with respect to
T« = (c,x,5;-). Since s;« & {8.}.e[k—1), we have that I1.Sim;, through Simy,
has not previously received x/ﬁj/* as a query. As such, we have that

ILV(crsm, (¢, z, 85+ ), 7 ;=) = 1 1
Pr and (c,,5;+) € Qn > (6)
(crs,td)«—Simg (1) and (:C, uj)) ¢ R kq/(A)

Vi€lk—1], ©,«—Simy (crs,td,x,)
{fﬁ,ﬁ}te[k] HA(CrS7{mL7ﬂ-L}L€[k‘—1])
wExt(crs,td, z 75+ )

where Qr is the set of queries asked through Sim; to II1.Sim;. We now define B
with oracle access to A and Sim;!:

! Here, B is given oracle access to Sim; which has the terms (crs,td) fixed by the
output of Simg.
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Hardwired: z1,...,x5_1, ¢ j*
Input: crs = (crsyy, ¢)

(1) For ¢ € [k — 1]: send z, to Simy, and receive 7, from Simj.
(2) Send (crs, {z,, 7, },er—1]) to A. Receive {Z,, 7, },c[p) from A.
(3) Output ((c,z,5;+),m;+).

Given that the event in Eq. (6) holds, then B contradicts Sect. 4.4. Thus, all
that remains to be proven is Sect. 4.4.

See the full version [33] for a proof of Claim 4.2.

By completing the proofs of our claim, we have concluding the proof of our
theorem statement.

Corollary 3. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, and post-quantum 0 ezists, there exists a non-
interactive adaptive argument of knowledge, adaptive computationally zero-
knowledge, and (k — 1)-to-k-unclonable argument with extraction protocol for
NP in the common reference string model (Definition 5).

Proof. This follows from Theorem 5, Corollary 2, Theorem 9, and Theorem 12.

We have thus shown that Fig.3 is an unclonable NIZK AoK in the
CRS model as defined according to our proposed unclonability definition,
Definition 5.

In the upcoming sections, we will consider unclonable proof systems in

the QROM.

5 Unclonable NIZK in the Quantum Random Oracle
Model

5.1 A Modified Sigma Protocol

We will begin by introducing a slightly modified sigma protocol. In the coming
sections, our construction will involve applying Fiat-Shamir to this modified
protocol.

Theorem 13. Let a post-quantum sigma protocol with unpredictable commit-
ments II be given. Let Ry be an NP relation. Let R = {((z,S),w) : (z,w) €
R AS # 0}. We argue that the following protocol will be a post-quantum sigma
protocol with unpredictable commitments:

~ P.Com(1*, (z,8),w): Sends (x,a,s) to V where (a,st) « IL.P.Com(1*,z,w)
and s is sampled from S.

- V.Ch(1*, (,S), (z,, 8)): Sends 3 to P where 3 « ILV.Ch(1}, z, a).

- P.Com(1*, (z,8),w,st, B): Sends v to V where vy « I1.P.Prove(1*, z,w, st, 3).

- V.Ver(1*, (2,8), (z,a, 8),8,7): 1 iff s € Support(S) and ILV.Ver(1*, z, a,
B,v) = 1.
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See the full version [33] for the proof of Theorem 13.

Corollary 4. The Fiat-Shamir transform applied to the post-quantum sigma
protocol defined in Theorem 13 yields a classical post-quantum NIZKAoK II' in
the QROM.

Proof. This follows by Theorem 13 and Theorem 8.

5.2 Unclonability Definitions

Unclonable NIZKs in the quantum random oracle model are defined analogously
to the CRS model — we repeat these definitions in the QRO model for complete-
ness in the full version [33].

5.3 TUnclonable NIZK Implies Public-Key Quantum Money
Mini-Scheme in QROM

We defer the construction and proof to the full version [33]; below we state our
results.

Theorem 14. Let O be a quantum random oracle. Let (X, W) be a hard dis-
tribution over a language L € NP. Let II = (P,V) be a 1-to-2 unclonable non-
interactive perfectly complete, computationally zero-knowledge protocol for L in
the QRO model.

Then (P,V) implies a public-key quantum money mini-scheme in the QRO
model.

5.4 Construction and Analysis of Unclonable-Extractable NIZK in
QROM

We now introduce our construction in Fig. 4 and prove the main theorem of this
section.

Theorem 15. Let k(-) be a polynomial. Let NP relation R with corresponding
language L be given.

Let (NoteGen, Ver) be a public-key quantum money mini-scheme and II =
(P,V) be a post-quantum sigma protocol.

(P,V) as defined in Fig. 4 will be a non-interactive knowledge sound, compu-
tationally zero-knowledge, and (k — 1)-to-k-unclonable argument with extraction
protocol for L in the quantum random oracle model.

Proof. Let the parameters and primitives be as given in the theorem statement.
We argue that completeness follows from the protocol construction in Fig. 4, and
we prove the remaining properties below.

See the full version [33] for complete proofs of argument of knowledge and
zero-knowledge properties.
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Unclonable NIZK for NP in the QROM

Let O be a random oracle. Let IT = (P = (P.Com, P.Prove),V = (V.Ch, V.Ver)) be a
post-quantum sigma protocol with unpredictable commitments, and (NoteGen, Ver)
be a public-key quantum money mini-scheme. Let R be the relation with respect
to £ € NP.

ProvE® (z,w):

— Compute a quantum note and associated serial number (pg, s) < NoteGen(1%).
Compute («, () + P.Com(z,w).

Query O at (z,a, s) to get 3.

— Compute v + P.Prove(z,w, 3, ().

— Output ™ = (ps, s, @, 3,7).

VERIFY® (2, 7):

— Check that Ver(pg, s) outputs 1.
— Check that O outputs 8 when queried at (z, a, s).
— Output the result of V.Ver(z, o, 8,7).

Fig. 4. Unclonable Non-Interactive Quantum Protocol for £ € NP in the Quantum
Random Oracle Model

Let S be the distribution of serial numbers as output by NoteGen(1%). We
define Ext? with oracle-access to Extrg, O, and some A as follows:
Hardwired with: S.
Input: x.

(1) Given an oracle-query (z,«, s) from A: send (z,q,s) to O, receive § from
O, and send 3 to A.

(2) Upon receiving © = (pg, s, «, 8,7) from A: send nps = ((z,q,s),5,7) to
Extpg.

(3) Output the result of Extpg as w.

Let Simpg be the simulator for I’ in Corollary 4 (where II instantiates The-
orem 13). Let Rpg be the relation for I’ with respect to R. We define Sim with
oracle-access to Simpg and program access to some random oracle O as follows:
Input: = (ignores any witnesses it may receive).

(1) Sample (pg, s) < NoteGen(1%).

(2) Let S be the distribution where all probability mass is on s.

(3) Compute ((z,aq,s),8,7) <« ILSim(z,S). Allow II.Sim to program O at
(z,a, s) to return 3.

(5) Output m = (pg, s, @, 3,7).

2 An extractor whose local code is implementable as a simple unitary which allows for
straightforward rewinding.
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Unclonable Extractability. Let Ext be the quantum circuit of the extractor
we defined earlier (in our proof that Fig.4 is an argument of knowledge). Let
Sim be the quantum circuit of the simulator that we defined earlier (in our proof
that Fig. 4 is a zero-knowledge protocol). We define a simulator for our extractor,
SimExt, which interacts with some A and has oracle-access to O as follows:
Hardwired with: ©1,...,Tk_1,

(1) Compute 7, < Sim(z,) for ¢ € [k — 1] where we store all points Sim would
program into a list P.

(2) Send {z,,7,},cp—1) to A.

(3) For every query from A, if the query is in P, then reply with the answer
from P. Else, forward the query to O and send the answer back to A.

We now define our extractor £ with oracle-access to some A as follows:
Hardwired with: some choice of z1,...,z5_1, T.

(1) Instantiates a simulatable and extractable random oracle O. Runs Ext on O
throughout the interaction with A4 (which may involve rewinding, in which
case we would rewind A and repeat the following steps).

(2) Run SimExt®(xy,...,z,_1,2) which interacts with A.

(3) Receive {z,,7,},c[y) from A.

(4) Samples ¢ € [k] uniformly at random. Send 7, to Ext.

(5) Outputs the result of Ext as w.

Let A, (z1,w1),...,(zx_1,wr—1) € R, z, polynomial p(-), and negligible
function negl(-) be given such that A outputs more accepting proofs for x than
A received, and yet the extractor £ is unable to extract a valid witness for x
from A. Restated more formally, that is that

1?91* st |TI> iz =} > ,
Veelk—1], TI'L<—PO(IL,IUL) and V¢ € J,Vo(x,ﬁ) =1 p( )

{#0, % e —AC ({z,m e e—1))

1
-5
and for all polynomials p’(-) (there are infinitely many A) such that

1
Pr z,w) € R] < .
we—EA(z1,.. Th_1,T) [( ) ] p/()\)

(®)

We parse the output of the adversary A as @, = (pg.,, 5., 0, BL,VL) for all ¢ € [k].

Given Eq. (7), we may be in one of the two following cases: either A generates
two accepting proofs which have the same serial number as a honestly generated
proof (for an infinite set of A), or A does not (for an infinite set of \). We consider
that either of these two scenarios occur with at least 1/(2p())) probability and
show that each reaches a contradiction.
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Scenario One.

Say that (for an infinite set of A\) A generates two accepting proofs which have
the same serial number as an honestly generated proof with at least 1/(2p(\))
probability. Symbolically,

st |TI> iz =2} 1
Pr and Ve € J,VO(z,7,)=1 | > ——. (9)
veelk-1], 7, —PO (z,w,) and 3i* € [k —1] 37,7 € T
{ﬁ:ﬁ}Le[k]‘_Ao({wumhe[k—u) s.t. Six = Sj* = Sy=

Through a hybrid argument, we can get a similar event with fixed indices i*, j*,
and ¢* which belong to their respective sets with an advantage of 1/(2k*p())). By
using the advantage of A in this game, we can show a reduction that breaks the
unforgeability of the quantum money scheme. We will now outline this reduction.
Reduction: to unforgeability of quantum money scheme given oracle access to A
and O.

Hardwired with: (x1,w1), ..., (Tp_1, wg_1), T, i*, 5%, €.

(1) Receive (pg,s) from the challenger.

(2) Define pg ;- = ps and s;= = s. Sample (pg,, s,) < NoteGen(1*) for ¢ € [k —
1]\ {#*}. Compute («,,(,) < II.P.Com(z,,w,), query O at (z,,a,,s,) to get
8., compute v, « IL.P.Prove(z,,w,, 3,,(,), and define 7, = (pg ., 50, ., Bu, V.)
for v € [k —1].

(3) Send {xb,zL}Le[k,l] to A.

(4) Receive {7, },cx) from A.

(5) Send (ps;-,ps,-) to the challenger.

Given the event in Eq. (9) holds (for the afore mentioned fixed indices),
then the reduction will return two quantum money states with the same serial
number as the challenger sent. With advantage 1/(2k3p())), the reduction will
succeed at breaking unforgeability of the quantum money scheme, thus reaching
a contradiction.

Scenario Two.

Alternatively, say that (for an infinite set of A\) A does not generate two
accepting proofs which have the same serial number as an honestly generated
proof with at least 1/(2p())) probability. By the pigeon-hole principle, this means
that A generates an accepting proof with a serial number which is not amongst
the ones it received. In summary, we have that

Pr st |T|> iz =2} - 1
o and Vo € J,VO(x,7,) =1 ~ 2p(\)’
Vielk—1], w,«P° (z,,w,) : and 3% € J s.t. S]N* ¢ {SL}Le[k—l]

{vafL}LE[k]HAO({‘TL’WL}LE[k—l]
(10)
Through an averaging argument, we can get a similar event with a fixed index
J* that belongs to the event’s set J with an advantage of 1/(2kp()\)). We will
now switch to a hybrid where we provide A with simulated proofs.
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Claim (5.1). There exists a polynomial ¢(-) such that

3T C{j:z;, =x}
st |T|> iz =2}

h 1
P(’Dr and Vi € J,VSmB<? (1 7y = 1| > 0
{7 bem—1)—SimExt® (@1,....w—1) ir/ld red
{-ﬂvﬁ}LG[k]‘_ASimEXto({IMWL}LE[kfl]) and sj- ¢ {Sb}be[kfl]

We will later see a proof of Sect.5.4. For now, assuming that this claim holds,
we can define an adversary from which Ext can extract a valid witness for x.

Claim (5.2). There exists a polynomial ¢(-) such that

Pr [(z,w) € R] > /1

. 12
we—EA(T1,...,TK—1,T) q (/\) ( )

We will soon see a proof for Sect.5.4. Meanwhile, if this claim is true, then
we will have a direct contradiction with Eq. (8). Thus, all that remains to be
proven are the two claims.

See proof of Claim 5.1 and Claim 5.2 in the full version [33].

By completing the proofs of our claims, we have concluding the proof of our
theorem statement.

Corollary 5. Assuming the injective one-way functions exist, and post-quantum
10 exists, there exists a non-interactive knowledge sound, computationally zero-
knowledge, and (k — 1)-to-k-unclonable with extraction protocol for NP in the
quantum random oracle model.

Proof. This follows from Theorem 9 and Theorem 15.

We have thus shown that Fig.4 is an unclonable NIZK AoK in the ROM
model as defined according to our unclonability definition.

6 Applications

6.1 Unclonable Signatures of Knowledge

Definition 7 (Unclonable Extractable SimExt-secure Signatures of
Knowledge). Let NP relation R with corresponding language L be given such
that they can be indexed by a security parameter A € N. Let a message space M
be given such that it can be indexed by a security parameter A € N.

(Setup, Sign, Verify) is an unclonable signature of knowledge of a witness with
respect to L and M if it has the following properties:

— (Setup, Sign, Verify) is a quantum Sim-Ext signature of knowledge.
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- (k — 1)-to-k-Unclonable with Extraction: There ezists an oracle-
aided polynomial-size quantum circuit £ such that for every polynomial-
size quantum circuit A, for every tuple of k — 1 instance-witness pairs
(xlvwl)a"'a(mk—hwk—l) € R, every {mL € M/\}Le[lc—lp fO?” every (xam)7
if there is a polynomial p(-) where

37 C 4 @) = (@m)} )
Pr R st |TII> i (s, mi) = (,m)}] | > m,
VLE[k_(l?tsgf)hzisée:(ucpé’lm)’w,mb) and Vi € J, Verify(crs,x,m,5,) = 1
{oc} e —Alers{z,mu,00} gr—1))

then there is also a polynomial q(-) such that
1
[(z,w) e R] > ——.

T
weEA ({2, m. Yo ph—1],xm) q(N)

Unclonable Signature of Knowledge with CRS

Let (Setup, P, V) be non-interactive simulation-extractable, adaptive multi-theorem
computational zero-knowledge, unclonable-extractable protocol for NP. Let R be
the relation with respect to £ € NP.

SETUP(1*): (crs, td) < IT.Setup(1™).

SiaN(crs, z, w, m):

— Let it = (z,m) be an instance and wi = w be its corresponding witness for
the following language Li:

{(z,m) : Jw : (z,w) € R}.

— Compute 7  IL.P(crs, zm, wi).
— Output o = 7.

VERIFY (crs, z,m, 0): Output IL.V(crs, (x, m), 7).

Fig. 5. Unclonable Signature of Knowledge in CRS model

Theorem 16. Let II = (Setup, P,V) be a non-interactive simulation-extractable,
adaptive multi-theorem computational zero-knowledge, unclonable-extractable
protocol for NP (Definition 5).

(Setup, Sign, Verify) in Fig. 5 is an unclonable-extractable SimExt-secure sig-
nature of knowledge (Definition 7).

Corollary 6. Assuming the polynomial quantum hardness of LWE, injective
one-way functions ezist, post-quantum 10 ezists, there exists an unclonable
SimEzxt-secure signature of knowledge (Definition 7).

Proof. This follows from Corollary 3 and Theorem 16.
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6.2 Revocable Anonymous Credentials

Definition 8 (Revocable Anonymous Credentials).(IssuerKeyGen, Issue,
VerifyCred, Revoke, Prove, VerRevoke) is a revocable anonymous credentials
scheme with respect to some set of accesses {Sx}ren if it has the following prop-
erties:

- Correctness: For every sufficiently large A € N, and every access € Sy,

Pr [VerifyCred(1*, nym, access, cred) = 1] = 1
(nym,sk) «—IssuerKeyGen (1)
cred«—Issue(1* ,nym,sk,access)

and

Pr [VerRevoke(nym, sk, access, revnotice, 7) = 1] = 1.
(nym,sk)«—IssuerKeyGen(1*)
cred<—|ssue(1’\,nym,sk,access)
revnotice«—Revoke(1* ,nym,sk,access)
7r<—Prove(1’\mym,revnotice,cred)

— Revocation: For every polynomial-size quantum circuit A, there exists a
negligible function negl(-) such that for sufficiently large A\ € N, and every
access € M,

Pr VerRevoke(lA,nym,sk,access,revnotice,ﬂ)=1 < neg|(>\)

(nym,sk)«IssuerKeyGen(1*) A\ VerifyCred (1% nym,access,cred’)=1

cred<—Issue( 1 ,nym ,sk,access)
revnotice<—Revoke(1 A ,nym,sk,access)
m,cred —A(1 A ,nym,revnotice,cred)

We now introduce a construction based on unclonable signatures of knowl-
edge.

Theorem 17. Let (X, W) be a hard-distribution of instance and witness
pairs for some NP relation. Let {S)}aen be some set of accesses. Let
(Setup, Sign, Verify) be an unclonable-extractable SimExt-secure signature of
knowledge for message space {Sx}ren (Definition 7).

(IssuerKeyGen, Issue, VerifyCred, Revoke, Prove, VerRevoke) defined in Fig. 6 is
a revocable anonymous credentials scheme (Definition 8).

Proof (Proof Sketch of Theorem 17). The correctness of this revocable anony-
mous credentials scheme follows from the correctness of the unclonable signature
of knowledge scheme.

We will now sketch the proof of revocation. Say that there exists an adversary
A, access access, and polynomial p(-) such that, with probability at least 1/p(\):
(1) 7 passes the revocation check, and (2) cred’ passes the credential check. This
means that both 7 and cred’ are valid signatures with respect to the same crs,
x, and access that the signature cred was issued under. This satisfies the “if”
condition of the unclonability property of the unclonable signature of knowledge.
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Revocable Anonymous Credentials

Let (X, W) be a hard-distribution of instance and witness pairs for some NP relation.
Let {Sx}aren be some set of accesses. Let (Setup, Sign, Verify) be an unclonable-
extractable SimExt-secure signature of knowledge for message space {Sx}ien
(Definition 7).

IssUERKEYGEN(1*): (crs,td) + Setup(1*); (z,w) < (X,W); Output nym =
(crs,x) and sk = (td, w).

Issug(nym, sk, access): o < Sign(crs, x, w, access); Output cred = o.
VERIFYCRED(nym, access, cred): Output Verify(crs, x, access, cred).
REVOKE(nym, sk, access): Output revnotice = access.

PROVE(nym, revnotice, cred): Output revnotice = access.

VERIFYREVOKE(nym, sk, access, revnotice, ):
Output VerifyCred(nym, access, 7).

Fig. 6. Revocable Anonymous Credentials

As such, there exists a polynomial ¢(-) such that the unclonable signature of
knowledge’s extractor can produce a witness w for x with probability at least
1/q(X). However, this contradicts the hardness of the distribution (X, V). Hence,
our protocol must have the revocation property.

Corollary 7. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, post-quantum 10 ezists, and the hardness of NP, there
exists a revocable anonymous credentials scheme (Definition 8).

Proof. This follows from Corollary 6 and Theorem 17.

6.3 Unclonable Anonymous Credentials

We will show that our revocable anonymous credentials construction in Fig. 6
also satisfies a definition of unclonable anonymous credentials. We defer the
definitions and proofs to the full version [33].

Theorem 18. Let (X, W) be a hard-distribution of instance and witness
pairs for some NP relation. Let {Sa}reny be some set of accesses. Let
(Setup, Sign, Verify) be an wunclonable-extractable SimExt-secure signature of
knowledge for message space {Sx}xen (Definition 7).

(IssuerKeyGen, Issue, VerifyCred) defined in F'ig. 6 is an unclonable anonymous
credentials scheme.

Corollary 8. Assuming the polynomial quantum hardness of LWE, injective
one-way functions exist, post-quantum i0 exists, and the hardness of NP, there
exists an unclonable anonymous credentials scheme.
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