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Abstract. Is it possible to prove the deletion of a computer program
after having executed it? While this task is clearly impossible using clas-
sical information alone, the laws of quantum mechanics may admit a
solution to this problem. In this work, we propose a new approach to
answer this question, using quantum information. In the interactive set-
tings, we present the first fully-secure solution for blind delegation with
certified deletion, assuming post-quantum hardness of the learning with
errors (LWE) problem. In the non-interactive settings, we propose a con-
struction of obfuscation with certified deletion, assuming post-quantum
iO and one-way functions.
Our main technical contribution is a new deletion theorem for subspace
coset states [Vidick and Zhang, EUROCRYPT’21, Coladangelo et al.,
CRYPTO’21], which enables a generic compiler that adds the certified
deletion guarantee to a variety of cryptographic primitives. In addition
to our main result, this allows us to obtain a host of new primitives,
such as functional encryption with certified deletion and secure software
leasing for an interesting class of programs. In fact, we are able for the
first time to achieve a stronger notion of secure software leasing, where
even a dishonest evaluator cannot evaluate the program after returning
it.

1 Introduction

Consider the following scenario: Alice is a software developer who has written a
program that she would like to sell, in order to get financially rewarded for her
effort. Bob is interested in using Alice’s software, but only for a limited amount
of time. Can Alice temporarily lease her software to Bob, without the risk of
him pirating the program?

Ideally, we would like to design a protocol where Alice can lease her software
to Bob and start charging him for a subscription fee. Once Bob is done using the



software, he can produce a deletion certificate which guarantees that he deleted
his local copy of the program. At this point, Alice can rest assured that Bob is
no longer in possession of the software, and she can stop charging him. In case
of a dispute, the deletion certificate will unequivocally determine which of the
two parties misbehaved.

If we consider only classical information, then it is easy to see that no proto-
col can satisfy the security notion sketched above: Whatever information Alice
sent to Bob, he can always create a perfect copy of it, thus continuing using the
program even after producing the deletion certificate. In fact, nothing prevents
Bob from pirating copies of Alice’s program. On the other hand, the same ar-
gument does not hold if we consider quantum information, since the no-cloning
theorem [42] postulates that there does not exist a general algorithm to create
perfect copies of quantum states. Indeed, recent works on quantum copy protec-
tion [1] and secure software leasing [8,33,18] propose using quantum information
to solve similar problems. Unfortunately, all of the existing definitions are sub-
ject to strong impossibility results [8,5] and the aforementioned works either
attain heuristic constructions in idealized models, or focus on restricted classes
of programs. At present, the problem of general-purpose software with certified
deletion is wide open (even with quantum information).

To better understand the challenge of constructing software with certified
deletion, let us make more concrete the desiderata for such protocol. To cover
the full spectrum of software with certified deletion, in this work we consider
and formalize two complementary settings.

Interactive settings: Blind delegation with certified deletion. In the interactive
settings, Alice is assisting Bob to evaluate the program, i.e., to compute the
output of the software on some input, via an exchange of messages. This allows
Alice to control exactly how many inputs Bob has queried to the software, so
she can charge him accordingly.

It is well-known that fully-homomorphic encryption [26] provides the ability
to delegate a computation to an untrusted server, while revealing nothing about
the computation itself. However, an FHE ciphertext is a classical string that
information-theoretically contains Alice’s software, and the only thing preventing
recovery of this data is the conjectured hardness of a mathematical problem.
If this problem becomes easy to solve in the future due to computational or
scientific advances, or if Alice’s secret key is leaked to Bob, there is no way to
prevent Bob from recovering the underlying plaintext.

To mitigate this risk, we want Alice to be able to request Bob to delete
their data at the end of the protocol, in such a way that, if Bob produces a
valid certificate, then Alice is guaranteed that Bob has deleted the software
information theoretically. This notion is known as blind delegation with certified
deletion7 [17,35,12]. However, existing proposals are actually insecure against

7 In the standard notion of blind delegation, Alice delegates the computation of a
hidden input on a public function to Bob. Alice is then assumed to receive the output.
However, this is easily seen to be equivalent to the version where the function is also
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a malicious Bob, who may deviate from the description of the protocol in an
attempt to learn the Alice’s software (more details on this later).

Non-interactive settings: Obfuscation with certified deletion. In the non-interactive
settings, Alice ships a copy of the software to Bob, who can evaluate it freely on
as many inputs as he wants. After some amount of time, Bob wants to produce
a certificate of deletion that convinces Alice that, from that moment on, her
software has been deleted information-theoretically. In other words, we want to
encode a computer program into a quantum state that preserves its functional-
ity, while enabling an evaluator to information-theoretically delete the underlying
program.

We refer to this notion as obfuscation with certified deletion. Although a-priori
it is not clear that this notion has anything to do with program obfuscation, we
argue that the two are in fact intimately connected. After all, if Bob was able to
learn Alice’s software from its description, then there would really be no way to
erase Bob’s knowledge after the fact.

Limitations of existing approaches to certified deletion. Despite much recent
progress designing cryptosystems with certified deletion [17,28,30,35,12,29], the
above natural questions have remained unanswered. Arguably, we can trace the
lack of progress back to the fact that we are missing a technique that allows
for repeated access to partial information about the encoded data, followed by
certified deletion of whatever is left. In other words, all works8 thus far have fo-
cused on “all-or-nothing” style primitives: E.g. secret-key encryption, public-key
encryption, attribute-based encryption, timed-release encryption, and commit-
ments [38,17,28,30,12]. Even known constructions of fully-homomorphic encryp-
tion with certified deletion [35,12] are all-or-nothing, in the sense that security
becomes compromised (as we show in this work) once we give the evaluator
access to some type of decryption oracle.

1.1 Our Results

In this work, we introduce a new paradigm for secure information-theoretic dele-
tion of data. Our main technical ingredient, that enables all of our results, is a
new deletion theorem for subspace coset states [39,21]. Subspace coset states
have previously been used for designing uncloneable cryptographic primitives
[21,6], and we demonstrate how to use them to obtain information-theoretic
deletion. Our proof technique generalizes the work of [12] to states beyond BB84

hidden, using universal circuits. Furthermore, we can let Bob receive the output by
adding one more round.

8 An exception to this claim is a very recent work of [29] which constructs functional
encryption with certified deletion of ciphertexts. However, in contrast with one of the
goals of this work, their scheme is only secure in the setting of bounded collusions,
where there is an a-priori upper bound on the number of functional keys an adversary
can request.
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states. This allows us to achieve information-theoretic certified deletion for cryp-
tographic primitives beyond all-or-nothing. Specifically, we obtain the following
results:

– Blind delegation. We develop the first maliciously secure blind delegation
protocol with certified deletion. Our construction is based solely on the quan-
tum hardness of learning with errors (LWE) [36], and carefully combines sub-
space coset states with compact fully-homomorphic encryption (FHE) [26]
and succinct non-interactive arguments (SNARGs) for P.
We also provide the first construction of two-message blind delegation with
certified deletion, based on post-quantum sub-exponentially secure indistin-
guishability obfuscation. In particular, once the client sends their encoding
of x, the server can return both the evaluated output f(x) and a certifi-
cate that all other information about x has been deleted without any more
interaction with the client.

– Obfuscation. Assuming post-quantum indistinguishability obfuscation, we
obtain the first construction of differing inputs obfuscation with certified
deletion (diO-CD), for a polynomial number of differing inputs. Loosely
speaking, diO-CD satisfies the standard notion of differing inputs obfusca-
tion [10], in addition to the following certified deletion property: Let Π0 and
Π1 two programs that differ on one input y∗ (or a polynomial number of
hard to find inputs), then it is hard to distinguish an obfuscation of Π0 from
an obfuscation of Π1, even given a differing input y∗, provided that the dis-
tinguisher outputs the deletion certificate first. Intuitively, this formalizes
the guarantee that, after deleting a program, one can no longer evaluate it
on any input (more discussion on this later).

We can also conceptually abstract the above results as the following (informal)
theorem, in an oracle model: For any classical functionality f , one can prepare
an oracle that can be queried repeatedly (polynomially many times) before be-
ing permanently deleted. That is, after deletion, even an unbounded number of
queries to the oracle will not reveal any more information about f . This general
result may be of independent interest.

To demonstrate the usefulness of our newly developed tools, we show how
they enable new applications in quantum cryptography, and in some cases they
allow us to make progress on important open problems:

– Secure Software Leasing. As an immediate corollary of differing inputs
obfuscation with certified deletion, we obtain a strong notion of secure soft-
ware leasing for every differing inputs circuits family. Whereas the stan-
dard notion guarantees that the honest evaluation procedure fails for pirated
copies of software, this strong notion guarantees security against arbitrary
evaluation procedures.

– Functional encryption. We obtain two flavors of functional encryption
with certified deletion: (i) one where ciphertexts can be certifiably deleted,
and (ii) one where secret keys can be certifiably deleted (also known as key
revocation or secure key leasing). The former assumes a strong-enough notion
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of post-quantum functional encryption (in particular, public-key multi-input
FE with arity 2). The latter follows from differing inputs obfuscation with
certified deletion, combined with post-quantum public-key encryption and
injective one-way functions. Functional encryption with key revocation is
our only result with a computational certified deletion guarantee. This is
inherent in the primitive, as key revocation only emulates the case where a
secret key was never received.

– Public verification. We develop a generic compiler that results in a va-
riety of primitives with publicly verifiable certified deletion, assuming post-
quantum indistinguishability obfuscation.

2 Technical Overview

2.1 Warm-Up Example

We illustrate the challenges and the techniques that we introduce in this work
via a toy example. Namely, we will start from the, by now standard, notion of
encryption with certified deletion and highlight the barriers that one encounters
when trying to reveal some partial information about the plaintext. Specifically,
we will try to build obfuscation with certified deletion starting from the latter.

Public-key encryption with certified deletion. We recall the basic notion of public-
key encryption with certified deletion, and describe a recent construction due to
[12] based on Wiesner encodings / BB84 states [41,14]. For describing these
states, we use the notation |x〉θ, where x ∈ {0, 1}n is a string of bits, and
θ ∈ {0, 1}n is a string of basis choices. Let Enc be the encryption algorithm for
a post-quantum public-key encryption scheme. Then to encrypt a bit b, sample
x, θ ← {0, 1}n, and release

|x〉θ ,Enc(θ, b⊕
⊕

i:θi=0

xi).

To delete, measure |x〉θ in the Hadamard basis to obtain a string x′. This ver-
ifies as a valid deletion certificate if x′i = xi for all i : θi = 1. [12] show that since
Enc is semantically secure and thus hides the choice of θ, any computationally-
bounded adversary that produces a valid deletion certificate must have (essen-
tially) measured most of the qubits in the Hadamard basis, erasing enough in-
formation about {xi}i:θi=0 to claim that b is now statistically hidden.

Obfuscation and malleability. One nice property of the above scheme is that
it can be decrypted classically after measuring |x〉θ in the computational basis.
This suggests a natural construction for obfuscation with certified deletion. First,
encrypt (with certified deletion) the description of the circuit C. Then, obfuscate
the classical program that does the following: given a circuit input, the secret key,
and a classical measurement outcome obtained from the ciphertext encrypting
C, recover the description of C, and then evaluate it on the input.
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Unfortunately, such a construction does not even satisfy indistinguishability
obfuscation (let alone any certified deletion guarantee). The issue is that the
encryption scheme is clearly malleable: An adversary only has to guess a single
index i where θi = 0 in order to flip the message bit. Let’s imagine an adversary
that can maul the ciphertext to delete a single gate. It tries to distinguish an
obfuscation of C0 from one of C1, where C0 and C1 are built from the same base
circuit except that C0 appends an identity gate and C1 appends two consecutive
NOT gates. This adversary can attempt to remove the last gate in the circuit. If
this flips the output, the gate must have been C1. This simple mauling capability
therefore violates indistinguishability obfuscation (even before deletion). Under
more sophisticated mauling attacks, it may even be possible to recover the whole
circuit from the obfuscation!

Ciphertext validity check. A simple idea to overcome this issue is to enable
the classically obfuscated program to check that the ciphertext has not been
tampered with. Say the adversary provides y to the obfuscated program as the
alleged measurement of |x〉θ. To verify that the ciphertext is intact, the program
only needs to verify that yi = xi whenever θi = 0. This can be done using a
hard-coded x and θ. Otherwise, it can output ⊥.

Unfortunately, the encryption scheme becomes completely insecure in the
presence of such a program. An adversary can learn a description of θ one bit
at a time, by flipping a bit of its state |x〉θ and observing whether the program
returns a successful evaluation or rejects. Once it learns θ, we cannot hope for
any certified deletion guarantees. Moreover, the adversary can make additional
queries to learn {xi}i:θi=0, and, eventually, the circuit C.

Subspace coset states. Fortunately, there is a way to get around the problem that
BB84 states are learnable in this sense. Prior work (for example, in the setting
of publicly-verifiable quantum money) has switched to using entangled subspace
states [2] and the more-general subspace coset states. A subspace coset state is
defined by a subspace S of Fn

2 and two vectors v,w ∈ F
n
2 , and is written as

|Sv,w〉 :=
1√
|S|

∑

z∈S+v

|z〉 (−1)〈z,w〉.

It is useful to think of BB84 states as a type of subspace coset state in which
the subspace is spanned by the standard basis vectors {ei}i:θi=1. The coset in
the primal space is determined by the bits {xi}i:θi=0, which are used to hide
the plaintext bit b, and the coset in the dual space is determined by the bits
{xi}i:θi=1, which determine what constitutes a valid deletion certificate.

Thus, in an attempt to make the obfuscation scheme secure, we replace the
use of BB84 states with more-general subspace coset states. To encrypt each bit
b of the description of the circuit, consider a ciphertext of the form

|Sv,w〉 ,Enc(S,C ⊕ 〈v,1〉),
where we set S to be a random n/2-dimensional subspace, and a valid deletion
certificate is now any vector z̃ ∈ S⊥ + w. The decryption algorithm, on input a
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vector z and ciphertext ct, will decrypt ct to obtain (S, b′), compute a canonical
coset representative of S + z, and use this resulting vector to unmask b.

Additionally, it is possible to check whether z has been tampered with by
verifying that z ∈ S+v. It is even possible to publish an oracle for this consistency
check, without leaking S and v [21]. However, proving that the consistency oracle
does not compromise the certified deletion security of the encryption scheme
requires new ideas, and is a main technical contribution of this work.

Noisy consistency check. In order to carry out this consistency check, the obfus-
cated program must have S and v hard-coded. Unfortunately, the obfuscation
only hides S and v computationally. After deletion, an unbounded adversary
could learn v and b⊕ 〈v,1〉, which reveals b.

To information-theoretically protect b after deletion, we will instead sample
a random superspace of S called T and hard-code the coset T + u that contains
S+v. We set dim(T ) = 3n/4 as a happy medium, which has two nice properties.
First, since T is a negligible fraction of Fn

2 , it is hard for an adversary to find a
vector in T + u \ S + v, so the consistency check will be essentially as good as
using S+ v. Second, since S is a negligible fraction of T , T +u statistically hides
enough information about v that 〈v,1〉 is uniformly random, even given T + u.
Therefore, the proof of certified deletion works.

It turns out that this “noisy consistency check” will be also be a crucial com-
ponent in our constructions of both blind delegation and functional encryption
with certified deletion.

2.2 General Compiler for Certified Deletion

Now we will present the tool that underlies all of our applications: a compiler
that adds a certified deletion guarantee to a variety of cryptographic primitives.

First consider a simple template for certified deletion: to hide a bit b, we give
the adversary the following state:

|Sv,w〉 ,Z(S, b⊕ 〈v,1〉),
where |Sv,w〉 is a random subspace coset state and Z is some side information,
which may be classical. Z will often represent the primitive to which we are
adding a certified deletion guarantee.

Note that given only the side information, b is statistically hidden because it
is masked by 〈v,1〉. However, the information needed to remove the mask v is
stored in the computational basis of the subspace coset state. To prove deletion,
an honest party measures the subspace coset state in the Hadamard basis to
get a vector z̃ ∈ S⊥ + w, which destroys essentially all information about v and
removes b from their view. We will hope to prove that any strategy an (efficient)
adversary uses to obtain a z̃ ∈ S⊥ +w will also statistically remove b from their
view.

The recent work of [12] showed how to prove this when Z satisfies semantic
security with respect to S.9 However our applications need a much richer set

9 Also they only consider the case where the quantum state is a string of BB84 states.
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of choices for Z that do not necessarily hide S semantically. For instance, we
want the ability to perform the noisy consistency check. That is: we want Z
to output a randomized (T, u) where S + v ⊂ T + u. This is essential for our
constructions of blind delegation and obfuscation with certified deletion. But Z
would no longer hide S semantically because T reveals some basis vectors of S⊥.
In this case [12]’s proof falls short.

We present a compiler that supports a greater variety of choices for Z, includ-
ing the noisy consistency check. Specifically, we develop techniques to allow any
choice of Z that satisfies a form of subspace-hiding against QPT adversaries.
Morally, subspace-hiding means that an adversary cannot tell whether Z was
testing membership in S (and S⊥) or random superspaces T ≥ S (and R ≥ S⊥).
We sketch our notion of subspace-hiding below:

Definition 1 (Subspace-Hiding, Informal). Given any subspace S of di-
mension n/2 and two cosets S+v and S⊥+w, let T+u and R+x be random cosets
that contain the first two: S+v ⊂ T+u and S⊥+w ⊂ R+x. Then, Z(S, T, u,w, b⊕
〈v,1〉) is subspace-hiding if there exists a simulator S(R, T, u, x, b ⊕ 〈v,1〉) such
that

Z(S, T, u,w, b⊕ 〈v,1〉) ≈c S(R, T, u, x, b⊕ 〈v,1〉),
where ≈c denotes indistinguishability to a quantum polynomial-time adversary.

Next, we claim that if Z satisfies subspace-hiding (which is a notion of compu-
tational security), then after the deletion certificate is accepted, b is statistically
hidden, even if the inputs to Z are leaked at a later point. We sketch the security
claim below.

Claim (Certified Deletion Security, Informal). Let EXP(b) be the output of the
following experiment:

1. Challenge: The challenger samples the following challenge and sends it to
the adversary:

|Sv,w〉 ,Zλ(S, T, u,w, b⊕ 〈v,1〉)
2. Response: The adversary responds with a deletion certificate z̃ ∈ F

n
2 and an

auxiliary state ρ.
3. Outcome: The challenger checks that

z̃ ∈ S⊥ + w

If so, they output ρ and all the inputs to Z; if not, they output ⊥.

If Z is computationally subspace-hiding, then the statistical distance between
EXP(0) and EXP(1) is negligible.

Proof overview. First, we claim that b is statistically hidden given only the
side information Z(S, T, u,w, b ⊕ 〈v,1〉). Note that b is masked by 〈v,1〉, and
although Z may give some information about v in the form of (T, u), there
is still some randomness left in v. In more detail, we can decompose v into
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its deterministic and random components by defining v0 = v − u. Then given
(S, T, u,w), u is deterministic, and v0 is uniformly random over co(S) ∩ T .10
Because v0 is uniformly random given (S, T, u,w), the bit 〈v,1〉 is also uniformly
random (with overwhelming probability over the choice of (S, T )).

Next, recall that the adversary’s view also includes the quantum state |Sv,w〉 =
|Su+v0,w〉, which stores v0 in the computational basis. Now, b is not necessarily
statistically hidden given both |Su+v0,w〉 and Z(S, T, u,w, b⊕〈v,1〉). However, we
will show that to prove deletion, the adversary must essentially measure |Su+v0,w〉
in the Hadamard basis, destroying all information that the state had about v0.

To show this, instead of giving the adversary |Su+v0,w〉, we imagine giving
them the following state, which stores a random ṽ0 in the Hadamard basis:

|Tu,̃v0+w〉 where ṽ0 ← co(T⊥) ∩ S⊥.

|Tu,̃v0+w〉 is in some sense dual with |Su+v0,w〉. Both states store u in the compu-
tational basis and w in the Hadamard basis. The only difference is that |Su+v0,w〉
encodes a random v0 in the computational basis, and instead |Tu,̃v0+w〉 encodes
a random ṽ0 in the Hadamard basis. Furthermore, the adversary’s behavior will
be the same no matter which of the two states we give them. Indeed, we show
that for any fixed S, T, u,w, the following states σ0 and σ1 are equivalent:11

σ0 ∝
∑

v0∈co(S)∩T

|Su+v0,w〉 〈Su+v0,w|

σ1 ∝
∑

ṽ0∈co(T⊥)∩S⊥

|Tu,̃v0+w〉 〈Tu,̃v0+w|

This can be seen as a generalization of the fact that

1

2

(
|0〉 〈0|+ |1〉 〈1|

)
=

1

2

(
|+〉 〈+|+ |−〉 〈−|

)
.

In other words, the state is the same whether it’s a maximal mixture of compu-
tational basis eigenstates or Hadamard basis eigenstates. Establishing this claim
requires new techniques which seem to be generally useful for handling subspace
coset states (more detail in Section 2.3).

Now, we want to argue that if the adversary produces a valid deletion cer-
tificate z̃ ∈ S⊥ + w, then given their remaining state, v0 is statistically close to
uniform. Imagine the adversary is given |Tu,̃v0+w〉 and they output a valid dele-
tion certificate z̃ ∈ S⊥+w with non-negligible probability. Recall that T⊥+ṽ0+w

is an affine subspace of S⊥+w, so one way to do this is to make a measurement
of the vector ṽ0+w encoded in the phase, producing a vector in T⊥+ ṽ0+w. In

10
co(S) is a group of coset representatives of S. See Section 4.1 for a precise definition
of co(S).

11 This is implicitly shown in the supplementary material by purifying σ0 and σ1 and
showing that there exists a unitary acting on the purifying register that maps be-
tween the two states.
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fact, we show that since Z is computationally subspace-hiding for S, any adver-
sary’s strategy must be statistically close to making a measurement of ṽ0 +w.12

Then, if the adversary were instead given |Su+v0,w〉, this same measurement of
the phase would destroy all information about v0, completing the proof.

2.3 Discussion

To gain some context, it is useful to zoom out from our main theorem, and
compare our proof technique with existing works. As we shall see shortly, our
settings require new proof techniques and cannot be framed as a special case of
existing theorems.

New techniques for subspace coset states. While the previous section provides
intuition, our actual proof is trickier and requires new techniques. Essentially,
facts that are obvious for continuous vector spaces are sometimes false or difficult
to formalize for discrete vector spaces. We develop new techniques for working
with subspace cosets, and the culmination is an algorithm for delayed preparation
of subspace coset states. Section 4 presents these results.

Our first contribution is to define a coset group co(S) that is isomorphic to
F
n
2/S and that is a subspace of Fn

2 . This improves on prior work, [21], which
defined a set of canonical coset representatives that was not necessarily a group.
The algebraic structure of co(S) allows us to prove more-sophisticated claims
than what was possible with [21]’s coset representatives.

Our second contribution is to develop a toolkit for proving such claims.

Our third contribution is an algorithm for delayed preparation of subspace
coset states. This formalizes the intuition that the adversary’s behavior is the
same whether they are asked to play a game based on |Su+v0,w〉 or a game based
on |Tu,ṽ0+w〉. We formalize this by showing that we can purify σ0 and σ1 by
adding a second register, and then show that there is a unitary that acts on
the second register and maps the purification of σ0 to that of σ1. The unitary
could be applied after the adversary acts on the first register, so the adversary’s
behavior will be the same in either case.

Why monogamy-of-entanglement techniques fail. Prior works [21,37] that dealt
with subspace coset states relied on monogamy-of-entanglement (MoE) theo-
rems, but these theorems fail to achieve the strong guarantees needed in our
setting.

First, monogamy of entanglement is an information-theoretic property, and it
does not necessarily hold if the adversary receives a computationally-secure en-
cryption of the subspace S. We note that a recent work [7] does use a MoE
property to establish a certified deletion property, but crucially only in the
information-theoretic one-time-pad encryption setting.

12 That is, we use computational hardness to establish a statistical claim, as done in
[12] in the context of BB84 states.
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Next, MoE claims in prior work do not seem to easily extend to rule out the
possibility that Bob outputs the string x, and Charlie simultaneously outputs
the parity of x with non-negligible advantage. If this were possible, then even
when one player produces a valid deletion certificate, the other player might
learn a bit of data with non-negligible advantage, which would violate certified
deletion security.

Why non-committing encryption techniques fail. Recall that we would like to
eventually prove information-theoretic deletion of a secret that is initially information-
theoretically determined by the adversary’s view. Prior works (e.g., [4]) used
receiver non-committing encryption schemes which have an “equivocality” prop-
erty, allowing one to sample the fake keys after S is revealed. These were inher-
ently limited to proving weaker forms of security; e.g., restricted to (computa-
tional) security against key-leakage attacks. Furthermore, equivocality is hard
to achieve [31] for applications such as blind delegation, which involves FHE.
Another setting where an equivocality-based approach fails is differing-inputs
obfuscation. The choice of whether to behave as C0 or C1 is “hidden” under
the differing inputs. Thus, the differing inputs act as a key to decrypt S, which
reveals this choice bit. However, any differing input (i.e. key) y∗ is easy to check
by simply evaluating the two programs C0 and C1 on y

∗, allowing fake keys to be
immediately recognized. While [12] developed methods to overcome the equiv-
ocality issue for certified deletion, they only apply their techniques to settings
where the subspace S is semantically hidden.

2.4 Blind Delegation with Certified Deletion

In this section, we discuss our construction of maliciously-secure blind delegation
with certified deletion.

Insecurity of prior protocols against malicious adversaries. We first discuss why
both prior protocols [35,12], while secure against semi-honest adversaries, are
insecure against malicious adversaries.

Both of these protocols consist of four messages. First, the client encrypts
their input m and sends a quantum ciphertext |Enc(m)〉 to the server. Next,
the server evaluates a function f to obtain a register holding a superposition
over output ciphertexts |Enc(f(m))〉, which is sent to the client. The client then
coherently applies FHE decryption using their secret key, which allows them to
recover f(m) without disturbing the state, and then reverse their computation
and send the undisturbed register back to the server. Finally, the server can
uncompute f and recover the original ciphertext |Enc(m)〉. Then, if they want,
they can measure the ciphertext in a particular way to recover a certificate of
deletion, which is sent to the client.

Now, consider the following attack. Suppose that the server wants to learn
the first bit m1 of m. They can easily prepare a state of the form

1√
2
|Enc(m1)〉C |0〉S +

1√
2
|Enc(0)〉C |1〉S ,
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where Enc(0) is a freshly prepared encryption of 0. Then, suppose they send
register C to the client in place of the second message of the protocol described
above. In the case that m1 = 0, the client’s computation will not disturb the
state, and the server will receive back the C register unharmed. But in the case
when m1 = 1, the client’s measurement of the output will collapse the state.
Thus, if the server unentangles register C and S, measures S in the Hadamard
basis, and observes outcome |−〉, they will learn for sure that m1 = 1, breaking
privacy of the protocol.13

Our solution. The attack above relies on the fact that the client always immedi-
ately applies an operation that depends on their FHE secret key sk. To prevent
this attack, we must introduce a way for the client to check that the server is
honestly following the protocol, before using its secret key to operate on the
state.

Suppose the client’s input is a single bit b, and consider our basic encryption
scheme

|Sv,w〉 ,Enc(S, b⊕ 〈v,1〉),
but where Enc is now instantiated as a fully-homomorphic encryption (FHE)
scheme. We will have the server perform a classical FHE evaluation for circuit
f in superposition over the vectors in S + v, resulting in a superposition over
Enc(f(b)). Now, the client will need to perform two checks to make sure the
server was behaving honestly:

– The client needs to check that the FHE evaluation in superposition was per-
formed honestly. This can by accomplished by requesting that the server
use a succinct non-interactive argument (SNARG) for P (polynomial-time
computation) in superposition, and having the client verify this proof be-
fore decrypting. Moreover, SNARGs for P are known just from the LWE
assumption [20], and it is straightforward to see that this SNARG remains
post-quantum secure assuming the post-quantum hardness of LWE.

– The client also needs to check that the input to the server’s computation
is honest. This input is supposed to include any vector in S + v. Thus, one
solution is to have the client remember a description of S + v, and also
perform this check on the input before decrypting the output. However, this

13 This attack does not contradict any claims made in [35] or [12] because neither paper
claims that their protocol is maliciously-secure. In [35], the correctness and security
properties are defined entirely separately. That is, it is argued that correctness of the
four-message protocol holds assuming parties are honest, but security (and certified
deletion security) is only argued assuming that the server does not interact with
the client. Thus, the claim is essentially that either correctness of delegation holds,
or privacy against a malicious server holds. But it is never claimed that both can
hold simultaneously. In [12], the authors do jointly consider correctness and security
of the four-message protocol. However, they only claim security against servers that
are semi-honest during the protocol execution (and potentially malicious after, while
producing the deletion certificate). Thus, the above attack is explicitly disallowed
by the semi-honest assumption.
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solution requires that the client keep the vector v around in memory, which
if leaked would completely compromise certified deletion security. Instead,
we use the same “noisy consistency check” as explained earlier, and have the
client sample a random affine superspace T + u of S + v, and only keep this
around in memory.

This is the basic idea of our blind delegation scheme.

Remarks on the security definition.

– We prove simulation-based security in the “protocols with certified deletion”
framework of [12]. That is, we show that our protocol securely realizes an
ideal functionality that takes input (f, x) from the client, delivers only f to
the server, and delivers the output f(x) to the client. Thus, in the simulated
world, the server obtain no information about the client’s private input x.
We show that conditioned on the server producing a valid deletion certificate,
their final view in the ideal protocol and in the ideal world are statistically
indistinguishable, indicating that they have information-theoretically lost all
information about x.

– We show that our protocol in fact realizes a reusable ideal functionality,
where the client can request that the server compute for them multiple func-
tions f1(x), f2(x), . . . on their original encrypted data x, and security still
holds.

– In the case that deletion is accepted, we also explicitly leak all of the client’s
secret parameters to the adversary, and still require that statistical security
holds. We capture this by defining a “long-term secrets” tape sec, where after
each message, the honest client is supposed to write all of the information it
needs to interact in the remainder of the protocol on this tape. Conditioned
on deletion being accepted, we give the adversary access to this tape.

Finally, we remark that prior to our work, maliciously-secure blind delegation
with certified deletion was not known even without reusability, and even without
requiring information-theoretic security after deletion.

2.5 Obfuscation with Certified Deletion

A certifiably deletable program is an encoding of a classical circuit C into a
quantum state |C̃〉 that allows for evaluation of C(x) on any input x. To real-

ize certified deletion, there should also be a procedure for measuring |C̃〉 in a
particular way that certifiably destroys information about C.

While the natural notion of virtual black-box obfuscation is impossible to
achieve in general [10], several relaxed notions are plausibly achievable. We fo-
cus on the case of differing inputs obfuscation for a polynomial number of dif-
fering inputs [10], which is implied by the related notion of indistinguishability
obfuscation [15]. This notion requires that for any two circuits C0 and C1 which
differ on a polynomial number of hard-to-find inputs, an obfuscation of C0 is
indistinguishable from an obfuscation of C1.
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Our goal is thus to achieve differing inputs obfuscation with certified deletion
for a polynomial number of differing inputs.14 This is described by the following
(simplified) game.

1. The challenger samples two programs C0 and C1 from a given distribution,
where it holds that C0(y) = C1(y), except for some y∗, that we refer to as
the differing input. Importantly, even given the description of C0 and C1, it
is computationally hard to find y∗.

2. The challenger flips a coin b← {0, 1} and sends an obfuscation of Cb to the
attacker.

3. At some point of the experiment, the attacker outputs the deletion certificate,
which is verified by the challenger.

4. If the certificate correctly verifies, then the challenger sends y∗ to the at-
tacker.

5. The attacker outputs a guess for the bit b.

We say that an obfuscation scheme is secure if the success probability of
the attacker is negligibly close to 1/2. We note that if the attacker becomes
unbounded after outputting a valid deletion certificate, then they could compute
y∗ themselves. Thus, we remove Step 4 in our definition for information-theoretic
certified deletion.

To justify this definition, we argue that it captures the intuitive guarantees
that one would expect from software with certified deletion. First, there is a
sense in which software with certified deletion implies some notion of obfusca-
tion: if one could learn the program by just looking at its code, then there would
be no point in issuing a deletion certificate. Second, we want to model the fact
that once the adversary has deleted the program, they can no longer evaluate
it on any input. However, it is not clear how to model the information which
the adversary learned before deletion, i.e., when they had a functional copy of
the program. We have no way of “looking inside the adversary’s head” to learn
which inputs they evaluate, and, even worse, the attacker may not even execute
the program properly. Our definition sidesteps this issue, by requiring security
for inputs that are hidden even given the plain description of the program (i.e.,
the differing inputs). In this sense, our definition can be interpreted as saying
that the deletion prevents the adversary from learning any information that was
not obviously leaked from having a running copy of the program.15

Construction. As outlined previously, the general structure of the construction
is to encrypt the circuit C under a random coset v of the subspace S. Suppose

14 Our definition also generalizes to the case of an arbitrary number of differing in-
puts. However, achieving this would imply the existence of general differing inputs
obfuscation, contrary to current evidence [13,24].

15 Our definition does not prevent an adversary from evaluating the program on easy-
to-find inputs after deletion. This is because we cannot rule out the possibility of
them having already evaluated those inputs before deletion.
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for a moment that we can simultaneously hide all bits of C with a single vector v.
To use the noisy consistency check, we will sample a uniform superspace T +u of
S+v. Then, we will hard-code S, T and u into a classical program P [S, T, u, C+v]
to be obfuscated. P [S, T, u, C + v] takes as input a vector z (which should be in
S + v) and a string x to be evaluated. It checks that z ∈ T + u, then computes
the coset v of S that z belongs to, unmasks C using v, and finally computes and
outputs C(x). If z /∈ T + u, it aborts. Then, the construction is

|Sv,w〉 ,Obf(P [S, T, u, C + v])

To argue security, we would like to switch an obfuscation of C0 to an obfus-
cation of C1, and argue that this switch is statistically indistinguishable to an
adversary that produces a successful deletion certificate. Our main theorem pro-
vides a way to obtain such statistical guarantees, but it only handles statistically
hiding a single bit. Thus, we must perform a hybrid argument over the bits of
the descriptions of the circuits. We cannot do this naively, since descriptions of
circuits “in between” C0 and C1 are not guaranteed to be functionally equivalent
to C0 and C1. Instead, we make use of the two-slot technique [34], and we defer
details of this to the technical sections.

The above describes the main intuition and techniques that allow us to hide
functionality, while still allowing for certified deletion. In the body of the paper,
we also derive the following related results and applications.

Application: Strong Secure Software Leasing. Secure software leasing is defined
with respect to a family of programs [8]. The adversary is given a leased pro-
gram randomly chosen from this family and outputs two programs. If one of the
programs is authenticated, then the other cannot be evaluated using the honest
evaluation procedure.

We observe that any differing inputs program family can be securely leased by
obfuscating it with certified deletion. A differing inputs program family contains
pairs of programs (C0, C1) such that given a random pair, it is hard to find an
input y∗ where C0(y

∗) 6= C1(y
∗). If an obfuscation of C0 is returned to the lessor

who then generates a valid deletion certificate, then the residual state cannot be
used to distinguish whether the program was C0 or C1, even given a differing
input y∗. In particular, the adversary that returned the program cannot later
evaluate a pirated copy of it on y∗ - otherwise they could check which program
matched the output. Therefore, a leased program can be validated by attempting
to delete it and checking the deletion certificate.

We emphasize that this guarantee is stronger than the original notion of
secure software leasing, which permits the adversary to evaluate a pirated (i.e.
unauthenticated) program as long as they do not use the honest evaluation
procedure. In our definition, security is guaranteed even if the adversary uses an
arbitrary evaluation procedure after returning a valid copy of the program.

Since we construct obfuscation with certified deletion for a polynomial num-
ber of differing inputs, we immediately obtain (strong) secure software leasing for

15



differing inputs program families with a polynomial number of differing inputs.
Existing impossibility results for secure software leasing [8,5] rule out secure
software leasing for families containing programs which cannot be learned with
black-box query access, but can be learned using non-black-box access to any
functionally equivalent program. In contrast, a differing inputs program family
contains programs which cannot be learned, even with non-black-box access to
an obfuscation of the program.

Application: Functional Encryption with Key Revocation. To substantiate the
usefulness of our definition, we show that our obfuscation scheme allows a simple
and intuitive construction of public-key encryption, and even functional encryp-
tion, with key revocation. Moreover, our key revocation guarantee is publicly-
verifiable. In key revocation, one or more secret keys are temporarily distributed
to users. Later on, if the users comply with the revocation process, these keys
are deleted and cannot be used to decrypt freshly generated ciphertexts [3,9].16

Our construction is essentially the same as the transformation from obfusca-
tion to functional encryption given in [23], but our obfuscation scheme supports
certified deletion. We describe a simplified version of their construction here.
The secret key for a function f will be an obfuscated circuit that first decrypts
a classical ciphertext to recover the message m, and then computes and returns
f(m). The encryption of m will use a standard public-key encryption scheme.

The above construction already guarantees that a key skf only reveals in-
formation about f(m), by virtue of being a functional encryption scheme. The
certified deletion property additionally ensures that, if the adversary has a key
for f , but deletes it before receiving the challenge ciphertext, then he learns
nothing. In fact, a straightforward reduction to the certified deletion security
of the obfuscation scheme ensures that this is the case even if the adversary
has access to other secret keys (security against unbounded collusion). We note
that a similar technique allows adding publicly-verifiable key revocation to other
encryption schemes, assuming iO.

3 Related Work

3.1 Prior Work

We first discuss prior works that build cryptographic schemes from subspace
coset states. These states were first used by [39] in the context of proofs of
quantum knowledge and by [21] to construct signature tokens (among other
unclonable primitives) in the plain model. These were also used to build semi-
quantum tokenized signatures [37]. Most recently, [6] used subspace coset states
to construct unclonable encryption satisfying the notion of unclonable indistin-
guishability. We remark that, while there are clearly similarities between the

16 This property has also been referred to as secure key leasing.
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notions of unclonable encryption and encryption with certified deletion, our se-
curity definitions and proofs are quite different than those in [6]. For exam-
ple, [6] crucially rely on random oracles, while our results are all in the plain
model. Moreover, we achieve security definitions that promise everlasting se-
curity against unbounded adversaries after deletion, while [21,6,37] focuses on
proving that computationally-bounded (or query-bounded) adversaries cannot
perform a certain task, e.g., generating additional signatures.

Next, we mention two prior works that have considered functional encryption
with certified deletion. [32] achieves a private-key version of functional encryp-
tion with certified deletion of secret keys. [29] achieves functional encryption
where the ciphertext can be deleted and it is certified everlasting (i.e. informa-
tion theoretic certified deletion). Their construction is secure against bounded
collusions, and either relies on the QROM or requires quantum certificates of
deletion, and assumes public-key encryption. On the other hand, our functional
encryption schemes support public-key encryption and are secure (in the sense of
certified deletion) against an unbounded number of colluding users. We assume
iO, which (up to subexponential hardness factors) is necessary, since it is implied
by unbounded-collusion FE.

Finally, we remark that the blind delegation protocol of [35] is also shown
to be publicly-verifiable, under the strong Gaussian-collapsing conjecture, and
thus our results on blind delegation with public verification are technically in-
comparable. However, [35]’s conjecture involves an interactive game that has
a baked in certified deletion component, wherein the adversary receives some
trapdoor information conditioned on them successfully returning a pre-image of
the hash function. On the other hand, indistinguishability obfuscation a priori
has nothing to do with certified deletion. While post-quantum indistinguisha-
bility obfuscation is also not known from standard assumptions, this is a very
active area of research with many candidates proposed over the last few years
[11,19,16,25,40,22].

3.2 Concurrent and Independent Work

We will discuss three recent works [27,3,9] that construct revocable/deletable
cryptographic primitives, a few of which overlap with ours. We compare the
results in more detail below. At a high level, our constructions produce publicly-
verifiable, classical deletion certificates in the plain model. The deletion certifi-
cates of [27,3,9] are all privately verifiable, and some of their constructions require
quantum deletion certificates. Furthermore, our work unifies techniques using a
general compiler for certified deletion based on subspace coset states. Whereas
[27] and [3] developed different techniques for constructing, respectively, FE with
certified deletion for ciphertexts and FE with key revocation, we construct both
primitives from a single technique.

[27] construct functional encryption with certified deletion for ciphertexts.
One of their main techniques is a way to verify BB84 states by individually
signing them with a one-time signature. This serves a similar purpose as our
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use of subspace coset states. One difference is that their one-time signature ap-
proach results in privately-verifiable certificates of deletion, while our subspace
coset state approach also supports public verification when combined with iO.
They also construct several primitives with certified deletion that are not consid-
ered in our work: compute-and-compare obfuscation and predicate encryption.
Likewise, we construct blind delegation, CCA encryption, and (differing-inputs)
obfuscation, which they do not consider.

Next, [3] construct functional encryption that supports revocation of secret
keys. They call this notion secure key leasing, which is the same as key revoca-
tion, except that their “certificate of deletion” is a privately-verifiable quantum
state (the key itself) whereas ours is a classical string obtained by performing a
destructive measurement on the quantum key. They also show how to add secure
key leasing to various encryption schemes (public-key, identity-based, attribute-
based, and functional) while requiring no additional assumptions. We only con-
sider functional encryption with secure key leasing and assume iO, which is im-
plied by subexponentially-secure functional encryption. Our technique is generic
and could also be used to add publicly-verifiable secure key leasing to other
encryption schemes, at the cost of assuming iO.

Finally, [9] also study revocable cryptography, which is the same notion of
secure key leasing as studied by [3]. They obtain various primitives (including
psuedorandom functions, PKE, and fully-homomorphic encryption) with key
revocation, from the hardness of LWE. The comparison with our work is similar
to the previous paragraph: [9] achieve constructions from standard assumptions,
but only support privately-verifiable quantum certificates of revocation.

4 Delayed Preparation of Coset States

Here we develop tools for working with subspace coset states that will help us
prove Theorem 2, which is our main theorem. In particular, we show how to
prepare a random subspace coset state but delay the choice of subspace until
after the register has been given out. Similar techniques exist for BB84/Wiesner
states, but it is non-trivial to extend them to subspace coset states. Along the
way, we develop a framework for representing the cosets of two subspaces S ≤ T
that maintains the algebraic structure of the quotient groups F

n
2/S and F

n
2/T .

We believe the techniques in this section are interesting independently of their
applications to certified deletion.

4.1 Coset Representatives

Given a subspace S ≤ F
n
2 , let co(S) be a subspace of Fn

2 that contains exactly
one vector from every coset of S.17 Note, co(S) is analogous to the quotient
group F

n
2/S, whose elements are the actual cosets of S and which has the same

17 [21] used a different set of coset representatives, called CanS , which is not necessarily
a vector space.
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algebraic structure as co(S). co(S) is useful for decomposing vectors since every
z ∈ F

n
2 has a unique decomposition as z = u + v, for some (u, v) ∈ S × co(S)

(Lemma 1).
It is useful intuition to imagine choosing co(S) = S⊥, but this is not always

allowed. Because S is a subspace of Fn
2 and not Rn, it’s possible that some coset

of S contains multiple vectors from S⊥ and another coset contains none.
For any S, there exists a valid co(S) (see Definition 2 and Lemma 2). Usually,

there are many valid choices of co(S), so we pick one of them to be canonical.
To avoid ambiguity, let the description of S include a basis for the following
subspaces: [S, S⊥, co(S), co(S⊥)]. This defines the canonical choices for co(S)
and co(S⊥).

Lemma 1 shows that the definition of co(S) is equivalent to some useful
properties. In this lemma, we refer to co(S) as C.

Lemma 1. For subspaces S,C ≤ F
n
2 , the following are equivalent:

1. C contains exactly one element from each coset of S.
2. For any z ∈ F

n
2 , there is a unique pair (u, v) ∈ S × C such that z = u+ v.

3. dim(C) = n− dim(S) and span(S,C) = F
n
2 .

4.2 Sampling Procedure

In this section, we give a procedure for choosing co(S). We actually consider a
more-general problem: given two subspaces S ≤ T , we will choose [co(S), co(S⊥),
co(T ), co(T⊥)] that satisfy co(T ) ≤ co(S) along with some other useful proper-
ties. In later sections, whenever we need to sample two subspaces, S ≤ T , we
will implicitly use Definition 2 to sample the associated coset representatives.

Definition 2 (Procedure to Sample Coset Representatives). Given two
subspaces S ≤ T ≤ F

n
2 :

1. Choose n linearly independent vectors {z1, . . . , zn} uniformly at random such
that

S = span(z1, . . . , zdim(S))

T = span(z1, . . . , zdim(T ))

2. Then let

co(S) = span(zdim(S)+1, . . . , zn)

co(T ) = span(zdim(T )+1, . . . , zn)

co(S⊥) = co(S)⊥

co(T⊥) = co(T )⊥

3. Choose a fresh random basis for each subspace in [co(S), co(S⊥), co(T ), co(T⊥)],
and output these bases. Note that the subspaces do not change in this step –
just the bases used to represent them.
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The reason we choose fresh random bases for each subspace is so that someone
with a description of S and co(S) but not T does not learn anything about T
other than the fact that S ≤ T . The original basis we chose for co(S) was built
from the basis for T , which might leak information about T .

Lemma 2 analyzes the procedure in Definition 2 and proves that it satisfies
some useful properties.

Lemma 2. Given two subspaces S ≤ T ≤ F
n
2 , the procedure in Definition 2

chooses the subspaces [co(S), co(S⊥), co(T ), co(T⊥)] such that:

1. co(S) is valid: it contains exactly one element from each coset of S. The
analogous statement holds for co(S⊥), co(T ), co(T⊥).

2. co(T ) ≤ co(S) and co(S⊥) ≤ co(T⊥).
3. co(S⊥) = co(S)⊥ and co(T⊥) = co(T )⊥.

4.3 Delayed Preparation of Coset States

Our goal in this section is for Alice to prepare a random subspace coset state for
Bob, but delay choosing the underlying subspace until after she sends the register
to Bob. This technique is used in the proof of the main theorem, Theorem 2,
and it uses the formalism for coset representatives that we developed above.

Let Alice be given two subspaces S ≤ T ≤ F
n
2 , and let the corresponding coset

representatives [co(S), co(S⊥), co(T ), co(T⊥)] be sampled from the procedure in
Definition 2. Next, let Alice be given cosets u ∈ co(T ) and w ∈ co(S⊥), which
partially determine the subspace coset state that Alice will sample.

Alice will sample the subspace coset state from one of the following distribu-
tions:

– Distribution 0: Sample |Sv,w〉 such that S+ v ⊆ T +u, uniformly at random.
– Distribution 1: Sample |Tu,̃v〉 such that T⊥ + ṽ ⊆ S⊥ + w, uniformly at

random.

Bob’s register will eventually contain the sampled state. But there’s a twist: Alice
will decide which distribution to sample from after she sends Bob her register.

Here is one way for Alice to sample from distribution 0 or 1:

1. To sample from distribution 0, Alice prepares the following state on two
n-qubit registers:

|ψ〉0 :=
1√
|A|

∑

v0∈A

|Su+v0,w〉 |v0〉

where A = co(S) ∩ T . She sends the first register to Bob, and measures the
second register in the computational basis.

2. To sample from distribution 1, she prepares the following state:

|ψ〉1 :=
1√
|B|

∑

ṽ0∈B

|Tu,̃v0+w〉 |ṽ0〉

where B = co(T⊥) ∩ S⊥. She sends the first register to Bob, and measures
the second register in the computational basis.
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Claim. The procedure above correctly samples from distribution 0 or distribu-
tion 1.

Proof. In this procedure, we have decomposed v into its deterministic and ran-
dom components, u and v0 respectively. Every v ∈ co(S) has a unique decompo-
sition as v = u+v0 for some u ∈ co(T ) and v0 ∈ A (see supplementary material).
Since v0 is sampled uniformly at random from A, v is sampled uniformly at ran-
dom such that v ∈ co(S) and S + v ⊆ T + u. Therefore, the procedure correctly
samples from distribution 0.

A similar argument works for distribution 1. We have decomposed ṽ into its
deterministic and random components, w and ṽ0 respectively. Every ṽ ∈ co(T⊥)
has a unique decomposition as ṽ = ṽ0 +w for some ṽ0 ∈ B and w ∈ co(S⊥) (see
supplementary material). Since ṽ0 is sampled uniformly at random from B, ṽ
is sampled uniformly at random such that ṽ ∈ co(T⊥) and T⊥ + ṽ ⊆ S⊥ + w.
Therefore, the procedure correctly samples from distribution 1. ut

Next, Alice can map between |ψ〉0 and |ψ〉1 by applying local operations to
the second register. We will define a unitary U that acts on the second register
and maps superpositions over to A to superpositions over B. For any v0 ∈ A, let

U |v0〉 =
1√
c

∑

ṽ0∈B

|ṽ0〉 · (−1)〈v0 ,̃v0〉

and for any ṽ0 ∈ B, let

U † |ṽ0〉 =
1√
c

∑

v0∈A

|v0〉 · (−1)〈v0 ,̃v0〉

where c is a normalization constant. Technically, U acts on any superposition
over Fn

2 , and we define it fully in the supplementary materials. We show in the
supplementary material that when U is applied to the second register of |ψ〉0, it
maps the state to |ψ〉1.

Now we have the tools to do delayed preparation of the subspace coset
state:

1. Alice prepares |ψ〉
0

on two n-qubit registers. She sends the first register to Bob.
2. (a) To sample from distribution 0: Alice measures the second register in the

computational basis to get a random v0 ← A. The state on Bob’s register
collapses to |Su+v0,w〉.

(b) Instead, to sample from distribution 1: Alice applies U to the second register,
mapping |ψ〉

0
to |ψ〉

1
. Then she measures the second register in the compu-

tational basis to get a random ṽ0 ← B. The state on Bob’s register collapses
to |Tu,̃v0+w〉.

Delayed Preparation of a Subspace Coset State

21



5 General Compiler for Certified Deletion

In this section, we present a general technique for proving certified deletion that
works well with existing cryptographic primitives and enables the constructions
in subsequent sections.

Consider the following simple construction. To hide a bit b, we give the
adversary:

|Sv,w〉 , b⊕ 〈v,1〉
where |Sv,w〉 is a subspace coset state, sampled uniformly at random such that
dim(S) = n/2, v ∈ co(S),w ∈ co(S⊥). The bit b is masked by 〈v,1〉, and the
information needed to remove the mask is stored in the subspace coset state.

To prove deletion, the adversary measures the subspace coset state in the
Hadamard basis to get a vector z̃ ∈ S⊥ + w. We’ll show that if they prove
deletion, then all but negligible information about v is lost. That is, even if S is
leaked at a later point, b remains statistically hidden because 〈v,1〉 is statistically
close to uniformly random.

Definition 3 below describes this scenario. We say that security holds if the
output of EXP∗ is statistically close between the cases where b = 0 and b = 1.

Definition 3 (Certified Deletion Game, Abstract Form). Let b be a bit,
let {Aλ}λ∈N be a QPT adversary, and let {Zλ}λ∈N be a quantum or classical
operation. Then let EXP∗(1λ,Aλ,Zλ, b) be the output of the following experiment:

1. Challenge: Let n = 4λ. The challenger samples a subspace S of dimension
n/2 along with vectors (v,w)← co(S)× co(S⊥), uniformly at random.
Next, they sample a subspace T uniformly at random such that S ≤ T and
dim(T ) = 3n/4, using the procedure in Definition 2. Let u ∈ co(T ) be the
unique coset such that S + v ⊂ T + u.
Finally, the challenger sends the adversary the following challenge:

|Sv,w〉 ,Zλ(S, T, u,w, b⊕ 〈v,1〉)

2. Response: The adversary, running Aλ, responds with a deletion certificate
z̃ ∈ F

n
2 and an auxiliary state ρ.

3. Outcome: The challenger checks that

z̃ ∈ S⊥ + w

If so, they output (ρ, S, T, u,w, b⊕ 〈v,1〉); if not, they output ⊥.
In Definition 3, Z represents the side information given to the adversary. In the
simplest case, Z = ⊥, and it’s simple to prove that security holds. Note that
we cannot give S, v, or w in the clear because then the adversary could learn
v while also outputting a z̃ ∈ S⊥ + w. In all of our applications, we need to
give the adversary some information about (S, v,w), but we’re careful to hide
it. For instance, when Z = Enc(1λ, S) for some semantically-secure encryption
scheme Enc, or Z = [Enc(1λ, S), iO(PS⊥+w)], we can prove that security holds.
The latter case allows the deletion certificate to be publicly verifiable, assuming
post-quantum iO.
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Theorem 1 (Encryption with Publicly-Verifiable Deletion). Let Enc be
a semantically secure encryption scheme, and assume post-quantum indistin-
guishability obfuscation (iO). Next, for any λ ∈ N, let

Zλ(S, T, u,w, b
′) =

[
Enc(1λ, S), iO(PS⊥+w)

]
.

Then for any QPT adversary {Aλ}λ∈N,

TD
(
EXP∗(1λ,Aλ,Zλ, 0),EXP

∗(1λ,Aλ,Zλ, 1)
)
= negl(λ).

It is natural to wonder whether we can include iO(PS+v) in Z, just like
we included iO(PS⊥+w). In fact, this is not allowed because iO only hides v

computationally. If 〈v,1〉 is not statistically hidden, then neither is b. However,
Z can include (T, u), which satisfy S + v ⊂ T + u, and for our applications
that is good enough. The bit b remains statistically hidden because even given
(S, T, u,w), 〈v,1〉 is uniformly random (with overwhelming probability over the
choice of (S, T )).

5.1 General Theorem

The previous theorems are special cases of Theorem 2 below. We will use it
in subsequent sections to prove certified deletion. Theorem 2 says that security
holds in EXP∗ if any information that Z gives the adversary about S⊥ + w

could also be computed from a larger random coset R+ x that contains S⊥ +w.
We call this property subspace hiding, and it is analogous to [43]’s notion of
subspace-hiding obfuscation . Below, we will precisely define the property of Z
we need.

Definition 4 (Subspace Hiding). Let A be a class of adversaries18. We say
that a quantum operation {Zλ}λ∈N is subspace-hiding for A if there exists
a simulator {Sλ}λ∈N such that for any adversary in A , their advantage in the
following game is negligible in λ:

1. Let n = 4λ. The adversary chooses subspaces S, T ≤ F
n
2 such that S ≤

T, dim(S) = n/2, and dim(T ) = 3n/4, they choose vectors u ∈ co(T ) and
w ∈ co(S⊥), and they choose a bit b′. Then they send these variables to the
challenger.

2. The challenger samples R, a uniformly random superspace of S⊥ of dimen-
sion 3n/4. Let x ∈ co(R) be the unique coset such that S⊥ + w ⊂ R + x.
Next, the challenger samples a bit c ← {0, 1}. If c = 0, they compute
Zλ(S, T, u,w, b

′) and send the output to the challenger. If c = 1, they compute
Sλ(R, T, u, x, b′) and send the output to the challenger.

3. The adversary outputs a guess c′ ∈ {0, 1} for c.
18

A should be closed under constant-factor increases in space and time. That is say:
for any adversary {A}λ∈N ∈ A and any quantum adversary {B}λ∈N, if the time and
space complexity of {B}λ∈N is more than that of {A}λ∈N by a constant factor, then
{B}λ∈N is also in A .
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The adversary’s advantage is |Pr(c′ = c)− 1/2|.

Finally, the theorem below says that b is statistically hidden in EXP∗ if Z is
subspace-hiding.

Theorem 2 (General theorem). Let {Zλ}λ∈N be defined as it was in EXP∗,
and let A be a class of adversaries. Next, if {Zλ}λ∈N is subspace-hiding for A ,
then for any adversary {Aλ}λ∈N ∈ A ,

TD
(
EXP∗(1λ,Aλ,Zλ, 0),EXP

∗(1λ,Aλ,Zλ, 1)
)
= negl(λ)
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16. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring
and Pairings Are Not Necessary for IO: Circular-Secure LWE Suffices. In Miko laj
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