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Abstract

Graph Neural Networks (GNNs) are powerful
models for non-Euclidean data, but their train-
ing is often accentuated by massive unnecessary
computation: On the one hand, training on non-
Euclidean data has relatively high computational
cost due to its irregular density properties; on the
other hand, the class imbalance property often as-
sociated with non-Euclidean data cannot be allevi-
ated by the massiveness of the data, thus hindering
the generalisation of the models. To address the
above issues, theoretically, we start with a hypoth-
esis about the effectiveness of using a subset of
training data for GNNs, which is guaranteed by
the gradient distance between the subset and the
full set. Empirically, we also observe that a subset
of the data can provide informative gradients for
model optimization and which changes over time
dynamically. We name this phenomenon dynamic
data sparsity. Additionally, we find that pruned
sparse contrastive models may “miss” valuable
information, leading to a large loss value on the in-
formative subset. Motivated by the above findings,
we develop a unified data model dynamic sparsity
framework called Data Decantation (DataDec) to
address the above challenges. The key idea of
DataDec is to identify the informative subset dy-
namically during the training process by applying
sparse graph contrastive learning. The effective-
ness of DataDec is comprehensively evaluated on
graph benchmark datasets and we also verify its
generalizability on image data.
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1. Introduction
Non-Euclidean structured data extensively exists in a wide
range of applicable domains, and a considerable amount
of them are naturally abstracted into graphs (e.g., social
networks, biochemical molecules, etc). Such extensiveness
further calls for the development of graph representation
learning (GRL). Graph neural networks (GNNs) (Kipf &
Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018;
Zhang et al., 2019; Fan et al., 2022), as the current state-
of-the-art of GRL, have become essential in various graph
mining applications.

However, in many real-world scenarios, the training of deep
models, including GNNs often encounters two difficulties:
class imbalance (Park et al., 2022; Ma et al., 2023) and mas-
sive data usage (Thakoor et al., 2021; Hu et al., 2020). First,
class imbalance naturally exists in datasets from diverse
practical domains. Deep models are sensitive to this prop-
erty and can be biased toward the dominant classes. This
bias may mislead the models’ learning process, resulting in
underfitting samples that are critical to the downstream tasks,
and poor test performance at last. Second, the massive data
required to train the model brings about heavy computation
burdens, some of which are redundant regarding learning
the task-related embeddings. For example, message-passing
over high-degree nodes in graphs introduces the redundancy
when only a few neighbors are informative. Unlike regular
data such as images or texts, the connectivity of irregular
data invokes random memory access, which further slows
down the efficiency of data readout.

Accordingly, recent studies (Chen et al., 2021; Zhao et al.,
2021; Park et al., 2022; Qian et al., 2022) arise to address the
issues of class imbalance or massive data usage specifically
for graphs: (i) On one hand, to deal with the class imbalance
issue in node classification, Gr-aphSMOTE (Zhao et al.,
2021) tries to generate new nodes for the minority classes
to balance the training data. Improved upon GraphSMOTE,
GraphENS (Park et al., 2022) further proposes a new aug-
mentation method by constructing an ego network to learn
the representations of the minority classes. (ii) On the other
hand, to alleviate the massive data usage, (Eden et al., 2018;
Chen et al., 2018) explore efficient data sampling policies
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Figure 1: The principle of data decantation. It decants data
samples based on rankings of their gradient scores, and then
uses them as the training set in the next epoch.

to reduce the computational cost from the data perspective.
From the model improvement perspective, some approaches
design the quantization-aware training and low-precision
inference method to reduce GNNs’ operating costs on data.
For example, GLT (Chen et al., 2021) applies the lottery
ticket pruning technique (Frankle & Carbin, 2019) to sim-
plify the graphs and the model concurrently.

Despite progress made so far, existing methods fail to ad-
dress the class imbalance and computational burden alto-
gether. Dealing with one may even exacerbate the condition
of the other: when tackling the data imbalance, the newly
synthetic nodes in GraphSMOTE and GraphENS bring
along extra computational burdens for the next-coming train-
ing process. While a compact model reduces the compu-
tational burden to some extent, we interestingly found that
the pruned model easily “forgets” the minorities in class-
imbalanced data, reflected in its worse performance than
the original model’s. To investigate this observation and for
further generalization, we study how each training sample
affects the model’s training by taking a closer look at the
gradients each of them exerts. Specifically, (i) in the early
phases of training, we identify a small subset that provides
the most informative supervisory signals, as measured by
the gradient norms’ magnitudes (shown in later Figure 5);
(ii) the informative subset evolves dynamically as the train-
ing process proceeds (as depicted in later Figure 3). Both the
phenomenons prompt the hypothesize that the full training
set’s training effectiveness can be approximated, to some
extent, by that of the dynamic subset. We further show that
the effectiveness of the approximation is guaranteed by the
distance between the gradients of the subset and the full
training set, as stated in Theorem 1.

Based on the above, we propose a general optimization
framework called Data Decantation (DataDec) to guide
dynamic sparsity training from both the model and data
aspects. The principle behind DataDec is shown in Figure
1. Since the disadvantaged but informative samples tend to
bring about higher gradient magnitudes, DataDec relies on
the gradients directed by dynamic sparse graph contrastive

learning loss to identify the informative subsets that approx-
imate the full set’s training effectiveness. This mechanism
not only does not require supervised labels, but also allows
for the training of the primary model, and the pruning of
the sparse one. Specifically, for each epoch, our proposed
framework scores samples from the current training set and
keep only k most informative samples for the next epoch.
Additionally, the framework incorporates a data recycling
process, which randomly recycles prior discarded samples
(i.e., samples that are considered unimportant in the previous
training epochs) by re-involving them in the current training
process. As a result, the dynamically updated subset (i)
supports the sparse model to learn relatively unbiased repre-
sentations and (ii) approximates the full training set through
the lens of Theorem 1. To summarize, our contributions are:

• We develop a general framework, Data Decantation which
leverages dynamic sparse graph contrastive learning on
class-imbalanced data for efficient data usage. To our best
knowledge, this is the first study to explore the dynamic
sparsity property for class-imbalanced graphs.

• We introduce cosine annealing to dynamically control the
sizes of the sparse model and the data subset to smooth the
training process. Meanwhile, we introduce data recycling
to refresh the current data subset and avoid overfitting.

• We conduct comprehensive experiments, primarily on
multiple graph benchmark datasets for the graph and node
classification tasks to demonstrate DataDec’s effective-
ness. We further verify DataDec’s generalizability to the
image classification task on the CIFAR-10 dataset. Re-
sults show that DataDec outperforms the corresponding
state-of-the-art methods, and its efficiency in finding the
informative subset across the training epochs.

2. Related Work
Training deep model with sparsity. Parameter pruning
aiming at decreasing computational cost has been a popular
topic and many parameter-pruning strategies are proposed
to balance the trade-off between model performance and
learning efficiency (Deng et al., 2020; Liu et al., 2019).
Some of them belong to the static pruning category and
deep neural networks are pruned either by neurons (Han
et al., 2015b; 2016) or architectures (layer and filter) (He
et al., 2017; Dong et al., 2017). In contrast, recent works
propose dynamic weight training strategies where differ-
ent compact subnets will be dynamically activated at each
training iteration (Mocanu et al., 2018; Mostafa & Wang,
2019; Raihan & Aamodt, 2020; Evci et al., 2020; Liu et al.,
2023). The other line of computation cost reduction lies in
the dataset sparsity (Karnin & Liberty, 2019; Mirzasoleiman
et al., 2020; Paul et al., 2021; Killamsetty et al., 2021). Re-
cently, the property of sparsity is also used to improve model
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robustness (Chen et al., 2022; Fu et al., 2021; Zhang et al.,
2023). In this work, we attempt to accomplish dynamic
sparsity from both the GNN model and the graph dataset
simultaneously.

Class-imbalanced learning on graphs. Excepting con-
ventional node re-balanced methods, like reweighting sam-
ples (Zhao et al., 2021; Park et al., 2022) and oversam-
pling (Zhao et al., 2021; Park et al., 2022), an early
work (Zhou et al., 2018) characterizes rare classes through
a curriculum strategy, while other previous works (Shi et al.,
2020; Zhao et al., 2021; Park et al., 2022) tackles the class-
imbalanced issue by generating synthetic samples to re-
balance the dataset. Compared to the node-level task, graph-
level re-balancing is under-explored. A recent work (Wang
et al., 2022) proposes to use neighboring signals to alleviate
graph-level class-imbalance. To the best of our knowledge,
our DataDec is the first work to solve the class-imbalanced
for both the node-level and graph-level tasks.

3. Methodology
In this section, we first theoretically illustrate our sparse sub-
set approximation hypothesis, which guides the design of
DataDec to continuously refine the compact training subset,
especially illustrating on graphs, via the dynamic contrastive
learning. The presentation is organized by the importance
ranking procedure, refine smoothing, and overfitting regular-
ization. Relevant preliminaries of GNNs, graph contrastive
learning, and pruning are provided in Appendix B.

3.1. Sparse Subset Approximation Hypothesis

We first introduce the key notations used in the method.
Specifically, we denote the full dataset as DF , the data sub-
set used to train the model as DS , the learning rate as α, and
the graph learning model parameters as θ (the optimal model
parameters as θ˚). Meanwhile, we add a superscript to rep-
resent the data subset at epoch t and the model parameters
trained by data subset, i.e., Dptq

S and θptq. Besides, we use
LDptq

S ;θptq to indicate the loss of model θptq over the dataset

Dptq
S . Thus, the gradient error at the training epoch t can

be computed as Errptq “
›

›

›
∇θptqLDptq

S ;θptq ´∇θptqLDF ;θptq

›

›

›
.

The sparse subset approximation hypothesis states that the
model effectiveness trained on D can be approximated by
the one trained on DS . Before introduce the hypothesis, we
make the following mild assumption:

Assumption 1. The model’s parameters at epoch t satisfies
›

›θptq
›

›

2
ď d2, where d is a constant.

Assumption 2. The loss function Lp¨q is convex.

These assumptions align with previous theoretical papers on
GNNs (Chen et al., 2023) or on the subset training of general
machine learning (Mirzasoleiman et al., 2020; Killamsetty

et al., 2021), which have also followed this philosophy to
study the properties of GNNs or analyze subset training in
neural networks. Inspired by these prior works and based on
these assumptions, we can establish the following theorem:
Theorem 1. Consider any model and loss function that
satisfy Assumption 1 and Assumption 2, respectively. If
the training loss LDS

is Lipschitz continuous, ∇θptqLDS
is

upper-bounded by σ, and α “ d
σ
?
T

, then

min
t
pLDF ;θptq ´ Lθ˚q ď

dσ
?
T

`

T´1
ÿ

t“1

d

T
Errptq. (1)

The detailed proof of Theorem 1 is provided in Appendix A.
According to Theorem 1, it is straightforward that we can
minimize the margin between the model (θptq)’s perfor-
mance trained on the data subset (evaluated on DF ) and
optimal model (θ˚), i.e., LDF ;θptq ´ Lθ˚ , by reducing the
distance between the gradients of the full dataset and the
subset, i.e., Errptq. In other words, the optimized graph
subset Dptq

S is expected to approximate the gradients of
the full dataset, and thereby exerts minimal affects on pa-
rameters’ update. In contrast to DataDec, data diet (Paul
et al., 2021) is designed to identify the most influential
data samples DS (those with largest gradients during the
training phase) only at the early training stage and have
them involved in further training processes, while excluding
samples from D̄S “ DF ´DS with smaller gradients (i.e.,
∇θptqLDptq

S ;θptq " ∇θptqL ¯Dptq

S ;θptq
) eternally. This one-shot

selection, however, as we will show in Experiment 4.6, does
not always capture the most important samples across all
epochs during the training. Specifically, the rankings of
elements within a specific DS might be relatively static, but
those within the full dataset, i.e., DF , are usually more dy-
namic, which implies the gradients of the one-shot subset
∇θptqLDptq

S ;θptq is unable to constantly approximate that of
the full dataset ∇θptqLDF ;θptq during training.

3.2. Data Decantation

Inspired by Theorem 1 and motivated by solving the mas-
sive data usage in class-imbalanced graphs, we propose
DataDec for achieving competitive performance as well as
efficient data usage simultaneously by dynamically filtering
out the most influential data subset. The overall frame-
work of DataDec is illustrated in Figure 2. The training
processes are summarized into four steps: (i) First, com-
pute the gradients of the samples in Dptq

S with respect to the
contrastive learning loss; (ii) Normalize the gradients and
rank the corresponding data samples in a descending order
based on their gradient magnitudes; (iii) Decay the number
of samples from |Dptq

S | to |Dpt`1q
S | with cosine annealing,

where we only keep the top p1 ´ ϵq|Dpt`1q
S | samples (ϵ is

the exploration rate which controls the ratio of the randomly
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Figure 2: The overall framework of DataDec on graphs: (i) The dynamic sparse graph contrastive learning model computes
gradients for data samples; (ii) The input samples are sorted according to their gradients; (iii) Part of the samples with the
smallest gradients are thrown into the recycling bin; (iv) Part of the samples with the largest gradients in the current epoch
and some sampled randomly from the recycling bin are jointly used as training input in the next epoch.

re-sampled samples from the recycle bin. The rest samples
will hold in the recycle bin temporarily; (iv) Finally, ran-
domly re-sample ϵ|Dpt`1q

S | samples from the recycled bin.
The union of these samples and the ones selected in step
(iii) will be used for model training in the (t` 1)-th epoch.
Each of the four steps is described in detail in the following.

Compute gradients by dynamic sparse contrastive learn-
ing model. We adopt the mechanism of dynamic sparse
contrastive learning in computing the gradients. The rea-
son is two-folded: (a) it scores the samples without the
supervision of any label; (b) this pruning process is more
sensitive in selecting informative samples, verified in Ap-
pendix D. We omit the superscript ptq for the dataset and
model parameters for simplicity in the explanation of this
step. Specifically for graphs, given a graph training set
D “ tGiu

N
i“1 as input, for each training sample Gi, we

randomly generate two augmented graph views, G1
i and G2

i ,
and feed them into the original GCN model fθp¨q, and the
sparse model fθpp¨q pruned dynamically by the dynamic
sparse pruner, respectively. The gradients are computed
based on the outputs of the two GNN branches, directed by
the contrastive learning loss signals. To obtain the pruned
GNN, the pruner only keeps neural connections with the
top-k largest weight magnitudes. Specifically, the pruned
parameters of l-th GNN layer (i.e., θl) are selected following
the formula below:

θlp “ TopKpθl, kq; k “ βptq ˆ |θl|, (2)

where TopKpθl, kq refers to the operation of selecting the
top-k largest elements of θl, and βptq is the fraction of
the remaining neural connections, controlled by the cosine
annealing formulated as follows:

βptq “
βp0q

2

"

1` cosp
πt

T
q

*

, t P r1, T s , (3)

where βp0q is initialized as 1. In addition, we refresh θlp
every few epochs to reactivate neurons based on their gradi-
ents, following the formula below:

Iθl
g
“ argTopKp∇θlLDS ;θ, kq; k “ βptq ˆ |θl|, (4)

where argTopK returns the indices of the top-k largest el-
ements Iθl

g
of the corresponding neurons θlg. To further

elaborate, we refresh θlp every few epochs by θlp Ð θlp Y θlg ,
as the updated pruned parameters to be involved in the next
iteration. After we obtain the pruned model, gradients are
computed based on the contrastive learning loss between
fθpG

1
iq and fθppG

2
i q, which are then saved for the further

ranking process. For other data such as images, correspond-
ing augmenters and backbones are chosen to adapt to the
DataDec framwork.

Rank samples according to their gradients’ L2 norms.
In order to find the relative importance of the samples, we
rank the samples based on the gradients each of them brings
about, saved in the previous training epoch by the last step.
Specifically, at each of the t-th training epoch, we score
each sample by the L2 norm of its gradient:

gpGiq “
›

›∇θL
`

fθpG
1
iq, fθppG

2
i q
˘
›

›

2
, (5)

where L is the popular InfoNCE (Van den Oord et al., 2018)
loss in contrastive learning, taking the outputs of the two
model branches as inputs. Therefore, the gradient is calcu-
lated as follows:

∇θLpfθpG1
iq, fθppG

2
i qq “ pθpG

1q ´ pθppG
2
i q, (6)

where pθpG
1
iq and pθppG

2
i q are the normalized model’s pre-

dictions, i.e., pp¨q “ Spfp¨qq and Sp¨q is the softmax func-
tion or sigmoid function. The samples are ranked by the
values calculated by Eq. 5.
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Decay the size of DS by cosine annealing. For decreas-
ing the size of the subset, we use cosine annealing when the
training process proceeds. As we will show in Figure 3 for
the experiments, some graph samples showing low scores of
importance at the early training stage may be highly-scored
again if given more patience in the later training epochs.
Therefore, chunking the size of the sparse subset radically
in one shot deprives the chances of the potential samples
informing the models at a later stage. To tackle this issue,
we employ cosine annealing to gradually decrease the size
of the subset:

|Dptq
S | “

|D|

2

"

1` cosp
πptq

T
q

*

, t P r1, T s . (7)

Note that this process not only automatically decreases the
size of DS smoothly, but also avoids the manual one-shot
selection as in the data diet (Paul et al., 2021).

Recycle removed samples for the next training epoch.
We aim to update the elements in Dptq

S obtained in the last
step. Since current low-scored samples may still have the
potential to be highly-scored in the later training epochs, we
randomly recycle a proportion of the removed samples and
re-involve them in the training process again. Specifically,
the exploration rate ϵ controls the proportion of data that
substitutes a number of ϵ|Dt`1

S | samples with the lowest
scores with the same amount of randomly selected samples
in Dpt`1q

S . At the t-th epoch, the update rule is formulated
as follows:

DSpt`1q “ TopKpDSptq, p1´ ϵq|DSpt`1q|q
ď

SampleKpD̄S
pt´1q

, ϵ|Dpt`1q
S |q,

(8)

where SampleKpD̄S
pt´1q

, ϵ|Dpt`1q
S |q returns randomly

sampled ϵ|Dpt`1q
S | samples from D̄S

pt´1q, saved in the last
epoch. We utilize the compact sparse subset Dpt`1q

S for the
training purposes at (t`1)-th epoch, and repeat the previous
pipelines until T epochs.

4. Experiments
In this section, we conduct extensive experiments to validate
the effectiveness and generalization ability of our proposed
model for both the graph and node classification tasks on im-
balanced graph datasets, as well as the image classification
task on CIFAR-10. We also conduct an ablation study and
informative subset evolution analysis to further prove the
effectiveness. Due to space limitations, more analysis vali-
dating DataDec’s properties and resource cost are provided
in Appendix D and E.

4.1. Experimental Setup

Datasets. To validate the effectiveness of our model, we
primarily validate it on various graph benchmark datasets
for the two classification tasks under the class-imbalanced
data scenario. For the class-imbalanced graph classification
task, we choose the seven validation datasets in the G2GNN
paper (Wang et al., 2022): MUTAG, PROTEINS, D&D,
NCI1, PTC-MR, DHFR, and REDDIT-B (Morris et al.,
2020). For the class-imbalanced node classification task, we
choose the five datasets in the GraphENS paper (Park et al.,
2022): Cora-LT, CiteSeer-LT, PubMed-LT (Sen et al., 2008),
Amazon-Photo, and Amazon-Computers. We extend the
list with CIFAR-10 (Krizhevsky et al., 2009), a classic im-
age dataset, to verify the generalization ability of DataDec.
Detailed descriptions of these datasets are provided in Ap-
pendix C.1.

Baselines. We compare our model with a variety of baseline
methods with different rebalancing methods. For the class-
imbalanced graph classification, we consider three rebalanc-
ing methods: vanilla (without rebalancing when training),
up-sampling (Wang et al., 2022), and re-weighting (Wang
et al., 2022). For each rebalancing method, we run three
baseline methods including GIN (Xu et al., 2019), Info-
Graph (Sun et al., 2019), and GraphCL (You et al., 2020).
In addition, we adopt two versions of G2GNN (remove-edge
and mask-node)(Wang et al., 2022) for in-depth comparison.
For the class-imbalanced node classification, we consider
nine baseline methods including vanilla, SynFlow(Tanaka
et al., 2020), BGRL (Thakoor et al., 2021), GRACE (Zhu
et al., 2020), re-weighting (Japkowicz & Stephen, 2002),
oversampling (Park et al., 2022), cRT (Kang et al., 2020),
PC Softmax (Hong et al., 2021), DR-GCN (Shi et al., 2020),
GraphSMOTE (Zhao et al., 2021), and GraphENS (Park
et al., 2022). For the image classification task on CIFAR-
10, we choose Forget Score (Toneva et al., 2019) and Data
Diet (EL2N-based and GradNd-based) (Paul et al., 2021)
for comparison. Further details about the baselines are illus-
trated in Appendix C.2.

Evaluation Metrics. To evaluate the model performance,
we use the F1-micro (F1-mi.) and F1-macro (F1-ma.) scores
as the metrics for the class-imbalanced graph classification
task, and accuracy (Acc.), balanced accuracy (bAcc.), and
F1-macro (F1-ma.) score for the node classification task.

Experimental Settings. For graph tasks, we use GCN (Kipf
& Welling, 2017) as the GNN backbone in DataDec. Specif-
ically, we concatenate a two-layer GCN with a one-layer
fully-connected layer for node classification, and add an
additional average pooling layer for graph classification.
We follow the settings in (Wang et al., 2022) and (Park
et al., 2022) to vary the imbalance ratios for graph and node
classification tasks, respectively. In addition, we employ
GraphCL (You et al., 2020) as the graph contrastive learning
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Table 1: Class-imbalanced graph classification results. Numbers after each dataset name indicate imbalance ratios of
minority to majority categories. Best/second-best results are in bold/underline. The results with standard deviations, and
additional datasets PTC-MR, DHFR, REDDIT-B, and their average ranks are provided in Table 6, Appendix C.4.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900) Sparsity (%)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. data model

vanilla
GIN 52.50 56.77 25.33 28.50 9.99 11.88 18.24 18.94 100 100

InfoGraph 69.11 69.68 35.91 36.81 21.41 27.68 33.09 34.03 100 100
GraphCL 66.82 67.77 40.86 41.24 21.02 26.80 31.02 31.62 100 100

up-sampling
GIN 78.03 78.77 65.64 71.55 41.15 70.56 59.19 71.80 ą100 100

InfoGraph 78.62 79.09 62.68 66.02 41.55 71.34 53.38 62.20 ą100 100
GraphCL 80.06 80.45 64.21 65.76 38.96 64.23 49.92 58.29 ą100 100

re-weight
GIN 77.00 77.68 54.54 55.77 28.49 40.79 36.84 39.19 100 100

InfoGraph 80.85 81.68 65.73 69.60 41.92 72.43 53.05 62.45 100 100
GraphCL 80.20 80.84 63.46 64.97 40.29 67.96 50.05 58.18 100 100

G2GNN remove edge 80.37 81.25 67.70 73.10 43.25 77.03 63.60 72.97 100 100
mask node 83.01 83.59 67.39 73.30 43.93 79.03 64.78 74.91 100 100

DataDec (ours) dynamic sparsity 85.71 85.71 68.32 75.84 44.01 77.02 65.73 76.02 50 50

framework, and use cosine annealing to dynamically control
the sparsity rate in the GNN model and the dataset. For the
CIFAR-10 image classification task, we adopt ResNet18 (He
et al., 2016) as the backbone model and follow the other
settings in Data Diet (Paul et al., 2021). The target pruning
ratio for the model is set to 0.75, and the pruning ratio for
the dataset is set to 1.0. After contrastive pre-training, we
use the model’s output logits as input to a Support Vector
Machine (SVM) for fine-tuning. DataDec is implemented
in PyTorch and trained on an NVIDIA V100 GPU.

4.2. Class-imbalanced Graph Classification

The evaluated results for the graph classification task on
class-imbalanced graph datasets are reported in Table 1,
with the best performance and runner-ups shown in bold
and underlined, respectively. From the table, it is evident
that DataDec outperforms baseline methods on both metrics
across different datasets, while utilizing an average of 50%
data and 50% model weights per round. Although a slight
difference in F1-micro has been observed between DataDec
and the best baseline method G2GNN on the D&D dataset,
this can be attributed to the significantly larger size of graphs
in D&D compared to other datasets, which necessitates spe-
cialized designs for graph augmentations. For example,
the average graph size in terms of node number is 284.32
for D&D, but only 39.02 and 17.93 for PROTEINS and
MUTAG, respectively. However, even on the same dataset,
G2GNN achieves only 43.93 on F1-macro, while DataDec
reaches 44.01, showcasing DataDec’s ability to learn effec-
tively even on large graph datasets. Specifically, models
trained under the vanilla setting perform the worst due to
their ignorance of the class imbalance. The up-sampling
strategy improves performance but introduces unnecessary

data usage by sampling the minority classes multiple times.
Similarly, the re-weighting strategy attempts to address the
class imbalance issue by assigning different weights to dif-
ferent samples but requires labels for weight calculation and
may not generalize well when labels are missing. G2GNN,
as the best baseline method, achieves decent performance by
considering rich supervisory signals from both globally and
locally neighboring graphs. Finally, the proposed model,
DataDec, achieves the best performance by effectively cap-
turing dynamic data sparsity from both the model and data
perspectives. Furthermore, we rank the performance of
DataDec compared to baseline methods on each dataset.
DataDec achieves an average rank of 1.00 and 1.14, fur-
ther demonstrating its superiority. It is worth noting that
all existing methods utilize the entire datasets and model
weights, whereas DataDec achieves superior performance
by utilizing only half of the data and weights.

4.3. Class-imbalanced Node Classification

For the class-imbalanced node classification task, we first
evaluate DataDec on three long-tailed citation graphs (Cora-
LT, CiteSeer-LT, and PubMed-LT) and present the results
in Table 2. We observe that DataDec achieves the best per-
formance compared to baseline methods across different
metrics. GraphSMOTE and GraphENS achieve satisfactory
performance by generating virtual nodes to enhance the rep-
resentation of minority classes. In contrast, DataDec does
not rely on synthetic virtual nodes to learn balanced rep-
resentations, thereby avoiding unnecessary computational
costs. Similar to the class-imbalanced graph classification
task discussed in Section 4.2, DataDec demonstrates su-
perior performance by utilizing only half of the data and
weights, whereas all baselines perform worse even with the
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Table 2: Class-imbalanced node classification results. Best/second-best results are in bold/underline. The results with
standard deviations are provided in Table 7, Appendix C.4.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244) Sparsity (%)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma. data model

vanilla 73.66 62.72 63.70 53.90 47.32 43.00 70.76 57.56 51.88 82.86 78.72 68.47 64.01 100 100
SynFlow 72.98 60.62 63.29 52.85 46.23 42.19 69.63 56.75 50.99 81.57 76.93 68.10 62.97 100 N.A.
GRACE 74.72 63.95 65.26 54.94 50.87 46.90 72.37 63.22 58.18 83.57 83.61 73.02 64.52 100 100
BGRL 73.81 64.95 64.87 56.84 50.83 47.04 74.17 62.21 59.07 83.49 82.37 75.88 63.15 100 100
Re-Weight 75.20 68.79 69.27 62.56 55.80 53.74 77.44 72.80 73.66 92.94 92.95 90.04 90.11 100 100
Oversampling 77.44 70.73 72.40 62.78 56.01 53.99 76.70 68.49 69.50 92.46 92.47 89.79 89.85 ą100 100
cRT 76.54 69.26 70.95 60.60 54.05 52.36 75.10 67.52 68.08 91.24 91.17 86.02 86.00 100 100
PC Softmax 76.42 71.30 71.24 65.70 61.54 61.49 76.92 75.82 74.19 93.32 93.32 86.59 86.62 100 100
DR-GCN 73.90 64.30 63.10 56.18 49.57 44.98 72.38 58.86 53.05 N/A N/A N/A N/A 100 100
GraphSmote 76.76 69.31 70.21 62.58 55.94 54.09 75.98 70.96 71.85 92.65 92.61 89.31 89.39 ą100 100
GraphENS 77.76 72.94 73.13 66.92 60.19 58.67 78.12 74.13 74.58 93.82 93.81 91.94 91.94 ą100 100

DataDec (ours) 78.29 73.94 74.25 66.90 61.56 61.85 78.20 76.05 76.32 93.85 94.02 92.19 92.16 50 50

Table 3: Results comparison on image classification.

Strategy Test Acc. (%) Data Sparsity (%)

No Pruning 95.27 100
Random Pruning 93.38 50
Forget Score 95.34 50
Data Diet (EL2N) 95.21 50
Data Diet (GradNd) 95.16 50
DataDec (ours) 95.66 50

full dataset and weights. To validate the effectiveness of the
proposed model on real-world data, we evaluate DataDec on
naturally class-imbalanced benchmark datasets (Amazon-
Photo and Amazon-Computers). We observe that DataDec
outperforms other methods on both datasets, highlighting
its effectiveness across diverse practical scenarios.

4.4. Generalizability to Image Domain

We conducted further evaluations to assess the generaliza-
tion ability of DataDec on a widely used benchmark image
dataset: CIFAR-10. We compared DataDec with Forget
Score (Toneva et al., 2019) and Data Diet (EL2N-based and
GradNd-based) (Paul et al., 2021). The results presented in
Table 3 demonstrate that DataDec outperforms the previous
methods. Notably, the second-best method, Forget Score,
requires an additional subset selection period of 200 epochs,
which is not part of the regular training phase (200 training
epochs) and utilizes a significantly larger number of epochs
compared to our framework. Taking into account both ac-
curacy and training epochs, our framework showcases its
promising and versatile potential for handling data from
other domains.

4.5. Ablation Study

Since DataDec is a unified learning framework that relies
on multiple components to employ dynamic sparsity train-
ing from both the model and dataset perspectives, we con-
ducted an ablation study to validate the effectiveness of
each component. Specifically, DataDec utilizes four com-

ponents to address data sparsity and imbalance: pruning
samples by ranking gradients (GS), training with a sparse
dataset (SS), using cosine annealing to reduce dataset size
(CAD), and recycling removed samples (RS). Additionally,
it employs four components to address model sparsity and
data imbalance: pruning weights by ranking magnitudes
(RM), using a sparse GNN (SG), using cosine annealing
to progressively reduce the size of the sparse GNN (CAG),
and reactivating removed weights (RW). DataDec also in-
corporates self-supervision to calculate the gradient score.
Detailed information on model variants can be found in
Appendix C.3. We analyzed the contributions of each com-
ponent by independently removing them for both tasks. The
results are presented in Table 4.

From the table, we observe that the performance consis-
tently drops after removing any component, highlighting
the effectiveness of each component in the framework. Both
mechanisms for addressing data and model sparsity signifi-
cantly contribute to the overall performance, emphasizing
the necessity of these two mechanisms in tackling sparsity-
related challenges. Self-supervision plays a similar role
to the dynamic sparsity by enabling the identification of
informative data samples without relying on label supervi-
sion. Within the dataset dynamic sparsity mechanism, GS
and CAD demonstrate the highest contributions. This indi-
cates that the discriminability of the sparse GNN effectively
identifies hidden dynamic sparse subsets in an accurate and
efficient manner. Regarding the model dynamic sparsity
mechanism, removing RM and SG results in a notable per-
formance drop, emphasizing their crucial roles in training
the dynamic sparse GNN from the full GNN model. CAG
plays a vital role in ensuring performance stability after
model pruning and aids in capturing informative samples
during the decantation process by assigning higher gradi-
ent norms. Among these variants, the full model DataDec
consistently achieves the best results, highlighting the im-
portance of combining dynamic sparsity mechanisms from
both perspectives and utilizing the self-supervision strategy.
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Table 4: Ablation study results for both graph and node classification tasks. Four rows of red represent removing four
individual components from data sparsity perspective. Four rows of blue represent removing four individual components
from model sparsity perspective. Best results are in bold.

Class-imbalanced Graph Classification (F1-ma.) Class-imbalanced Node Classification (Acc.)

Variant MUTAG PROTEINS D&D NCI1 PTC-MR DHFR REDDIT-B Cora-LT CiteSeer-LT PubMed-LT A. Photos A. Computer

DataDec 85.71 68.32 44.01 65.73 47.07 62.25 69.70 78.29 66.90 78.20 93.85 92.19

w/o GS 80.10 63.42 36.61 61.80 42.12 48.57 61.40 68.96 60.33 56.22 73.22 67.84
w/o SS 80.95 63.55 42.19 62.30 45.21 61.99 70.61 77.15 64.67 76.15 79.09 91.33
w/o CAD 78.41 57.99 40.23 60.61 44.96 50.00 67.15 74.87 62.62 75.35 90.71 83.23
w/o RS 83.21 59.32 41.65 60.51 35.21 60.99 67.61 73.27 61.32 72.02 87.11 90.38

w/o RM 44.37 40.42 38.45 34.39 32.14 43.75 64.82 70.97 54.58 70.16 79.01 65.38
w/o SG 82.63 65.96 42.50 69.10 35.19 61.42 69.16 77.54 67.43 72.43 91.25 90.05
w/o CAG 83.50 54.04 40.21 51.82 34.20 62.41 64.14 75.78 63.43 73.07 92.77 87.40
w/o RW 79.25 56.33 38.34 63.00 38.00 61.53 63.16 76.46 65.36 75.54 90.54 89.10

w/o S.S. 80.07 63.90 39.77 57.22 38.60 62.30 65.67 74.82 65.28 74.00 86.14 86.40

Figure 3: Evolution of data samples’ gradients computed by data diet (Paul et al., 2021) (upper figures) and our DataDec
(lower figures) on NCI1 dataset.

4.6. Analyzing Evolution of Sparse Subset by Scoring
All Samples

To showcase the dynamic capability of DataDec in identi-
fying informative samples, we present visualizations of the
sparse subset evolution of Data Diet and DataDec on the
class-imbalanced NCI1 dataset in Figure 3. In this analy-
sis, we compute importance scores for 1000 graph samples
and rank them accordingly, marking each sample with its
corresponding index. The upper figures in Figure 3 demon-
strate that Data Diet struggles to accurately identify dynamic
informative nodes. Once a data sample is removed from
the training list due to a low score, it is permanently disre-
garded by the model. However, it is important to note that
the current lack of importance does not necessarily imply
that a sample will remain unimportant indefinitely. This
becomes especially evident in the early training stages when
the model is unable to accurately detect the true importance
of each sample, leading to premature elimination of crucial
nodes. Similarly, if a data sample is deemed important dur-
ing the initial epochs (indicated by a higher sample index),
it cannot be removed in subsequent epochs. Consequently,
we observe that Data Diet can only increase the scores of
samples within a high index range (i.e., 500-1000) while

ignoring samples within the low index range (i.e., ă 500).
In contrast, DataDec (Figure 3 bottom) excels at captur-
ing the dynamic importance of each sample, irrespective of
its initial importance score. We observe that samples with
varying indexes have the opportunity to be considered im-
portant and thus included in the training list. Consequently,
DataDec takes into account a broader range of data samples
when shrinking the training list while maintaining flexibility
regarding previous importance scores.

Figure 4: Results of data samples’ gradients computed by
full GNN model and our dynamic sparse GNN model on
NCI1 data. Red dashed line: on the left side, points on the
x-axis r0, 900s are majority class; on the right side, points
on the x-axis r900, 1000s are minority class.

4.7. Finding Informative Samples by Sparse GNN
In comparison to the full GNN, our dynamic sparse GNN
exhibits increased sensitivity in recognizing informative
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data samples, as empirically demonstrated in Figure 4. In
our dynamic pruned model, larger gradients are assigned
to the minority class compared to the majority class during
the contrastive training. Conversely, the full model tends
to assign relatively uniform gradients to both classes. As a
result, the proposed dynamically pruned model showcases
its discriminatory ability specifically for the minority class.
This ability within our DataDec framework proves effective
in addressing the class-imbalance issue.

5. Conclusion
In this paper, we propose Data Decantation (DataDec), an
efficient method to address the challenge of class imbalance
in graph data. Using dynamic sparse graph contrastive learn-
ing, DataDec dynamically identifies a sparse yet informative
subset for model training. Our method, which incorporates
a sparse GNN encoder that is dynamically sampled from a
dense GNN and then uses its sensitivity to informative sam-
ple identification to rank and update the training data subset
in each epoch, outperforms state-of-the-art baselines for
both node and graph classification tasks in class-imbalanced
scenarios. Additionally, our analysis of the evolution of the
sparse informative samples further demonstrates the superi-
ority of DataDec in effectively identifying the informative
subset throughout the training process.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
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A. Proof of Theorem 1
We denote the full graph dataset as DF , the graph data subset used to train the model as DS , the learning rate as α, and
the graph learning model parameters as θ (the optimal model parameters as θ˚). Additionally, we add a superscript to
represent the model’s parameters and the graph data subset at epoch t, i.e., θptq and Dptq

S . Furthermore, we use LDptq

S ;θptq to

indicate the loss of model θptq over the graph dataset Dptq
S . Thus, the gradient error at training epoch t can be computed as

Errptq “
›

›

›
∇θptqLDptq

S ;θptq ´∇θptqLDF ;θptq

›

›

›
.

The sparse graph subset approximation hypothesis states that the model effectiveness trained on D can be approximated by
the one trained on DS . To establish this, we make the following assumptions:

Assumption 1. The model’s parameters at epoch t satisfies
›

›θptq
›

›

2
ď d2, where d is a constant.

Assumption 2. The loss function Lp¨q is convex.

These assumptions align with previous theoretical papers on GNNs (Chen et al., 2023) or on the subset training of general
machine learning (Mirzasoleiman et al., 2020; Killamsetty et al., 2021), which have also followed this philosophy to study
the properties of GNNs or analyze subset training in neural networks. Based on these assumptions, we can establish the
following theorem:

Theorem 1. Consider any model and loss function that satisfy Assumption 1 and Assumption 2, respectively. If the training
loss LDS

is Lipschitz continuous, ∇θptqLDS
is upper-bounded by σ, and α “ d

σ
?
T

, then

min
t
pLDF ;θptq ´ Lθ˚q ď

dσ
?
T

`

T´1
ÿ

t“1

d

T
Errptq. (9)

Proof. The gradients of training loss LDptq

S ;θptq at epoch t are supposed to be σ-bounded by σ. According to gradient descent,
we have:

∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q “

1

αptq
pθptq ´ θpt`1qq

J
pθptq ´ θ˚q, (10)

which can be rewritten as:

∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
θptq ´ θpt`1q

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

. (11)

Since one update step θptq ´ θpt`1q can be optimized by gradient multiplying with learning rate αptq∇θLDptq

S ;θptqpθ
ptqq, we

have:

∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
αptq∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

. (12)

Combining this with:

∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q “ ∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q

´∇θLDF ;θptq
J
pθptq ´ θ˚q `∇θLDF ;θptq

J
pθptq ´ θ˚q,

(13)

we obtain:
∇θLDptq

S ;θptqpθ
ptqq

J
pθptq ´ θ˚q ´∇θLDF ;θptq

J
pθptq ´ θ˚q `∇θLDF ;θptq

J
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
αptq∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙ (14)

∇θLDF ;θptq
J
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
αptq∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

´

´

∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

¯J

pθptq ´ θ˚q.

(15)
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Assuming the learning rate αptq, t P r0, T ´ 1s is a constant value α, we can simplify this to:

T´1
ÿ

t“0

∇θLDF ;θptq
J
pθptq ´ θ˚q “

1

2α

›

›

›
θp0q ´ θ˚

›

›

›

2

´
1

2α

›

›

›
θptq ´ θ˚

›

›

›

2

`

T´1
ÿ

t“0

p
1

2α

›

›

›
α∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

q

`

T´1
ÿ

t“0

ˆ

´

∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

¯J

pθptq ´ θ˚q

˙

.

Considering that
›

›θptq ´ θ˚
›

›

2
ě 0, we can simplify further:

T´1
ÿ

t“0

∇θLDF ;θptq
J
pθptq ´ θ˚q ď

1

2α

›

›

›
θp0q ´ θ˚

›

›

›

2

`
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p
1

2α

›

›

›
α∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

q

`
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ÿ

t“0

ˆ

´

∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

¯J

pθptq ´ θ˚q

˙

.

(16)

Assuming the loss L is convex and the training loss LDptq

S ;θptq is Lipschitz continuous with parameter σ, we have LDptq

S ;θptq ´

Lθ˚ ď ∇θLDptq

S ;θptq

J
pθptq ´ θ˚q. Combining this with the previous inequality, we obtain:

T´1
ÿ
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∇θLDF ;θptq ´ Lθ˚ ď
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›

›
θp0q ´ θ˚

›

›

›

2

`
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ÿ

t“0
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1

2α

›

›

›
α∇θLDptq

S ;θptqpθ
ptqq

›

›

›

2

q

`
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ÿ

t“0

ˆ

´

∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

¯J

pθptq ´ θ˚q

˙

.

(17)

Since
›

›

›
LDptq

S ;θptqpθq
›

›

›
ď σ,

›

›

›
α∇θLDptq

S ;θptqpθ
ptqq

›

›

›
ď σ, and we assume }θ ´ θ˚} ď

?
2d (based on Assumption 1), we have:

T´1
ÿ

t“0

LDF ;θptq ´ Lθ˚ ď
d2

2α
`

Tασ2

2
`

T´1
ÿ

t“0

d
´
›

›

›
∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

›

›

›

¯

, (18)

Dividing both sides of the inequality by T gives:

1

T

T´1
ÿ

t“0

LDF ;θptq ´ Lθ˚ ď
d2

2αT
`

ασ2

2
`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

›

›

›

¯

. (19)

Since min pLDF ;θptq ´ Lθ˚q ď 1
T

řT´1
t“0 LDptq

S ;θptq ´ Lθ˚ , based on Equation 19, we have:

min pLDF ;θptq ´ Lθ˚q ď
d2

2αT
`

ασ2

2
`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

›

›

›

¯

. (20)

Finally, by setting the learning rate α “ d
σ
?
T

and simplifying, we arrive at the desired result:

min pLDF ;θptq ´ Lθ˚q ď
dσ
?
T

`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLDptq

S ;θptqpθ
ptqq ´∇θLDF ;θptq

›

›

›

¯

. (21)

This completes the proof of Theorem 1.

B. Preliminaries: GNNs, Graph Contrastive Learning, Network Pruning
In this work, we denote graph as G “ pV,E,Xq, where V is the set of nodes, E is the set of edges, and X P Rd represents
the node (and edge) attributes of dimension d. In addition, we represent the neighbor set of node v P V as Nv .
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Graph Neural Networks. GNNs (Wu et al., 2020) learn node representations from the graph structure and node attributes.
This process can be formulated as:

hplq
v “ COMBINEplq

´

hpl´1q
v ,AGGREGATEplq

´!

hpl´1q
u ,@u P Nv

)¯¯

, (22)

where h
plq
v denotes representation of node v at l-th GNN layer; AGGREGATEp¨q and COMBINEp¨q are neighbor

aggregation and combination functions, respectively; hp0q
v is initialized with node attribute Xv. We obtain the output

representation of each node after repeating the process in Equation (22) for L rounds. The representation of the whole graph,
denoted as hG P Rd, can be obtained by using a READOUT function to combine the final node representations learned
above:

hG “ READOUT
!

hpLq
v | @v P V

)

, (23)

where the READOUT function can be any permutation invariant, like summation, averaging, etc.
Graph Contrastive Learning. Given a graph dataset D “ tGiu

N
i“1, Graph Contrastive Learning (GCL) methods firstly

implement proper transformations on each graph Gi to generate two views G1
i and G2

i . The goal of GCL is to map samples
within positive pairs closer in the hidden space, while those of the negative pairs are further. GCL methods are usually
optimized by a contrastive loss. Taking the most popular InfoNCE loss (Oord et al., 2018) as an example, the contrastive
loss is defined as:

LCLpG
1
i, G

2
i q “ ´ log

exp psim pzi,1, zi,2qq
řN

j“1,j‰i exp psim pzi,1, zj,2qq
, (24)

where zi,1 “ fθ pG
1
iq, zi,2 “ fθ pG

2
i q, and sim denotes the similarity function.

Network Pruning. Given an over-parameterized deep neural network fθp¨q with weights θ, the network pruning is usually
performed layer-by-layer. The pruning process of the lth layer in fθp¨q can be formulated as follows:

θlthpruned “ TopKpθlth , kq, k “ αˆ |θlth |, (25)

where θlth is the parameters in the lth layer of fθp¨q and TopKp¨, kq refers to the operation to choose the top-k largest
elements of θlth . We use a pre-defined sparse rate α to control the fraction of parameters kept in the pruned network θlthpruned.
Finally, only the top k “ αˆ|θlth | largest weights will be kept in the pruned layer. The pruning process will be implemented
iteratively to prune the parameters in each layer of deep neural network (Han et al., 2015a).

C. Experimental Details
C.1. Datasets Details

In this work, seven graph classification datasets and five node classification datasets are used to evaluate the effectiveness
of our proposed model, we provided their detailed statistics in Table 5. For graph classification datasets, we follow the
imbalance setting of (Wang et al., 2022) to set the train-validation split as 25%/25% and change the imbalance ratio from 5:5
(balanced) to 1:9 (imbalanced). The rest of the dataset is used as the test set. The specified imbalance ratio of each dataset is
clarified after its name in Table 6. For node classification datasets, we follow (Sen et al., 2008) to set the imbalance ratio of
Cora, CiteSeer and PubMed as 10. Besides, the setting of Amazon-Photo and Amazon-Computers are borrowed from (Park
et al., 2022), where the imbalance ratio ρ is set as 82 and 244, respectively.

C.2. Baseline Details

We compare our model with a variety of baseline methods using different rebalance methods:

I. For imbalanced graph classification (Wang et al., 2022), four models are included as baselines in our work, we list these
baselines as follow:

(1) GIN (Xu et al., 2019), a popular supervised GNN backbone for graph tasks due to its powerful expressiveness on graph
structure;

(2) InfoGraph (Sun et al., 2019), an unsupervised graph learning framework by maximizing the mutual information between
the whole graph and its local topology of different levels;
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Table 5: Original dataset details for imbalanced graph classification and imbalanced node classification tasks.

Task Dataset # Graphs # Nodes # Edges # Features # Classes

Graph

MUTAG 188 „17.93 „19.79 - 2
PROTEINS 1,113 „39.06 „72.82 - 2
D&D 1,178 „284.32 „715.66 - 2
NCI1 4,110 „29.87 „32.30 - 2
PTC-MR 344 „14.29 „14.69 - 2
DHFR 756 „42.43 „44.54 - 2
REDDIT-B 2,000 „429.63 „497.75 - 2

Node

Cora - 2,485 5,069 1,433 7
Citeseer - 2,110 3,668 3,703 6
Pubmed - 19,717 44,324 500 3
A-photo - 7,650 238,162 745 8
A-computers - 13,381 245,778 767 10

(3) GraphCL (You et al., 2020), learning unsupervised graph representations via maximizing the mutual information
between the original graph and corresponding augmented views;

(4) G2GNN (Wang et al., 2022), a re-balanced GNN proposed to utilize additional supervisory signals from both neighboring
graphs and graphs themselves to alleviate the imbalance issue of graph.

II. For imbalanced node classification, we consider nine baseline methods in our work, including

(1) vanilla, denoting that we train GCN normally without any extra rebalancing tricks;

(2) re-weight (Japkowicz & Stephen, 2002), denoting we use cost-sensitive loss and re-weight the penalty of nodes in
different classes;

(3) oversampling (Park et al., 2022), denoting that we sample nodes of each class to make the data’s number of each class
reach the maximum number of corresponding class’s data;

(4) cRT (Kang et al., 2020), a post-hoc correction method for decoupling output representations;

(5) PC Softmax (Hong et al., 2021), a post-hoc correction method for decoupling output representations, too;

(6) DR-GCN (Shi et al., 2020), building virtual minority nodes and forces their features to be close to the neighbors of a
source minority node;

(7) GraphSMOTE (Zhao et al., 2021), a pre-processing method that focuses on the input data and investigates the possibility
of re-creating new nodes with minority features to balance the training data.

(8) GraphENS (Park et al., 2022), proposing a new augmentation method to construct an ego network from all nodes for
learning minority representation.

(9) SynFlow (Tanaka et al., 2020), a one-shot model pruning method with less reliance on data.

(10) BGRL (Thakoor et al., 2021), a graph contrastive learning method using only simple augmentations and avoids the
requirements for contrasting with negative examples, and thus makes itself scalable.

(11) GRACE (Zhu et al., 2020), a graph contrastive learning method generating two views by corrupting a graph and
learning node embeddings by minimizing the distance of node embeddings in these two views.

We use Graph Convolutional Network (GCN) (Kipf & Welling, 2017) as the default architecture for all rebalance methods.

C.3. Details of DataDec Variants

The details of model variants are provided as follows:

I. Specifically, DataDec contains four components to address data sparsity and imbalance: (1) GS is sampling informative

15
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Table 6: Class-imbalanced graph classification results. The numbers after each dataset name indicate the imbalance ratios of
minority to majority categories. We report the macro F1-score and micro F1-score with the standard errors as Results are
reported as mean˘ std for 3 repetitions on each dataset. We bold the best performance.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN (Xu et al., 2019) 52.50˘ 18.70 56.77˘ 14.14 25.33˘ 7.53 28.50˘ 5.82 9.99˘ 7.44 11.88˘ 9.49 18.24˘ 7.58 18.94˘ 7.12

InfoGraph (Sun et al., 2019) 69.11˘ 9.03 69.68˘ 7.77 35.91˘ 7.58 36.81˘ 6.51 21.41˘ 4.51 27.68˘ 7.52 33.09˘ 3.30 34.03˘ 3.68
GraphCL (You et al., 2020) 66.82˘ 11.56 67.77˘ 9.78 40.86˘ 6.94 41.24˘ 6.38 21.02˘ 3.05 26.80˘ 4.95 31.02˘ 2.69 31.62˘ 3.05

up-sampling
GIN (Xu et al., 2019) 78.03˘ 7.62 78.77˘ 7.67 65.64˘ 2.67 71.55˘ 3.19 41.15˘ 3.74 70.56˘ 10.28 59.19˘ 4.39 71.80˘ 7.02

InfoGraph (Sun et al., 2019) 78.62˘ 6.84 79.09˘ 6.86 62.68˘ 2.70 66.02˘ 3.18 41.55˘ 2.32 71.34˘ 6.76 53.38˘ 1.88 62.20˘ 2.63
GraphCL (You et al., 2020) 80.06˘ 7.79 80.45˘ 7.86 64.21˘ 2.53 65.76˘ 2.61 38.96˘ 3.01 64.23˘ 8.10 49.92˘ 2.15 58.29˘ 3.30

re-weight
GIN (Xu et al., 2019) 77.00˘ 9.59 77.68˘ 9.30 54.54˘ 6.29 55.77˘ 7.11 28.49˘ 5.92 40.79˘ 11.84 36.84˘ 8.46 39.19˘ 10.05

InfoGraph (Sun et al., 2019) 80.85˘ 7.75 81.68˘ 7.83 65.73˘ 3.10 69.60˘ 3.68 41.92˘ 2.28 72.43˘ 6.63 53.05˘ 1.12 62.45˘ 1.89
GraphCL (You et al., 2020) 80.20˘ 7.27 80.84˘ 7.43 63.46˘ 2.42 64.97˘ 2.41 40.29˘ 3.31 67.96˘ 8.98 50.05˘ 2.09 58.18˘ 3.08

G2GNN (Wang et al., 2022) remove edge 80.37˘ 6.73 81.25˘ 6.87 67.70˘ 2.96 73.10˘ 4.05 43.25˘ 3.91 77.03˘ 9.98 63.60˘ 1.57 72.97˘ 1.81
mask node 83.01˘ 7.01 83.59˘ 7.14 67.39˘ 2.99 73.30˘ 4.19 43.93˘ 3.46 79.03˘ 10.78 64.78˘ 2.86 74.91˘ 2.14

DataDec dynamic sparsity 85.71˘10.20 85.71˘11.10 68.31˘4.23 75.84˘6.80 44.01˘5.01 77.02˘6.26 65.73˘4.7 76.02˘6.27

Rebalance Basis PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN (Xu et al., 2019) 17.74˘ 6.49 20.30˘ 6.06 35.96˘ 8.87 49.46˘ 4.90 33.19˘ 14.26 36.02˘ 17.38

InfoGraph (Sun et al., 2019) 25.85˘ 6.14 26.71˘ 6.50 50.62˘ 8.33 56.28˘ 4.58 57.67˘ 3.80 67.10˘ 4.91
GraphCL (You et al., 2020) 24.22˘ 6.21 25.16˘ 5.25 50.55˘ 10.01 56.31˘ 6.12 53.40˘ 4.06 62.19˘ 5.68

up-sampling
GIN (Xu et al., 2019) 44.78˘ 8.01 55.43˘ 14.25 55.96˘ 10.06 59.39˘ 6.52 66.71˘ 3.92 83.00˘ 5.18

InfoGraph (Sun et al., 2019) 44.29˘ 4.69 48.91˘ 7.49 59.49˘ 5.20 61.62˘ 4.18 67.01˘ 3.34 78.68˘ 3.71
GraphCL (You et al., 2020) 45.12˘ 7.33 53.50˘ 13.31 60.29˘ 9.04 61.71˘ 6.75 62.01˘ 3.97 75.84˘ 3.98

re-weight
GIN (Xu et al., 2019) 36.96˘ 14.08 43.09˘ 20.01 55.16˘ 9.47 57.78˘ 6.69 45.17˘ 8.46 51.92˘ 12.29

InfoGraph (Sun et al., 2019) 44.09˘ 5.62 49.17˘ 8.78 58.67˘ 5.82 60.24˘ 4.80 65.79˘ 3.38 77.35˘ 3.96
GraphCL (You et al., 2020) 44.75˘ 7.62 52.22˘ 13.24 60.87˘ 6.33 61.93˘ 5.15 62.79˘ 6.93 76.15˘ 9.15

G2GNN (Wang et al., 2022) remove edge 46.40˘ 7.73 56.61˘ 13.72 61.63˘ 10.02 63.61˘ 6.05 68.39˘ 2.97 86.35˘ 2.27
mask node 46.61˘ 8.27 56.70˘ 14.81 59.72˘ 6.83 61.27˘ 5.40 67.52˘ 2.60 85.43˘ 1.80

DataDec dynamic sparsity 47.07˘8.22 58.15˘10.24 62.25˘9.54 63.61˘7.10 69.70˘7.20 87.00˘9.36

subset data according to ranking gradients; (2) SS is training model with the sparse dataset, correspondingly; (3) CAD is
using cosine annealing to reduce dataset size; (4) RS is recycling removed samples, correspondingly. To investigate their
corresponding effectiveness, we remove them correspondingly as:

(1) w/o GS is that we randomly sample subset from the full set;

(2) w/o SS is that we train GNN with the full set;

(3) w/o CAD is that we directly reduce dataset size to target dataset size and it is same as data diet;

(4) w/o RS is not recycling any removed samples.

II. Another four components to address model sparsity and data imbalance: (1) RM samples model weights according to
ranking magnitudes; (2) SG is using sparse GNN, correspondingly; (3) CAG is using cosine annealing to progressively
reduce sparse GNN’s size; (4) RW is reactivating removed weights. To investigate their effectiveness, we remove them
correspondingly as:

(1) w/o RM is that we randomly sample activated weights from full GNN model;

(2) w/o SG is that we train full GNN during forward and backward;

(3) w/o CAG is that we directly reduce the model size to target sparsity rate;

(4) w/o RW is not reactivating any removed weights during sparse training.

C.4. Full Results with Error Bars

We provide the F1-macro and F1-micro scores along with their standard deviation for our model and other baselines across
both graph classification and node classification tasks in Table 6 and Table 7. We report their results as mean˘ std for 3
repetitions on each metric for each dataset.
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Table 7: Class-imbalanced node classification results. We report the accuracy, balanced accuracy, and macro F1-score with
the standard errors as mean˘ std for 3 repetitions on each dataset. We bold the best performance.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma.

vanilla 73.66˘0.28 62.72˘0.39 63.70˘0.43 53.90˘0.70 47.32˘0.61 43.00˘0.70 70.76˘0.74 57.56˘0.59 51.88˘0.53 82.86˘0.30 78.72˘0.52 68.47˘2.19 64.01˘3.18
SynFlow (Tanaka et al., 2020) 72.98 60.62 63.29 52.85 46.23 42.19 69.63 56.75 50.99 81.57 76.93 68.10 62.97
GRACE (Zhu et al., 2020) 74.72 63.95 65.26 54.94 50.87 46.90 72.37 63.22 58.18 83.57 83.61 73.02 64.52
BGRL (Thakoor et al., 2021) 73.81 64.95 64.87 56.84 50.83 47.04 74.17 62.21 59.07 83.49 82.37 75.88 63.15
Re-Weight (Park et al., 2022) 75.20˘0.19 68.79˘0.18 69.27˘0.26 62.56˘0.32 55.80˘0.28 53.74˘0.28 77.44˘0.21 72.80˘0.38 73.66˘0.27 92.94˘0.13 92.95˘0.13 90.04˘0.29 90.11˘0.28
Oversampling (Park et al., 2022) 77.44˘0.09 70.73˘0.10 72.40˘0.11 62.78˘0.37 56.01˘0.35 53.99˘0.37 76.70˘0.48 68.49˘0.28 69.50˘0.38 92.46˘0.47 92.47˘0.48 89.79˘0.16 89.85˘0.17
cRT (Kang et al., 2020) 76.54˘0.22 69.26˘0.48 70.95˘0.50 60.60˘0.25 54.05˘0.22 52.36˘0.22 75.10˘0.23 67.52˘0.72 68.08˘0.85 91.24˘0.28 91.17˘0.29 86.02˘0.55 86.00˘0.56
PC Softmax (Hong et al., 2021) 76.42˘0.34 71.30˘0.45 71.24˘0.52 65.70˘0.42 61.54˘0.45 61.49˘0.49 76.92˘0.26 75.82˘0.25 74.19˘0.25 93.32˘0.25 93.32˘0.25 86.59˘0.92 86.62˘0.91
DR-GCN (Shi et al., 2020) 73.90˘0.29 64.30˘0.39 63.10˘0.57 56.18˘1.10 49.57˘1.08 44.98˘1.29 72.38˘0.19 58.86˘0.15 53.05˘0.13 N/A N/A N/A N/A
GraphSmote (Zhao et al., 2021) 76.76˘0.31 69.31˘0.37 70.21˘0.64 62.58˘0.30 55.94˘0.34 54.09˘0.37 75.98˘0.22 70.96˘0.36 71.85˘0.32 92.65˘0.31 92.61˘0.32 89.31˘0.34 89.39˘0.35
GraphENS (Park et al., 2022) 77.76˘0.09 72.94˘0.15 73.13˘0.11 66.92˘0.21 60.19˘0.21 58.67˘0.25 78.12˘0.06 74.13˘0.22 74.58˘0.13 93.82˘0.13 93.81˘0.12 91.94˘0.17 91.94˘0.17

DataDec 78.29˘0.40 73.94˘0.67 74.25˘0.83 66.90˘0.65 61.56˘0.72 61.85˘0.96 78.20˘0.45 76.05˘0.66 76.32˘0.66 93.85˘0.72 94.02˘0.67 92.19˘0.73 92.16˘0.75

Figure 5: Results of data samples’ gradients computed by full GNN model and our dynamic sparse GNN model on NCI1
data. Red dashed line: on the left side, points on the x-axis [0, 900] are majority class; on the right side, points on the x-axis
[900, 1000] are minority class.

D. Finding Informative Samples by Sparse GNN
Compared with the full GNN model, our dynamic sparse GNN model is more sensitive in recognizing informative data
samples which can be empirically verified by Figure 5. As we can see in the figure, our dynamic pruned model assigns
larger gradients to the minorities than the majorities during the contrastive training, while the full model generally assigns
relatively uniform gradients for both of them. Thus, the proposed dynamically pruned model demonstrates its discriminatory
ability on the minority class.

E. Resource Cost
To evaluate the proposed DataDec’s computational cost on a wide range of datasets, results in Table 8 that include three
different class-imbalanced node classification datasets (PubMed-LT, Cora-LT, CiteSeer-LT), three different class-imbalanced
graph classification datasets (MUTAG, PROTEINS, PTC MR), and four baselines (vanilla GCN, re-weight, re(/over)-sample,
GraphCL). We run 200 epochs for each method to measure their computational time (second) for training. On NVIDIA
GeForce RTX 3090 GPU device, we obtain the running time as reported in Table 8. All models are implemented in PyTorch
Geometric (Fey & Lenssen, 2019).

Table 8: Computational time comparisons.

Model Method PubMed-LT Cora-LT CiteSeer-LT PROTEINS PTC MR MUTAG

GCN

vanilla 2.436 2.154 2.129 12.798 4.295 2.989
re-weight 2.330 2.282 2.150 12.903 4.410 3.125
re(/over)-sample 3.241 2.860 2.794 15.996 5.734 4.022
GraphCL 3.747 3.412 3.399 14.981 5.049 3.215
DataDec 2.243 1.995 1.952 10.614 4.212 2.090

According to the results, our DataDec encounters less computation cost than prior methods. The following explains why
augmentation doubles the input graph without increasing overall computation costs: (i) The augmentations we adopt (e.g,
node dropping and edge dropping) reduce the size of input graphs (i.e., node number decreases 25%, edge number decreases
25-35%); (ii) During each epoch, our DataDec prunes datasets so that approximately only 50% of the training data is used.
(iii) DataDec prunes the model weights, resulting in a lighter model requiring less computational resources. (iv) Despite the
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fact that augmentation doubles the number of input graphs, the additional new views only consume forward computational
resources without requiring a backward or weight update step, thereby only marginally increases the computation.
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