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Abstract

Adversarial robustness often comes at the cost of degraded accuracy, impeding real-life
applications of robust classification models. Training-based solutions for better trade-offs are
limited by incompatibilities with already-trained high-performance large models, necessitating
the exploration of training-free ensemble approaches. Observing that robust models are more
confident in correct predictions than in incorrect ones on clean and adversarial data alike, we
speculate amplifying this “benign confidence property” can reconcile accuracy and robustness
in an ensemble setting. To achieve so, we propose “MixedNUTS”, a training-free method
where the output logits of a robust classifier and a standard non-robust classifier are processed
by nonlinear transformations with only three parameters, which are optimized through an
efficient algorithm. MixedNUTS then converts the transformed logits into probabilities
and mixes them as the overall output. On CIFAR-10, CIFAR-100, and ImageNet datasets,
experimental results with custom strong adaptive attacks demonstrate MixedNUTS’s vastly
improved accuracy and near-SOTA robustness — it boosts CIFAR-100 clean accuracy by 7.86
points, sacrificing merely 0.87 points in robust accuracy.

1 Introduction

Neural classifiers are vulnerable to adversarial attacks, producing unexpected predictions when subject to
purposefully constructed human-imperceptible input perturbations and hence manifesting severe safety risks
(Goodfellow et al., 2015; Madry et al., 2018). Existing methods for robust deep neural networks (Madry
et al., 2018; Zhang et al., 2019) often suffer from significant accuracy penalties on clean (unattacked) data
(Tsipras et al., 2019; Zhang et al., 2019; Pang et al., 2022). As deep learning continues to form the core
of numerous products, trading clean accuracy for robustness is understandably unattractive for real-life
users and profit-driven service providers. As a result, despite the continuous development in adversarial
robustness research, robust models are rarely deployed and practical services powered by neural networks
remain non-robust (Ilyas et al., 2018; Borkar & Chen, 2021).

To bridge the gap between robustness research and applications, researchers have strived to reconcile robustness
and accuracy (Balaji et al., 2019; Chen et al., 2021; Raghunathan et al., 2020; Rade & Moosavi-Dezfooli,
2021; Liu & Zhao, 2022; Pang et al., 2022; Cheng et al., 2022), mostly focusing on improving robust training
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Figure 1: Overview of the proposed MixedNUTS classifier. The nonlinear logit transformation, to be
introduced in Section 4, significantly improves the accuracy-robustness balance while only introducing three
parameters efficiently optimized with Algorithm 1.

methods. Despite some empirical success, the training-based approach faces inherent challenges. Training
robust neural networks from scratch is highly expensive. More importantly, training-based methods suffer
from performance bottlenecks. This is because the compatibility between different training schemes is unclear,
making it hard to combine multiple advancements. Additionally, it is hard to integrate robust training
techniques into rapidly improving large models, often trained or pre-trained with non-classification tasks.

To this end, an alternative training-free direction has emerged, relieving the accuracy-robustness trade-off
through an ensemble of a standard (often non-robust) model and a robust model (Bai et al., 2024b;a). This
ensemble is referred to as the mized classifier, whereas base classifiers refers to its standard and robust
components. The mixing approach is mutually compatible with the training-based methods, and hence
should be regarded as an add-on. Unlike conventional homogeneous ensembling, where all base classifiers
share the same goal, the mixed classifier considers heterogeneous mixing, with one base classifier specializing
in the benign attack-free scenario and the other focusing on adversarial robustness. Thus, the number of base
classifiers is naturally fixed as two, in turn maintaining a high inference efficiency.

We observe that many robust base models share a benign confidence property: their correct predictions are
much more confident than incorrect ones. Verifying such a property for numerous existing models trained via
different methods (Peng et al., 2023; Pang et al., 2022; Wang et al., 2023; Debenedetti et al., 2023; Na, 2020;
Gowal et al., 2020; Liu et al., 2023; Singh et al., 2023), we speculate that strengthening this property can
improve the mixed classifiers’ trade-off even without changing the base classifiers’ predicted classes.

Based on this intuition, we propose MixedNUTS (Mixed neUral classifiers with Nonlinear TranSformation),
a training-free method that enlarges the robust base classifier confidence difference between correct and
incorrect predictions and thereby optimizes the mixed classifier’s accuracy-robustness trade-off. MixedNUTS
applies nonlinear transformations to the accurate and robust base classifiers’ logits before converting them
into probabilities used for mixing. We parameterize the transformation with only three coefficients and
design an efficient algorithm to optimize them for the best trade-off. Unlike (Bai et al., 2024b), MixedNUTS
does not modify base neural network weights or introduce additional components and is for the first time
efficiently extendable to larger datasets such as ImageNet. MixedNUTS is compatible with various pre-trained
standard and robust models and is agnostic to the base model details such as training method, defense norm
(boo, l2, etc.), training data, and model architecture. Therefore, MixedNUTS can take advantage of recent
developments in accurate or robust classifiers while being general, lightweight, and convenient.

Our experiments leverage AutoAttack (Croce & Hein, 2020) and strengthened adaptive attacks (details
in Appendix B) to confirm the security of the mixed classifier and demonstrate the balanced accuracy
and robustness on datasets including CIFAR-10, CIFAR-100, and ImageNet. On CIFAR-100, MixedNUTS
improves the clean accuracy by 7.86 percentage points over the state-of-the-art non-mixing robust model
while reducing robust accuracy by merely 0.87 points. On ImageNet, MixedNUTS is the first robust model
to leverage even larger pre-training datasets such as ImageNet-21k. Furthermore, MixedNUTS allows for
inference-time adjustments between clean and adversarial accuracy.

2 Background and Related Work

2.1 Definitions and Notations

This paper uses o : R® — (0,1)¢ to denote the standard Softmax function: for an arbitrary z € R¢, the i‘h

entry of o(z) is defined as o(z); :== %, where z; denotes the i*" entry of z. Consider the special case
j=1 x J
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AS refers to adaptive smoothing (Bai et al., 2024a), another ensemble framework. Unlike AS, MixedNUTS requires no additional training.

Figure 2: MixedNUTS’s accuracy-robustness balance compared to state-of-the-art models on RobustBench.
MixedNUTS is more accurate on clean data than all standalone robust models. At the same time, MixedNUTS
achieves the second-highest robustness among all models for CIFAR-100 and ImageNet, and is the third most
robust for CIFAR-10.

of z; = +oo for some 4, with all other entries of z being less than +o00. We define o(z) for such a z vector to be
the basis (one-hot) vector e;. For a classifier h : RY — R¢, we use the composite function o o h : R — [0, 1]°
to denote its output probabilities and use ¢ o h; to denote the i*? entry of it.

We define the notion of confidence margin of a classifier as the prediction probability gap between the top
two predicted classes:

Definition 2.1. Consider a model h : R? — R¢, an arbitrary input 2 € R%, and its associated predicted label
Y € [¢]. The confidence margin is defined as

mp(x) =0 o h~(x) —maxo o hi(z).
Y i#y
We consider a classifier to be (£,-norm) robust at some input z € R? if it assigns the same label to all
perturbed inputs x + ¢ such that ||d]|, < €, where € > 0 is the attack radius. We additionally introduce the
notion of the worst-case adversarial perturbation in the sense of minimizing the margin:

Definition 2.2. Consider an adversarial attack against the confidence margin my(x), defined as

min my(x + 6).

lsli<e ( )
We define the optimizer of this problem, §7(x), as the minimum-margin perturbation of h(-) around xz. We
further define the optimal objective value, denoted as mj (z), as the minimum margin of h(-) around z.

The attack formulation considered in Definition 2.2 is highly general. Intuitively, when the minimum margin
is negative, the adversarial perturbation successfully changes the model prediction. When it is positive, the
model is robust at z, as perturbations within radius € cannot change the prediction.

2.2 Related Adversarial Attacks and Defenses

While the fast gradient sign method (FGSM) and projected gradient descent (PGD) attacks could attack
and evaluate certain models (Madry et al., 2018; Goodfellow et al., 2015), they are insufficient and can fail
to attack non-robust models (Carlini & Wagner, 2017; Athalye et al., 2018b; Papernot et al., 2017). To
this end, stronger adversaries leveraging novel attack objectives, black-box attacks, and expectation over
transformation have been proposed (Gowal et al., 2019; Croce & Hein, 2020; Trameér et al., 2020). Benchmarks
based on these strong attacks, such as RobustBench (Croce et al., 2021), ARES-Bench (Liu et al., 2023), and
OODRobustBench (Li et al., 2023), aim to unify defense evaluation.

AutoAttack (Croce & Hein, 2020) is a combination of white-box and black-box attacks (Andriushchenko
et al., 2020). Tt is the attack algorithm of RobustBench (Croce et al., 2021), where AutoAttack-evaluated
robust models are often agreed to be trustworthy. We select AutoAttack as the main evaluator, with further
strengthening tailored to our defense.
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Models aiming to be robust against adversarial attacks often incorporate adversarial training (Madry et al.,
2018; Bai et al., 2022; 2023), TRADES (Zhang et al., 2019), or their variations. Later work further enhanced the
adversarial robustness by synthetic training data (Wang et al., 2023; Sehwag et al., 2022), data augmentation
(Gowal et al., 2020; Rebuffi et al., 2021; Gowal et al., 2021), improved training loss functions (Cui et al., 2023),
purposeful architectures (Peng et al., 2023), or efficient optimization (Shafahi et al., 2019). Nevertheless,
these methods still suffer from the trade-off between clean and robust accuracy.

To this end, there has been continuous interest from researchers to alleviate this trade-off (Zhang et al.,
2019; Lamb et al., 2019; Balaji et al., 2019; Chen et al., 2021; Cheng et al., 2022; Pfrommer et al., 2023;
2024). Most methods are training-based. They are therefore cumbersome to construct and cannot leverage
already-trained state-of-the-art robust or non-robust models.

2.3 Ensemble and Calibration

Model ensembles, where the outputs of multiple models are combined to produce the overall prediction, have
been explored to improve model performance (Ganaie et al., 2022) or estimate model uncertainty (Liu et al.,
2019). Ensembling has also been considered to strengthen adversarial robustness (Pang et al., 2019; Adam
& Speciel, 2020; Alam et al., 2022; Co et al., 2022). Theoretical robustness analyses of ensemble models
indicate that the robust margins, gradient diversity, and runner-up class diversity all contribute to ensemble
robustness (Petrov et al., 2023; Yang et al., 2022).

These existing works usually consider homogeneous ensemble, meaning that all base classifiers share the
same goal (better robustness). They often combine multiple robust models for incremental improvements.
In contrast, this work focuses on heterogeneous mixing, a fundamentally different paradigm. Here, the base
classifiers specialize in different data and the mixed classifier combines their advantages. Hence, we focus on
the two-model setting, where the role of each model is clearly defined. Specifically, the accurate base classifier
specializes in clean data and is usually non-robust, and the robust base classifier excels in adversarial data.

A parallel line of work considers mixing neural model weights (Ilharco et al., 2022; Cai et al., 2023). They
generally require all base classifiers to have the same architecture and initialization, which is more restrictive.

Model calibration often involves adjusting confidence, which aims to align a model’s confidence with its
mispredicting probability, usually via temperature scaling (Guo et al., 2017; Yu et al., 2022; Hinton et al.,
2015). While adjusting the confidence of a single model generally does not change its prediction, this is not
the case in the ensemble setting. Unlike most calibration research focusing on uncertainty, this paper adjusts
the confidence for performance.

2.4 Mixing Classifiers for Accuracy-Robust Trade-Off

Consider a classifier giq : R? — R¢, whose predicted logits are Gstd,1, - - - » Jstd,c, Where d is the input dimension
and c¢ is the number of classes. We assume gq4(+) to be a standard classifier trained for high clean accuracy
(and hence may not manifest adversarial robustness). Similarly, we consider another classifier Ao : RY¢ — Re
and assume it to be robust against adversarial attacks. We use accurate base classifier (ABC) and robust
base classifier (RBC) to refer to gsta(-) and hyop(+).

Mixing the outputs of a standard classifier and a robust classifier improves the accuracy-robustness trade-
off, and it has been shown that mixing the probabilities is more desirable than mixing the logits from
theoretical and empirical perspectives (Bai et al., 2024b;a). Here, we denote the proposed mixed model with
Fmix : R — R¢. Specifically, the i*® output logit of the mixed model follows the formulation

fmix,i(x) = log ((1 — ) 00gsgai(z)+a-oo0 hrob,i(:c)) (1)

for all i € [c], where a € [1/2,1] adjusts the mixing weight!. The mixing operation is performed in the
probability space, and the natural logarithm maps the mixed probability back to the logit space without
changing the predicted class for interchangeability with existing models. If the desired output is the probability
0 0 fmix(+), the logarithm can be omitted.

1Bai et al. (2024b;a) have shown that « should be no smaller than 1/2 for fmix(-) to have non-trivial robustness.
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3 Base Classifier Confidence Modification

We observe that the robust base classifier h.op(+) often enjoys a benign confidence property: it is much more
confident in correct predictions than in mispredictions. Le., hop(+)’s confidence margin is much higher when
it makes correct predictions. Even if some input is subject to attack (which vastly decreases the confidence
margin of correct predictions), if it is correctly predicted, its margin is still expected to be larger than
incorrectly predicted natural examples. Section 5.2 verifies this property with multiple model examples, and
Appendix C.3 visualizes the confidence margin distributions.

As a result, when mixing the output probabilities o o hyob(-) and o o gsq(+) on clean data, where ggq(+) is
expected to be more accurate than hyop(+), gsta () can correct hyon(+)’s mistake because hyop(-) is unconfident.
Meanwhile, when the mixed classifier is under attack and h,op(+) becomes much more reliable than ggq(-),
hrob(+)’s high confidence in correct predictions can overcome gsiq(-)’s misguided outputs. Hence, even when
gstd (+)’s robust accuracy is near zero, the mixed classifier still inherits most of Ao (-)’s robustness. Combining
the above two cases, we can see that the “benign confidence property” of hyop(+) allows the mixed classifier
to simultaneously take advantage of gstq(-)’s high clean accuracy and h,op(+)’s adversarial robustness. As a
result, modifying and enhancing the base classifiers’ confidence has vast potential to further improve the
mixed classifier.

Note that this benign confidence property is only observed on robust classifiers. Neural classifiers trained
without any robustness considerations often make highly confident mispredictions when subject to adversarial
attack. These mispredictions can be even more confident than correctly predicted unperturbed examples,
often seeing confidence margins very close to 1. As a result, gsq(-) does not enjoy the benign confidence
property, and its confidence property is in general detrimental to the mixture.

3.1 Accurate Base Classifier Temperature Scaling

We start with analyzing the accurate base classifier gsq(-), with the goal of mitigating its detrimental
confidence property. One approach to achieve this is to scale up gsta(+)’s logits before the Softmax operation.
To this end, we consider temperature scaling (Hinton et al., 2015). Specifically, we construct the temperature

scaled model gSTt(Si(T)(~), whose i*? entry is

sTti(lT) (x) = gstd,z‘(f)/T

for all ¢, where T' > 0 is the temperature constant. To scale up the confidence, T should be less than 1.

To understand this operation, observe that temperature scaling increases gstq(-)’s confidence in correct clean
examples and incorrect adversarial examples simultaneously. However, because ggq(+)’s confidence under
attack is already close to 1 before scaling, the increase in attacked misprediction confidence is negligible due
to the saturation of the Softmax function. Since gsq(-) becomes more confident on correct examples with the
mispredicting confidence almost unchanged, its detrimental confidence property is mitigated.

The extreme selection for the temperature T is 0, in which case the predicted probabilities oo gsj;g(o) () becomes
a one-hot vector corresponding to gstq(+)’s predicted class. By scaling with T' = 0, the detrimental confidence
property of gsa(+) is completely eliminated, as a constant margin of precisely 1 is enforced everywhere. Note
that we still hope to preserve the ranking of class-wise outputs gsq,i(+), so that we can preserve the high
accuracy of gstd(+). Given this requirement, eliminating gstq(-)’s detrimental confidence property by enforcing
a consistent margin is the best one can expect. Appendix D.4 verifies that 7" = 0 produces the best empirical
effectiveness among several temperature values. Appendix B.2 discusses how our attacks circumvent the
non-differentiability resulting from using 7" = 0.

In addition to eliminating the detrimental confidence property of gsqa(-), selecting 7' = 0 also simplifies the
analysis on the robust base model h,op(-) by establishing a direct correlation between hyop(+)’s confidence and
the mixed classifier’s correctness, thereby allowing for tractable and efficient optimization. Hence, we select

T =0 and use gSTt(Si(O)() as the accurate base classifier for the remaining analyses.
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4 MixedNUTS — Nonlinearly Mixed Classifier

In contrast to the accurate base classifier, the robust base classifier Ao, (+)’s confidence property is benign.
To achieve the best accuracy-robustness trade-off with the mixed classifier, we need to augment this benign
property as much as possible. While a similar temperature scaling operation can achieve some of the desired
effects, its potential is limited by applying the same operation to confident and unconfident predictions, and
is therefore suboptimal. To this end, we extend confidence modification beyond temperature scaling (which is
linear) to allow nonlinear logit transformations. By introducing nonlinearities, we can treat low-confidence
and high-confidence examples differently, significantly amplifying h.ob(+)’s benign property and thereby
considerably enhancing the mixed classifier’s accuracy-robustness balance.?

4.1 Nonlinear Robust Base Classifier Transformation

We aim to build a nonlinearly mapped classifier hM, (-) == M (hyob(+)), where M € M : R® — R€ is a nonlinear
transformation applied to the classifier hyop(+)’s logits, and M is the set of all possible transformations. The
prediction probabilities from this transformed robust base model are then mixed with those from g tS(O) () to
form the mixed classifier f () following (1). For the optimal accuracy-robustness trade-off, we select an M

that maximizes the clean accuracy of f (.) while maintaining the desired robust accuracy. Formally, this
goal is described as the optimization problem

Pexy)p [argmax Sl (X) = Y] @)

subject to ]P’(Xy)ND[argmax leZ(X‘i’(sfM (X)) = Y]>rfM

mix mix

max
MeM, ac(l/2,1]

where D is the distribution of data-label pairs, r pu s the des1red robust accuracy of fM (.), and §

the minimum-margin perturbation of fM (-) at z. Note that fM_ i (+) implicitly depends on M an({m'x

The problem (2) depends on the robustness behavior of the mixed classifier, which is expensive to probe.
Ideally, the optimization should only need the base classifier properties, which can be evaluated beforehand.
To allow such a simplification, we make the following two assumptions.

Assumption 4.1. On unattacked clean data, if A (-) makes a correct prediction, then gsa(-) is also correct.

Assumption 4.1 allows us to focus on examples correctly classified by the accurate base classifier gsts(o)( 3
but not by the robust base model h}, (-) when optimizing the transformation M (-) to maximize the clean

accuracy of the mixed classifier. Under Assumption 4.1, we can safely discard the opposite case of g, tS(O)( 9

being incorrect while kY, (-) being correct on clean data. Assumption 4.1 makes sense because gStS(O)( )’s
clean accuracy should be considerably higher than kM, (-)’s to justify mixing them together, and training
standard classifiers that noticeably outperforms robust models on clean data is usually possible in practice.

Assumption 4.2. The transformation M (-) does not change the predicted class due to, e.g., monotonicity.
Namely, it holds that argmax; M (hyon(2)); = arg max; hyop,;(z) for all z.

We make this assumption because we want the logit transformation to preserve the accuracy of hyon(-). While
it is mathematically possible to obtain an M(+) that further increases the accuracy of hyop(+), finding it could
be as hard as training a new improved robust model. Hence, the best one would expect from a relatively
simple nonlinear transformation is to enhance h,op(+)’s benign confidence margin property while not changing
the predicted class. Later in this paper, we will propose Algorithm 1 to find such a transformation.

These two assumptions allow us to decouple the optimization of M(-) from the accurate base classifier gsta(-).
This is because as proven in (Bai et al., 2024b, Lemma 1), the mixed classifier is guaranteed to be robust
when h%b is robust with margin no smaller than 1_76‘ (with the implicit assumption a > 0.5. Hence, we can
solve the following problem as a surrogate for our goal formulation (2):

MEMlcniré[l/m] Pxoxr [mhﬁvfb (X) > =2] subject to Pyoxs, [mh%b(Z) > 1=l > g, (3)

2The same nonlinear logit transformation is not applied to the accurate base classifier because its confidence property is not
benign. As explained in Section 3.1, eliminating gstq(-)’s detrimental confidence property by enforcing a constant margin with
one-hot encoding is the best one can expect.
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where Xc)ican is the distribution formed by clean examples incorrectly classified by hfgb(-), Xa'/dv is the

distribution formed by attacked examples correctly classified by l”Llf\c/)[b(-)7 X, Z are the random variables drawn
from these distributions, and /5 € [0, 1] controls the mixed classifier’s desired level of robust accuracy with

respect to the robust accuracy of hyop ().

Note that (3) no longer depends on gsq(:), allowing for replacing the standard base classifier without
re-solving for a new transformation M(-). The following two theorems justify approximating (2) with (3) by
characterizing the optimizers of (3):

Theorem 4.3. Suppose that Assumption 4.2 holds. Let rym and rp,,, denote the robust accuracy of M ()

and hyop(-) respectively. If B> ¢m [r, . then a solution t(;mZ3) is feasible for (2).

Theorem 4.4. Suppose that Assumption 4.1 holds. Furthermore, consider an input random variable X
and suppose that the margin of hM,(X) is independent of whether gsa(X) is correct. Then, minimizing the
objective of (3) is equivalent to mazimizing the objective of (2).

The proofs of Theorem 4.3 and Theorem 4.4 are provided in Appendices A.1 and A.2, respectively. In
Appendix D.8.1 and Appendix D.8.2, we discuss the minor effects of slight violations to Assumption 4.1 and
Assumption 4.2, respectively. Moreover, the independence assumption in Theorem 4.4 can be relaxed with
minor changes to our method, which we discuss in Appendix D.8.3. Also note that Theorems 4.3 and 4.4 rely
on using T' = 0 for gsta(+)’s temperature scaling, justifying this temperature setting selected in Section 3.1.

4.2 Parameterizing the Transformation M

Optimizing the nonlinear transformation M (-) requires representing it with parameters. To avoid introducing
additional training requirements or vulnerable backdoors, the parameterization should be simple (i.e., not
introducing yet another neural network). Thus, we introduce a manually designed transformation with only
three parameters, along with an algorithm to efficiently optimize the three parameters.

Unlike linear scaling and the Softmax operation, which are shift-agnostic (i.e., adding a constant to all
logits does not change the predicted probabilities), the desired nonlinear transformations’ behavior heavily
depends on the numerical range of the logits. Thus, to make the nonlinear transformation controllable and
interpretable, we pre-process the logits by applying layer normalization (LN): for each input z, we standardize
the logits hyop(2) to have zero mean and identity variance. We observe that LN itself also slightly increases
the margin difference between correct and incorrect examples, favoring our overall formulation as shown in
Figure 6. This phenomenon is further explained in Appendix D.7.

Among the post-LN logits, only those associated with confidently predicted classes can be large positive
values. To take advantage of this property, we use a clamping function Clamp(-), such as ReLU, GELU, ELU,
or SoftPlus, to bring the logits smaller than a threshold toward zero. This clamping operation can further
suppress the confidence of small-margin predictions while preserving large-margin predictions. Since correct
examples often enjoy larger margins, the clamping function enlarges the margin gap between correct and
incorrect examples. We provide an ablation study over candidate clamping functions in Appendix D.2 and
empirically select GELU for our experiments.

Finally, since the power functions with greater-than-one exponents diminish smaller inputs while amplifying
larger ones, we exponentiate the clamping function outputs to a constant power and preserve the sign. Putting
everything together, with the introduction of three scalars s, p, and ¢ to parameterize M (-), the combined

nonlinearly transformed robust base classifier hi\gés’p ’c)(~) becomes

hf,\gés’p’c)(x) =s- |hg§mp(c) (:c)|p - sgn (hggmp(c)(x)) where hrcolgmp(c) (z) = Clamp (LN (hyon(2)) + ¢).  (4)
Here, s € (0, +00) is a scaling constant, p € (0,400) is an exponent constant, and ¢ € R is a bias constant that
adjusts the cutoff location of the clamping function. With a slight abuse of notation, M(s, p, ¢)(:) denotes the
transformation parameterized with s, p, and ¢. In (4), we apply the absolute value before the exponentiation
to maintain compatibility with non-integer p values and use the sign function to preserve the sign. Note that
when the clamping function is linear and p = 1, (4) degenerates to temperature scaling with LN. Hence, an
optimal combination of s, p, and ¢ is guaranteed to be no worse than temperature scaling.
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Note that the nonlinear transformation M (s, p,c)(-) generally adheres to Assumption 4.2. While Assump-
tion 4.2 may be slightly violated if GELU is chosen as the clamping function due to its portion around zero
being not monotonic, its effect is empirically very small according to our observation, partly because the
negative slope is very shallow. We additionally note that the certified robustness results presented in (Bai
et al., 2024b) also apply to the nonlinearly mixed classifiers in this work.

With the accurate base classifier’s temperature scaling and the robust base classifier’s nonlinear logit
transformation in place, the overall formulation of MixedNUTS becomes
M(s,p,c . TS(0 M(s,p,c
Fai ™ (@) = 1og (1= @) - 930" (@) + @ - hyg " (), (5)

mix rob

as illustrated in Figure 1.

4.3 Efficient Algorithm for Optimizing s, p, ¢, and «

With the nonlinear transformation parameterization in place, the functional-space optimization problem (3)
reduces to the following algebraic optimization formulation:

. 1—
min ]P)XNXX [mhﬁés,p,c) (X) > Ta]

S,P,C,DtGR clean
subject to Py xv [m;M(S,,,,C)(Z) >12l>58 s>0, p>0, 2<a<l
acv rob

(6)

Exactly solving (6) involves evaluating mh M, o () for every x in the support of the distribution of correctly

predicted adversarial examples Xadv. ThlS is intractable because the support is a continuous set and the
distributions Xclean and X v implicitly depend on the optimization variables s, p, and c. To this end, we
approximate Xéeam and XY ¥ With a small set of data. Consider the subset of clean examples incorrectly
classified by hUN (), denoted as X%__ . and the subset of attacked examples correctly classified by hEN(-),
denoted as X%,. Because we use hi\ (-) instead of hmb ) (.) to obtain XX

surrogates to Xclem and X;/dv

Y lean and XY ¥iy» using them as
decouples the probability measures from the optimization variables.

Despite optimizing s, p, ¢, and « on a small set of data, overfitting is unlikely since there are only four
parameters, and thus a small number of images should suffice. Appendix D.3 analyzes the effect of the data
subset size on optimization quality and confirms the absence of overfitting.

The minimum margin m* MG o () also depends on the optimization variables s, p, ¢, and «, as its calculation
“h!

M((s,p,c)

requires the minimum—margln perturbation for b

() around z. Since finding m* B o () for all s, p,

and ¢ combinations is intractable, we seek to use an approximation that does not depend on s, p, and c.
Specifically, the approximation is mhM(s,p,c)( z), defined as
rob

1 (2) 1= 10 (2 By (2)) R 1t (4 000 (7)) = 1 (),

rob rob
where ghm\}l) (z) is an empirical minimum-margin perturbation of ALY (-) around z obtained from a strong
adversarial attack. Note that calculating m, ac.p.c) (z) does not require attacking h?gés’p ’C)(.) and instead
rob

attacks ALY (), which is independent of the optimization variables, ensuring optimization efficiency. To obtain
My, v(s,p.0) (7), in Appendix B.1, we propose minimum-margin AutoAttack (MMAA), an AutoAttack variant

rob
that keeps track of the minimum margin while generating perturbations. While some components of MMAA
require ALY (+)’s gradient information, Algorithm 1 can still apply after some modifications even if the base
classifiers are black boxes with unavailable gradients, with the details discussed in Appendix D.5.

Since the probability measures and the perturbations are now both decoupled from s, p, ¢, a, we only need
to run MMAA once to estimate the worst-case perturbation, making this hyper-parameter search problem
efficiently solvable. While using A1 (-) as a surrogate to hﬁ\g}is’p )(.) introduces a distribution mismatch, we
expect this mismatch to be benign. To understand this, observe that the nonlinear logit transformation (4)
generally preserves the predicted class due to the (partially) monotonic characteristics of GELU and the

sign-preserving power function. Consequently, we expect the accuracy and minimum-margin perturbations of

M (s,p,c)
hrob

(*) to be very similar to those of hIA(-). Appendix D.9 empirically verifies this speculated proximity.
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Algorithm 1 Algorithm for optimizing s, p, ¢, and «.

1: Given an image set, save the predicted logits associated with mispredicted clean images {hrob( ):x € X lcan}'
2: Run MMAA on RN (+) and save the logits of correctly classified perturbed inputs {hmb (x):x € Aadv}.
3: Initialize candidate values si,...,81, P1y---,Pm, Cly---,Cn.

4: for s; fori=1,...,l do

5. for p; forj=1,...,mdo

6: for ¢, for k=1,...,n do

7 Obtain mapped logits {hM(S“pJ’Ck)( )z € A;dv}

8: Calculate the margins from the mapped logits {m M(sipjiep) (T) 1T € .,Z;dv}.

rob

9: Store the bottom 1 — 8-quantile of the margins as q1—/3 (corresponds to 1?7“ in (7)).
10: Record the current objective 0% « PXEXSMH [mhl\jlisi,pj,ck) (X)> q?fﬂ].
11: end for
12:  end for
13: end for -
14: Find optimal indices (i*,j*, k*) = argmin, ; 5 O ik
15: Recover optimal mixing weight a* := 1/(1+ i J R )

16: return s* := s;x, p* = pjx, " = cpr,

To simplify notations, let .Aadv = {x + ghmi (): z € } denote all correctly predicted minimum-margin

adv

perturbed images for A1 (-). Inherently, it holds that

Byey,, [maeno (2) 2 58] = Pycgy [Mynone (2) 2 58]~ By, [0 (2) 2 252].

The approximate hyper-parameter selection problem, which can be solved in surrogate to (6), is then

min P > 1= 0‘]

s,p,c,c€R
subject to P

™M, M(s,p,c)
DX
XeXclean [ hrob (

)
[mhM(S)P@)(Z)Z ] >55 5207 PZOa 1/2§O[§1.

rob

(7)

s
Z e"Aa(lv

Since (7) only has four optimization variables, it can be solved via a grid search algorithm. Furthermore, the

constraint P Zedv [mhM(s,p,c) (Z) > 1_70‘] > /3 should always be active at optimality.®> Hence, we can treat
adv rob

this constraint as equality, reducing the searching grid dimension to three. Specifically, we sweep over a
range of s, p, and c¢ to form the grid, and calculate the o value that binds the chance constraint for each
combination. Among the grid, we then select an s, p, ¢ combination that minimizes (7)’s objective.

The resulting algorithm is Algorithm 1. As discussed above, this algorithm only needs to query MMAA’s
APGD components once on a small set of validation data, and all other steps are simple mathematical
operations requiring minimal computation. Additionally, note that the optimization precision of Algorithm 1
is governed by the discrete nature of the evaluation dataset. Le., with a dataset consisting of 10,000 examples
(such as the CIFAR-10 and CIFAR-100 evaluation sets), the finest optimization accuracy one can expect
is 0.01% in terms of objective value (accuracy). Hence, it is not necessary to solve (7) to a high accuracy.
Moreover, as shown in Figure 9 in Appendix D.1, which analyzes the sensitivity of the formulation (7)’s
objective value with respect to s, p, and ¢, the optimization landscape is relatively smooth. Therefore, a
relatively coarse grid (512 combinations in our case) can find a satisfactory solution, and hence Algorithm 1 is
highly efficient despite the triply nested loop structure. Furthermore, the base classifier raw logits associated
with hmb( )’s minimum-margin perturbations do not depend on s, p, ¢ and can be cached. Hence, the number
of forward loops is agnostic to the search space size.

All of the above makes Algorithm 1 efficiently solvable. In practice, the triply-nested grid search loop can
be completed within ten seconds on a laptop computer, and performing MMAA on 1000 images requires
3752/10172 seconds for CIFAR-100/ImageNet with a single Nvidia RTX-8000 GPU.

3To understand this, suppose that for some combination of s, p, ¢, and «, this inequality is satisfied strictly. Then, it will be
possible to decrease « (i.e., increase %) without violating this constraint, and thereby further reduce the objective value.
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Figure 3: The raw logits, the corresponding prediction Figure 4: Probability trajectories on the probabil-
probabilities, and the probabilities computed with the ity simplex formed by temperature scaling, with
transformed logits. Our transformation augments the or without the logit transformation. The transfor-
confidence margin difference between the two scenarios. mation reduces confidence when classes compete.

4.4 Visualization of the Nonlinear Logit Transformation M (s, p, ¢)

To better understand the effects of the proposed nonlinear logit transformation M (s, p, ¢)(+), we visualize how
it affects the base classifier prediction probabilities when coupled with the Softmax operation. Consider a
three-class (A, B, and C) classification problem, with two example logit vectors. The first example simulates
the case where class A is clearly preferred over the rest (large margin), while the second example illustrates
a competition between classes B and C (small margin). The raw logits, the corresponding prediction
probabilities, and the probabilities computed with the transformed logits are visualized in Figure 3. Clearly,
the margin is further increased for the large margin case and shrunk for the small margin case, which aligns
with the goal of enlarging the benign confidence property of the base classifiers.

For further demonstration, we adjust the overall confidence level for the above two cases and compare how
their prediction probabilities change with the confidence level. Specifically, by applying temperature scaling
and varying the temperature 7, the prediction probability vectors form trajectories on the probability simplex,
whose vertices represent the classes.* For example, a small temperature 7 increases the overall prediction
confidence, moving the vector toward a vertex. Conversely, a large temperature 7 attracts the prediction
probability to the simplex’s centroid. By continuously adjusting the temperature, we obtain trajectories that
connect the centroid to the vertices. By comparing the trajectories formed with or without the nonlinear logit
transformation (o (hwon()/7) and o (hias " ()/7)), we can better understand the transformation’s properties.
Figure 4 shows the prediction probability vectors at three example temperature values, as well as the trajectories
formed by continuously varying the temperature. We observe that the nonlinear logit transformation
significantly slows down the movement of the small margin case from the centroid to the vertex. Moreover, the
trajectory with the transformation is straighter and further from the edge BC, implying that the competition
between classes B and C has been reduced. In the context of mixed classifiers, the nonlinear transformation
reduces the robust base classifier’s relative authority in the mixture when it encounters competing classes,
thereby improving the mixed classifier’s accuracy-robustness trade-off.

5 Experiments

We use extensive experiments to demonstrate the accuracy-robustness balance of the MixedNUTS classifier

f%)(cs*’p *’C*)(~), focusing on the effectiveness of the nonlinear logit transformation. Our evaluation uses CIFAR-

10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), and ImageNet (Deng et al., 2009) datasets. For

4Here, the purpose of temperature scaling is different from Section 3.1. In Section 3.1, temperature scaling mitigates gstd (*)’s
detrimental confidence property. Here, scaling with variable temperatures generates probability trajectories for visualization.
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Figure 5: MixedNUTS balances the robustness from its robust base classifier and the accuracy from its
standard base classifier. The nonlinear logit transformation helps MixedNUTS achieve a much better
accuracy-robust trade-off than a baseline mixed model without transformation. Appendix C.1 reports the

base model details and the optimal s, p, ¢, a values.

CIFAR-10 (£o, € = 8/255) CIFAR-100 (fw, € = 8/255) ImageNet (fo0,e = 4/255) Clean
.986 973 .980 Correct
- 1.0 1 1.0 1 1.0 1
) Clean
é‘a 0.8 1 534 0.8 1 0.8 1 Incorrect
3 0.6 ' 386 0.6 1 481 0.6 - AutoAttacked
S 1 376 Correct
;'é 0.4 041 0.41 AutoAttacked
S 024 0.2 - 0.2 Incorrect
0.0 - 0.0 - 0.0 - xc (herein Gap
g " igher is better
gsta() hron() RENC) Aoy () gsna() hean() RENC) Aas ) gsal) hean() BRI Bl

Figure 6: The median confidence margin of the accurate/robust base classifier gstq(-)/hrob(+), the layer-normed
logits ALY (), and the nonlinearly transformed model h?gés we )() on clean and AutoAttacked data, grouped
by prediction correctness. The number above each bar group is the “margin gap”, defined as the difference

between the medians on clean incorrect inputs and AutoAttacked correct ones. A higher margin gap signals

more benign confidence property, and thus better accuracy-robustness trade-off for the mixed classifier.

each dataset, we select the model with the highest ro-
bust accuracy verified on RobustBench (Croce et al.,
2021) as the robust base classifier hyob(+), and se-

Table 1: MixedNUTS’s error rate changes relative to
the robust base classifier (more negative is better).

lect a state-of-the-art standard (non-robust) model | Clean (]) | Robust (AutoAttack) (])
enhanced with extra training data as the accurate CIFAR-10 —28.53% +4.70%
base classifier gsq(+). Detailed model information is CIFAR-100 | —31.72% +1.52%
reported in Appendix C.1. ImageNet —12.14% +2.62%

As an ensemble method, in addition to being training-
free, MixedNUTS is also highly efficient during infer-
ence time. Compared with a state-of-the-art robust classifier, MixedNUTS’s increase in inference FLOPs is as
low as 24.79%. A detailed comparison and discussion on inference efficiency can be found in Appendix C.2.

All mixed classifiers are evaluated with strengthened adaptive AutoAttack algorithms specialized in attacking
MixedNUTS and do not manifest gradient obfuscation issues, with the details explained in Appendix B.2.

5.1 Main Experiment Results

Figure 5 compares MixedNUTS with its robust base classifier, its accurate base classifier, and the baseline
method Mixed (Bai et al., 2024b) on three datasets. Specifically, Mixed is a mixed classifier without the
nonlinear logit transformations. Figure 5 shows that MixedNUTS consistently achieves higher clean accuracy
and better robustness than this baseline, confirming that the proposed logit transformations mitigate the
overall accuracy-robustness trade-off.

Table 1 compares MixedNUTS’s relative error rate change over its robust base classifier, showing that
MixedNUTS vastly reduces the clean error rate with only a slight robust error rate increase. Specifically, the
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Figure 7: The median confidence margin of a diverse set of robust models with the logits standardized via
layer normalization. All models enjoy higher margins on correct predictions than on incorrect ones for clean
and adversarial inputs alike. The percentages below each model name are the clean/AutoAttack accuracy.

relative clean error rate improvement is 6 to 21 times more prominent than the relative robust error rate
increase. Clearly, MixedNUTS balances accuracy and robustness without additional training.

Figure 6 compares the robust base classifier’s confidence margins on clean and attacked data with or without
our nonlinear logit transformation (4). For each dataset, the transformation enlarges the margin gap
between correct and incorrect predictions, especially in terms of the median which represents the margin
majority. Using hfgés*’p *’C*)(') instead of h,op () makes correct predictions more confident while keeping the
mispredictions less confident, making the mixed classifier more accurate without losing robustness.

Figure 2 compares MixedNUTS with existing methods with the highest AutoAttack-validated adversarial
robustnesses, confirming that MixedNUTS noticeably improves clean accuracy while maintaining competitive
robustness. Moreover, since MixedNUTS can use existing or future improved accurate or even robust models
as base classifiers, the entries of Figure 2 should not be regarded as pure competitors.

Existing models suffer from the most pronounced accuracy-robustness trade-off on CIFAR-100, where
MixedNUTS offers the most prominent improvement. MixedNUTS boosts the clean accuracy by 7.86
percentage points over the state-of-the-art non-mixing robust model while reducing merely 0.87 points in
robust accuracy. In comparison, the previous mixing method (Bai et al., 2024a) sacrifices 3.95 points of
robustness (4.5x MixedNUTS’s degradation) for a 9.99-point clean accuracy bump using the same base
models. Moreover, (Bai et al., 2024a) requires training an additional mixing network component, whereas
MixedNUTS is training-free (MixedNUTS is also compatible with the mixing network for even better results).
Clearly, MixedNUTS utilizes the robustness of hyop(+) more effectively and efficiently.

On CIFAR-10 and ImageNet, achieving robustness against common attack budgets penalizes the clean
accuracy less severely than on CIFAR-100. Nonetheless, MixedNUTS is still effective in these less suitable
cases, reducing the clean error rate by 28.53%/12.14% (relative) while only sacrificing 1.91%/0.98% (relative)
robust accuracy on CIFAR-10/ImageNet compared to non-mixing methods. On CIFAR-10, MixedNUTS
matches (Bai et al., 2024a)’s clean accuracy while reducing the robust error rate by 5.17% (relative).

With the nonlinear transformation in place, it is still possible to adjust the emphasis between clean and
robust accuracy at inference time. This can be achieved by simply re-running Algorithm 1 with a different 8
value. Note that the MMAA step in Algorithm 1 does not depend on 3, and hence can be cached to speed
up re-runs. Meanwhile, the computational cost of the rest of Algorithm 1 is marginal. Our experiments use
B = 98.5% for CIFAR-10 and -100, and use 8 = 99.0% for ImageNet. The optimal s, p, ¢ values and the
searching grid used in Algorithm 1 are discussed in Appendix C.1.

5.2 Confidence Properties of Various Robust Models

MixedNUTS is built upon the observation that robust models are more confident in correct predictions than
incorrect ones. Figure 7 confirms this property across existing models with diverse structures trained with
different loss functions across various datasets, and hence MixedNUTS is applicable for a wide range of base
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ImageNet classifiers also have higher confidence in cor- Figure 8: Accuracy-robustness trade-off compari-
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ImageNet models have higher overall margins than the CIFAR-10 images. TRADES (larger) denotes a
CIFAR ones. This observation indicates that ImageNet larger TRADES model trained from scratch that

models often do not have a strong confounding class has the same size as MixedNUTS
despite having more classes, and their non-predicted
classes’ probabilities spread more evenly.

5.3 Accuracy-Robustness Trade-Off Curves

In Figure 8, we show MixedNUTS’s robust accuracy as a function of its clean accuracy. We then compare this
accuracy-robustness trade-off curve with that of the mixed classifier without nonlinear logit transformation
(Bai et al., 2024b) and that of TRADES (Zhang et al., 2019), a popular adjustable method that aims to
improve the trade-off. Note that adjusting between accuracy and robustness with TRADES requires tuning
its training loss hyper-parameter Srgr and training a new model, whereas the mixed classifiers are training-free
and can be adjusted at inference time.

Specifically, we select CIFAR-10 WideResNet-34-10 models trained with Srg = 0, 0.1, 0.3, and 6 as the
baselines, where 0 corresponds to standard (non-robust) training and 6 is the default which optimizes
robustness. For a fair comparison, we use the TRADES models with g = 0 and 6 to assemble the
mixed classifiers. For MixedNUTS, we adjust the level of robustness by tuning £, the level-of-robustness
hyperparameter of Algorithm 1, specifically considering 8 values of 1, 0.96, 0.93, 0.8, and 0.

Figure 8 confirms that training-free mixed classifiers, MixedNUTS and Mixed (Bai et al., 2024b), achieve much
more benign accuracy-robustness trade-offs than TRADES, with MixedNUTS attaining the best balance.

Since MixedNUTS is an ensemble, it inevitably results in a larger overall model than the TRADES baseline. To
clarify that MixedNUTS’s performance gain is not due to the increased size, we train a larger TRADES model
(other training settings are unchanged) to match the parameter count, inference FLOPS, and parallelizability.
As shown in Figure 8, this larger TRADES model’s clean and robust accuracy does not improve over the
original, likely because the original training schedule is suboptimal for the increased size. This is unsurprising,
as it has been shown that no effective one-size-fits-all adversarial training parameter settings exist (Duesterwald
et al., 2019). Hence, an increased inference computation does not guarantee better performance on its own.
To make a model benefit from a larger size via training, neural architecture and training setting searches are
likely required, which is highly cumbersome and unpredictable. In contrast, MixedNUTS is a training-free
plug-and-play add-on, enjoying significantly superior practicality.

6 Conclusions

This work proposes MixedNUTS, a versatile training-free method that combines the output probabilities
of a robust classifier and an accurate classifier. By introducing nonlinear base model logit transformations,
MixedNUTS more effectively exploits the benign confidence property of the robust base classifier, thereby
achieving a balance between clean data classification accuracy and adversarial robustness. For performance-
driven practitioners, this balance implies less to lose in using robust models, incentivizing the real-world
deployment of safe deep learning systems. For researchers, as improving the accuracy-robustness trade-off with

13



Published in Transactions on Machine Learning Research (08/2024)

a single model becomes harder, MixedNUTS identifies building base models with better margin properties as
a novel alternative direction to improve the trade-off in an ensemble setting.
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Appendix

A Proofs

A.1 Proof to Theorem 4.3

Theorem 4.3 (restated). Suppose that Assumption 4.2 holds. Let r¢m and rp,,, denote the robust accuracy
of fM,(-) and hyos(-) respectively. If B > 7ym [ry . then a solution to (3) is feasible for (2).

Proof. Suppose that M(-) is a solution from (3). Since the mixed classifier f (.) is by construction

guaranteed to be correct and robust at some x if hM, (-) is correct and robust with a margin no smaller than
T at x, it holds that

Pix, Y)ND[argmaX mlxz(X + 5*[%)(( ) =Y] > Pxy)up [mh (X + yﬁfx (X)) > =2 Hclvojr(X)]
=Pixy)~p[mp, (X + 07 (X)) > |ch\c/>lr(X)] i,y [Hog (X)),

where Hco:(X) denotes the event of hyop(-) being correct at X, i.e., argmax; hyob,i(X + 05 (X)) = Y.

mix

HJL(X) denotes arg max; b, (X + 5*551;,( (X)) =Y. Under Assumption 4.2, Heo(X) is equivalent
(X). Therefore,

Similarly,
to HM

cor

IPD(X Y)ND[arg mmax frmx z(X + 05 (X)) = Y] = IP’(X,Y)~D [mh,Mb (X 40 (X)) > l=a P }Hcor(X)] 'P(X,Y)~D[Hcor(X)]

mix rob,z mix

= Theoy " Pxas [mhﬁw (X 05 (X)) > 29

mix

> Thy P, [Mhae (2) 2 552] 2 B2 g

mix

which proves the statement. O

A.2 Proof to Theorem 4.4

Theorem 4.4 (restated). Suppose that Assumption 4.1 holds. Furthermore, consider an input random
variable X and suppose that the margin of h™,(X) is independent of whether gsa(X) is correct. Then,
minimizing the objective of (3) is equivalent to maximizing the objective of (2).

Proof. By the construction of the mixed classifier, for a clean input = incorrectly classified by M, (-) (i.e., z

S(O)( )

is in the support of X lcan) is correct

and h, ()’s margin is no greater than

the mixed classifier prediction fmix(z) is correct if and only if g,
1-a

Let Geor(X) denote the event of ggq(X) being correct, i.e., arg max; gg;i(o) (X) =Y. Furthermore, let D;,
denote the data-label distribution formed by clean examples mcorrectly predicted by hrob( ). Then,

Py [argmax i (X) = Y] =Py s [mas (X) < 552, Geor(X))

mix,?
clean

=Py,

clean

[mh%b (X) < I?Ta |GCOT(X)] ]P)XNX" [Gcor (X)}

clean

for all transformations M and mixing weight o (recall that the mixed classifier f () depends on ).

Suppose that the margin of h*, (-) is independent of the accuracy of gsta(+), then the above probability
further equals to

(1= Por [, (X) 2 152] ) Prnr [Geor(X)]

rob
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Since Py, yx  [Geor(X)] does not depend on M or «, it holds that

clean

[e3

argmin = Py |myu (X)>1=2% = argmax Py y).p, [argmax f%“(X) =Y]
MeM, a€ll/2,1] cloan rop MeM, a€li/2,1] i

= argmax P(xy).p[argmax fl (X)=Y],
MeM, a€[i/2,1] i ’

M
rob

(0)(

where the last equality holds because under Assumption 4.1, h.} (z) being correct guarantees gsTti x)’s
correctness. Since the mixed classifier £ () must be correct given that h (z) and g5 ") () are both
correct, fM (-) must be correct at clean examples correctly classified by h, (-). Hence, maximizing fX (-)’s

mix
clean accuracy on h, (-)’s mispredictions is equivalent to maximizing f (-)’s overall clean accuracy. [

B Custom Attack Algorithms

B.1 Minimum-Margin AutoAttack for Margin Estimation

Our margin-based hyper-parameter selection procedure (Algorithm 1) and confidence margin estimation
experiments (Figures 6 and 7) require approximating the minimum-margin perturbations associated with the
robust base classifier in order to analyze the mixed classifier behavior. Approximating these perturbations
requires a strong attack algorithm. While AutoAttack is often regarded as a strong adversary that reliably
evaluates model robustness, its original implementation released with (Croce & Hein, 2020) does not return
all perturbed examples. Specifically, traditional AutoAttack does not record the perturbation around some
input if it deems the model to be robust at this input (i.e., model prediction does not change). While this
is acceptable for estimating robust accuracy, it forbids the calculation of correctly predicted AutoAttacked
examples’ confidence margins, which are required by Algorithm 1, Figure 6, and Figure 7.

To construct a strong attack algorithm compatible with margin estimation, we propose minimum-margin
AutoAttack (MMAA). Specifically, we modify the two APGD components of AutoAttack (untargeted APGD-
CE and targeted APGD-DLR) to keep track of the margin at each attack step (the margin history is shared
across the two components) and always return the perturbation achieving the smallest margin. The FAB
and Square components of AutoAttack are much slower than the two APGD components, and for our base
classifiers, FAB and Square rarely succeed in altering the model predictions for images that APGD attacks
fail to attack. Therefore, we exclude them for the purpose of margin estimation (but include them for the
robustness evaluation of MixedNUTS).

B.2 Adaptive Attacks for Nonlinearly Mixed Classifier Robustness Evaluation

When proposing a novel adversarially robust model, reliably measuring its robustness with strong adversaries
is always a top priority. Hence, in addition to designing MMAA for the goal of margin estimation, we devise
two adaptive attack algorithms to evaluate the robustness of the MixedNUTS and its nonlinearly mixed
model defense mechanism. Both algorithms are strengthened adaptive versions of AutoAttack. As is the
original AutoAttack, both algorithms are ensembles of four attack methods, including a black-box component.
Hence, the reported accuracy numbers in this paper are lower bounds to the attacked accuracy associated
with each of the components.

B.2.1 Transfer-Based Adaptive AutoAttack with Auxiliary Mixed Classifier

Following the guidelines for constructing adaptive attacks (Tramer et al., 2020), our adversary maintains full
access to the end-to-end gradient information of the mixed classifier fiix(+). Nonetheless, when temperature
scaling with T' = 0 is applied to the accurate base classifier gsq(-) as discussed in Section 3.1, gSTt(Si(T)(~) is no
longer differentiable. While this is an advantage in practice since the mixed classifier becomes harder to attack,
we need to circumvent this obfuscated gradient issue in our evaluations to properly demonstrate white-box
robustness. To this end, transfer attack comes to the rescue. We construct an auxiliary differentiable mixed

classifier fuix(-) by mixing gsa(-)’s unmapped logits with A (-). We allow our attacks to query the gradient
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of fmix(-) to guide the gradient-based attack on fiix(+). Since gsta(-) and g;Fti(T)(-) always produce the same

predictions, the transferability between fiix(-) and fiix(:) should be high.

On the other hand, while h?gés’p ’c)(~)’s nonlinear logit transformation (4) is differentiable, it may also hinder
gradient flow in certain cases, especially when the logits fall into the relatively flat near-zero portion of the
clamping function Clamp(-). Hence, we also provide the raw logits of hyop(+) to our evaluation adversary for
better gradient flow. To keep the adversary aware of the transformation M (s, p, c)(+), we still include it in the
gradient (i.e., M(s,p,c)(-) is only partially bypassed). The overall construction of the auxiliary differentiable

mixed classifier fuix() is then
fmix(z) = log (1= aq) - oo gsal-) + agra- o0 hwop(-) + ag(l —rq) - oo hﬁ\gés ’]"*’C*)(~))7 (8)

where ayg is the mixing weight and r4 adjusts the level of contribution of M(s,p,¢)(:) to the gradient. Our
experiments fix r4 to 0.9 and calculate ay using Algorithm 1 with no clamping function, s and p fixed to
1, and c fixed to 0. The gradient-based components (APGD and FAB) of our adaptive AutoAttack use

VL(fmix(z)) as a surrogate for VLM 77 (2)) where L is the adversarial loss function. The gradient-free

mix

Square attack component remains unchanged. Please refer to our source code for details on implementation.
With the transfer-based gradient query in place, our adaptive AutoAttack does not suffer from gradient
obfuscation, a phenomenon that leads to overestimated robustness. Specifically, we observe that the black-
box Square component of our adaptive AutoAttack does not change the prediction of any images that
white-box components fail to attack, confirming the effectiveness of querying the transfer-based auxiliary
differentiable mixed classifier for the gradient. If we set 4 to 0 (i.e., do not bypass M (s, p,c)(-) for gradient),
the AutoAttacked accuracy of the CIFAR-100 model reported in Figure 5 becomes 42.97% instead of 41.80%,
and the black-box Square attack finds 12 vulnerable images. This comparison confirms that the proposed
modifications on AutoAttack strengthen its effectiveness against MixedNUTS and eliminate the gradient flow
issue, making it a reliable robustness evaluator.

B.2.2 Direct Gradient Bypass

An alternative method for circumventing the non-differentiability challenge introduced by our logit transfor-
mations is to allow the gradient to bypass the corresponding non-differentiable operations. To achieve so, we
again leverage the auxiliary differentiable mixed classifier defined in (8), and construct the overall output as

fmix(x) + StopGrad (fﬁ)((s*’p*’c*) (x) — fmix(x)),

where StopGrad denotes the straight-through operation that passes the forward activation but stops the
gradient (Bengio et al., 2013), for which a PyTorch realization is Tensor.detach(). The resulting mixed

classifier retains the output values of the MixedNUTS classifier fnj\]{is*’p *’C*)(x) while using the gradient
computation graph of the differentiable auxiliary classifier fiix(z). In the literature, a similar technique is
often used to train neural networks with non-differentiable components, such as VQ-VAEs (Van Den Oord

et al., 2017).

This direct gradient bypass method is closely related to the transfer-based adaptive attack described in
Appendix B.2.1, but has the following crucial differences:

o« Compatibility with existing attack codebases. The transfer-based attack relies on the outputs
from both fnj\ﬁ)((s* P *’C*)(-) and fmix(-). Since most existing attack codebases, such as AutoAttack, are
implemented assuming that the neural network produces a single output, they need to be modified to
accept two predictions. In contrast, direct gradient bypass does not introduce or require multiple network
outputs, and is therefore compatible with existing attack frameworks without modifications. Hence, our

submission to RobustBench uses the direct gradient bypass method.

e Calculation of attack loss functions. From a mathematical perspective, the transfer-based attack
uses the auxiliary differentiable mixture to evaluate the attack objective function. In contrast, the direct
gradient bypass method uses the original MixedNUTS’s output for attack objective calculation, and
then uses the gradient computation graph of fiix(-) to perform back-propagation. Hence, the resulting
gradient is slightly different between the two methods.
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Table 2: Details of the base classifiers used in our main experiments.

Dataset | Robust Base Classifier gsta(+) | Accurate Base Classifier hyon(+)

CIFAR-10 ResNet-152 (Kolesnikov et al., 2020) | RaWideResNet-70-16 (Peng et al., 2023)
CIFAR-100 | ResNet-152 (Kolesnikov et al., 2020) WideResNet-70-16 (Wang et al., 2023)
ImageNet ConvNeXt V2-L (Woo et al., 2023) Swin-L (Liu et al., 2023)

Table 3: The optimal s, p, ¢, a values returned by Algorithm 1 used in our main experiments, presented
along with the minimum and maximum candidate values in Algorithm 1’s searching grid.

I s* c* p* o I Smin Smax Cmin Cmax Pmin Pmax
CIFAR-10 5.00 —1.10 4.00 .999 | 0.05 5 -1.1 0 1 4
CIFAR-100 612 —2.14 3.57 .986 | 0.05 4 -25 04 1 4
ImageNet 0235 —.286 2.71 .997 | 0.01 0.2 -2 0 2 3

Table 4: The proposed nonlinear logit transformation M (s*,p*, ¢*)(-) has minimal effect on base classifier
accuracy.

Dataset Clean (full dataset) AutoAttack (1000 images)
heon() | RERC) | Rigt™ ) | hean() | AENC) | Rt ()
CIFAR-10 93.27% | 93.27% 93.25% 71.4% | 71.4% 71.4%
CIFAR-100 | 75.22% | 75.22% 75.22% 43.0% | 42.9% 43.3%
ImageNet 78.75% | 78.75% 78.75% 57.5% | 57.5% 57.5%

Our experiments show that when using direct gradient bypass, the original AutoAttack algorithm returns
70.08%, 41.91%, and 58.62% for CIFAR-10, CIFAR-100, and ImageNet respectively with the MixedNUTS
model used in Figure 5. Compared with the transfer-based adaptive AutoAttack, which achieves 69.71%,
41.80%, and 58.50%, AutoAttack with direct gradient bypass consistently achieves a lower success rate, but
the difference is very small. Hence, we use the transfer-based AutoAttack for Figure 5, but note that both
methods can evaluate MixedNUTS reliably.

C MixedNUTS Model Details

C.1 Base Classifier and Mixing Details

Table 2 presents the sources and architectures of the base classifiers selected for our main experiments
(Figure 5, Figure 2, Figure 6, and Table 1). The robust base classifiers are the state-of-the-art models listed
on RobustBench as of submission, and the accurate base classifiers are popular high-performance models
pre-trained on large datasets. Note that since MixedNUTS only queries the predicted classes from ggq(-) and
is agnostic of its other details, gsq(-) may be any classifier, including large-scale vision-language models that
currently see rapid development.

Table 3 presents the optimal s*, p*, ¢*, and a* values used in MixedNUTS’s nonlinear logit transformation
returned by Algorithm 1. When optimizing s, p, and ¢, Algorithm 1 performs a grid search, selecting from a
provided set of candidate values. In our experiments, we generate uniform linear intervals as the candidate
values for the power coefficient p and the bias coefficient ¢, and use a log-scale interval for the scale coefficient
s. Each interval has eight numbers, with the minimum and maximum values for the intervals listed in Table 3.

Table 4 shows that MixedNUTS’s nonlinear logit transformation M (s*,p*, ¢*)(-) has negligible effects on base
classifier accuracy, confirming that the improved accuracy-robustness balance is rooted in the improved base
classifier confidence properties.
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Table 5: MixedNUTS’s accuracy and inference efficiency compared with state-of-the-art classifiers.

Model | Architecture ‘ Parameters ‘ GFLOPs | Clean (1) ‘ AutoAttack (1)
CIFAR-10
This work | Mixed (see Table 2) | 499.5M | 151.02 | 95.19% | 69.71%
Peng et al. (2023) RaWideResNet-70-16 267.2M 121.02 93.27% 71.07%
Bai et al. (2024a) Mixed with Mixing Net 566.9M 117.31 95.23% 68.06%
Rebuffi et al. (2021) WideResNet-70-16 266.8M 77.55 92.23% 66.58%
Kolesnikov et al. (2020) ResNet-152 232.3M 30.00 98.50% 0.00%
CIFAR-100
This work | Mixed (see Table2) | 499.5M | 107.56 | 83.08% | 41.80%
Wang et al. (2023) WideResNet-70-16 266.9M 77.56 75.22% 42.67%
Bai et al. (2024a) Mixed with Mixing Net 567.4M 117.31 85.21% 38.72%
Gowal et al. (2020) WideResNet-70-16 266.9M 77.55 69.15% 36.88%
Kolesnikov et al. (2020) ResNet-152 232.6M 30.00 91.38% 0.00%
ImageNet
This work | Mixed (see Table 2) | 394.5M | 136.91 | 81.48% | 58.50%
Liu et al. (2023) Swin-L 198.0M 68.12 78.92% 59.56%
Singh et al. (2023) ConvNeXt-L + ConvStem 198.1M 71.16 77.00% 57.70%
Peng et al. (2023) RaWideResNet-101-2 104.1M 51.14 73.44% 48.94%
Woo et al. (2023) ConvNeXt V2-L 196.5M 68.79 86.18% 0.00%

C.2 Model Inference Efficiency

In this section, we compare the performance and inference efficiency of MixedNUTS with existing methods.
As a training-free ensemble method, MixedNUTS naturally trades inference efficiency for training efficiency.
Nonetheless, since MixedNUTS only requires two base models and does not add new neural network
components, it is among the most efficient ensemble methods. Specifically, the computational cost of
MixedNUTS is the sum of the computation of its two base classifiers, as the mixing operation itself is trivial
from a computational standpoint.

In Table 5, the efficiency of MixedNUTS, evaluated in terms of parameter count and floating-point operations
(FLOPs), is compared with some other state-of-the-art methods. Compared with the fellow mixed classifier
method adaptive smoothing (Bai et al., 2024a), MixedNUTS is more efficient when the base classifiers are
the same, as is the case for CIFAR-100. This is because adaptive smoothing introduces an additional mixing
network, whereas MixedNUTS only introduces four additional parameters. On CIFAR-10, MixedNUTS
uses a denser robust base classifier than adaptive smoothing, with similar number of parameters but higher
GFLOPs (121.02 vs 77.56). MixedNUTS’s FLOPs count is thus also higher than (Bai et al., 2024a).

C.3 Base Classifier Confidence Margin Distribution

Table 6 displays the histograms of the confidence margins of the base classifiers used in the CIFAR-100
experiment in Figure 5. We can observe the following conclusions, which support the design of MixedNUTS:
e gsta(+) is more confident when making mistakes under attack than when correctly predicting clean images.

e hyob(+) is more confident in correct predictions than in incorrect ones, as required by MixedNUTS. Note
that even when subject to strong AutoAttack, correct predictions are still more confident than clean
unperturbed incorrect predictions.

o Layer normalization increases hyob(+)’s correct prediction margins while maintaining the incorrect margins.

¢ MixedNUTS’s nonlinear logit transformation significantly increases the correct prediction’s confidence
margins while keeping most of the incorrect margins small.
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Table 6: Prediction confidence margin of Ao (+), ALY (+), and hfgés*’p ) () used in the CIFAR-100 experiments

rob

in Figure 6. The nonlinear logit transformation (4) amplifies the margin advantage of correct predictions over
incorrect ones. As in Figure 6, 10000 clean examples and 1000 AutoAttack examples are used.
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Figure 9: Sensitivity analysis of the nonlinear logit transformation. Lower objective (darker color) is better.

D Ablation Studies and Additional Discussions

D.1 Sensitivity to s, p, ¢ Values

In this section, we visualize the optimization landscape of the hyper-parameter optimization problem (7) in
terms of the sensitivity with respect to s, p, and ¢. To achieve so, we store the objective of (7) corresponding
to each combination of s, p, ¢ values in our grid search as a three-dimensional tensor (recall that the value of
a can be determined via the constraint). We then visualize the tensor by displaying each slice of it as a color
map. We use our CIFAR-100 model as an example, and present the result in Figure 9.
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Table 8: The accuracy on images used for calculating
s*, p*, and ¢* (marked as vin the “Seen” column)
Clamp(-) | s* | ¢ | p* | o* | B |Obj() is similar to that on images unseen by Algorithm 1
(marked as X), confirming the absence of overfitting.

Table 7: Ablation study on clamping functions.

CIFAR-10
Linear | .050 | - [9.14].963|.985 | .671 Dataset | Seen | Clean | AutoAttack
ReLU | 104 | —.750 | 4.00 | .934 | 985 | .671 g | ¢ [9520% | 69.20%
GELU | 2.59 | —.750 | 4.00 | .997 | .985 | .671 x |os1s% | 69.77%

CIFAR-100 oo | Y| 8280% | 41.60%
Linear | .oooo0s | - [ 10.5 | .880 | .985 | .504 X | 8311% | 41.82%
ReLU | .612 | —2.29 | 4.00 | .972 | .985 | .500 N 7| 82.60% | 60.80%
GELU | .612 | —2.14 | 3.57 | .986 | .985 | .500 g x | 8120% | 57.93%

Table 9: MixedNUTS’s clean Table 10: MixedNUTS’s clean and Table 11: The optimal hyper-
and AutoAttack accuracy when AutoAttack accuracy on a 1000- parameters are similar across similar
s, p, and ¢ are optimized us- example CIFAR-100 subset with var- models, and hence can transfer be-
ing different numbers of images. ious temperature scales for the stan- tween them. CIFAR-10 models are
Evaluated with the CIFAR-100 dard base model gszq(-). The robust used, with (Peng et al., 2023) being
base models from Figure 5 on a hage classifier is hi\({és*,p*,c*)(.) with the model in the main experiments in

1000-example subset. the s, p, ¢ values reported in Ta- Figure 5.
ble 3.
# Images for Clean Auto Robust & o .
Optimization Attack Accurate ‘ Clean Auto Base Model p
1000 (Default) | 82.8% | 41.6% _ase Model Attack  peng et al, 2023) | 5.0 | —1.1 | 4.0
300 83.0% | 41.5% g;fti(‘))(.) (Default) | 82.8% | 41.6% (Pang et al., 2022) | 5.0 | —1.1 | 4.0
100 85.1% | 39.5% gsTti(Of))(,) 82.8% | 41.4% (Wang et al., 2023) | 5.0 | —1.1 | 2.71
gy 82.8% | 41.3%

As shown in Figure 9, while the optimization landscape is non-convex, it is relatively smooth and benign,
with multiple combinations achieving similar, relatively low objective values. When the exponent parameter
p is small, the other two parameters, s and ¢, have to be within a smaller range for optimal performance.
When p is larger, a wide range of values for s and ¢ can work. Nonetheless, an excessively large p may
potentially cause numerical instabilities and should be avoided if possible. For the same consideration, we do
not recommend using the exponentiation function in the nonlinear logit transformation.

For further illustration, we construct a mixed CIFAR-100 classifier with a simple GELU as the nonlinear
logit transformation (still using gig(o)(-) as the standard base classifier). The resulting clean/robust accuracy
is 77.9%/40.4% on a 1000-example data subset. While this result is slightly better than the 77.6%/39.9%
accuracy of the baseline mixed classifier without nonlinearity, it is noticeably worse than MixedNUTS’s
82.8%/41.6%. We can thus conclude that selecting a good combination of s, p, and ¢ is crucial for achieving
optimal performance.

D.2 Selecting the Clamping Function

This section performs an ablation study on the clamping function in the nonlinear logit transformation
defined in (4). Specifically, we compare using GELU or ReLU as Clamp(-) to bypassing Clamp(-) (i.e., use a
linear function). Here, we select a CIFAR-10 ResNet-18 model (Na, 2020) and a CIFAR-100 WideResNet-
70-16 model (Wang et al., 2023) as two examples of h.op(+) and compare the optimal objective returned by
Algorithm 1 using each of the clamping function settings. As shown in Table 7, while the optimal objective
is similar for all three options, the returned hyper-parameters s*, p*, ¢*, and o* is the most “modest” for
GELU, which translates to the best numerical stability. In comparison, using a linear clamping function
requires applying a power of 9.14 to the logits, whereas using the ReLU clamping function requires scaling
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the logits up by a factor of 10.4 for CIFAR-10, potentially resulting in significant numerical instabilities.
Therefore, we select GELU as the default clamping function and use it for all other experiments.

D.3 Effect of Optimization Dataset Size and Absence of Overfitting

Since the MMAA step has the dominant computational time, reducing the number of images used in
Algorithm 1 can greatly accelerate it. Analyzing the effect of this data size also helps understand whether
optimizing s, p, and ¢ on validation images introduces overfitting. Table 9 shows that on CIFAR-100, reducing
the number of images used in the optimization from 1000 to 300 (3 images per class) has minimal effect on
the resulting mixed classifier performance. Further reducing the optimized subset size to 100 still allows for
an accuracy-robustness balance, but shifts the balance towards clean accuracy.

To further demonstrate the absence of overfitting, Table 8 reports that under the default setting of optimizing
s, p, ¢ on 1000 images, the accuracy on these 1000 images is similar to that on the rest of the validation
images unseen during optimization. The CIFAR-10 and -100 models, in fact, perform slightly better on
unseen images. The ImageNet model’s accuracy on unseen images is marginally lower than seen ones, likely
due to the scarcity of validation images per class (only 5 per class in total since ImageNet has 1000 classes)
and the resulting performance variance across the validation set.

D.4 Temperature Scaling for gsq(-)

This section verifies that scaling up the logits of gsq(+) improves the accuracy-robustness trade-off of the
mixed classifier. We select the pair of CIFAR-100 base classifiers used in Figure 5. By jointly adjusting
the temperature of gsq(-) and the mixing weight «, we can keep the clean accuracy of the mixed model
to approximately 84 percent and compare the APGD accuracy. In Table 10, we consider two temperature
constants: 0.5 and 0. Note that as defined in Section 2.1, when the temperature is zero, the resulting prediction
probabilities o o gstq(+) is the one-hot vector associated with the predicted class. As demonstrated by the
CIFAR-100 example in Table 10, when we fix the clean accuracy to 82.8%, using T'= 0.5 and T = 0 produces
higher AutoAttacked accuracy than T'=1 (no scaling), with 7" = 0 producing the best accuracy-robustness
balance.

D.5 Algorithm 1 for Black-Box %01 (-) without Gradient Access

When optimizing the hyper-parameters s, p, and ¢, Step 2 of Algorithm 1 requires running MMAA on
the robust base classifier. While MMAA does not explicitly require access to base model parameters, its
gradient-based components query the robust base classifier gradient (the standard base classifier gsq(-) can
be a black box).

However, even if the gradient of hon(+) is also unavailable, then s, p, ¢, and « can be selected with one of the
following options:

e Black-box minimum-margin attack. Existing gradient-free black-box attacks, such as Square
(Andriushchenko et al., 2020) and BPDA (Athalye et al., 2018a), can be modified into minimum-margin
attack algorithms. As are gradient-based methods, these gradient-free algorithms are iterative, and the
only required modification is to record the margin at each iteration to keep track of the minimum margin.

o Transfer from another model. Since the robust base classifiers share the property of being more
confident in correct examples than in incorrect ones (as shown in Figure 5), an optimal set of s, p, ¢
values for one model likely also suits another model. So, one may opt to run MMAA on a robust classifier
whose gradient is available, and transfer the s, p, ¢ values back to the black-box model.

¢ Educated guess. Since each component of our parameterization of the nonlinear logit transformation
is intuitively motivated, a generic selection of s, p, ¢ values should also perform better than mixing
linearly. In fact, when we devised this project, we used hand-selected s, p, ¢ values for prototyping and
idea verification, and later designed Algorithm 1 for a more principled selection.

To empirically verify the feasibility of transferring hyper-parameters across robust base classifiers, we show
that the optimal hyper-parameters are similar across similar models. Consider the CIFAR-10 robust base
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classifier used in our main results, which is from (Peng et al., 2023). Suppose that this model is a black box,
and the gradient-based components of MMAA cannot be performed. Then, we can seek some similar robust
models whose gradients are visible. We use two models, one from (Pang et al., 2022), and the other from
(Wang et al., 2023), as examples. As shown in Table 11, the optimal s, p, ¢ values calculated via Algorithm 1
are highly similar for these three models. Hence, if we have access to the gradients of one of (Peng et al.,
2023; Pang et al., 2022; Wang et al., 2023), then we can use Algorithm 1 to select the hyper-parameter
combinations for all three models.

Since other parts of MixedNUTS do not require access to base model weights or gradients, MixedNUTS can
be applied to a model zoo even when all base classifiers are black boxes.

D.6 Selecting the Base Classifiers

This section provides guidelines on how to select the accurate and robust base classifiers for the best mixed
classifier performance. For the accurate classifier, since MixedNUTS only considers its predicted class and
does not depend on its confidence (recall that MixedNUTS uses gSTti(O)(~)), the classifier with the best-known
clean accuracy should be selected. Meanwhile, for the robust base classifier, since MixedNUTS relies on
its margin properties, one should select a model that has high robust accuracy as well as benign margin
characteristics (i.e., is significantly more confident in correct predictions than incorrect ones). As shown
in Figure 7, most high-performance robust models share this benign property, and the correlation between
robust accuracy and margins is insignificant. Hence, state-of-the-art robust models are usually safe to use.

That being said, consider the hypothetical scenario that between a pair of robust base classifiers, one has
higher robust accuracy and the other has more benign margin properties. Here, one should compare the
percentages of data for which the two models are robust with a certain non-zero margin. The model with
higher “robust accuracy with margin” should be used.

D.7 Behavior of Logit Normalization

The LN operation on the model logits makes the margin agnostic to the overall scale of the logits. Consider
two example logit vectors in R3, namely (0.9,1,1.1) and (—2,1,1.1). The first vector corresponds to the
case where the classifier prefers the third class but is relatively unconfident. The second vector reflects the
scenario where the classifier is generally more confident, but the second and third classes compete with
each other. The LN operation will scale up the first vector and scale down the second. It is likely that the
competing scenario is more common when the prediction is incorrect, and therefore the LN operation, which
comparatively decreases the margin under the competing scenario, makes incorrect examples less confident
compared with correct ones. As a result, the LN operation itself can slightly enlarge the margin difference
between incorrect and correct examples.

For ImageNet, instead of performing LN on the logits based on the mean and variance of all 1000 classes,
we normalize using the statistics of the top 250 classes. The intuition of doing so is that the predicted
probabilities of bottom classes are extremely small and likely have negligible influence on model prediction
and robustness. However, they considerably influence the mean and variance statistics of logits. Excluding
these least-related classes makes the LN operation less noisy.

D.8 Further Discussions on Assumptions
D.8.1 When Assumption 4.1 is Slightly Violated

If Assumption 4.1 is slightly violated, then there is a slight mismatch between the objective functions of (3)
and (2) due to discarding the case of g;l;i(o)() being incorrect while hf\fés’p ’C)(~) being correct on clean data.
As a result, the reformulations in this section become slightly suboptimal. However, note that the constraint
in (2), which enforces the level of robustness of the mixed classifier, is not compromised. Furthermore, as
mentioned above, the amount of clean examples correctly classified by hfgés’p ’C)(-) but not by gsTti(O)(-) is

usually exceedingly rare, and hence the degree of suboptimality is extremely small.
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Also note that with a slight violation of Assumption 4.1, while our algorithm may become slightly suboptimal,
the mixed classifier outperforms our expectation, because it can now correctly classify additional clean
examples than suggested by Theorem 4.4, the only theoretical result dependent on Assumption 4.1.

D.8.2 When Assumption 4.2 is Slightly Violated

Assumption 4.2 assumes that the nonlinear logit transformation applied to hyop(-) does not affect its predicted
class and hence inherits h.op(+)’s accuracy. When Assumption 4.2 is violated, consider the following two
cases: 1) the logit transformation M (s, p,c)(-) corrects mispredictions; 2) M(s,p,c)(-) contaminates correct
predictions.

Consider the first scenario, i.e., h?gés’p’c)(-) is correct whereas hyop(-) is not. In this case, Theorem 4.3 (the

only theoretical result dependent on Assumption 4.2) still holds, and the mixed classifier can correctly classify
even more clean examples than Theorem 4.3 suggests.

Conversely, consider the second case, where hroés P C)(-) is incorrect whereas hyon(+) is correct. In this case,

Theorem 4.3 may not hold. However, this is the best one can expect. In this worst-case scenario, although
the nonlinear logit transformation improves h.op,(+)’s confidence property, it also harms hyon(+)’s standalone
accuracy, which in turn negatively affects the MixedNUTS model. Fortunately, this worst case is easily
avoidable in practice by checking hi\gés’p ’C)(-)’S standalone clean accuracy. If hfgés’p ’C)(-)’s clean accuracy
deteriorates, the search space for s, p, and ¢ can be adjusted accordingly before re-running Algorithm 1.

D.8.3 Relaxing the Independence Assumption in Theorem 4.4

Theorem 4.4 assumes that the margin of h%b(X ) and the correctness of ggq(X) are independent. Suppose that
such an assumption does not hold for a pair of base classifiers. Then, Py 1 [mhMb (X) > 1?70‘] may not be

clean
equal to Py, xr [mh%b (X) > 1?7(1 |Gcor(X )] In this case, we need to minimize the latter quantity in order
to effectively optimize (2). Hence, we need to modify the objective functions of (3) and (6) accordingly, and
change the objective value assignment step in Line 10 of Algorithm 1 to 0** « P I:mhM(st,pj,ck) (X) >
. rob
q?_’cﬁ‘Gcor(X)]. With such a modification, the optimization of s, p, ¢ is no longer decoupled from gstq(-), but
the resulting algorithm is still efficiently solvable and Theorem 4.4 still holds.

XeX*

clean

D.9 Approximation Quality of (7)

Algorithm 1 solves (7) as a surrogate of (6) for efficiency. One of the approximations of (7) is to use the
minimum-margin perturbation against h: (-) instead of that associated with h, (). While h2, (-) and AL (+)
are expected to have similar standalone accuracy and robustness, their confidence properties are different,
and therefore the minimum-margin perturbation associated with hM, (-) can be different from that associated

with AV (+), inducing a distribution mismatch. To analyze the influence of this mismatch on the effectiveness

of Algorithm 1, we record the values of s*, p*, and ¢*, compute the minimum-margin-AutoAttacked examples
of RMEP7¢) () and re-run Algorithm 1 with the new examples. If the objective value calculated via the
new examples and s*, p*, ¢* is close to the optimal objective returned from the original Algorithm 1, then

the mismatch is small and benign and Algorithm 1 is capable of indirectly optimizing (6).

We use the CIFAR-100 model from Figure 5 as an example to perform this analysis. The original optimal
objective returned by Algorithm 1 is 50.0%. The re-computed objective based on h%és*’p *’C*)(-)’s minimum-
margin perturbations, where s* = .612, p* = 3.57, ¢* = —2.14, is 66.7%. While there is a gap between the
two objective values and therefore the approximation-induced distribution mismatch exists, Algorithm 1 can

still effectively decrease the objective value of (6).
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