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Abstract. While prior research has proposed a plethora of methods that build neural classifiers robust against
adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably se-
vere clean accuracy penalties. Real-world services based on neural networks are thus still unsafe.
This paper significantly alleviates the accuracy-robustness trade-off by mixing the output proba-
bilities of a standard classifier and a robust classifier, where the standard network is optimized for
clean accuracy and is not robust in general. We show that the robust base classifier's confidence
difference for correct and incorrect examples is the key to this improvement. In addition to provid-
ing empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic
assumptions. We then adapt an adversarial input detector into a mixing network that adaptively
adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving
robustness. The proposed flexible mixture-of-experts framework, termed ``adaptive smoothing,""
works in conjunction with existing or even future methods that improve clean accuracy, robust-
ness, or adversary detection. We use strong attack methods, including AutoAttack and adaptive
attacks, to evaluate our models' robustness. On the CIFAR-100 dataset, we achieve an 85.21\%
clean accuracy while maintaining a 38.72\% \ell \infty -AutoAttacked (\epsilon = 8/255) accuracy, becoming the
second most robust method on the RobustBench benchmark as of submission, while improving the
clean accuracy by 10 percentage points over all listed models. Code implementation is available at
https://github.com/Bai-YT/AdaptiveSmoothing.
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1. Introduction. Neural networks are vulnerable to adversarial attacks in various appli-
cations, including computer vision and audio [63, 37], natural language processing [36], and
control systems [45]. Due to the widespread application of neural classifiers, ensuring their
reliability in practice is paramount.

To mitigate this susceptibility, researchers have explored “adversarial training” (AT) and
its improved variants [54, 37, 16, 17, 92], building empirically robust models by training
with adversarial examples. Meanwhile, theoretical research has also considered certifying
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 789

(i.e., mathematically guaranteeing) the robustness of neural classifiers against adversarial
perturbations within a radius [7, 60, 9]. “Randomized smoothing” (RS) is one such method
that achieves certified robustness with an already trained model at inference time [28, 56].
Improved variants of RS incorporate dimension reduction methods [71] and denoising modules
[20]. Recent work [8] has demonstrated that a data-driven locally biased smoothing approach
can improve over traditional data-blind RS. However, this method is limited to the binary
classification setting and suffers from the performance bottleneck of its underlying one-nearest-
neighbor classifier.

Despite the emergence of these proposed remedies to the adversarial robustness issue,
many practitioners are reluctant to adopt them. As a result, existing publicly available ser-
vices are still vulnerable [46, 19], presenting severe safety risks. One important reason for
this reluctance is the potential for significantly reduced model performance on clean data.
Specifically, some previous works have suggested a fundamental trade-off between accuracy
and robustness [83, 90]. Since the sacrifice in unattacked performance is understandably un-
acceptable in real-world scenarios, developing robust classifiers with minimal clean accuracy
degradation is crucial.

Fortunately, recent research has argued that it should be possible to simultaneously achieve
robustness and accuracy on benchmark datasets [87]. To this end, variants of adversarial train-
ing that improve the accuracy-robustness trade-off have been proposed, including TRADES
[90], Interpolated Adversarial Training [55], Instance Adaptive Adversarial Training (IAAT)
[18], and many others [26, 13, 72, 85, 89, 82]. However, despite these improvements, degraded
clean accuracy is often an inevitable price of achieving robustness. Moreover, standard nonro-
bust models often achieve enormous performance gains by pretraining on larger datasets with
self- or semisupervision [41, 15]. In contrast, the effect of pretraining on robust classifiers is
less understood and may be less prominent [24, 34]. As a result, the performance gap between
these existing works and the possibility guaranteed in [87] is still huge.

This work builds upon locally biased smoothing [8] and makes a theoretically disciplined
step towards reconciling adversarial robustness and clean accuracy, significantly closing this
performance gap and thereby providing practitioners additional incentives for deploying robust
models. This paper is organized as follows.

\bullet In section 3, observing that the K-nearest-neighbor (K-NN) classifier, a crucial com-
ponent of locally biased smoothing, becomes a performance bottleneck, we replace it
with a robust neural network that can be obtained via various existing methods, and
we propose a new smoothing formulation accordingly. The resulting formulation (3.4)
is a convex combination of the output probabilities of a standard neural network and
a robust one. When the robust neural network has a certified Lipschitz constant or is
based on randomized smoothing, the mixed classifier also has a certified robust radius.
These contents are presented in our conference paper [14], but are strengthened in this
paper.

\bullet In section 4, we propose adaptive smoothing, which adaptively adjusts the mixture of
a standard model and a robust model by adopting a type of adversary detector as a
“mixing network.” The mixing network controls the convex combination of the output
probabilities from the two base networks, further improving the accuracy-robustness
trade-off, making the resulting model a mixture-of-experts design. We empirically
verify the robustness of the proposed method using gray-box and white-box projected
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790 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

gradient descent (PGD) attack, AutoAttack, and adaptive attacks, demonstrating
that the mixing network is robust against the attack types it is trained with. When
the mixing network is trained with a carefully designed adaptive AutoAttack, the
composite model significantly gains clean accuracy while sacrificing little robustness.
This section and the corresponding experiment results are entirely new relative to
our conference paper [14], and are crucial for achieving the much improved accuracy-
robustness trade-off over existing works.

Compared to existing methods for improving the accuracy-robustness trade-off, most of
which are training-based, adaptive smoothing has several key advantages:

\bullet Adaptive smoothing is agnostic to how the standard and robust base models are
trained. Hence, one can quickly swap the base classifiers with already trained standard
or robust models. Therefore, our method is highly versatile and can be coupled with
existing training-based trade-off improving methods.

\bullet Adaptive smoothing can thus take advantage of pretraining on large datasets via the
standard base classifier and benefit from ongoing advancements in robust training
methods via the robust base model. Meanwhile, training-based methods have limited
compatibilities, since they may conflict with certain techniques essential to achieving
state-of-the-art (SOTA) clean or robust accuracy. As a result, adaptive smoothing
achieves better results: it significantly boosts clean accuracy while maintaining near-
SOTA robustness.

\bullet Adaptive smoothing allows for an interpretable continuous adjustment between accu-
racy and robustness at inference time, which can be achieved by simply adjusting the
mixture ratio. On the other hand, not all training-based methods allow for this ad-
justment. For those that do, this adjustment involves training an entirely new robust
model.

\bullet When the mixing ratio is fixed and the robust base model has a certified robust radius
with a nonzero margin, the mixed classifier can be certified. Since certified models are
often also certifiable with a nonzero margin, this condition is commonly satisfied in
practice. For empirically robust base classifiers that are not certifiable, an estimation
can be performed.

During the reviewing period of this paper, the authors of [57] verified that our mixed classi-
fier simultaneously improves the clean accuracy and the robustness against out-of-distribution
(OOD) adversarial attacks (i.e., the threat model differs between training and evaluation),
achieving state-of-the-art OOD adversarial robustness among a plethora of models, including
the robust base classifier of our mixed classifier. This observation further bolsters the thesis
that our proposed method achieves the accuracy-robustness trade-off.

2. Background and related works.

2.1. Notation. The symbol \| \cdot \| p denotes the \ell p norm of a vector and \| \cdot \| p\ast denotes its
dual norm. For a scalar a, sgn(a) \in \{  - 1,0,1\} denotes its sign. For a natural number c,
[c] represents \{ 1,2, . . . , c\} . For an event A, the indicator function I(A) evaluates to 1 if A
takes place and to 0 otherwise. The probability for an event A(X) to occur is denoted by
PX\sim \scrS [A(X)], where X is a random variable drawn from the distribution \scrS .

Consider a model g : Rd \rightarrow Rc, whose components are gi : Rd \rightarrow R, i \in [c], where d is the
dimension of the input and c is the number of classes. A classifier f : Rd \rightarrow [c] can be obtained
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 791

via f(x) \in arg maxi\in [c] gi(x). In this paper, we assume that g(\cdot ) does not have the desired level
of robustness, and we refer to it as a “standard classifier” (as opposed to a “robust classifier”
which we denote as h(\cdot )). Throughout this paper, we regard g(\cdot ) and h(\cdot ) as the base classifier
logits. To denote their output probabilities, we use \sigma \circ g(\cdot ) and \sigma \circ h(\cdot ). Similarly, \sigma \circ gi(\cdot )
denotes the predicted probability of the ith class from g(\cdot ). Moreover, we use \scrD to denote the
set of all validation input-label pairs (xi, yi).

We consider \ell p-norm-bounded attacks on differentiable neural networks. A classifier f(\cdot )
is considered robust against adversarial perturbations at some input data x \in Rd if it assigns
the same label to all perturbed inputs x + \delta such that \| \delta \| p \leq \epsilon , where \epsilon \geq 0 is the attack
radius. We use PGDT to denote the T -step PGD attack.

2.2. Related adversarial attacks and defenses. The fast gradient sign method (FGSM)
and PGD attacks based on the first-order maximization of the cross-entropy loss have tradi-
tionally been considered classic and straightforward attacks [61, 37]. However, these attacks
have been shown to be insufficient as defenses designed against them are often easily circum-
vented [22, 12, 11, 69]. To this end, various attack methods based on alternative loss functions,
Expectation Over Transformation, and black-box perturbations have been proposed. Such ef-
forts include MultiTargeted attack loss [40], AutoAttack [31], adaptive attack [81], minimal
distortion attack [32], and many others, even considering attacking test-time defenses [30].
The diversity of attack methods has led to the creation of benchmarks such as RobustBench
[29] and ARES-Bench [58] to unify the evaluation of robust models.

On the defense side, while adversarial training [61] and TRADES [90] have seen enor-
mous success, such methods are often limited by a significantly larger amount of required
training data [76]. Initiatives that construct more effective training data via data augmen-
tation [73, 38, 39] and generative models [77, 86] have successfully produced more accurate
and robust models. Improved versions of adversarial training [47, 84, 78, 66] have also been
proposed.

Previous research has developed models that improve robustness by dynamically changing
at test time. Specifically, Input-Adaptive Inference improves the accuracy-robustness trade-off
by appending side branches to a single network, allowing for early-exit predictions [44]. Other
initiatives that aim to enhance the accuracy-robustness trade-off include using the SCORE
attack during training [67] and applying adversarial training for regularization [93].

Moreover, ensemble-based defenses, such as random ensemble [59], diverse ensemble [68, 3,
1], and Jacobian ensemble [27], have been proposed. In comparison, this work is distinct in
that our mixing scheme uses two separate classifiers, incorporating one nonrobust component
while still ensuring the adversarial robustness of the overall design. By doing so, we take
advantage of the high performance of modern pretrained models, significantly alleviating the
accuracy-robustness trade-off and achieving much higher overall performances. Additionally,
unlike some previous ensemble initiatives, our formulation is deterministic and straightforward
(in the sense of gradient propagation), making it easier to evaluate its robustness properly.
The work [53] also explored assembling an accurate classifier and a robust classifier, but the
method considered robustness against distribution shift in a nonadversarial setting and was
based on different intuitions. After the submission of this paper, the work [91] also considered
leveraging the power of a pair of standard and robust classifiers. However, instead of mixing
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792 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

the outputs, the authors proposed to distill a new model from the two base classifiers. While
this approach also yielded impressive results, the distillation process is time-consuming.

2.3. Locally biased smoothing. Randomized smoothing, popularized by [28], achieves
robustness at inference time by replacing the standard classifier f(\cdot ) with the smoothed model

\widetilde f(x) \in arg max
i\in [c]

P\delta \sim \scrS [f(x + \delta ) = i],

where \scrS is a smoothing distribution, for which a common choice is a Gaussian distribution.
Note that \scrS is independent of the input x and is often zero-mean. The authors of [8]

have shown that data-invariant smoothing enlarges the region of the input space at which the
prediction of \widetilde f(\cdot ) stays constant. Such an operation may unexpectedly degrade both clean and
robust accuracy (the limiting case is when \widetilde f(\cdot ) becomes a constant classifier). Furthermore,
when f(\cdot ) is a linear classifier, the zero-mean restriction on \scrS leaves f(\cdot ) unchanged. That
is, randomized smoothing with a zero-mean distribution cannot help robustify even the most
simple linear classifiers. To overcome these limitations, [8] allowed \scrS to be input-dependent
(denoted by \scrS x) and nonzero-mean and searched for distributions \scrS x that best robustify f̃(\cdot )
with respect to the data distribution. The resulting scheme is “locally biased smoothing.”

It is shown in [8] that, up to a first-order linearization of the base classifier, the optimal
locally biased smoothing distribution \scrS x shifts the input point in the direction of its true class.
Formally, for a binary classifier of the form f(x) = sign(g(x)) with continuously differentiable
g(\cdot ), maximizing the robustness of \widetilde f(\cdot ) around x over all distributions \scrS x with bounded mean
yields the optimal locally biased smoothing classifier given by

\widetilde f(x) = sign(\widetilde g(x)), where \widetilde g(x) = g(x) + \gamma y(x)\| \nabla g(x)\| p\ast ,

where y(x) \in \{  - 1,1\} is the true class of x, and where \gamma \geq 0 is the (fixed) bound on the
distribution mean (i.e., \| E\delta \sim \scrS x

[\delta ]\| p \leq \gamma ).
Intuitively, this optimal locally biased smoothing classifier shifts the input along the di-

rection \nabla g(x) when y(x) = 1 as a means to make the classifier more likely to label x into class
1, and conversely shifts the input along the direction  - \nabla g(x) when y(x) =  - 1. Of course,
during inference, the true class y(x) is generally unavailable, and therefore [8] uses a “direc-
tion oracle” h(x) \in \{  - 1,1\} as a surrogate for y(x), resulting in the locally biased smoothing
classifier

f\gamma (x) = sign(h\gamma (x)), where h\gamma (x) = g(x) + \gamma h(x)\| \nabla g(x)\| p\ast .(2.1)

Notice that unlike randomized smoothing, the computation (2.1) is deterministic, which is a
consequence of the closed-form optimization over \scrS x.

In contrast to data-invariant randomized smoothing, the direction oracle h(\cdot ) is learned
from data, incorporating the data distribution into the manipulation of the smoothed classi-
fier’s decision boundaries. This allows for increases in nonlinearity when the data implies that
such nonlinearities are beneficial for robustness, resolving a fundamental limitation of data-
invariant smoothing. In general, the direction oracle should come from an inherently robust
classifier. Since such a robust model h(\cdot ) is often less accurate, the value \gamma can be viewed as a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 793

trade-off parameter, as it encodes the amount of trust into the direction oracle. The authors
of [8] showed that when the direction oracle is a one-nearest-neighbor classifier, locally biased
smoothing outperforms traditional randomized smoothing in binary classification.

2.4. Adversarial input detectors. Adversarial inputs can be detected via various methods.
For example, [62] proposed to append an additional detection branch to an existing neural
network and use adversarial data to train the detector in a supervised fashion. However,
Carlini and Wagner [21] showed that it is possible to bypass this detection method. They
constructed adversarial examples via the C&W attacks [22] and simultaneously targeted the
classification branch and the detection branch by treating the two branches as an “augmented
classifier.” According to [21], the detector is effective against the types of attack that it is
trained with, but not necessarily the attack types that are absent in the training data. It
is thus reasonable to expect the detector to be able to detect a wide range of attacks if it is
trained using sufficiently diverse types of attacks (including those targeting the detector itself).
While exhaustively covering the entire adversarial input space is intractable, and it is unclear
to what degree one needs to diversify the attack types in practice, our experiments show that
our modified architecture based on [62] can recognize the SOTA AutoAttack adversaries with
a high success rate.

The literature has also considered alternative detection methods that mitigate the above
challenges faced by detectors trained in a supervised fashion [23]. Such initiatives include
unsupervised detectors [4, 5] and reattacking [2]. Since universally effective detectors have not
yet been discovered, the current paper focuses on transferring the properties of the existing
detector toward better overall robustness. Future advancements in the field of adversary
detection can further enhance the performance of our method.

3. Using a robust neural network as the smoothing oracle. Locally biased smoothing
was designed for binary classification, restricting its practicality. Here, we first extend it to
the multiclass setting by treating the output h\gamma i (x) of each class independently, giving rise to

h\gamma \mathrm{s}\mathrm{m}\mathrm{o}1,i(x) := gi(x) + \gamma hi(x)\| \nabla gi(x)\| p\ast \forall i\in [c].(3.1)

Note that if \| \nabla gi(x)\| p\ast is large for some i, then h\gamma \mathrm{s}\mathrm{m}\mathrm{o}1,i(x) can be large even if both gi(x)
and hi(x) are small, potentially leading to incorrect predictions. To remove the effect of the
magnitude difference across the classes, we propose a normalized formulation as follows:

h\gamma \mathrm{s}\mathrm{m}\mathrm{o}2,i(x) :=
gi(x) + \gamma hi(x)\| \nabla gi(x)\| p\ast 

1 + \gamma \| \nabla gi(x)\| p\ast 
\forall i\in [c].(3.2)

The parameter \gamma adjusts between clean accuracy and robustness. It holds that h\gamma \mathrm{s}\mathrm{m}\mathrm{o}2,i(x) \equiv 
gi(x) when \gamma = 0, and h\gamma \mathrm{s}\mathrm{m}\mathrm{o}2,i(x) \rightarrow hi(x) when \gamma \rightarrow \infty for all x and all i.

With the mixing procedure generalized to the multiclass setting, we now discuss the choice
of the smoothing oracle hi(\cdot ). While K-NN classifiers are relatively robust and can be used
as the oracle, their representation power is too weak. On the CIFAR-10 image classification
task [52], K-NN only achieves around 35% accuracy on clean test data. In contrast, an
adversarially trained ResNet [42] can reach 50% accuracy on attacked test data [61]. This
lackluster performance of K-NN becomes a significant bottleneck in the accuracy-robustness
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794 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

trade-off of the mixed classifier. To this end, we replace the K-NN model with a robust neural
network. The robustness of this network can be achieved via various methods, including
adversarial training, TRADES, and traditional randomized smoothing.

Further scrutinizing (3.2) leads to the question of whether \| \nabla gi(x)\| p\ast is the best choice
for adjusting the mixture of g(\cdot ) and h(\cdot ). This gradient magnitude term is a result of the
setting of h(x) \in \{  - 1,1\} considered in [8]. Here, we assume a different setting, where both
g(\cdot ) and h(\cdot ) are multiclass and differentiable. Thus, we further generalize the formulation to

h\gamma \mathrm{s}\mathrm{m}\mathrm{o}3,i(x) :=
gi(x) + \gamma Ri(x)hi(x)

1 + \gamma Ri(x)
\forall i\in [c],(3.3)

where Ri(x) is an extra scalar term that can potentially depend on both \nabla gi(x) and \nabla hi(x)
to determine the “trustworthiness” of the base classifiers. Here, we empirically compare four

options for Ri(x), namely, 1, \| \nabla gi(x)\| p\ast , \| \nabla maxj gj(x)\| p\ast , and
\| \nabla gi(x)\| p\ast 
\| \nabla hi(x)\| p\ast 

. In subsection

SM2.1 in the accompanying supplementary material, we explain how these four options were
designed.

Another design choice is whether g(\cdot ) and h(\cdot ) should be the pre-softmax logits or the post-
softmax probabilities. Note that since most attack methods are designed based on logits, the
output of the mixed classifier should be logits rather than probabilities. This is because feeding
output probabilities into attacks designed around logits effectively results in a redundant
softmax layer, which can cause gradient masking, an undesirable phenomenon that makes it
hard to evaluate the proposed method’s robustness properly. Thus, we have the following two
options that make the mixed model compatible with existing gradient-based attacks:

1. Use the logits for both base classifiers, g(\cdot ) and h(\cdot ).
2. Use the probabilities for both base classifiers, and then convert the mixed probabil-

ities back to logits. The required “inverse-softmax” operator is simply the natural
logarithm.

Figure 1 visualizes the accuracy-robustness trade-off achieved by mixing logits or prob-
abilities with different Ri(x) options. Here, the base classifiers are a pair of standard and
adversarially trained ResNet-18s. This “clean accuracy versus PGD10-attacked accuracy”
plot concludes that Ri(x) = 1 optimizes the accuracy-robustness trade-off, and g(\cdot ) and h(\cdot )
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Clean accuracy of the mixed classifier
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\bullet ``No Softmax"" represents Option 1, i.e.,
use the logits g(\cdot ) and h(\cdot ).

\bullet ``Softmax"" represents Option 2, i.e., use
the probabilities \sigma \circ g(\cdot ) and \sigma \circ h(\cdot ).

\bullet With the best formulation, high clean
accuracy can be achieved with very lit-
tle sacrifice on robustness.

Figure 1. Compare the ``attacked accuracy--clean accuracy"" curves for various Ri(x) options.
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 795

should be probabilities. Subsection SM2.2 confirms this selection by repeating Figure 1 with
different model architectures, other robust base model training methods, and various attack
budgets.

Our selection of Ri(x) = 1 differs from Ri(x) = \| gi(x)\| p\ast used in [8]. Intuitively, [8] used
linear classifier examples to motivate estimating the trustworthiness of the base models with
their gradient magnitudes. However, when the base classifiers are highly nonlinear neural
networks as in our case, while the local Lipschitzness of a base classifier still correlates with
its robustness, its gradient magnitude is not always a good estimator of the local Lipschitzness.
Subsection SM2.2 provides additional discussions on this matter. Additionally, subsection 3.1
offers theoretical intuitions for selecting mixing probabilities over mixing logits.

With these design choices implemented, the formulation (3.3) can be reparameterized as

h\alpha i (x) := log
\Bigl( 

(1  - \alpha )\sigma \circ gi(x) + \alpha \cdot \sigma \circ hi(x)
\Bigr) 

\forall i\in [c],(3.4)

where \alpha = \gamma 
1+\gamma \in [0,1]. We take h\alpha (\cdot ) in (3.4), which is a convex combination of base classifier

probabilities, as our proposed mixed classifier. Note that (3.4) calculates the mixed classi-
fier logits, acting as a drop-in replacement for existing models which usually produce logits.
Removing the logarithm recovers the output probabilities without changing the predicted
class.

3.1. Theoretical certified robust radius. In this section, we derive certified robust radii
for the mixed classifier h\alpha (\cdot ) introduced in (3.4), given in terms of the robustness properties
of h(\cdot ) and the mixing parameter \alpha . The results ensure that despite being more sophisticated
than a single model, h\alpha (\cdot ) cannot be easily conquered, even if an adversary attempts to adapt
its attack methods to its structure. Such guarantees are of paramount importance for reliable
deployment in safety-critical applications. Note that while the focus of this paper is improved
empirical accuracy-robustness trade-off and the existing literature often considers empirical
and certified robustness separately, we will discuss how the certified results in this section
provide important insights into the empirical performance, as the underlying assumptions are
realistic and (approximately) verifiable for many empirically robust models.

Noticing that the base model probabilities satisfy 0 \leq \sigma \circ gi(\cdot ) \leq 1 and 0 \leq \sigma \circ hi(\cdot ) \leq 1 for
all i, we introduce the following generalized and tightened notion of certified robustness.

Definition 3.1. Consider a model h : Rd \rightarrow Rc and an arbitrary input x \in Rd. Further
consider y = arg maxi hi(x), \mu \in [0,1], and r\geq 0. Then, h(\cdot ) is said to be certifiably robust at
x with margin \mu and radius r if \sigma \circ hy(x + \delta ) \geq \sigma \circ hi(x + \delta ) + \mu for all i \not = y and all \delta \in Rd

such that \| \delta \| p \leq r.

Intuitively, Definition 3.1 ensures that all points within a radius from a nominal point have
the same prediction as the nominal point, with the difference between the top and runner-up
probabilities no smaller than a threshold. For practical classifiers, the robust margin can
be straightforwardly estimated by calculating the confidence gap between the predicted and
the runner-up classes at an adversarial input obtained with strong attacks. As shown in the
experiments in subsection 5.1.2, if a real-world robust model is robust at some input with a
given radius, it is likely to be robust with a nontrivial margin.
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796 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

Lemma 3.2. Let x \in Rd and r \geq 0. If it holds that \alpha \in [12 ,1] and h(\cdot ) is certifiably robust
at x with margin 1 - \alpha 

\alpha and radius r, then the mixed classifier h\alpha (\cdot ) is robust in the sense that

arg maxi h
\alpha 
i (x + \delta ) = arg maxi hi(x) for all \delta \in Rd such that \| \delta \| p \leq r.

Proof. Suppose that h(\cdot ) is certifiably robust at x with margin 1 - \alpha 
\alpha and radius r. Since

\alpha \in [12 ,1], it holds that 1 - \alpha 
\alpha \in [0,1]. Let y = arg maxi hi(x). Consider an arbitrary i\in [c] \setminus \{ y\} 

and \delta \in Rd such that \| \delta \| p \leq r. Since \sigma \circ gi(x + \delta ) \in [0,1], it holds that

exp
\bigl( 
h\alpha y (x + \delta )

\bigr) 
 - exp (h\alpha i (x + \delta ))

= (1  - \alpha )(\sigma \circ gy(x + \delta )  - \sigma \circ gi(x + \delta )) + \alpha (\sigma \circ hy(x + \delta )  - \sigma \circ hi(x + \delta ))

\geq (1  - \alpha )(0  - 1) + \alpha (\sigma \circ hy(x + \delta )  - \sigma \circ hi(x + \delta ))

\geq (\alpha  - 1) + \alpha 
\bigl( 
1 - \alpha 
\alpha 

\bigr) 
= 0.

Thus, it holds that h\alpha y (x + \delta ) \geq h\alpha i (x + \delta ) for all i \not = y, and thus arg maxi h
\alpha 
i (x + \delta ) = y =

arg maxi hi(x).

While most existing provably robust results consider the special case with zero margin,
we will show that models built via common methods are also robust with nonzero margins.
We specifically consider two types of popular robust classifiers: Lipschitz continuous models
(Theorem 3.5) and RS models (Theorem SM1.2). Here, Lemma 3.2 builds the foundation
for proving these two theorems, which amounts to showing that Lipschitz and RS models are
robust with nonzero margins and thus the mixed classifiers built with them are robust. Lemma
3.2 can also motivate future researchers to develop margin-based robustness guarantees for
base classifiers so that they immediately grant robustness guarantees for mixed architectures.

Lemma 3.2 additionally provides further justifications for using probabilities instead of
logits in the smoothing operation. Intuitively, (1 - \alpha )\sigma \circ gi(\cdot ) is bounded between 0 and 1 - \alpha ,
so as long as \alpha is relatively large (specifically, at least 1

2), the detrimental effect of g(\cdot ) when
subject to attack can be overcome by h(\cdot ). Had we used the logits gi(\cdot ), since this quantity
cannot be bounded, it would have been much harder to overcome the vulnerability of g(\cdot ).

Since we do not make assumptions on the Lipschitzness or robustness of g(\cdot ), Lemma 3.2
is tight. To understand this, we suppose that there exist some i \in [c]\setminus \{ y\} and \delta \not = 0 such
that \| \delta \| p \leq r that make \sigma \circ hy(x + \delta )  - \sigma \circ hi(x + \delta ) := hd smaller than 1 - \alpha 

\alpha , indicating
that  - \alpha hd > \alpha  - 1. Since the only information about g(\cdot ) is that \sigma \circ gi(x + \delta ) \in [0,1] and
thus the value \sigma \circ gy(x + \delta )  - \sigma \circ gi(x + \delta ) := gd can be any number between  - 1 and 1, it is
possible that (1 - \alpha )gd is smaller than  - \alpha hd. By (3.4), when (1 - \alpha )gd < - \alpha hd, it holds that
h\alpha y (x + \delta ) <h\alpha i (x + \delta ), and thus arg maxi h

\alpha 
i (x + \delta ) \not = arg maxi hi(x).

Definition 3.3. A function f : Rd \rightarrow R is called \ell p-Lipschitz continuous if there exists
L \in (0,\infty ) such that | f(x\prime )  - f(x)| \leq L\| x\prime  - x\| p for all x\prime , x \in Rd. The Lipschitz constant of
such f is defined to be

Lipp(f) := inf
\Bigl\{ 
L\in (0,\infty ) : | f(x\prime )  - f(x)| \leq L\| x\prime  - x\| p \forall x\prime , x\in Rd

\Bigr\} 
.

Assumption 3.4. The base model h(\cdot ) is robust in the sense that, for all i \in \{ 1,2, . . . , n\} ,
\sigma \circ hi(\cdot ) is \ell p-Lipschitz continuous with Lipschitz constant Lipp(\sigma \circ hi).
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 797

Theorem 3.5. Suppose that Assumption 3.4 holds, and let y = arg maxi hi(x), where x\in Rd

is arbitrary. Then, if \alpha \in [12 ,1], it holds that arg maxi h
\alpha 
i (x + \delta ) = y for all \delta \in Rd such that

\| \delta \| p \leq r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x) := min
i\not =y

\alpha (\sigma \circ hy(x)  - \sigma \circ hi(x)) + \alpha  - 1

\alpha 
\bigl( 
Lipp(\sigma \circ hy) + Lipp(\sigma \circ hi)

\bigr) .(3.5)

Proof. Suppose that \alpha \in [12 ,1], and let \delta \in Rd be such that \| \delta \| p \leq r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x). Furthermore,
let i\in [c] \setminus \{ y\} . It holds that

\sigma \circ hy(x + \delta )  - \sigma \circ hi(x + \delta )

= \sigma \circ hy(x)  - \sigma \circ hi(x) + \sigma \circ hy(x + \delta )  - \sigma \circ hy(x) + \sigma \circ hi(x)  - \sigma \circ hi(x + \delta )

\geq \sigma \circ hy(x)  - \sigma \circ hi(x)  - Lipp(\sigma \circ hy)\| \delta \| p  - Lipp(\sigma \circ hi)\| \delta \| p
\geq \sigma \circ hy(x)  - \sigma \circ hi(x)  - 

\bigl( 
Lipp(\sigma \circ hy) + Lipp(\sigma \circ hi)

\bigr) 
r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x) \geq 1 - \alpha 

\alpha .

Therefore, h(\cdot ) is certifiably robust at x with margin 1 - \alpha 
\alpha and radius r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x). Hence, by

Lemma 3.2, the claim holds.

Note that the \ell p norm that we certify can be arbitrary (e.g., \ell 1, \ell 2, or \ell \infty ), so long as the
Lipschitz constant of the robust network h(\cdot ) is computed with respect to the same norm.

Assumption 3.4 is not restrictive in practice. For example, Gaussian RS with smoothing
variance \sigma 2Id (Id is the identity matrix in Rd\times d) yields robust models with \ell 2-Lipschitz con-
stant

\sqrt{} 
2/\pi \sigma 2 [75]. In subsection SM1.3, we use experiments to verify the certified robustness of

our method when h(\cdot ) is an RS model. Additionally, methods have been proposed to compute
upper bounds on neural network Lipschitz constants, thus allowing our certified robustness
guarantees via Assumption 3.4 and Theorem 3.5 to be employed [35, 48, 79]. The notion of
Lipschitz continuity has even motivated novel robustness methods [64, 80, 70].

Assumption 3.4 can be relaxed to the even less restrictive scenario of using local Lipschitz
constants over a neighborhood (e.g., a norm ball) around a nominal input x (i.e., how flat
\sigma \circ h(\cdot ) is near x) as a surrogate for the global Lipschitz constants. In this case, Theorem
3.5 holds for all \delta within this neighborhood. Specifically, suppose that for an arbitrary input
x and an \ell p attack radius \epsilon , it holds that \sigma \circ hy(x)  - \sigma \circ hy(x + \delta ) \leq \epsilon \cdot Lipx

p(\sigma \circ hy) and
\sigma \circ hi(x+\delta ) - \sigma \circ hi(x) \leq \epsilon \cdot Lipx

p(\sigma \circ hi) for all i \not = y and all perturbations \delta such that \| \delta \| p \leq \epsilon .
Furthermore, suppose that the robust radius r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x), as defined in (3.5) but using the local
Lipschitz constant Lipx

p as a surrogate to the global constant Lipp, is not smaller than \epsilon . Then,
if the robust base classifier h(\cdot ) is correct at the nominal point x, then the mixed classifier
h\alpha (\cdot ) is robust at x within the radius \epsilon . The proof follows that of Theorem 3.5.

The relaxed Lipschitzness defined above can be estimated for practical differentiable clas-
sifiers via an algorithm derived from the PGD attack [87]. The authors of [87] showed that
many existing empirically robust models, including those trained with AT or TRADES, are
locally Lipschitz. Note that [87] evaluates the local Lipschitz constants of the logits, whereas
we analyze the probabilities, whose Lipschitz constants are much smaller, and small enough to
certify a meaningful robust radius. Hence, Theorem 3.5 provides important insights into the
empirical robustness of the mixed classifier. A detailed discussion is presented in subsection
SM3.3.
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798 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

An intuitive explanation of Theorem 3.5 is that if \alpha approaches 1, then r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x) approaches

mini\not =y
hy(x) - hi(x)

\mathrm{L}\mathrm{i}\mathrm{p}p(hy)+\mathrm{L}\mathrm{i}\mathrm{p}p(hi)
, which is the standard (global) Lipschitz-based robust radius of h(\cdot )

around x (see, e.g., [35, 43] for further discussions on Lipschitz-based robustness). On the
other hand, if \alpha is too small compared to the relative confidence of h(\cdot ), namely, if there exists
i \not = y such that \alpha \leq 1

1+\sigma \circ hy(x) - \sigma \circ hi(x)
, then r\alpha \mathrm{L}\mathrm{i}\mathrm{p},p(x) is nonpositive, and in this case we cannot

provide nontrivial certified robustness for h\alpha (\cdot ). This is rooted in the fact that too small of
an \alpha value amounts to excess weight in the nonrobust classifier g(\cdot ). If h(\cdot ) is 100% confident
in its prediction, then \sigma \circ hy(x) - \sigma \circ hi(x) = 1 for all i \not = y, and therefore this threshold value
of \alpha becomes 1

2 , leading to nontrivial certified radii for \alpha > 1
2 . However, once we put over 1

2
of the weight into g(\cdot ), a nonzero radius around x is no longer certifiable. Since there are no
assumptions on the robustness of g(\cdot ) around x, this is intuitively the best one can expect.

To summarize our certified robustness results, Lemma 3.2 shows the connection between
the robust margin of the robust classifier and the robustness of the mixed classifier, while
Theorem 3.5 demonstrates how general Lipschitz robust base classifiers exploit this relation-
ship. Since empirically robust models often satisfy the conditions of these two results, they
guarantee that adaptive attacks cannot easily circumvent our proposed robustification.

In subsection SM1.1 in the supplementary material, we further tighten the certified radius
estimation in the special case when h(\cdot ) is a randomized smoothing classifier and the robust
radius is defined with the \ell 2 norm. We achieve this by exploiting the stronger Lipschitzness
of x \mapsto \rightarrow Φ - 1(\sigma \circ hi(x)) arising from the unique structure granted by Gaussian convolution
operations (Φ - 1 is the inverse Gaussian cumulative distribution function). In subsection
SM1.3, we compare the certified robustness of the mixed classifier to existing certifiably robust
methods.

4. Adaptive smoothing strength with the mixing network. So far, \alpha has been treated as
a fixed hyperparameter. A more intelligent approach is to allow \alpha to be different for each x by
using a function \alpha (x). We take \alpha (x) to be deterministic, as stochastic defenses are challenging
to properly evaluate.

One motivation for adopting the adaptive mixing ratio \alpha (x) is that the optimal \alpha  \star varies
when x changes. For example, when x is unperturbed, the standard model g(\cdot ) outperforms
the robust base model h(\cdot ). If x is an attacked input targeting g(\cdot ), then h(\cdot ) should again
be used. However, if the attack target is h(\cdot ), then as shown in Figure 2, even though h(\cdot ) is
robust, feeding x into g(\cdot ) is a better choice. This is because the vulnerabilities of g(\cdot ) and
h(\cdot ) differ enough that an adversarial perturb targeting h(\cdot ) is benign to g(\cdot ).

When the adversary targets a mixed classifier h\alpha t(\cdot ), as \alpha t varies, the optimal strategy
changes. Figure 2 provides a visualization based on the CIFAR-10 dataset. Specifically, we
assemble a composite model h\alpha t(\cdot ) using a ResNet-18 standard classifier g(\cdot ) and a ResNet-18
robust classifier h(\cdot ) (both from [65]) via (3.4). Then, we attack h\alpha t(\cdot ) with different values
of \alpha t via PGD20, save the adversarial instances, and report the accuracy of g(\cdot ) and h(\cdot ) on
these instances. When \alpha t \leq Sigmoid(5.72) = 0.9967, the robust model h(\cdot ) performs better.
When \alpha t > 0.9967, the standard model g(\cdot ) is more suitable.

Throughout the remainder of this section, we overload the notation h\alpha (\cdot ) even though \alpha (\cdot )
may be a function of the input, i.e., we define h\alpha (x) = h\alpha (x)(x).
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Figure 2. Attacked accuracy of the accurate base classifier g(\cdot ) and the robust base model h(\cdot ) when the
adversary targets different values of \alpha t. For better readability, we use Logit(\alpha t) as the horizontal axis labels,
where Logit(\cdot ) denotes the inverse function of Sigmoid.

4.1. The existence of \bfitalpha (\bfitx ) that achieves the trade-off. The following theorem shows
that, under realistic conditions, there exists a function \alpha (\cdot ) that makes the combined classifier
correct whenever either g(\cdot ) and h(\cdot ) makes the correct prediction, which further implies that
the combined classifier matches the clean accuracy of g(\cdot ) and the attacked accuracy of h(\cdot ).

Theorem 4.1. Let \epsilon > 0, (x1, y1), (x2, y2) \sim \scrD , and y1 \not = y2 (i.e., each input corresponds to
a unique true label). Assume that hi(\cdot ), \| \nabla hi(\cdot )\| p\ast , and \| \nabla gi(\cdot )\| p\ast are all bounded and that
there does not exist z \in Rd such that \| z  - x1\| p \leq \epsilon and \| z  - x2\| p \leq \epsilon . Then, there exists a
function \alpha (\cdot ) such that the assembled classifier h\alpha (\cdot ) satisfies

P(x,y)\sim \scrD 
\delta \sim \scrF 

\Biggl[ 
arg max

i\in [c]
h\alpha i (x + \delta ) = y

\Biggr] 
\geq max

\biggl\{ 
P(x,y)\sim \scrD ,\delta \sim \scrF [ arg maxi\in [c] gi(x + \delta ) = y],

P(x,y)\sim \scrD ,\delta \sim \scrF [ arg maxi\in [c] hi(x + \delta ) = y]

\biggr\} 
,

where \scrF is an arbitrary distribution that satisfies P\delta \sim \scrF [\| \delta \| p > \epsilon ] = 0.

Proof. Since it is assumed that the perturbation balls of the data are nonoverlapping, the
true label y corresponding to each perturbed data x+ \delta with the property \| \delta \| p \leq \epsilon is unique.
Therefore, the indicator function

\alpha (x + \delta ) =

\biggl\{ 
0 if arg maxi\in [c] gi(x + \delta ) = y,

1 otherwise

satisfies that

\alpha (x + \delta ) = 1 if arg max
i\in [c]

gi(x + \delta ) \not = y and arg max
i\in [c]

hi(x + \delta ) = y.

Therefore, it holds that

h\alpha i (x + \delta ) = gi(x + \delta ) if arg max
i\in [c]

gi(x + \delta ) = y,

h\alpha i (x + \delta ) = hi(x + \delta ) if arg max
i\in [c]

gi(x + \delta ) \not = y and arg max
i\in [c]

hi(x + \delta ) = y,

implying that

arg max
i\in [c]

h\alpha i (x + \delta ) = y if

\Biggl( 
arg max

i\in [c]
gi(x + \delta ) = y or arg max

i\in [c]
hi(x + \delta ) = y

\Biggr) 
,

which leads to the desired statement.
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800 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

Note that the distribution \scrF is arbitrary, implying that the test data can be clean data,
any type of adversarial data, or some combination of both. As a special case, when \scrF is
a Dirac measure at the origin, Theorem 4.1 implies that the clean accuracy of h\alpha (\cdot ) is as
good as the standard classifier g(\cdot ). Conversely, when \scrF is a Dirac measure at the worst-
case perturbation, the adversarial accuracy of h\alpha (\cdot ) is not worse than the robust model h(\cdot ),
implying that if h(\cdot ) is inherently robust, then h\alpha (\cdot ) inherits the robustness. One can then
conclude that there exists a h\alpha (\cdot ) that matches the clean accuracy of g(\cdot ) and the robustness
of h(\cdot ).

While Theorem 4.1 guarantees the existence of an instance of \alpha (\cdot ) that perfectly balances
accuracy and robustness, finding an \alpha (\cdot ) that achieves this trade-off can be hard. However, we
will use experiments to show that an \alpha (\cdot ) represented by a neural network can retain most of
the robustness of h(\cdot ) while greatly boosting the clean accuracy. In particular, while we used
the case of \alpha (\cdot ) being an indicator function to demonstrate the possibility of achieving the
trade-off, Figure 1 has shown that letting \alpha take an appropriate value between 0 and 1 also
improves the trade-off. Thus, the task for the neural approximator is easier than representing
the indicator function. Also note that if certified robustness is desired, one can enforce a lower
bound on \alpha (\cdot ) and take advantage of Theorem 3.5 while still enjoying the mitigated trade-off.

4.2. Attacking the adaptive classifier. When the combined model h\alpha (\cdot ) is under adver-
sarial attack, the function \alpha (\cdot ) provides an addition gradient flow path. Intuitively, the attack
should be able to force \alpha to be small through this additional gradient path, tricking the mixing
network into favoring the nonrobust g(\cdot ). Following the guidelines for constructing adaptive
attacks [81], in the experiments, we consider the following types of attacks:

\bfA \bfG \bfr \bfa \bfy -\bfb \bfo \bfx \bfP \bfG \bfD \bftwo \bfzero : The adversary has access to the gradients of g(\cdot ) and h(\cdot ) when
performing first-order optimization, but is not given the gradient of the mixing network
\alpha (\cdot ). We consider untargeted PGD attack with a fixed initialization.

\bfB \bfW \bfh \bfi \bft \bfe -\bfb \bfo \bfx \bfP \bfG \bfD \bftwo \bfzero : Since the mixed classifier is end-to-end differentiable, we follow
[81] and allow the attack to query end-to-end gradient, including that of the mixing
network.

\bfC \bfW \bfh \bfi \bft \bfe -\bfb \bfo \bfx \bfA \bfu \bft \bfo \bfA \bft \bft \bfa \bfc \bfk : AutoAttack is a stronger attack formed by an ensemble of
four attack algorithms [31]. The method considers Auto-PGD (APGD) attacks with
the untargeted cross-entropy loss and the targeted Difference of Logits Ratio loss, in
addition to the targeted FAB attack and the black-box Square Attack (SA) [10]. Again,
the end-to-end mixed classifier gradient is available to the adversary. AutoAttack
requires much more computation than PGD20.

\bfD \bfA \bfd \bfa \bfp \bft \bfi \bfv \bfe \bfw \bfh \bfi \bft \bfe -\bfb \bfo \bfx \bfA \bfu \bft \bfo \bfA \bft \bft \bfa \bfc \bfk : Since the mixing network is a crucial compo-
nent of the defense, we add an APGD loss component that aims to decrease \alpha into
AutoAttack to specifically target the mixing network.

We will show that the adaptively smoothed model is robust against the attack that it
is trained against. When trained using untargeted and targeted APGD75 attacks, our model
becomes robust against AutoAttack while noticeably improving the accuracy-robustness trade-
off. In subsection 5.1.1, we additionally consider evaluating with transfer attacks.

4.3. The mixing network. In practice, we use a neural network \alpha \theta (\cdot ) : Rd \rightarrow [0,1] to learn
an effective mixing network that adjusts the outputs of g(\cdot ) and h(\cdot ). Here, \theta represents the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 801

trainable parameters of the mixing network, and we refer to \alpha \theta (\cdot ) as the “mixing network.” To
enforce an output range constraint, we apply a Sigmoid function to the mixing network output.
Note that when training the mixing network \alpha \theta (\cdot ), the base classifiers g(\cdot ) and h(\cdot ) are frozen.
Freezing the base classifiers allows the mixed classifier to take advantage of existing accurate
models and their robust counterparts, maintaining explainability and avoiding unnecessary
feature distortions that the adversary can potentially exploit.

The mixing network’s task of treating clean and attacked inputs differently is closely re-
lated to adversary detection. To this end, we adapt the detection architecture introduced
in [62] for our mixing network. This architecture achieves high performance and low com-
plexity and is end-to-end differentiable, enabling convenient training and evaluation. While
the authors of [21] argued that simultaneously attacking the base classifier and the adversary
detector can bring the detection rate of the detection method proposed in [62] to near zero, we
show that with several key modifications, the method is effective even against strong white-
box attacks. Specifically, our mixing network \alpha \theta (\cdot ) takes advantage of both base models g(\cdot )
and h(\cdot ) by concatenating their intermediate features ([62] used only one base model). More
importantly, we include stronger adaptive adversaries during training to generate much more
diverse training examples.

The mixing network structure is based on a ResNet-18, which is known to perform well for
a wide range of computer vision applications and is often considered the go-to architecture.
We make some minimal necessary changes to ResNet-18 for it to fit into our framework.
Specifically, as the mixing network takes information from both g(\cdot ) and h(\cdot ), it uses the
concatenated embeddings from the base classifiers. While [62] considers a single ResNet as
the base classifier and uses the embeddings after the first ResNet block, to avoid the potential
vulnerability against “feature adversaries” [74], we consider the embeddings from two different
layers of the base model. Figure 3 demonstrates the modified architecture. The detailed
implementations used in the experiment section are discussed in subsection SM4.1.

Since Figure 1 shows that even a constant \alpha can alleviate the accuracy-robustness trade-
off, our method does not excessively rely on the performance of the mixing network \alpha \theta (\cdot ). In
subsection 5.2, we provide empirical results demonstrating that the above modifications help
the overall mixed network defend against strong attacks.

Input 𝑥

Downstream Layers
(Frozen) Robust Model

Middle Layers

𝑔(𝑥)

ℎ(𝑥)

Eq (3.4) Output
ℎ!!(𝑥)

Global AvgPool + 
Linear + BN

Mixing
Network 𝛼"(𝑥)

RNB RNBRNB

Upstream Layers Middle Layers Downstream Layers

(Frozen) Standard Model

Upstream Layers

Figure 3. The overall architecture of the adaptively smoothed classifier introduced in section 4. ``RNB""
stands for ResNetBlock and ``BN"" represents the 2D batch normalization layer.
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802 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

4.4. Training the mixing network. Consider the following two loss functions for training
the mixing network \alpha \theta (\cdot ):

\bullet \bfM \bfu \bfl \bft \bfi \bfc \bfl \bfa \bfs \bfs \bfc \bfr \bfo \bfs \bfs -\bfe \bfn \bft \bfr \bfo \bfp \bfy : We minimize the multiclass cross-entropy loss of the
combined classifier, which is the ultimate goal of the mixing network:

min
\theta 

E(x,y)\sim \scrD 
\delta \sim \scrF 

\Bigl[ 
\ell \mathrm{C}\mathrm{E}(h\alpha \theta (x + \delta ), y)

\Bigr] 
,(4.1)

where \ell \mathrm{C}\mathrm{E} is the cross-entropy (CE) loss for logits and y \in [c] is the label corresponding
to x. The base classifiers g(\cdot ) and h(\cdot ) are frozen and not updated. Again, \delta denotes
the perturbation, and the distribution \scrF is arbitrary. In our experiments, to avoid
overfitting to a particular attack radius, \scrF is formed by perturbations with randomized
radii.

\bullet \bfB \bfi \bfn \bfa \bfr \bfy \bfc \bfr \bfo \bfs \bfs -\bfe \bfn \bft \bfr \bfo \bfp \bfy : The optimal \alpha  \star that minimizes \ell \mathrm{C}\mathrm{E} in (4.1) can be estimated
for each training point. Specifically, depending on whether the input is attacked and
how it is attacked, either g(\cdot ) or h(\cdot ) should be prioritized. Thus, we treat the task as
a binary classification problem and solve the optimization problem

min
\theta 

E(x,y)\sim \scrD 
\delta \sim \scrF 

\Bigl[ 
\ell \mathrm{B}\mathrm{C}\mathrm{E}(\alpha \theta (x + \delta ), \widetilde \alpha )

\Bigr] 
,

where \ell \mathrm{B}\mathrm{C}\mathrm{E} is the binary cross-entropy (BCE) loss for probabilities and \widetilde \alpha \in \{ 0,1\} is
the “pseudolabel” for the output of the mixing network that approximates \alpha  \star .

Using only the multiclass loss suffers from a distribution mismatch between training and
test data. Specifically, the robust classifier h(\cdot ) may achieve a low loss on adversarial training
data but a high loss on test data. For example, with our ResNet-18 robust CIFAR-10 classifier,
the PGD10 adversarial training and test accuracy are very different, at 93.01% and 45.55%,
respectively. As a result, approximating (4.1) with empirical risk minimization on training
data does not effectively optimize the true risk. To understand this, notice that when the
adversary perturbs a test input x targeting h(\cdot ), the standard classifier prediction g(x) yields
a lower loss than h(x). However, if x is an attacked example in the training set, then g(x)
and h(x) have similar losses, and the mixing network does not receive an incentive to choose
g(\cdot ) when detecting an attack targeting h(\cdot ).

The binary loss, on the other hand, does not capture the potentially different sensitivity
of each input. Certain inputs can be more vulnerable to adversarial attacks, and ensuring the
correctness of the mixing network on these inputs is more crucial.

To this end, we combine the above two components into a composite loss function, in-
centivizing the mixing network to select the standard classifier g(\cdot ) when appropriate, while
forcing it to remain conservative. The composite loss for each data-label pair (x, y) is

\ell \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{e}(\theta , (x, y, \widetilde \alpha )) = c\mathrm{C}\mathrm{E} \cdot \ell \mathrm{C}\mathrm{E}(h\alpha \theta (x + \delta ), y) + c\mathrm{B}\mathrm{C}\mathrm{E} \cdot \ell \mathrm{B}\mathrm{C}\mathrm{E}(\alpha \theta (x + \delta ), \widetilde \alpha )(4.2)

+ c\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d} \cdot \ell \mathrm{C}\mathrm{E}(h\alpha \theta (x + \delta ), y) \cdot \ell \mathrm{B}\mathrm{C}\mathrm{E}(\alpha \theta (x + \delta ), \widetilde \alpha ),

where the hyperparameters c\mathrm{C}\mathrm{E}, c\mathrm{B}\mathrm{C}\mathrm{E}, and c\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d} control the weights of the loss components.
Subsection SM3.2 in the supplementary material discusses how these hyperparameters affect
the performance of the trained mixing model.
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 803

5. Numerical experiments.

5.1. Robust neural network smoothing with a fixed strength. We first consider the
case where the smoothing strength \alpha is a fixed value. In this section, we focus on using
empirically robust base classifiers and consider the CIFAR-10 dataset. In subsection SM1.3
in the supplementary material, we present the certified robustness results when the robust
base model is based on RS, simultaneously instantiating Lemma 3.2 and Theorem 3.5. In
subsection SM3.3, we show that empirically robust models can also take advantage of our
theoretical analyses by estimating their Lipschitz constant.

5.1.1. \bfitalpha 's influence on mixed classifier robustness. We first analyze how the accuracy
of the mixed classifier changes with the mixing strength \alpha under various settings. Specifically,
we consider PGD20 attacks that target g(\cdot ) and h(\cdot ) individually (denoted as STD and ROB
attacks), in addition to the adaptive PGD20 attack generated using the end-to-end gradient
of h\alpha (\cdot ), denoted as the MIX attack. Note that the STD and ROB attacks, which share the
inspiration of [88], correspond to the “transfer attack” setting, a common black-box attack
strategy designed for defenses with unavailable or unreliable gradients. Note that the models
with the best transferability with the mixed classifier h\alpha (\cdot ) would likely be its base classifiers
g(\cdot ) and h(\cdot ), precisely corresponding to the STD and ROB attack settings.

We use a ResNet18 model trained on clean data as the standard base classifier g(\cdot ) and use
another ResNet18 trained on PGD20 data as the robust base classifier h(\cdot ). The test accuracy
corresponding to each \alpha value is presented in Figure 4. As \alpha increases, the clean accuracy
of h\alpha (\cdot ) converges from the clean accuracy of g(\cdot ) to the clean accuracy of h(\cdot ). In terms of
the attacked performance, when the attack targets g(\cdot ), the attacked accuracy increases with
\alpha . When the attack targets h(\cdot ), the attacked accuracy decreases with \alpha , showing that the
attack targeting h(\cdot ) becomes more benign when the mixed classifier emphasizes g(\cdot ). When
the attack targets h\alpha (\cdot ), the attacked accuracy increases with \alpha .

When \alpha is around 0.5, the MIX-attacked accuracy of h\alpha (\cdot ) quickly increases from near
zero to more than 30% (which is two-thirds of h(\cdot )’s attacked accuracy). This observation
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Figure 4. The performance of the mixed classifier h\alpha (\cdot ). ``STD attack,"" ``ROB attack,"" and ``MIX attack""
refer to the PGD20 attack generated using the gradient of g(\cdot ), h(\cdot ), and h\alpha (\cdot ), respectively, with \epsilon set to 8/255.
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804 Y. BAI, B. G. ANDERSON, A. KIM, AND S. SOJOUDI

precisely matches the theoretical intuition provided by Theorem 3.5. When \alpha is greater than
0.5, the clean accuracy gradually decreases at a much slower rate, leading to the noticeably
alleviated accuracy-robustness trade-off. Note that this improved trade-off is achieved without
any further training beyond the weights of g(\cdot ) and h(\cdot ). When \alpha is greater than 0.55, neither
STD attack nor ROB attack can reduce the accuracy of the mixed classifier below the end-
to-end gradient-based attack (MIX attack), indicating that the considered transfer attack is
weaker than gradient-based attack for practical \alpha values, and implying that the robustness of
h\alpha (\cdot ) does not rely on obfuscated gradients. In subsection 5.1.2, we will reveal that the source
of h\alpha (\cdot )’s robustness lies in h(\cdot )’s well-calibrated confidence properties.

5.1.2. The relationship between \bfith \bfitalpha (\cdot )'s robustness and \bfith (\cdot )'s confidence. Our the-
oretical analysis (Lemma 3.2) has highlighted the relationship between the mixed classifier
robustness and the robust base classifier h(\cdot )’s robust margin. For practical models, the
margin at a given radius can be estimated with the confidence gap between the predicted
and runner-up classes evaluated on strongly adversarial inputs, such as images returned from
PGD20 or AutoAttack. Moreover, the improved accuracy-robustness trade-off of the mixed
classifier, as evidenced by the difference in how the clean and the attacked accuracy change
with \alpha in Figure 4, can also be explained by the prediction confidence of h(\cdot ).

According to Table 1, the robust base classifier h(\cdot ) makes confident correct predictions
even when under attack (average robust margin is 0.768 evaluated with PGD20 and 0.774
with AutoAttack1). Moreover, the robust margin of h(\cdot ) follows a long-tail distribution.
Specifically, the median robust margin is 0.933 (same number when evaluated with PGD20 or
AutoAttack), much larger than the 0.768/0.774 average margin. Thus, most attacked inputs
correctly classified by h(\cdot ) are highly confident (i.e., robust with large margins), with only a
tiny portion suffering from small robust margins. As Lemma 3.2 suggests, such a property is
precisely what adaptive smoothing relies on. Intuitively, once \alpha becomes greater than 0.5 and
gives h(\cdot ) more authority over g(\cdot ), h(\cdot ) can use its high confidence to correct g(\cdot )’s mistakes
under attack.

On the other hand, h(\cdot ) is unconfident when it produces incorrect predictions on unattacked
clean data, with the top two classes’ output probabilities separated by merely 0.434. This
probability gap again forms a long-tail distribution (the median is 0.378 which is less than

Table 1
Average gap between the probabilities of the predicted class and the runner-up class. g(\cdot ) and h(\cdot ) are the

same ones used in Figure 4. The confidence difference highlighted by the bold numbers is crucial to the mitigated
accuracy-robustness trade-off of the mixed classifier.

Clean PGD20 AutoAttack
Accuracy \ding{51} Gap \ding{55} Gap Accuracy \ding{51} Gap \ding{55} Gap Accuracy \ding{51} Gap \ding{55} Gap

g(\cdot ) 95.28\% 0.982 0.698 0.10\% 0.602 0.998 0.00\%  - 0.986
h(\cdot ) 83.53\% 0.854 \bfzero .\bffour \bfthree \bffour 44.17\% \bfzero .\bfseven \bfsix \bfeight 0.635 40.75\% \bfzero .\bfseven \bfseven \bffour 0.553

\ding{51} Gap: The average gap between the confidences of the predicted class and the runner-up class among all
correctly predicted validation data.
\ding{55} Gap: The same quantity evaluated among all incorrectly predicted validation data.

1The calculation details the AutoAttacked confidence gap are presented in subsection SM4.2 of the supple-
mentary material.
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 805

the mean), confirming that h(\cdot ) is generally unconfident when mispredicting and rarely makes
confident incorrect predictions. Now, consider clean data that g(\cdot ) correctly classifies and h(\cdot )
mispredicts. Recall that we assume g(\cdot ) to be more accurate but less robust, so this scenario
should be common. Since g(\cdot ) is confident (average top two classes’ probability gap is 0.982)
and h(\cdot ) is usually unconfident, even when \alpha > 0.5 and g(\cdot ) has less authority than h(\cdot ) in the
mixture, g(\cdot ) can still correct some of the mistakes from h(\cdot ).

In summary, h(\cdot ) is confident when making correct predictions on attacked data, enjoying
the large robust margin required by Lemma 3.2. At the same time, h(\cdot ) is unconfident when
misclassifying clean data, and such a confidence property is the key source of the mixed
classifier’s improved accuracy-robustness trade-off. Additional analyses in subsection SM2.2
with alternative base models imply that multiple existing robust classifiers share the favorable
confidence property and thus help the mixed classifier improve the trade-off.

The standard nonrobust classifier g(\cdot ) often does not have this desirable property: even
though it is confident on clean data as are robust classifiers, it also makes highly confident
mistakes under attack. Note that this does not undermine the mixed classifier robustness,
since our formulation does not assume any robustness or smoothness from g(\cdot ).

5.1.3. Comparing the accuracy-robustness trade-off with existing methods. This sub-
section compares the accuracy-robustness trade-off of the mixed classifiers with existing base-
line methods that emphasize addressing this trade-off.

TRADES [90] is one of the most famous and popular methods to improve the accuracy-
robustness trade-off. Specifically, it trains robust models by minimizing the risk function

E(x,y)\sim \scrD 

\Bigl[ 
\ell \mathrm{C}\mathrm{E}(h(x), y) + \beta max

\| \delta \| \leq \epsilon 
\ell \mathrm{s}\mathrm{u}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}(h(x + \delta ), h(x))

\Bigr] 
,

where \beta \geq 0 is a trade-off parameter between the two loss components and \ell \mathrm{s}\mathrm{u}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e} is the
“surrogate loss” that promotes robustness. The larger \beta is, the more robust the trained
model becomes at the expense of clean accuracy. By adjusting \beta , we can adjust the accuracy-
robustness trade-off of TRADES similarly to adjusting \alpha in our mixed classifier.

The authors of [90] reported that \beta = 6 optimized the adversarial robustness and released
the corresponding model. We use this model and train three additional models with \beta set to
0, 0.1, and 0.3. Here, \beta = 0 is standard training, and the other two numbers were chosen so
that the model accuracy spreads relatively uniformly between \beta = 0 and \beta = 6. All TRADES
models use the WideResNet-34-10 architecture as in [90]. For a fair comparison, we build
mixed classifiers using the TRADES model trained with \beta = 0 as g(\cdot ) and the \beta = 6 model
as h(\cdot ). We compare the relationship between the PGD20 accuracy and the clean accuracy in
Figure 5. Note that the trade-off curve of the mixed classifier intercepts the TRADES curve
at the two ends (since the models are exactly the same at the two ends) and is significantly
above the TRADES in the middle, indicating that the accuracy-robustness trade-off of the
mixed classifier is much more benign than that of TRADES.

IAAT [18] and Properly Learned Smoothening (PLS) [25] are two additional high-perfor-
mance methods for alleviating the accuracy-robustness trade-off. Specifically, IAAT uses
input-dependent attack budgets during adversarial training, while PLS performs stochastic
weight averaging and smooths the logits via knowledge distillation and self-training. IAAT and
PLS do not explicitly allow for adjusting between clean accuracy and adversarial robustness.
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Figure 5. An accuracy-robustness trade-off comparison between our mixed classifier h\alpha (\cdot ), denoted as
``Mixed,"" and TRADES, IAAT, and PLS models. TRADES allows for sweeping between accuracy and ro-
bustness, whereas IAAT and PLS are nonadjustable.

We implement IAAT on the same WideResNet-34-10 model architecture and add the
result to Figure 5. For PLS, we use the accuracy reported in [25]. It can be observed that
the TRADES-based mixed classifier achieves a similar accuracy-robustness trade-off as IAAT
and PLS, while allowing for sweeping between accuracy and robustness conveniently unlike
previous models. Note that for TRADES, adjusting the trade-off requires training a new
model, which is costly. Meanwhile, IAAT and PLS do not allow for explicitly adjusting the
trade-off altogether (hence shown as single points in Figure 5). In contrast, for our mixing
classifier, the trade-off can be adjusted at inference time by simply tuning \alpha and does not
require retraining. Thus, our method is much more flexible and efficient while achieving a
benign Pareto curve.

Even though the clean-robust accuracy curve of adaptive smoothing overlaps with that of
IAAT at a single point (89.19% clean, 53.73% robust), adaptive smoothing still improves the
overall accuracy-robustness trade-off. Specifically, on top of IAAT’s result, adaptive smoothing
can further reduce the error rate by 31% while only sacrificing 6% of the robustness by
achieving \sim 50%/ \sim 92.5% robust/clean accuracy. In scenarios that are more sensitive to
clean data performance, such a result makes adaptive smoothing more advantageous than
IAAT, whose level of clean accuracy improvement is relatively limited.

Moreover, as discussed in section 1 and confirmed in subsection 5.2.2, our mixed classifier
can easily incorporate existing innovations that improve clean accuracy or adversarial robust-
ness, whereas fusing these innovations into training-based methods such as TRADES, IAAT,
and PLS can be much more complicated. Also note that Figure 5 considers a constant \alpha 
value, and adapting \alpha for different input values further alleviates the trade-off. To provide
experimental evidence, in Figure SM4 in subsection SM3.1, we add the mixed classifier results
achieved with better base classifiers to the trade-off curve.

5.2. Robust neural network smoothing with adaptive strength. Having validated the
effectiveness of the mixing formulation described in (3.4), we are now ready to incorporate the
mixing network for adaptive smoothing strength. As in section 4, we denote the parameterized
mixing network by \alpha \theta (\cdot ), and slightly abuse notation by denoting the composite classifier with
adaptive smoothing strength given by \alpha \theta (\cdot ) by h\alpha \theta (\cdot ), which is defined by h\alpha \theta (x) = h\alpha \theta (x)(x).
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ADAPTIVE SMOOTHING HARMONIZES ACCURACY AND ROBUSTNESS 807

CIFAR-10 and CIFAR-100 are two of the most universal robustness evaluation datasets,
and thus we use them to benchmark adaptive smoothing. We consider \ell \infty attacks and use
the AdamW optimizer [50] for training the mixing network \alpha \theta (\cdot ). The training data for \alpha \theta (\cdot )
include clean images and the corresponding types of attacked images (attack settings A, B, and
C presented in subsection 4.2). For setting C (AutoAttack), the training data only includes
targeted and untargeted APGD attacks, with the other two AutoAttack components, FAB and
Square, excluded during training in the interest of efficiency but included for evaluation. To
alleviate overfitting, when generating training-time attacks, we randomize the attack radius
and the number of steps, and add a randomly weighted binary cross-entropy component
that aims to decrease the mixing network output to the attack objective (thereby tricking it
into favoring g(\cdot )). Additionally, subsection SM4.1 discusses the details of implementing the
architecture in Figure 3 for the ResNet base classifiers used in our experiments. Subsection
SM3.2 conducts an ablation study on the hyperparameters in the composite loss function
(4.2).

5.2.1. Ablation studies regarding attack settings. We first use smaller base classifiers to
analyze the behavior of adaptive smoothing by exploring various training and attack settings.
The performance of the base models and the assembled mixed classifier are summarized in
Table 2, where each column represents the performance of one mixed classifier. The results
show that the adaptive smoothing model can defend against the attacks on which the un-
derlying mixing network is trained. Specifically, for the attack setting A (gray-box PGD),
h\alpha \theta (\cdot ) is able to achieve the same level of PGD20-attacked accuracy as h(\cdot ) while retaining
a similar level of clean accuracy as g(\cdot ). For the setting B (white-box PGD), the attack is
allowed to follow the gradient path provided by \alpha \theta (\cdot ) and deliberately evade the part of the
adversarial input space recognized by \alpha \theta (\cdot ). While the training task becomes more challeng-
ing, the improvement in the accuracy-robustness trade-off is still substantial. Furthermore,
the composite model can generalize to examples generated via the stronger AutoAttack. For
the setting C (AutoAttack), the difficulty of the training problem further escalates. While the
performance of h\alpha \theta (\cdot ) on clean data slightly decreases, the mixing network can offer a more
vigorous defense against AutoAttack data, still improving the accuracy-robustness trade-off.

Table 2
CIFAR-10 results of adaptive smoothing models trained with three different settings.

CIFAR-10 base classifier performances

Model Architecture Clean PGD20 AutoAttack

g(·) (accurate) ResNet-18 (standard non-robust training) 95.28% 0.12% 0.00%
h(·) (robust) WideResNet-34-10 (TRADES model [90]) 84.92% 57.16% 53.09%

CIFAR-10 adaptive smoothing mixed classifier hαθ (·) performance

Training setting \ Eval data Clean A B C D (adaptive AutoAttack)

A (gray-box PGD20) 92.05% 57.22% 56.63% 40.04% 39.85%
B (white-box PGD20) 92.07% 57.25% 57.09% 40.02% 39.70%
C (white-box AutoAttack) 91.51% 56.30% 56.29% 42.78% 42.66%
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Table 3
CIFAR-100 results of adaptive smoothing models trained with the three settings.

CIFAR-100 base classifier performances

Model Architecture Clean PGD20 AutoAttack

g(·) (accurate) ResNet-152 (based on BiT [52]) 91.38% 0.14% 0.00%
h(·) (robust) WideResNet-70-16 (from [40]) 69.17% 40.86% 36.98%

CIFAR-100 adaptive smoothing mixed classifier hαθ (·) performance

Training setting \ Eval data Clean A B C D (adaptive AutoAttack)

A (gray-box PGD20) 83.99% 40.04% 30.59% 23.54% 23.78%
B (white-box PGD20) 83.96% 39.80% 34.48% 26.37% 26.17%
C (white-box AutoAttack) 80.90% 39.26% 38.92% 32.94% 32.80%

Table 3 repeats the above analyses on the CIFAR-100 dataset. The results confirm that
adaptive smoothing achieves even more significant improvements on the CIFAR-100 dataset.
Notably, even for the most challenging attack setting C, h\alpha \theta (\cdot ) correctly classifies 1173 ad-
ditional clean images compared with h(\cdot ) (cutting the error rate by a third) while making
only 404 additional incorrect predictions on AutoAttacked inputs (increasing the error rate
by merely 6.4 relative percent). Such results show that \alpha \theta (\cdot ) is capable of approximating a
robust high-performance mixing network when trained with sufficiently diverse attacked data.
The fact that h\alpha \theta (\cdot ) combines the clean accuracy of g(\cdot ) and the robustness of h(\cdot ) highlights
that our method significantly improves the accuracy-robustness trade-off.

5.2.2. Comparisons against existing SOTA methods. In this section, we use Table 4
to show that when using SOTA base classifiers, adaptive smoothing noticeably improves the
accuracy-robustness trade-off over existing methods.

Since the literature has regarded AutoAttack [31] as one of the most reliable robustness
evaluation methods (weaker attacks such as PGD are known to be circumventable), we select
AutoAttack-evaluated robust models as baselines. We highlight that these baseline models
should not be treated as competitors, since advancements in building robust classifiers can be
incorporated into our framework as h(\cdot ), helping adaptive smoothing perform even better.

For the accurate base classifier g(\cdot ), we fine-tune the BiT ResNet-152 checkpoint (from
[51], pretrained on ImageNet-21k) on CIFAR-10 or CIFAR-100. Following the recipe from [51],
our CIFAR-10 model achieves a 98.50% clean accuracy and our CIFAR-100 model achieves
91.38%.

For CIFAR-10, we select the robust model checkpoint released in [86] as the robust base
classifier h(\cdot ). Compared with h(\cdot ), adaptive smoothing retains 96.3 (relative) percent of the
robust accuracy while reducing the clean data error rate by 29.3 (relative) percent. Among
all models available on RobustBench as of this paper’s submission, our method achieves the
third highest AutoAttacked accuracy, behind only [86] (used as h(\cdot ) in our model) and [49]
(for which AutoAttack is unreliable and the best-known attacked accuracy is lower than
ours). Meanwhile, the clean accuracy of our mixed classifier is higher than all listed models
with nontrivial \ell \infty robustness and is even higher than the listed nonrobust model that uses
standard training.
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Table 4
Clean and AutoAttack (AA) accuracy of adaptive smoothing (AS) compared with the reported accuracy of

previous models. AS clearly improves the accuracy-robustness trade-off.

CIFAR-10

Method Clean AA

AS (adaptive smoothing, ours) 95.23% 68.06%

SODEF+TRADES [50] 93.73% 71.28% †

Diffusion (EDM)+TRADES [87] 93.25% 70.69%
Diffusion (DDPM)+TRADES [74] 92.23% 66.58%
TRADES XCiT-L12 [33, 6] 91.73% 57.58%
Unlabeled data+TRADES [40] 91.10% 65.88%
TRADES [40] 85.29% 57.20% 90 92 94 96 98

Clean Accuracy (%)

0

30

60

65

70

Ro
bu

st
 A

cc
ur

ac
y 

(%
)

Previous Robust Models
Standard Model
AS (ours)

: Uses “EDM + TRADES” [87] as the robust base model h(·).
†: AutoAttack raises the “potentially unreliable” flag (explained at the end of  subsection 5.2.2), and

adaptive attack reduces the attacked accuracy to 64.20%. AutoAttack does not raise this flag for
our models.

CIFAR-100

Method Clean AA

AS (adaptive smoothing, ours) 85.21% 38.72%
AS (adaptive smoothing, ours) 80.18% 35.15%

Diffusion (EDM)+TRADES [87] 75.22% 42.67%
Unlabeled data+TRADES [40] 69.17% 36.98%
TRADES XCiT-L12 [33, 6] 70.76% 35.08%
Diffusion (DDPM)+TRADES [74] 63.56% 34.64%
SCORE Loss AT [69] 65.56% 33.05%
Diffusion (DDPM)+AT [78] 65.93% 31.15%
TRADES [40] 60.86% 30.03%

65 70 75 80 85 90
Clean Accuracy (%)

0

30

35

40

Ro
bu

st
 A

cc
ur

ac
y 

(%
)

Previous Robust Models
Standard Model
AS (ours)

: Uses “EDM+TRADES” [87] as the robust base model h(·).
: Uses “Unlabeled data+TRADES” [40] as the robust base model h( ).

While the above results demonstrate reconciled accuracy and robustness, the clean accu-
racy improvement over existing works may not seem highly prominent. Note that our method
is still highly effective in this setting, but its efficacy is not fully reflected in the numbers. This
is because SOTA robust base classifiers are already highly accurate on the easier CIFAR-10
dataset, almost matching standard models’ clean accuracy [73, 38, 39], leaving not much room
for improvements. However, the accuracy-robustness trade-off remains highly penalizing for
more challenging tasks such as CIFAR-100, for which existing robust models suffer significant
accuracy degradation. As existing methods for improving standard model accuracy may not
readily extend to robust ones, training-based trade-off alleviation struggles on harder tasks,
making it particularly advantageous to mix already-trained classifiers via adaptive smoothing.
We now support this claim with more significant improvements on CIFAR-100.

For CIFAR-100, we consider two robust base models and build two adaptive smoothing
mixed classifiers. Compared with their corresponding robust base models, both mixed clas-
sifiers improve the clean accuracy by ten percentage points while only losing four points in
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AutoAttacked accuracy. As of the submission of this paper, the mixed classifier whose robust
base model is from [86] achieved an AutoAttacked accuracy better than any other methods on
RobustBench [29], except [86] itself. Simultaneously, this mixed model offers a clean accuracy
improvement of ten percentage points over any other listed models. These results confirm
that adaptive smoothing significantly alleviates the accuracy-robustness trade-off.

We also report that the SA component of AutoAttack, which performs gradient-free black-
box attacks on images that gradient-based attack methods fail to perturb, only changes very
few predictions. Specifically, AutoAttack will raise a “potentially unreliable” flag if SA further
reduces the accuracy by at least 0.2 percentage points. This flag is not thrown for our models in
Table 4, indicating that the mixed classifiers’ robustness is not a result of gradient obfuscation.
Thus, gradient-based attacks in AutoAttack sufficiently evaluate our models.

6. Conclusions. This paper proposes “adaptive smoothing”, a flexible framework that
leverages the mixture of the output probabilities from an accurate model and a robust model
to mitigate the accuracy-robustness trade-off of neural classifiers. We use theoretical and
empirical observations to motivate our design, and mathematically prove that the resulting
mixed classifier can inherit the robustness of the robust base model under realistic assump-
tions. We then adapt an adversarial input detector into a (deterministic) mixing network,
further improving the accuracy-robustness trade-off. Solid empirical results confirm that our
method can simultaneously benefit from the high accuracy of modern pretrained standard
(nonrobust) models and the robustness achieved via SOTA robust classification methods.

Because our theoretical studies demonstrate the feasibility of leveraging the mixing net-
work to eliminate the accuracy-robustness trade-off, future advancements in adversary detec-
tion can further reconcile this trade-off via our framework. Moreover, the proposed method
conveniently extends to various robust base models and attack types/budgets. Thus, this
work paves the way for future research to focus on accuracy or robustness without sacrificing
the other.
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