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Abstract

Vector Quantization (VQ) is a well-known technique in deep learning for extracting informative
discrete latent representations. VQ-embedded models have shown impressive results in a range
of applications including image and speech generation. VQ operates as a parametric K-means
algorithm that quantizes inputs using a single codebook vector in the forward pass. While powerful,
this technique faces practical challenges including codebook collapse, non-differentiability and
lossy compression. To mitigate the aforementioned issues, we propose Soft Convex Quantization
(SCQ) as a direct substitute for VQ. SCQ works like a differentiable convex optimization (DCO)
layer: in the forward pass, we solve for the optimal convex combination of codebook vectors
to quantize the inputs. In the backward pass, we leverage differentiability through the optimality
conditions of the forward solution. We then introduce a scalable relaxation of the SCQ optimization
and demonstrate its efficacy on the CIFAR-10, GTSRB and LSUN datasets. We train powerful SCQ
autoencoder models that significantly outperform matched VQ architectures, observing an order of
magnitude better image reconstruction and codebook usage with comparable quantization runtime.
Keywords: Differentiable convex optimization, vector quantization, representation learning

1. Introduction

Over the past years, architectural innovations and computational advances have both contributed
to the spectacular progress in deep generative modeling (Razavi et al., 2019; Esser et al., 2020;
Rombach et al., 2021). Key applications driving this field include image (van den Oord et al., 2017;
Esser et al., 2020; Rombach et al., 2021) and speech (Dhariwal et al., 2020) synthesis.
State-of-the-art generative models couple autoencoder models for compression with autoregres-
sive (AR) or diffusion models for generation (van den Oord et al., 2017; Chen et al., 2017; Esser
et al., 2020; Rombach et al., 2021; Gu et al., 2022). The autoencoder models are trained in the
first stage of the generation pipeline and aim to extract compressed yet rich latent representations
from the inputs. The AR or diffusion models are trained in the second stage using latents obtained
from the pre-trained autoencoder and are used for generation. Throughout this work, we refer to the
autoencoder models as first-stage models while the actual generative models trained on the latent
space are referred to as second-stage models. Therefore, the effectiveness of the entire genera-
tion approach hinges upon the extraction of informative latent codes within the first stage. One of
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the pervasive means of extracting such latent codes is by embedding a vector quantization (VQ)
bottleneck (van den Oord et al., 2017; Razavi et al., 2019) within the autoencoder models.

Motivated by the domain of lossy compression and techniques such as JPEG (Wallace, 1992),
VQ is a method to characterize a discrete latent space. VQ operates as a parametric online K-
means algorithm: it quantizes individual input features with the “closest” learned codebook vector.
Prior to VQ, the latent space of variational autoencoders (VAEs) was continuous and regularized
to approximate a normal distribution (Kingma et al., 2014; Kingma and Welling, 2019). The VQ
method was introduced to learn a robust discrete latent space that doesn’t suffer the posterior col-
lapse drawbacks faced by VAEs regularized by Kullback-Leibler distance (van den Oord et al.,
2017). Having a discrete latent space is also supported by the observation that many real-world
objects are in fact discrete: images appear in categories and text is represented as a set of tokens.
An additional benefit of VQ in the context of generation is that it accommodates learning complex
latent categorical priors. Due to these benefits, VQ underpins several image generation techniques
including vector-quantized variational autoencoders (VQVAESs) (van den Oord et al., 2017; Razavi
et al., 2019), vector-quantized generative adversarial networks (VQGANSs) (Esser et al., 2020), and
vector-quantized diffusion (VQ Diffusion) (Gu et al., 2022). Notably it also has application in text-
to-image (Ramesh et al., 2021) and speech (Dhariwal et al., 2020) generation.

While VQ has been applied successfully across many generation tasks, there still exist short-
comings in the method. One practical issue pertains to backpropagation when learning the VQ
model: the discretization step in VQ is non-differentiable. Currently, this is overcome by approxi-
mating the gradient with the straight-through estimator (STE) (Bengio et al., 2013). The VQ method
is also plagued by the “codebook collapse” problem, where only a few codebook vectors get trained
due to a “rich getting richer” phenomena (Kaiser et al., 2018). Here codebook vectors that lie closer
to the distribution of encoder outputs get stronger training signals. This ultimately leads to only a
few codebook vectors being used in the quantization process, which impairs the overall learning
process. Another limitation with VQ is that inputs are quantized with exactly one (nearest) code-
book vector (van den Oord et al., 2017). This process is inherently lossy and puts heavy burden on
learning rich quantization codebooks. Several works have aimed at mitigating the aforementioned
issues with heuristics (Jang et al., 2017; Maddison et al., 2017; Zeghidour et al., 2021; Dhariwal
etal., 2020; Huh et al., 2023; Lee et al., 2022). While the recent works have demonstrated improve-
ments over the original VQ implementation, they are unable to fully attain the desired behavior:
exact backpropagation through a quantization step that leverages the full capacity of the codebook.

In view of the shortcomings of existing VQ techniques, we propose a technique called soft con-
vex quantization (SCQ). Rather than discretizing encoder embeddings with exactly one codebook
vector, SCQ solves a convex optimization in the forward pass to represent each embedding as a
convex combination of codebook vectors. Thus, any encoder embedding that lies within the convex
hull of the quantization codebook is exactly representable. Inspired by the notion of differentiable
convex optimization (DCO) (Amos and Kolter, 2017; Agrawal et al., 2019), this approach naturally
lends itself to effectively backpropagate through the solution of SCQ with respect to the entire quan-
tization codebook. By the means of this implicit differentiation, stronger training signal is conveyed
to all codebook vectors: this has the effect of mitigating the codebook collapse issue.

We then introduce a scalable relaxation to SCQ amenable to practical codebook sizes and
demonstrate its efficacy with extensive experiments: training 1) VQVAE-type models on CIFAR-10
(Krizhevsky, 2009) and German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.,
2012) datasets, and 2) VQGAN-type models (Esser et al., 2020) on higher-resolution LSUN (Yu
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et al., 2015) datasets. SCQ outperforms state-of-the-art VQ variants on numerous metrics with
faster convergence. More specifically, SCQ obtains up to an order of magnitude improvement in
image reconstruction and codebook usage compared to VQ-based models on the considered datasets
while retaining a comparable quantization runtime. We also highlight SCQ’s improved performance
over VQ in low-resolution latent compression, which has the potential of easing the computation
required for downstream latent generation.

2. Background

2.1. Vector Quantization Networks

Vector quantization (VQ) has risen to prominence with its use in generative modeling (van den Oord
et al., 2017; Razavi et al., 2019; Rombach et al., 2021). At the core of the VQ layer is a codebook,
i.e. aset of K latent vectors C := {¢; }szl used for quantization. In the context of generative
modeling, an encoder network FE(-) with parameters ¢ maps input z into a lower dimensional
space to vector z, = F(x). VQ replaces z. with the closest (distance-wise) vector in the codebook:

2g = Q (2¢) = ¢, where k = argmin ||z, — ¢, (1)
1<G<K
and Q(-) is the quantization function. The quantized vectors z, are then fed into a decoder network
Dy(-) with parameters ¢, which aims to reconstruct the input z. Akin to standard training, the
overarching model aims to minimize a task specific empirical risk:

i By [Luask (D(Q(E(2))), 7)) @)
where L5 could be a reconstruction (van den Oord et al., 2017; Razavi et al., 2019) or perceptual
loss (Esser et al., 2020; Rombach et al., 2021) and Py, is the underlying data distribution. Train-
ing is performed using standard first-order methods via backpropagation (Rumelhart et al., 1986).
As differentiation through the discretization step is ill-posed, the straight-through-estimator (STE)
(Bengio et al., 2013) is used as a gradient approximation.

To ensure an accurate STE, a commitment loss is introduced to facilitate learning the codebook:

Ecommit(Ezzba C) = (1 - B)d(sg[ze}a zq) + Bd<ze7 Sg[zq]% (3)

where d(-, -) is a distance metric, 8 > 0 is a hyperparameter and sg[-] is the stop gradient operator.
The first term brings codebook nearer to the encoder embeddings, while the second term optimizes
over the encoder weights and aims to prevent fluctuations between the encoder outputs and its
discretization. Combining L,k and Leommit yields a consolidated training optimization:

mi% Ezrv??dist [['task(DG(Q(Ed)(x)))a $) + »Ccommit(E¢>a C)] . 4

"y

A concrete example of this framework is the loss used to train the VQVAE architecture (van den
Oord et al., 2017; Razavi et al., 2019):

LvQ(By, Dg,C) = |z — 2[|3 + (1 — B)Isglze] — 2qll5 + Bllze — sgl2q] 13- ®)

where 2 := Dy(Q(Ey(x))) is the reconstruction.
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2.2. Vector Quantization Challenges

Gradient Approximation. As mentioned in 2.1, differentiation through the discretization step is
required to backpropagate through a VQ-embedded network. Taking the true gradient through the
discretization would yield zero gradient signal and thus deter any useful model training potential.
To this end, the STE is used to approximate the gradient. From the perspective of the discretization
function, the upstream gradient is directly mapped to the downstream gradient during backpropa-
gation, i.e. the non-differentiable discretization step is effectively treated as an identity map. While
prior work has shown how a well-chosen coarse STE is positively correlated with the true gradi-
ent (Yin et al., 2019), further effort has been put into alleviating the non-differentiability issue. In
Jang et al. (2017); Maddison et al. (2017), the Gumbel Softmax reparameterization method is in-
troduced. This method reparameterizes a categorical distribution to facilitate efficient generation of
samples from the underlying distribution. Let a categorical distribution over K discrete values have
associated probabilities 7; for ¢ € [K]. Then we can sample via the reparameterization

sample ~ argmax{G; + logm;}, 6)
i

where G; ~ Gumbel(0, 1) are samples from the Gumbel distribution. Since the arg max operator
is not differentiable, the method approximates it with a Softmax operator during backpropagation.

Codebook Collapse. In the context of VQ, codebook collapse refers to the phenomenon where
only a small fraction of codebook vectors are used in the quantization process (Kaiser et al., 2018).
While the underlying cause is not fully understood, the intuition behind this behavior is that code-
book vectors that lie nearer to the encoder embedding distribution receive more signal during train-
ing and thus get better updates. This causes an increasing divergence in distribution between em-
beddings and underused codebook vectors. This misalignment is referred to as an internal codebook
covariate shift (Huh et al., 2023). Codebook collapse is an undesired artefact that impairs the over-
arching model’s performance as the full codebook capacity is not used. Thus, there have been many
concerted efforts to mitigate this issue. One line of work targets a codebook reset approach: replace
the dead codebook vectors with a randomly sampled replacement vector (Zeghidour et al., 2021;
Dhariwal et al., 2020). This approach requires careful tuning of iterations before the replacement
policy is executed. Another direction of work aims to maintain stochasticity in quantization during
the training process (Kaiser et al., 2018; Takida et al., 2022). This body of work is based on obser-
vations that the quantization is stochastic at the beginning of training and gradually convergences
to deterministic quantization (Takida et al., 2022). In (Huh et al., 2023), authors introduce an affine
reparameterization of the codebook vectors to minimize the divergence of the unused codebook
vectors and embedding distributions.

Lossy quantization. As mentioned previously, VQ-embedded networks are trained with the
STE that assume the underlying quantization function behaves like an identity map. Therefore, ef-
fective training relies on having a good quantization function that preserves as much information
as possible of the encoder embeddings. Given an encoder embedding z., the quantized output can
be represented as z; = z. + € where € is a measure of the residual error. Since STE assumes the
quantization is an identity map, the underlying assumption is that € = 0. In practice, however, the
quantization process with a finite codebook is inherently lossy and we have ¢ > 0. Therefore, the
underlying quantization function should make the quantization error as small as possible to guar-
antee loss minimization with the STE. For large residuals, no loss minimization guarantees can
be made for the STE. Recent work has proposed an alternating optimization scheme that aims to
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reduce the quantization error for VQ (Huh et al., 2023). In (Lee et al., 2022), authors introduce
residual quantization (RQ) which performs VQ at multiple depths to recursively reduce the quanti-
zation residual. While RQ has shown improved empirical performance, it is still plagued with the
same core issues as VQ and trades-off additional computational demands for executing VQ multiple
times within the same forward pass.

2.3. Differentiable Convex Optimization (DCQO) Layers

DCO is an instantiation of implicit layers (Amos and Kolter, 2017) that enables the incorporation of
constrained convex optimization within deep learning architectures. The notion of DCO layers was
introduced in Amos and Kolter (2017) as quadratic progamming (QP) layers with the name OptNet.
QP layers were formalized as

Zpiq i=argmin 2! R(z)z + 2 ' r(z,)
z€R™

st. A(z,)z + B(z,) <0,
A(z)z + B(z,) =0 @)

where z € R" is the optimization variable and layer output, while R(z,), r(2;), A(2;), B(z),
A(z,), B(z,) are optimizable and differentiable functions of the layer input z,. Such layers can
be naturally embedded within a deep learning architecture and the corresponding parameters can
be learned using the standard end-to-end gradient-based training approach prevalent in practice.
Differentiation with respect to the optimization parameters in equation 7 is achieved via implicit
differentiation through the Karush-Kuhn-Tucker (KKT) optimality conditions (Amos and Kolter,
2017; Amos et al., 2017). On the computational side, Amos and Kolter (2017) develop custom

interior-point batch solvers for OptNet layers that are able to leverage GPU compute efficiency.

3. Methodology

In this section, we introduce the soft convex quantization (SCQ) method as an instantiation of a
DCO. SCQ acts as an improved drop-in replacement for VQ that addresses many of the challenges
introduced in Section 2.2.

3.1. Soft Convex Quantization with Differentiable Convex Optimization

SCQ leverages convex optimization to perform soft quantization. As mentioned previously, SCQ
can be treated as a direct substitute for VQ and its variants. As such, we introduce SCQ as a bot-
tleneck layer within an autoencoder architecture. The method is best described by decomposing its
workings into two phases: the forward pass and the backward pass. The forward pass is summa-
rized in Algorithm 1 and solves a convex optimization to perform soft quantization. The backward
pass leverages differentiability through the KKT optimality conditions to compute the gradient with
respect to the quantization codebook.

Forward pass. Let X € RYXF>HXW denote an input (e.g. of images) with spatial dimension
H x W, depth (e.g. number of channels) F' and batch size N. The encoder Ey(-) takes X and re-

turns Z, := Eg(X) € RN xFxHXW where F is the embedding dimension and H x W is the latent
resolution. Z, is the input to the SCQ. The SCQ method first runs VQ on Z, and stores the resulting
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Algorithm 1 Soft Convex Quantization Algorithm

Design choices: Quantization regularization parameter A > 0, embedding dimension F, codebook size K

Input: Encodings Z. € RN X Fx HxW

Return: Convex quantizations Z, € RV XFxHxW

Parameters: Randomly initialize codebook C' € RF XK

begin forward -

1. Zgattcncd c REXNHW . Reshape(Ze)

2. P c REXNHW VQ(detach(Zga“e“ed))

3. P* = argmmPeRKxNHW || Zlawened _ CP|2, + A\|P—P|% : P>0,1.P=1
4. Zﬁattened c RFXNHW «— CP*

5. Zq c RNXFXHXW — Reshape(Zgatte"ed)
end

NHW

one-hot encoding as P e RK xNHW The codebook used to obtain P is the same codebook used
throughout the SCQ process; P represents the output of the VQ method given the SCQ codebook. P
is detached from the computational graph and treated as a constant, i.e. no backpropagation through
P. Then Z, is passed into a DCO of the form

P* = argmin HZgattened - CPH%? + AP — ﬁH%

PeREXNHW

st. P>0,
T —_— ~ o~
where ZTattened ¢ REXNHW g 5 flattened representation of Z,, C' € RF*X represents a randomly

initialized codebook matrix of K latent vectors, A > 0 is a regularization parameter and P €

REXNHW i a matrix we optimize over. SCQ solves convex optimization 8 in the forward pass: it

aims to find weights P* that best reconstruct the columns of Z1ared with a convex combination
of codebook vectors. The regularization term in the objective biases the SCQ solution towards the
one-hot VQ solution, i.e. we observe that lim)_,., P* = P. This shows that VQ is a particular
instantiation of SCQ for A — oco. When keeping A finite, we obtain a balance between the one-
hot VQ solution compatible with downstream autoregressive generative processes and the improved
backpropagation, codebook collapse prevention capabilities of the DCO.

The constraints in optimization 8 enforce that the columns of P lie on the unit simplex, i.e. they
contain convex weights. The codebook matrix C' is a parameter of the DCO and is updated with
all model parameters to minimize the training loss. It is randomly initialized before training and is
treated as a constant during the forward pass. The SCQ output is given by Zga“e“ed := C'P*. This
is resolved to the original embedding shape and passed on to the decoder model.

Backward pass. During the forward pass SCQ runs VQ and then solves optimization 8 to
find a sparse, soft convex quantization of Z.. The underlying layer parameters C are treated as
constants during the forward pass. C' is updated with each backward pass during training. As C'is
a parameter of a convex optimization, DCO enables backpropagation with respect to C' via implicit
differentiation through the KKT conditions (Agrawal et al., 2019).

Improved backpropagation and codebook coverage with SCQ. During the forward pass of
SCQ, multiple codebook vectors are used to perform soft quantization on Z.. Optimization 8 selects
a convex combination of codebook vectors for each embedding in Z,. Therefore, SCQ is inclined to
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better utilize the codebook capacity over VQ where individual codebook vectors are used for each
embedding. Owing to the DCO structure of SCQ, we can also backpropagate effectively through
this soft quantization step, i.e. training signal is distributed across the entire codebook.

Improved quantization with SCQ. We consider how the quantization error is incurred for VQ:
the error is measured between the input feature and the “closest” codebook vector. For SCQ, any
individual input feature can be exactly reconstructed if it lies within the convex hull of the set of
codebook vectors. This is a consequence of the formulation of optimization 8. Thus, for any input
feature that does not coincide exactly with a codebook vector and lies within the convex hull of
codebook vectors, we incur no quantization error in SCQ whereas we incur nonzero error in the VQ
method. For input features outside the convex hull of the set of codebook vectors, we again incur
smaller error for SCQ as we measure the error with respect to the projection onto the convex hull.
This intuitively suggests SCQ’s propensity for low quantization errors during the forward pass as
compared to VQ variants that are inherently more lossy.

3.2. Scalable Soft Convex Quantization

As proposed in (Amos and Kolter, 2017), optimization 8 can be solved using interior-point meth-
ods which give the gradients for free as a by-product. Existing software such as CVXPYLayers
(Agrawal et al., 2019) is readily available to implement such optimizations. Solving 8 using such
second-order methods incurs a cubic computational cost of O((N K HW)?). However, for practical
batch sizes of N ~ 100, codebook sizes K ~ 100 and latent resolutions H = W = 50, the cubic
complexity of solving 8 is intractable.

To this end we propose a scalable relaxation of the optimization 8 that remains performant
whilst becoming efficient. More specifically, we approximate 8 by decoupling the objective and
constraints. We propose first solving the regularized least-squares objective with a linear system
solver and then projecting the solution onto the unit simplex. With this approximation, the overall
complexity decreases from O((NKHW)3) for the DCO implementation to O(K?). In practice
(K = 103) this linear solve adds negligible overhead to the wall-clock time as compared to standard
VQ. This procedure is outlined in our revised scalable SCQ method shown in Algorithm 2. The
projection onto the unit simplex is carried out by iterating between projecting onto the nonnegative
orthant and the appropriate hyperplane.

4. Experiments

This section examines the efficacy of SCQ by training autoencoder models in the context of gen-
erative modeling. Throughout this section we consider a variety of datasets including CIFAR-10
(Krizhevsky, 2009), the German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al.,
2012) and higher-dimensional LSUN (Yu et al., 2015) Church and Classroom. We run all experi-
ments on 48GB RTX 8000 GPUs. Details on hyperparameter configurations and convergence plots
can be found in our extended online technical report (Gautam et al., 2023).

4.1. Training VQVAE-Type Models

We consider the task of training VQVAE-type autoencoder models with different quantization bot-
tlenecks on CIFAR-10 (Krizhevsky, 2009) and GTSRB (Stallkamp et al., 2012). This autoencoder
architecture is still used as a first stage within state-of-the-art image generation approaches such as
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Algorithm 2 Practical Soft Convex Quantization Algorithm

Design choices: Regularization parameter A > 0, number of projection steps m, embedding dimension F, codebook size K

Input: Encodings Z, € RN XFXHxW

Return: Convex quantizations Z, € RV XFxHxW

Parameters: Randomly initialize codebook C' € RF XK

begin forward
1. Zg:mened c RFXNHW «— Reshape(Ze)
2. }3 c RKXNI:IW P VQ(Zgallcncd)
3. P e REXNHW o 1inearsystemSolver(CTC + A, CT Zftened 4 5\ p)
for i € [m] do
4. P <+ max(0, P)
5. Pyt Py — =0Ty vk e INAW)
-k Lk K K>
end for
6. P* + P B o
7. Zgattened c RFXNHW «— CP*

8. Zq c RNxeHxW «— ReShape(Zga“e“ed)
end

VQ Diffusion (Gu et al., 2022). The autoencoder structure is depicted in Gautam et al. (2023) and
is trained with the standard VQ loss 5.

We compare the performance of SCQ against existing methods VQVAE (van den Oord et al.,
2017), Gumbel-VQVAE (Jang et al., 2017), RQVAE (Lee et al., 2022), VQVAE with replacement
(Zeghidour et al., 2021; Dhariwal et al., 2020), VQVAE with affine codebook transformation and al-
ternating optimization (Huh et al., 2023). For reference, we also include results for a non-quantized
autoencoder; this model is not compatible with downstream generative applications due to the miss-
ing latent structure provided by a quantization bottleneck. The autoencoder and quantization hyper-
parameters used for each dataset are detailed in Gautam et al. (2023). The performance is measured
using the reconstruction mean square error (MSE) and quantization error. The reconstruction error
measures the discrepancy in reconstruction at the pixel level, while the quantization error measures
the incurred MSE between the encoder outputs Z, and quantized counterpart Z,. We also measure
the perplexity of each method to capture the quantization codebook coverage. Larger perplexity in-
dicates better utilization of the codebook capacity. In this experiment, the results on the test datasets
were averaged over 5 independent training runs for 50 epochs. Table 1 presents the results.

SCQVAE outperforms all baseline quantization methods across all metrics on both datasets: the
model yields significantly improved quantization errors and perplexity measures. The improved
quantization error suggests better information preservation in the quantization process, while im-
proved perplexity indicates that SCQ enables more effective backpropagation that better utilizes the
codebook’s full capacity. These improvements were attained whilst maintaining training wall-clock
time with the VQ baselines. The RQVAE method, on the other hand, did incur additional training
time (approximately 2x) due to its invoking of multiple VQ calls within a single forward pass.

Figures 1 (a) and (b) illustrate SCQVAE’s improved convergence properties over state-of-the-art
RQVAE (Lee et al., 2022) and VQVAE with replacement, affine transformation and alternating opti-
mization (Huh et al., 2023). For both datasets, SCQVAE is able to converge to a lower reconstruction
MSE on the test dataset (averaged over 5 training runs). We next considered the higher-dimensional
(256 x 256) LSUN (Yu et al., 2015) Church dataset. Figure 2 visualizes the reconstruction of SCQ-
VAE in comparison with VQVAE (van den Oord et al., 2017) and Gumbel-VAE (Jang et al., 2017;
Maddison et al., 2017) on a subset of test images after 1, 10 and 20 training epochs. This visualiza-
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Table 1: Comparison between methods on an image reconstruction task for CIFAR-10 and GTSRB
over 5 independent training runs. All metrics are computed and averaged on the test set.

Method MSE (10—3)} Quant Error| Perplexity?  Avg Quant Time (ms)|
VQVAE 41.19 70.47 6.62 4.45
VQVAE + Rep 5.49 4.13 x 103 106.07 5.56
VQVAE + Affine + OPT 16.92 25.34 x 1073 8.65 5.74
CIFAR-10  VQVAE + Rep + Affine + OPT 5.41 4.81 x 1073 106.62 5.78
Gumbel-VQVAE 44.5 23.29 x 1073 10.86 0.84
RQVAE 4.87 44.98 x 10—3 20.68 12.4
SCQVAE 1.53 0.15 x 103 124.11 7.42
”””” Non-Quantized AE (Reference) | ~ 044 -~~~ ~ " .- T T T I T To
VQVAE 39.30 70.16 8.89 11.61
VQVAE + Rep 3.91 1.61 x 103 75.51 11.93
VQVAE + Affine + OPT 11.49 13.27 x 1073 5.94 11.71
GTSRB  VQVAE + Rep + Affine + OPT 4.01 1.71 x 1073 72.76 11.70
Gumbel-VQVAE 56.99 47.53 x 10—3 451 0.85
RQVAE 4.96 38.29 x 1073 10.41 25.84
SCQVAE 3.21 0.24 x 103 120.55 12.93
”””” Non-Quantized AE (Reference) | 125 ~ -~~~ . T T T T T o T T T TT
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Figure 1: SCQVAE’s improved reconstruction convergence on CIFAR-10 (a) and GTSRB (b).

tion corroborates previous findings and further showcases the rapid minimization of reconstruction
MSE with SCQVAE. A similar visualization for CIFAR-10 is given in Gautam et al. (2023).
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LSUN Church Original Images
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Figure 2: Comparison of LSUN (Yu et al., 2015) Church reconstruction on the test dataset.
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4.2. Training VQGAN-Type Models

In this section, we focus on training first-stage models used within image synthesis methods such
as unconditional latent diffusion models (LDM). We use the LSUN (Yu et al., 2015) Church and
Classroom datasets and train VQGAN-type architectures trained with the associated VQGAN loss
(Esser et al., 2020). We refer to the SCQ-embedded architectures as SCQGAN models.

The hyperparameter configurations used for both the VQ and SCQGAN architectures are sum-
marized in Gautam et al. (2023). The performance of both archictures was measured on the test
set with the VQGAN loss (Esser et al., 2020) referred to as Lvggan, and LPIPS (Zhang et al.,
2018). To examine the efficacy of both methods at different latent compression resolutions we train
different architectures that compress the 256 x 256 images to 64 x 64, 32 x 32 and 16 x 16 dimen-
sional latent resolutions. Table 2 summarizes the results. SCQGAN outperforms VQGAN on both
datasets across both metrics on all resolutions. This result highlights the efficacy of SCQ over VQ in
preserving information during quantization - especially at smaller resolution latent spaces (greater
compression). This result is particularly exciting for downstream generation tasks that leverage la-
tent representations. More effective compression potentially eases the computational burden on the
downstream tasks whilst maintaining performance levels. In Gautam et al. (2023), we include plots
that further illustrate faster convergence for SCQGAN on both metrics across all resolutions.

Table 2: Comparison between SCQGAN and VQGAN on LSUN image reconstruction tasks. The
same base architecture is used for all methods and metrics are computed on the test set.

LSUN Church LSUN Classroom
Method Lygcan (1071 LPIPS (1071)]  Lygean (1071)]  LPIPS (10~1))
VQGAN (64-d Latents) 476 4.05 3.50 3.28
SCQGAN (64-d Latents) 3.93 3.88 3.29 323
VQGAN (32-d Latents) 6.60 6.22 8.01 7.62
SCQGAN (32-d Latents) 553 5.48 6.76 6.53
VQGAN (16-d Latents) 8.32 8.18 9.87 9.68
SCQGAN (16-d Latents) 7.86 7.84 9.19 9.15

5. Conclusion

This work proposes soft convex quantization (SCQ): a novel soft quantization method that can
be used as a direct substitute for vector quantization (VQ). SCQ is introduced as a differentiable
convex optimization (DCO) layer that quantizes inputs with a convex combination of codebook
vectors. SCQ is formulated as a DCO and naturally inherits differentiability with respect to the
entire quantization codebook. This enables overcoming issues such as inexact backpropagation and
codebook collapse that plague the VQ method. SCQ is able to exactly represent inputs that lie within
the convex hull of the codebook vectors, which mitigates lossy compression. Experimentally, we
demonstrate that a scalable relaxation of SCQ facilitates improved learning of autoencoder models
as compared to baseline VQ variants on CIFAR-10, GTSRB and LSUN datasets. SCQ gives up to
an order of magnitude improvement in image reconstruction and codebook usage compared to VQ-
based models on the considered datasets while retaining comparable quantization runtime. In future
work, we aim to couple the improved SCQ autoencoder models with latent generative processes and
investigate how SCQ can be used to enhance the performance of downstream applications.
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