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Abstract

The increasing penetrations of distributed energy

resources (DERs) at the power distribution level

augments the complexity of optimally operating the

grid edge assets, primarily because of the nonlinearity

and scale of the system. An alternative is to solve

the relaxed convex or linear-approximated problem,

but these methods lead to sub-optimal or power-flow

infeasible solutions. This paper proposes a scalable

and fast approach to solve the large nonlinear

optimal power flow (OPF) problem using a developed

distributed method. The full network-level OPF problem

is decomposed into multiple smaller sub-problems

that are easy to solve - the distributed method

attains network-level optimal solutions upon consensus.

This effective decomposition technique reduces the

number of iterations required for a consensus by

order of magnitude compared to traditional distributed

algorithms. We demonstrate the proposed approach

by solving different nonlinear OPF problems (different

problem objectives) for a distribution system with more

than fifty-thousands (50,000) problem variables.

Keywords: Distributed Control, Optimal Power Flow,

Distributed Optimization, Power Distribution Systems.

1. Introduction

The nature and the requirements of the power

systems, especially at the distribution level are

changing rapidly with the large-scale integration

of controllable distributed energy resources (DERs).

The continued proliferation of DERs, which include

Photovoltaic (PV) systems, battery energy storage

units (BESS), and controllable loads such as Electric

Vehicles (EVs) is leading to a drastic increase in

the number of active nodes at the distribution level

that need to be controlled/managed optimally for

efficient and resilient grid operations. Traditionally,
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grid operations are centrally managed upon solving an

optimal power flow (OPF) problem where centralized

optimization techniques are used to solve the resulting

difficult non-linear non-convex OPF problem [1], [2].

Unfortunately, the computational challenges, primarily

posed by the non-convex power flow constraints in

OPF formulation, increase drastically with the size

of the distribution systems motivating computationally

efficient approaches [3].

Existing methods manage the computational

challenges using convex relaxation or linear

approximation techniques [4], [5]. The primary

drawbacks of (i) the relaxed models are the possibilities

of inexact and/or infeasible power flow solutions [6],

and (ii) the approximated models may lead to NLP

infeasible solutions and high optimality gap depending

upon the problem type [7]. Moreover, methods based

on both approximation and relaxation techniques use

a centralized paradigm that may lead to scalability

challenges as the problem size increases. With a

majority of DER integration happening at the secondary

feeder level, the OPF problem will need to be solved

for even larger feeders with thousands of secondaries.

For example, the largest IEEE test feeder is an 8500

node test system that terminates at the secondary

transformer level and does not include secondary

feeders. If each service transformer is expanded to a 20

node secondary feeder, it will lead to a total of 22000

secondary nodes added to the problem formulation.

Such problem complexities motivate the move towards

a distributed computing and/or control paradigm.

Fortunately, the radial operational topology of power

distribution systems makes them highly conducive

for parallelization and distributed computing. This

paper develops a distributed computing approach for

distribution-level OPF problems that can scale for very

large distribution feeders and converge using fewer

iterations among distributed computing nodes, thus

significantly reducing the overall compute time.

Within this context, existing literature includes

numerous approaches on the application of distributed
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optimization algorithms for power distribution systems

[8], [9]. In general, these methods adopt the

traditional distributed optimization techniques to model

a distributed optimal power flow (D-OPF) problem

[8]–[11]. A D-OPF formulation decomposes the OPF

into several smaller subproblems that require multiple

micro- and macro-iterations for convergence. Within

each micro-iteration, the distributed sub-problems are

solved in parallel. While, during macro-iterations, the

solutions or more specifically the updated boundary

variables obtained from the distributed subproblems

are exchanged to enforce network-level consensus.

Both micro and macro-iterations together decide the

time-of-convergence for the algorithm. Unfortunately,

the existing distributed optimization algorithms require

a very large number of macro-iterations to converge

for medium-scale distribution feeders [9], [12]–[14]. A

practical implementation of such algorithms requires

to solve distributed sub-problems a large number

of times as well to reach a converged solution

within a reasonable time. A large number of

communication rounds/message-passing events among

distributed computing agents is not preferred since

this leads to significant delays in decision-making.

Lately, to address some of these challenges, real-time

feedback-based online distributed algorithms have

been explored in the related literature for network

optimization [15]–[20]. Generally, these algorithms do

not wait to optimize for a time-step but asymptotically

arrive at an optimal decision over several steps of

real-time decision-making. However, these algorithms

also take hundreds of iterations to track the optimal

solution for a mid-size feeder. This raises further

challenges to the performance of the algorithm for larger

feeders, especially during the fast-varying phenomenon.

To address these challenges, we have developed a

distributed OPF formulation for the radial distribution

systems based on the equivalence of networks principle

[21], [22]. In this paper, we test the performance

of the distributed algorithm for scaled systems and

various network-level objectives. Specifically, we have

(i) proposed distributed computation method to solve

OPF for very large notional distribution test feeders

(with 10,000 nodes & 50,000 problem variables) where

the centralized computation can solve for at max

20% of the feeders, and (ii) solved OPF for several

different operational problem objectives with different

control variables, that face different levels of challenges

mathematically. In brief, we have tested the proposed

D-OPF method for scalability while subjected to severe

non-linearities in terms of problem objectives. The

proposed approach solves the original non-convex OPF

problem for power distribution systems using a novel

decomposition technique combined with distributed

computing approach. First, the low-compute distributed

OPF sub-problems are locally solved. The consensus of

the boundary variables is achieved using a Fixed-Point

Iteration (FPI) algorithm. Upon consensus, the

solutions converge to network-level OPF solutions. We

demonstrate the proposed approach for three problem

objectives (1) loss minimization, (2) DER generation

maximization, and (3) voltage deviation minimization

using a balanced synthetic 10,000 node distribution

feeder and single-phase equivalent of 8500-node test

feeder (with 2500 nodes). The proposed approach is

shown to scale for all problem objectives while most

centralized formulations can’t be solved for more than

2000 nodes using off-the-shelf optimization solvers such

as Artelys Knitro. To our knowledge, this is the first

paper to demonstrate an approach that solves such a

large-scale D-OPF on a regular CPU without the use of

any high-performance computing (HPC) machines.

2. Centralized OPF Model

In this paper, (·)∗ represents the complex-conjugate;

(·)T represents matrix transpose; (·)n represents the

nth iteration; (.) and (.) denotes the maximum and

minimum limit of a given quantity. Also for complex

numbers, we denote j =
√
−1.

2.1. System Variable Definitions

Let us represent a balanced radial power distribution

network by the directed graph G = (N , E), where N be

the set of all nodes in the system and E denotes the set

of all distribution lines connecting the pair of buses (i, j)
i.e., from node i to node j. Also, rij + jxij is the series

impedance ∀{ij} ∈ E . Let, for node j, k be the set of

all children nodes. Next we denote vj = |Vj |2= VjVj
∗,

as the squared magnitude of voltage at node j. Let

lij be the squared magnitude of current flow in branch

{ij}. We denote Pij , Qij as the sending-end active and

reactive power flows for branch ij, and complex power

pLj
+ jqLj

is the load connected and pDj + jqDj is the

power output of DER connected at node j.

2.2. System Models

The network is modeled using the branch flow

equations [23] defined for each line {ij} ∈ E and

∀j ∈ N in (1).

Pij − rij lij − pLj + pDj =
∑

k:j→k

Pjk (1a)

Qij − xij lij − qLj + qDj =
∑

k:j→k

Qjk (1b)

vj = vi − 2(rijPij + xijQij) + (r2ij + x
2
ij)lij (1c)

vilij = P
2
ij +Q

2
ij (1d)
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The DERs are modeled as Photovoltaic modules

(PVs) interfaced using smart inverters, capable of

2-quadrant operation. If the reactive power generation,

qDj , is controllable and modeled as the decision variable

for the optimal operation, then the real power generation

by the DER, pDj , is assumed to be known(measured).

Let the rating of the DER connected at node j be SDRj ,

then the limits on qDj are given by (2).

−
√

S2
DRj − p2Dj ≤ qDj ≤

√

S2
DRj − p2Dj (2)

On the contrary, if the active power generation, pDj ,

is modeled as the decision variable, then qDj is set to 0,

and pDj can vary between 0 and SDRj , see (3).

0 ≤ pDj ≤ SDRj (3)

2.3. Centralized OPF problems

To optimize the network for some cost function,

we define a centralized OPF (C-OPF) problem by

(i) a network-level problem objective, (ii) the power

flow models in equation (1), and (iii) the operating

constraints on the power flow variables. In this paper, we

formulate three different optimal power flow problems

for the power distribution grids, (1) active power

loss minimization, (2) DER generation maximization,

and (3) Voltage deviation (∆V) minimization. The

corresponding OPF problems are detailed below.

2.3.1. Loss Minimization: The problem objective

is to reduce the network losses by controlling the

reactive power output from DERs (qDj). Let Xlm =
[Pij , Qij , lij , vj , qDj ]

T be the problem variables ∀j ∈
N , and ∀{ij} ∈ E . Note that, if node j doesn’t have

any DER, then qDj
= 0. Also, let Flm(Xlm) denote

the objective function representing the total power loss

in the given distribution system. Note that Flm(Xlm) is

a function of both the power flow variables and decision

variables. Then, the OPF problem is defined as the

following in (C1).

(C1) min Flm(Xlm) =
∑

{ij}∈E

lijrij (4a)

s.t. (1) and (2) (4b)

V
2 ≤ vj ≤ V

2
; ∀j ∈ N (4c)

lij ≤
(

I
rated
ij

)2

; ∀{ij} ∈ E (4d)

where, V = 1.05 pu and V = 0.95 pu are the limits on

bus voltages, and (Iratedij )2 is the thermal limit for the

branch {ij}.

2.3.2. DER Maximization: In the DER

maximization problem objective, the DER active

power generation is maximized without violating the

operational limits of the distribution system. This is

achieved by maximizing the active power output from

DERs (pDj). Let Xdm = [Pij , Qij , lij , vj , pDj ]
T

be the problem variables. Here, the objective function

is denoted by Fdm(Xdm), representing the total

active power generation by DERs. Then, this DER

maximization OPF problem is defined as the following

in (C2). Similar to the previous formulation, if any node

j doesn’t have any DER, then we set pDj
= 0.

(C2) max Fdm(Xdm) =
∑

j∈N

pDj (5a)

s.t. (1) and (3) (5b)

V
2 ≤ vj ≤ V

2
; ∀j ∈ N (5c)

lij ≤
(

I
rated
ij

)2

; ∀{ij} ∈ E (5d)

2.3.3. Voltage Deviation Minimization: In this

specific network-level optimization problem, we try

to keep the nodal voltages as close as possible to a

pre-specified reference, Vref . The problem objective

is to minimize the nodal voltage deviations from the

reference value by controlling the reactive power output

from DERs (qDj). The problem variables are denoted by

Xdv = [Pij , Qij , lij , vj , qDj ]
T , ∀j ∈ N and ∀{ij} ∈

E . Also, the cost function, Fdv(Xdv), represents the

total two-norm distances of nodal voltages, vj , from

reference voltage vref . Mathematically Fdv(Xdv) =
√

∑

(vj − vref )2, ∀j ∈ N . The OPF problem is

defined as the following in (C3). Here in this paper, we

used Vref = 1.00 pu as the bus reference voltage.

(C3) min Fdv(Xdv) =

√

∑

∀j∈N

(vj − vref )2 (6a)

s.t. (1) and (2) (6b)

V
2 ≤ vj ≤ V

2
; ∀j ∈ N (6c)

lij ≤
(

I
rated
ij

)2

; ∀{ij} ∈ E (6d)

Assumption 1: The loads in the network for all three

OPFs are modeled as constant power loads; i.e., in ZIP

load model, (Z, I, P ) = (0, 0, 1).
In the next section, we detail the method of how

to decompose the optimization problems for large-scale

distribution grids into several sub-problems, solve in

parallel, and converge into the final solution.

3. Decomposition of the OPF Problem

The OPF problems described in the previous section

are formulated as a centralized optimization problem

for the radial power distribution systems. For a

large scale distribution system with thousands of

nodes and decision variables, solving the NLP OPF

is computationally expensive and difficult to converge
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for very large-scale distribution systems. Since the

power distribution system is operated radially, the

OPF problems defined in (C1)-(C3) are naturally

decomposable into multiple sub-problems defined for

the connected areas. The details of the proposed

problem decomposition technique and the resulting

distributed OPF problem are discussed next.

3.1. Decomposition Method

First, we decompose the whole distribution grid into

N smaller areas. Let AR = {A1, A2, . . . , AN}, be

the set of all decomposed areas. Also, let each area,

Am ∈ AR, be defined as a directed graph Am =
G(Nm, Em). Here, each area Am has a maximum

number of nodes/variables, so that the respective OPF

sub-problems for that area can easily be solved using

off-the-shelf NLP solvers. The coupling/complicating

variables among these smaller sub-problems, associated

with respective areas, are defined based on the network

topology. Since the grid was radial to begin with, the

decomposed areas or the sub-trees of the networks are

also connected radially with each other. This specific

structure of the network helps to identify the unique

parent area and the child areas for any area Am, which

in turn associates the complicating/shared variables

that are exchanged among sub-problems to solve the

overall master problem. For this decomposition method,

the complicating variables are the shared bus voltages

and power flows in the shared bus. Computationally,

sub-problems associated with each area are solved in

parallel by assuming a fixed voltage at the shared

bus with the unique parent area, and constant loads

at the shared buses with child areas. After solving

the sub-problems, the respective complicating variables,

i.e., the total power requirements in that area are shared

with the sub-problem for the parent area and the shared

bus voltages are shared with sub-problems associated

with child areas; then the sub-problems are solved

again with updated values. The step of exchanging

the complicating variables is termed macro-iteration.

This process is repeated until all the complicating/shared

variables have converged.

The proposed decomposition approach is elaborated

using a two-area system as an example. Let us assume

the network is decomposed into 2 areas – area A1 and

A2. Here area A1 is the parent area of area A2; each

with their purely own local variables defined by x1 and

x2. Let Y = [y1, y2]
T be the complicating variable that

couples the sub-problems for the two areas. Here, y1 and

y2 are the bus voltage magnitude (v) and the complex

power flow through the bus (S = P + jQ) shared

between A1 and A2, respectively; i.e., [y1, y2]
T =

[v, S]T . If the set of all local variables for A1 and

A2 is denoted by X1 and X2, respectively, then X1 =

{x1, y1} & X2 = {x2, y2}. Let X = X1 ∪X2 be the

set of all problem variables and S is the set of constraints

for the overall centralized optimization problem. If F is

a decomposable cost function, then the problem can be

decomposed and written as (7), where, S1 and S2 are

the set of constraints on local variables for decomposed

area A1 and A2, respectively. Also, f1, f2 are the cost

functions for the respective local sub-problems.

min
X∈S

F (X) = min
X1∈S1,X2∈S2

f1(X1, y2) + f2(X2, y1) (7)

The original problem defined in (7) can be readily

decomposable into the following two sub-problems (see

(8)), associated for respective decomposed areas; i.e.,

equation (8a) and (8b) for area A1 and A2, respectively.

For A1 : min
X1∈S1

f1(X1, y2) (8a)

For A2 : min
X2∈S2

f2(X2, y1) (8b)

Remark 1: Please note that the decomposition of the

OPFs also works for any maximization problem, such

as (C2).

Remark 2: The decomposition method described here

can easily be extended for a network, where a multiple

area decomposition is required to make the individual

sub-problems small enough to be solved efficiently.

Similar to the 2-area distributed OPF, the optimization

problem can be decomposed into several smaller

sub-problems, each representing one decomposed area.

Remark 3: The decomposition approach can be further

extended to nodal decompositions, where each node

represents one area.

3.2. Consensus for the Decomposed
Sub-problems

After decomposing the optimization problem into

several smaller sub-problems, the proposed distributed

algorithm solves the sub-problems individually to

obtain respective local and complicating variables.

Here, at each boundary among decomposed areas, the

complicating variable y2 and y1 are kept fixed to solve

sub-problem (8a) and sub-problem (8b), respectively.

Then the solved y1 by sub-problem (8a) and solved

y2 by sub-problem (8b) are exchanged again between

areas. After each macro-iteration, the update step

of complicated variable, Y, is performed using Fixed

Point Iteration (FPI) method, described by (9) for nth

macro-iteration, where ³ ∈ [0, ∞).

Y
(n) :=

Y(n) + ³Y(n−1)

1 + ³
(9)

While ³ = 0 signifies directly using the respective

computed shared variable’s value to approximate

respective parent or children areas, ³ > 0 represents a

weighted approximation that helps to reduce oscillations
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of the complicated variables, Y, at the shared

boundaries. Here, instead of a constant value, alpha

can be made adaptive for better convergence in case

of oscillation. The macro-iterations continue until the

change in all complicating variables for all decomposed

boundaries are within tolerance ϵtol, see (10).
∣

∣

∣
Y

(n) − Y
(n−1)

∣

∣

∣
≤ ϵtol (10)

4. Distributed OPF for Scalability

We detail the proposed distributed approach to solve

large-scale OPF problems for distribution networks

using the aforementioned decomposition technique.

First, we discuss the formulation of the sub-problems,

and then we describe the proposed algorithm.

4.1. Distributed Sub-Problems

For a system decomposed into multiple areas, the

sub-problems are defined for each Am ∈ AR. While

decomposing the network, it is ensured that the number

of variables in each decomposed area does not exceed a

certain number so that the local problems can be solved

fast. Here, the power flow model is defined in (11b),

and are used by the corresponding sub-problem for area

Am, defined ∀j ∈ Nm and ∀{ij} ∈ Em. Let Area Am

shares bus ’o’ with its parent area, and Ch be the set

of buses shared with its child areas. The sub-problems

for (1) loss minimization, (2) DER maximization, and

(3) ∆V minimization are detailed next. For these OPF

objectives, we use the same OPF formulation as the

central problem, but only define it for the respective

area, Am. Also, at (n)th iteration, the complicating

variables are updated using (9) and approximates the

parent area as a constant voltage source at bus ’o’

(eq. (11c)) and child areas as constant power loads

at the shared buses k ∈ Ch (eq. (11d)-(11e)). The

sub-problem for loss minimization is described below.

(D1) min fm =
∑

{ij}∈Em

lijrij (11a)

s.t. equation (1) (11b)

vo = v
′
o; (11c)

pLk
= P

′
kl ; ∀k ∈ Ch, {kl} ∈ EmCh (11d)

qLk
= Q

′
kl ; ∀k ∈ Ch, {kl} ∈ EmCh (11e)

−
√

S2
DRj − p2Dj ≤ qDj ≤

√

S2
DRj − p2Dj (11f)

V
2 ≤ vj ≤ V

2
; ∀j ∈ Nm (11g)

lij ≤
(

I
rated
ij

)2

; ∀{ij} ∈ Em (11h)

Here, EmCh
represents the set of lines in the child areas

of Area Am. In this example, the bus voltage, v′o, is

Algorithm 1: Distributed Algorithm for Scaled OPFs

1 Decompose the network into N areas, so that each
area has a maximum specified node numbers

2 Initialize complicating variables, Y0 ∈ S; error,
e = 1; and macro-iteration count n = 0

3 If |e|≤ ϵtol, stop iteration count, and go to step 10

4 Else, increase iteration count n: n← n+ 1
5 Solve Φm in parallel using Algorithm 2, for all

decomposed areas Am, where, Φm depicts the
sub-problem –

Φm : X
(n)
m := argmin/argmax

Xm∈Sm

fm

(

Xm, y
(n−1)

m
′

)

6 Update all the complicating variables, Y, using (9),
where ³ can be constant or adaptive

7 Check residual vectorR(n) =
[

Y(n) − Y(n−1)
]

8 e = max |R(n)|
9 Go to step 2

10 Return Global Minimizer:

X∗ = {X(n)
m |m = 1, 2, ..., N}

obtained from the parent area based on its converged

solutions for the previous (n − 1)th micro-iteration.

Similarly, ∀k ∈ Ch, & {kl} ∈ EmCh
, P ′

kl,& Q′

kl is

the solved branch flows obtained from the converged

solutions of (n − 1)th micro-iteration, executed by

child areas of Am. Note that, the symbol (.)′ depicts

that the variable is solved by other neighboring areas.

The sub-problems for DER maximization and ∆V

minimization are also formulated ad defined in (12) and

(13), respectively.

(D2) max fm =
∑

j∈Nm

pDj (12a)

s.t. (11b) - (11e), (3), (11g) - (11h) (12b)

(D3) min fm =

√

∑

∀j∈Nm

(vj − vref )2 (13a)

s.t. (11b) - (11e), (2), (11g) - (11h) (13b)

4.2. Algorithm

For completeness, now we discuss the full

distributed algorithm that decomposes the OPFs for

large-scale power distribution systems and solves

iteratively to reach the global solution. Here, we use the

decomposition technique that we developed in Section

3, and solve sub-problems for different network level

objectives, i.e., (D1)-(D3) until convergence. We use

tolerance of ϵtol = 0.001 to meet the convergence

criterion. The algorithm is detailed in Algorithm 1. To

better understand the distributed computing of the OPFs,

the sub-routine in step 5 of Algorithm 1 is described in

Algorithm 2.
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Algorithm 2: Sub-routine to Solve Sub-Problems

Φm at Step-5 of Algorithm 1

Sub-Problem : For decomposed area
Am ∈ AR

Macro-Iteration step : (n)

Complicated Variables : y
(n−1)

m
′ , variables that are

used for coupling
sub-problems

Optimization Variable : Xm

Steps :
1 Approximate the neighboring areas of Am using

complicating variables, shared by the neighbors;

i.e., y
(n−1)

m
′ is set to either constant voltage (if it has

parent area), or constant loads (if it has child areas),
or both – depending on the position of the area Am

(See equation (11c)-(11e))

2 Solve distributed sub-problems of minimizing or
maximizing the decomposed cost function fm, e.g.,
(D1), (D3), etc. using off-the-shelf NLP solvers

3 Store the local minimizer in the variable X
(n)
m

5. Result

The proposed approach is evaluated using a large,

balanced synthetic 10,000 node distribution system and

medium-size balanced IEEE-8500 node test system with

2500 nodes. All experiments are simulated in Matlab

2018b on a machine with 8GB memory and Core

i7-8700 CPU @3.19 GHz. The NLP subproblems

for the proposed distributed method are solved using

Matlab’s fmincon using ’sqp’ algorithm. However, given

the NP-hard nature of the centralized OPF problems,

to bench-mark against centralized OPF, we also use a

commercial NLP solver Artelys Knitro with ’active-set’

algorithm that scales relatively well with the problem

size [24]. Note that, the solution time in this paper

includes (i) writing the problem (creating the matrices

for OPF solvers), (ii) calling the solvers, and (iii) getting

the solution from the solver (solver time).

5.1. Simulated System
The simulations are conducted using the following

two test systems: (i) Synthetic 10,000 node distribution

system with different DER penetration levels, and (ii)

Balanced IEEE-8500 node test system with 100% DER

penetration for nodal decomposition. The % penetration

here implies the percentage of DER nodes relative to the

total load nodes in the system. The synthetic 10,000

node system is shown in Fig. 1. This system is

comprised of 1 main feeder, and 20 laterals, where

each lateral supplies 20 neighborhoods. It is assumed

that each neighborhood is comprised of 20 households.

Thus, each lateral supplies a total of 400 houses. Also,

in between 2 laterals, we assume 4 nodes in the main

feeder that represent the distributed loads. Every load

in this distribution network is set to consume a total of

F1 F2

F3
F4

F20

F19

Grid

Area

(Zoomed View)

20 nodes

Figure 1: Synthetic 10,000 Node System

SL = 0.1 + 0.01j pu, and the line impedance of all

the branches is assumed to be z = 0.07 + 0.01j pu.

The base voltage for the network is 12.47 kV (VLL)

and the base kVA is 1000. For loss minimization and

∆V minimization objectives, each DER in the system

can generate 7 kW of real power, with a nominal rating

of 8.4 kVA. For the DER maximization problem, the

rating of the DERs is increased to at-most 10 times to

stress the system. We decompose the distribution system

in multiple areas where each area is composed of 100

nodes (see Fig. 2).

For the IEEE 8500 node test system, the DER

sizes are chosen randomly with a rating ranging from

1.3 to 5.8 kVA. We use this medium-scale distribution

system to further decompose the problem into the nodal

level, i.e., each node is considered as an area. The

simulated system is a balanced, single-phase equivalent

distribution system of the original 8500-node test system

with 2522 nodes. The base values are assumed to be

the same with 12.47 kV and 1000 kVA. The proposed

decomposition technique is then simulated for various

DER penetration with different network objectives.

5.2. Loss Minimization Objective: (D1)

We solve the loss minimization problem (D1) for a

10,000 node test system with varying DER penetration

levels. The reactive power from DERs is optimized

to reduce the system power losses. All the loads are

assumed at a nominal value (SL). The kVA rating of

the DERs is assumed to be 120% of their nominal active

power generation rating. We have simulated (i) 100%,

(ii) 50%, and (iii) 10% DER penetration levels for loss

minimization objective. The results are detailed next.

We have used ³ = 0 for FPI update in (9).

The converged solution of the decomposed central

OPF and the convergence properties of the proposed

method for the loss minimization problem are shown

in Fig. 2. We can see that the converged voltage does

not violate any voltage constraints, i.e., the voltage is

not outside of the specified limit of 0.95-1.05 pu bound
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Figure 2: Numerical Results for Loss Minimization Objective for Synthetic 10,000 Node System
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Figure 3: Numerical Results for DER Maximization Objective for Synthetic 10,000 Node System
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Figure 4: Numerical Results for ∆V Minimization

Objective for Synthetic 10,000 Node System

(Fig. 2a). Fig. 2b shows the change in the objective

function value with macro-iterations. 100% penetration

can reduce the line losses to 4.5 kW. The convergence

properties for this case are shown in Fig. 2c. For

all the cases, it takes around 11 macro-iterations to

satisfy the convergence criterion. The time taken at

each iteration for this case is also plotted in Fig. 2d.

This time represents the highest time it takes to solve

any sub-problem at each iteration. It only takes ∼ 30
seconds to solve the OPF by decomposing the problems

into several sub-problems for all the DER penetration

levels (see Table 1).

Table 1: Results Summary

Problem DER% Objective Value Time (s)

Loss Min

100 4.5 kW 34

50 21.58 kW 35

10 44.05 kW 30

DER Max

50 1.03 MW (cap. 1.05 MW) 120

20 0.55 MW (cap. 0.56 MW) 240

10 0.66 MW (cap. 0.70 MW) 300

∆V Min
100 2.65 pu 30

50 6.68 pu 15

5.3. DER Maximization Objective: (D2)

In this section, we present the result for DER

maximization OPF problem for the power distribution

networks. Here, we solve the decomposed problem

(D2) for a 10,000 node test system with different DER

penetration levels. The active power generation of the

DERs is maximized while maintaining the operation

limits of the network, such as voltage limits. For this

optimization problem, we have used various load and

generation multipliers to stress the system. We simulate

3 different cases – (i) 50% DER penetrations where the

active power generation capacities of DERs are 21 kW

and loads are set to their nominal values, (ii) 20% DER

penetrations with 28 kW of active power generation

capacities for each DERs and load multiplier is set to

0.5, and (iii) 10% DER penetration levels with max of

70 kW generation capabilities and load multiplier set to

0.5. The result of this OPF is discussed next. We have

used ³ = 2.33 for FPI update in (9).

Fig. 3 shows the results for the DER maximization

OPF. Similar to the previous objective, we can see

that the nodal voltages do not violate the pre-specified

voltage limits (Fig. 3a). The voltages are near their

upper bound which implies that the systems were highly

stressed for different simulated cases. With increased

DER penetrations, more nodes have voltages that are

closer to the upper limits of 1.05 pu. Fig. 3b shows

the normalized objective value of the OPF problem w.r.t.

macro-iterations. Here, the objective value is scaled

w.r.t. the converged/final cost as the orders of the final

costs are different. The actual values of the objective

function upon solving OPFs using distributed approach
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Figure 5: Solution Time for Central OPF (C-OPF) Problems for Different Sizes of Networks

is shown in Table 1. Note that, even though the number

of DERs in 10% penetration case is lower than 20%

case, individual DERs have higher capacity in 10%

penetration case than later, and thus total generation is

higher in 10% penetration case than 20% penetration

case. It takes 7, 10 and 14 iterations to converge for

50, 20 and 10% DER penetrations (Fig. 3b, 3c ). The

simulation time per macro-iteration is shown in Fig. 3d.

The solution time to for the OPF using the proposed

decomposition approach is reported in Table 1.

5.4. ∆V Minimization Objective: (D3)

Next we detail the results for the ∆V minimization

problem. Here, we solve the decomposed problem

(D3) for a 10,000 node test system with different DER

penetration levels, but with nominal values of DER

generation and loads. The reactive power generation of

the DERs are optimized for the given problem objective

with a reference value of Vref = 1.00 pu. For this

optimization problem, we have simulated two different

cases: (i) 100% DER penetrations and (ii) 50% DER

penetrations. We have set ³ = 0 for the FPI updates.

The results of the OPF are shown in Fig. 4, where

Fig. 4a shows the nodal voltages after optimization.

The higher penetrations of DERs result in a better

network-level reduction in voltage deviation. Also, for

both cases, it only takes 11 macro-iterations to reach

convergence (Fig. 4b). The objective value and the

solution time are shown in Table 1. As can be seen, the

OPF problem converges within a reasonable time.

5.5. Failure of Central Solution

In this section, we solve the centralized version

of the same OPF problem for increasing system size

and demonstrate the scalability challenges. We also

highlight the system size for which central OPF is

unable to converge. It can be observed from Fig. 5

that with increasing DER penetration, it takes a higher

time to solve the NLP OPFs. Also, for the same

system size (node number), an OPF with higher DER

penetration fails to converge sooner. For example,

in the case of loss minimization, the NLP solver can

solve the OPF problems for 800 nodes for a 50% DER

penetration case (Fig. 5a). However, it can only solve

for 600 nodes with 100% DER penetration. Similarly,

for the DER maximization objective, with 20% DER

penetration, the central problem can be solved for no

more than 1100 nodes. On the contrary, for 50% DER

penetration, central OPF fails to solve for more than

500 nodes. None of the OPFs can be solved using

a centralized optimization technique for a distribution

feeder with more than 2000 nodes. Kindly note that

all the centralized optimization problems have been

solved using KNITRO with the active-set algorithm that

has shown better optimization performances than other

solvers, such as, fmincon with different algorithms - sqp,

active-set, and interior-point-method. Using different

commercial solvers may lead to different convergence

performances, however, all of them will still be

challenged by the scale of the nonlinear optimization

problem for modern power distribution systems with

high penetrations of renewable energy resources.

Further, we have compared the objective values from

converged centralized cases with proposed distributed

solutions. For all the cases, the maximum difference of

objective values is not more than 0.01 pu. For better

demonstration, in this paper, we have shown objective

function values for 500 and 1000 node systems with

50% and 10% PV penetration cases, respectively, in

Table 2. From the table, it is clear that the D-OPF

results match the centralized computation, validating the

proposed method as well.

Table 2: Comparison with converged C-OPF

Problem Node / DER % C-OPF D-OPF

Loss Min
500 / 50% 0.188 kW 0.184 kW

1000 / 10% 0.840 kW 0.845 kW

DER Max
500 / 50% 50 kW 50.01 kW

1000 / 10% 18.5 kW 18.2 kW

∆V Min
500 / 50% 0.218 pu 0.210 pu

1000 / 10% 0.614 pu 0.619 pu
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Figure 6: Result for Nodal Decomposition for

IEEE-8500 Node Test System

5.6. Nodal Decomposition

To show the efficacy of the proposed decomposition

and distributed computing approach, we further

decompose the problem at the individual node level

and solve the resulting OPF for the loss minimization

objective for a balanced IEEE-8500 bus test system.

While the commercial NLP solver, KNITRO, failed

to optimize C-OPF, the nodal decomposition is able

to solve the system with significant speed up. This

method decomposes the OPF into 2522 sub-problems;

each sub-problem needs to solve a nodal OPF with

5 variables. Overall network-level convergence took

275 macro-iterations, and each sub-problem took 480
microseconds (avg) to solve. Thus, the overall solution

time for network-level optimization is relatively short,

∼ 5 seconds. The convergence is shown in Fig. 6.

5.7. Three-Phase Unbalanced Network

Now we extend our proposed decomposition-based

method for 3-phase unbalanced distribution systems.

The IEEE-123 bus system has been used (decomposed

into 4 sections) as a test system with randomly placed

50 DERs in the network with (i) 40 kW active power

generation (Rated 50 kVar) for Loss minimization &

∆V minimization OPF, and (ii) up to 100 kW capacity

For DER maximization OPF. As a power flow model,

we have used the equations developed in [3]. The result

is shown in Table 3. It only takes 6-9 macro-iteration

for the proposed method and the results match with

the centralized computation. For example, the line loss

is 25.1 kW using the D-OPF method, and the C-OPF

solution is 23.2 kW. Implementing the method for a

larger unbalanced system with binary variables is a part

of our future work.

Table 3: Result for Unbalanced Network

Problem C-OPF D-OPF Iteration

Loss Min 23.2 kW 25.1 kW 6

DER Max 4.56 MW 4.58 MW 6

∆V Min 7.30 pu 7.63 pu 9

6. Conclusion

This paper presents a scalable distributed computing

algorithm to solve non-linear OPF problems for power

distribution systems that scale well for all general

classes of distributed OPF problems. The proposed

distributed approach converges within a short time for

large feeders even when the centralized OPF takes a

significant amount of time or fails to converge. We have

demonstrated the successful application of the proposed

approach for a synthetic 10,000-node distribution test

system with a total of ∼ 50, 000 variables on a regular

CPU. All OPF problems are shown to converge within

a reasonable time. To the best of our knowledge,

this is the first work to demonstrate the application

of distributed algorithms to solve the OPF problem

for large distribution feeders without requiring HPC

machines. It should be noted that the proposed

decomposition is amenable to implementation on

many-core machines. Moreover, the fast convergence

and fewer communication requirements among

decomposed problems demonstrated using several case

studies further make the algorithm appealing for a

distributed implementation. Although the convergence

of the proposed method is not guaranteed theoretically,

it is observed in all our simulation cases, even for

a 3-phase unbalanced system. The convergence

properties of the proposed algorithms are being

thoroughly examined as part of ongoing research.

Additionally, as part of our ongoing research, we will

adapt the proposed algorithms to meshed systems,

OPFs with binary variables, and large-scale real-world

feeders.
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