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Abstract. Learning parity with noise (LPN) has been widely studied
and used in cryptography. It was recently brought to new prosperity
since Boyle et al. (CCS’18), putting LPN to a central role in designing
secure multi-party computation, zero-knowledge proofs, private set inter-
section, and many other protocols. In this paper, we thoroughly studied
the security of LPN problems in this particular context. We found that
some important aspects have long been ignored and many conclusions
from classical LPN cryptanalysis do not apply to this new setting, due to
the low noise rates, extremely high dimensions, various types (in addition
to F2) and noise distributions.

— For LPN over a field, we give a parameterized reduction from exact-
noise LPN to regular-noise LPN. Compared to the recent result by
Feneuil, Joux and Rivain (Crypto’22), we significantly reduce the
security loss by paying only a small additive price in dimension and
number of samples.

— We analyze the security of LPN over a ring Z,». Existing protocols
based on LPN over integer rings use parameters as if they are over
fields, but we found an attack that effectively reduces the weight of
a noise by half compared to LPN over fields. Consequently, prior
works that use LPN over Z,x overestimate up to 40 bits of security.

— We provide a complete picture of the hardness of LPN over integer
rings by showing: 1) the equivalence between its search and decisional
versions; 2) an efficient reduction from LPN over F2 to LPN over Zgx;
and 3) generalization of our results to any integer ring.

Finally, we provide an all-in-one estimator tool for the bit security of LPN
parameters in the context of PCG, incorporating the recent advanced
attacks.

1 Introduction

The learning parity with noise (LPN) assumption states that it is hard to dis-
tinguish LPN samples (A, A - s + e) from random samples, where A is a public
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(a) Prior works in the PCG framework (b) The bit-security from our analysis
and their required LPN variants over for LPN over F,» and Z,.. Parameters
different fields and rings. N =20k = 652,t = 106 are used.

Fig.1. LPN assumptions in prior works, and our analysis on one set of
parameters. For a set of parameters (N, k,t), N is the number of samples, k is the
dimension and ¢ is the Hamming weight of a noise vector.

matrix, s is a random secret and e is a noise vector sampled from a sparse dis-
tribution. The LPN assumption has been applied to build various primitives,
e.g., symmetric encryption and authentication (e.g., [49] and follow-up works),
public key encryption [4], commitment scheme [53], garbled circuits [5], oblivious
transfer [32] and collision-resistant hash functions [21,84]. All these primitives
adopt LPN over binary field Fy with moderate dimensions.

The recent work by Boyle et al. [15] introduced the pseudorandom correla-
tion generator (PCG) paradigm that can produce a large batch of correlated
randomness, e.g., (correlated) oblivious transfer ((C)OT) and (vector) oblivious
linear evaluation ((V)OLE), at a small communication. The core of the PCG idea
is to build a pseudorandom generator (PRG) with a simple internal structure
from LPN assumptions and then privately evaluate such a PRG using func-
tion secret sharing [20]. The sparsity of a noise e translates to communication
efficiency, while the efficiency of LPN encoding translates to computational effi-
ciency. Later, the PCG paradigm was used to build a series of concretely efficient
protocols [1,14,16-19,27,67,69,76,82] with sublinear communication for gener-
ating random (C)OT or (V)OLE correlations. These PCG-like protocols have
gained a lot of interests in designing various concretely efficient protocols, includ-
ing secure multi-party computation (MPC) (e.g., [28-31,34,48,56,64,74,75,81]),
zero-knowledge (ZK) proofs (e.g., [8-10,35,36,76,78,80]), privacy-preserving
machine learning [51,69,77], private set intersection (PSI) [23,66,68], etc.

Although widely used in many constructions and some real-world appli-
cations, these protocols often use LPN variations that are not much studied
in cryptanalysis, especially compared to the classical LPN assumption over
Fy [4,43,46,73]. Furthermore, prior analyses on the classical LPN problems do
not directly cover the LPN variants used in the PCG setting because of their
unique features:
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— Value type. Protocols often require an LPN assumption over a ring other
than Fy, including a finite field or even an integer ring! like Zox.

— Noise distribution. Most existing analyses focus on a Bernoulli or exact
noise distribution. However, most PCG-like protocols, for better performance,
adopt a regular noise distribution, where the noise vector is divided into
consecutive equal-sized sub-vectors, and each sub-vector has a single noisy
coordinate in a random position.

There are some recent exceptions. [42] showed a generalized reduction in LPN,
which can imply a reduction from exact-noise LPN to regular-noise LPN but
with a very large security loss; [24] showed an attack specific to regular noises
but not for parameters usable in PCG applications; [22] also introduced an
algebraic attack which, as we will show in this paper, can be cheaply mitigated
without significantly increasing the communication.

— Dimension and noise rate. Most applications require an LPN assumption
with very high dimension (e.g., millions) and low noise rate (e.g., 1/10°),
which is out of the typically reported range of parameters considered for
coding-theoretic primitives.

At this point, all implementations of PCG-like protocols use the LPN parameters
from the original work by Boyle et al. [15], who analyzed the concrete security
of LPN over Fji2s. However, as we summarize in Table 1a, follow-up works used
the same analysis to choose parameters for many different variants of LPN over
F3, F,, and Zsx, many of which were not covered by the original analysis. It was
not clear how large a gap in security when using LPN parameters over a field
for LPN over another field or ring.

1.1 Our Contributions

In this paper, we put forth a set of LPN analyses specific to the setting of PCG
applications. From the theoretical perspective, we show a tighter reduction from
exact-noise LPN to regular-noise LPN and a complete categorization between
LPN over integer rings and prime fields. From the concrete side, we summarize
and incorporate all existing LPN attacks applicable to the PCG setting into one
estimator tool that can be used for researchers to select LPN parameters. In par-
ticular, we find that existing PCG applications use parameters more expensive
than necessary for fields and less security than needed for integer rings. Below
we provide more details of our contributions.

The Hardness of LPN Under Regular Noise Distributions. Recently,
Feneuil et al. [42] observed that, as a special case in their main theorem, an
exact noise vector (of Hamming weight t) is also regular with some probability
(estimated to e~! in Sect.3), and thus (7, ¢)-hard?> LPN under an exact noise

! By integer ring we refer to Zy for any composite number N, which is used to
distinguish from polynomial rings.

2 We classify a problem as (T, €)-hard when, for any probabilistic algorithm B with
a running time of T, the algorithm’s capacity to solve this problem is limited to a
success probability of at most e.
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Table 1. Comparison between our analysis and [15] for the bit-security of an LPN
problem with dimension k, number of samples N and Hamming weight of noises ¢
over different rings. The bit-security considers an exact noise distribution; the values
in brackets denote the decrease of bit-security due to the usage of a regular noise
distribution. The sets of LPN parameters are adopted from [15].

LPN This work (15]
N |k t Fyi28 Fos Zo128 Ly Fo Any field
2101652 |57 | 111 (—0)| 104 (—0) | 54 (—2) | 68 (—2) |94 (—4) |80
21211589 |98 | 100 (—0) |92 (-0) |53 (—0) |63 (—1) |83 (=3) |80
21413482 198 | 101 (—0) |97 (-0) |58 (—1) |67 (—1) |86 (—3) |80
—0) | 101 (—0) | 63 )
) )
)
)

216 17391 |389 | 103 ( (=1) |72 (=2) |91 (—4) |80
218115336 | 760 | 105 (—0) | 105 (—0) | 68 (—1) | 76 (=1) |95 (=3) |80
220 | 32771 | 1419 | 107 (—6) | 107 (=6) | 73 (=1) | 81 (=1) |99 (=2) |80
222 1 67440 | 2735 | 108 (—4) | 108 (—4) | 75 (—1) | 84 (—1) | 104 (—5) | 80

distribution implies (T, e? - €)-hard LPN under a regular noise distribution. How-
ever, the security loss is sometimes unaffordable as LPN may not have security
beyond e! in many practical settings. To reduce the security loss, we introduce a
tunable parameter o > 2 and divide a noise vector into at blocks (each denoted
by e;). Furthermore, instead of hoping that every e; has the exact weight 1,
we relax the condition to that the weight of e; is at most 1. For each block, we
add an extra sample with noise €; such that vector (e;, ;) has the exact weight
1, which allows us to obtain a regular noise vector. As a result, we prove that
if the exact-noise LPN problem over an arbitrary field F with sample number
N, dimension k and weight ¢ is (7', €)-hard, then the regular-noise LPN problem
over F with sample number (N + at), dimension (k + at) and weight (at) is
(T — poly(k, N), 2% - €)-hard, where the security loss is reduced by at least 2%,
while the dimension and number of samples are increased by only at.

We note that our reduction is not contradictory, but rather complementary,
to a very recent work by Briaud and @Qygarden [22]. In particular, they proposed
a new algebraic attack that can take advantage of regular noise distributions,
and demonstrated that the algebraic attack on regular-noise LPN is more effi-
cient than other existing attacks, in the scenarios characterized by small code
rates (particularly, some primal-LPN parameter sets). Whereas our reduction
establishes an asymptotic connection, suggesting that LPN with regular noise
could be as hard as that with exact noise, albeit with some security loss.

The Hardness of LPN over Integer Rings. Although having been used
in protocol design [8,9,69], LPN problems over integer rings (e.g., Zy») have
received relatively limited attention in research. One notable exception is the
work of Akavia [2], which explored a generalized LPN assumption over an integer
ring within the context of the random samples access model. However, the work
does not consider the hardness of LPN problems over integer rings in the PCG
setting. As a result, all existing works for PCG-like protocols and applications
select the parameters assuming that LPN over an integer ring is as secure as
LPN over a finite field.
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In this paper, we provide a complete relationship between LPN over fields and
that over integer rings, with both asymptotic reduction and concrete analysis.
From the theoretic side, we show the equivalence of related problems as shown
in Fig. 2. On the concrete side, our analysis (in Fig. 1b and in Tables1 and the
full version of the paper [58, Table 2]) shows that LPN over an integer ring is
significantly more vulnerable to attacks than LPN over a finite field of similar
size. What’s more, we show that although LPN over a finite field becomes harder
to attack as the field size increases, LPN over an integer ring becomes easier to
attack as the ring size increases!

1. Focusing on the most commonly used ring Z,x, we show a concrete attack

o(A—1)

that can solve a t-noise LPN over Zy» by solving a (ﬁ . t) -noise (which

approximates to t/2) LPN over Fy. This means that LPN over an integer
ring is concretely weaker than LPN over a finite field and we need to dou-
ble the weight of noise vectors to cover this attack. The impact to existing
cryptographic protocols is significant. It will lead to roughly 2x more com-
munication and computation.

2. On the positive side, we provide an evidence that the LPN problem over an
integer ring is generally hard. In particular, we show a reduction between
t-noise LPN over Fy and (A - t)-noise LPN over a ring Zj», which means
that LPN over an integer ring is asymptotically as hard as classical LPN.
This “efficient” reduction requires a different noise distribution: instead of
sampling ¢ locations and putting a uniform non-zero entry from Z,x in each
location, we need to independently sample A weight-t noises eq,...,ex_1
over [Fy, and define the final noise vector as e = Zie[/\] 2t . e; with weight
< A - t. This noise distribution may be interesting, as 1t can be used in the
design of PCG-like protocols by adopting the upper bound A - ¢ to run these
protocols. This change of distributions is crucial: without such change, the
most favorable reduction we can identify shifts from ¢-noise LPN over Fs to
(2* - t)-noise LPN over Zo», which is exponentially worse than the above.
Another interesting fact is that the above reductions only require the code
matrix A to be Boolean, which eliminates the need for integer multiplication
during LPN encoding. Prior work [27] observed that using a Boolean code
matrix is not vulnerable to existing linear-test attacks for LPN over finite
fields; here we show that for LPN over integer rings, using a Boolean matrix
is provably secure assuming that classical LPN over F5 is hard.

3. While the above reductions focus on the decisional version of LPN, we also
give a reduction from computational LPN over Zj» to that over Fy. Thus,
we show the equivalence between computational and decisional versions of
LPN over Zy» as shown in Fig.2. We also generalize all the results to any
integer ring. In particular, we show a concrete attack that can solve a t-noise

LPN over a ring Z,x; g, by solving either a (ijl . t) -noise LPN over F,, or a

(%1 . t) -noise LPN over F,, where p, ¢ are two primes. This attack works for

both computational and decisional versions of LPN. We also give a reduction
from t-noise LPN over IF,, and ¢-noise LPN over F, to (()\1 +A2) -t)—noise LPN
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trivial
'd P . ~\
Comp-LPN over Fs
N Sec 4.1 ~ Y g . -
> ) . . Sec 4.3
Dec-LPN over Zgx [44, 54, 6] trivial Comp-LPN over Z,x
J Sec 4.2 P > N
Dec-LPN over Fo
(. J

Fig. 2. The reduction relations between computational and decisional versions of LPN
over Fo and Z,x in the presence of Bernoulli and exact noise distributions.

over prquz. Given these reductions over prqug, one can easily generalize
them to any integer ring.

Concrete Security of LPN for PCG. Finally, we maintain an easy-to-use
tool to estimate the costs of the advanced attacks (Pooled Gauss, SD, ISD and
algebraic attacks) on the concrete security of LPN problems related to the PCG
setting, and will integrate new attacks found in the future into the estimator
tool®. Prior to this work, most PCG-like protocols use the analysis from [15] for
all LPN variants. We refined their analysis and incorporated attacks on integer
rings and regular noises. See Table 1 and the full version of the paper [58, Table 2]
for some representative parameters originally proposed in [15].

In the process of summarizing existing attacks, we also made an interesting
observation in the context of PCG. Statistical decoding (SD) and information
set decoding (ISD) are both important attack techniques for the exact-noise
LPN problems. We observe that in the context of PCG, ISD attacks are almost
always better than the SD attacks, including the recent work of SD 2.0 by Carrier
et al. [25]. We formalize this observation by showing that both the optimal
SD and SD 2.0 attacks (adapted to the low-noise setting) require more cost,
compared to the Prange’s original ISD algorithm [65] for a large set of commonly
used parameters. Note that our findings do not diminish the relevance of SD
2.0; rather, they arise from differences in parameter settings between our work
and [25]. This also shows the disparity of cryptanalysis between classical LPN
problems with high noise rates and low-noise LPN problems used in PCG-like
protocols.

Subsequent Works. The estimator tool has been used in subsequent works
(e.g., [50]) to choose LPN parameters for PCG-like protocols. Our attack on
integer rings has subsequently been noted by multiple works. Baum et al. [9]
addressed this attack by a countermeasure: sampling the non-zero values in the
noise vector only from invertible elements in Z,x (i.e., odd values). This plausibly
prevents the attack, and we did not find an efficient attack against LPN over

3 Available at www.lpnestimator.com.
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Zy» with the countermeasure. Besides, the updated version by Boyle et al. [19]
and the work by Lin et al. [57] adopted the same countermeasure to address our
attack. It seems to be hard to prove that LPN over F5 implies LPN over Zyx with
random-odd noises, even if a significant security loss is allowed. This is because
two noise vectors in two adjacent hybrids have the strong correlation, when a
random odd value is sampled for each noisy coordinate. If one is desirable to
obtain a tight reduction from LPN over Fy to that over Zyx, it may choose the
noise distribution in the form of e = Zie[ A 2'. e; with independent and random
weight-t noises e; for i € [)].

2 Preliminary

2.1 Notation

We denote by log the logarithm in base 2. For a,b € N with a < b, we write
[a,b] = {a,...,b} and use [n] to denote [0,n — 1] for simplicity. We use x «— S
to denote sampling x uniformly at random from a set S and x < D to denote
sampling z according to a distribution D. For a ring R, we denote by |R| the
size of R. We will use bold lower-case letters like a for column vectors, and bold
upper-case letters like A for matrices. By slightly abusing the notation, for a
vector a, we use |a| to denote the Hamming weight of @, and denote by ali]
the i-th component of a. For two vectors x,y, we denote by (x,y) the inner
product of z and y. For a vector a € (Zy)*, we use BitDecomp(a) to denote

the bit-decomposition of a, and its output is denoted by (a®,a',---,a*~!) such
that a' € F for i € [\] and (a°[j],a'[j],...,a*"![j]) is the bit-decomposition
of ring element a[j] € Zys for j € [k]. Let BitDecomp *(a%,a',---,a* 1) =

S 20 at € (Zyr)F be the inverse of BitDecomp(a). We use poly(-) to denote
a polynomial function. For two distributions X and Y, we denote by X =, Y
that X is computationally indistinguishable from Y. We will use the following
lemma:

Lemma 1 (see, e.g., [83]). For any u € (0,1), if each coordinate of a vector
v € FY is independently set to 1 with probability u, then the probability that
|v| = [ut] is at least 2(1//t).

2.2 Learning Parity with Noise

Recently, variants of the learning parity with noise (LPN) assumption [13] are
used to build PCG-like protocols with sublinear communication for generating
(C)OT and (V)OLE correlations. The LPN variants are defined over a general
finite ring R. The known LPN-based PCG-like protocols mainly consider three
cases for the choices of ring R:

— Case 1 that R = Fy is used to design the COT protocols [16-18,27,67,82],
which is in turn able to be transformed into standard OT protocols.
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— Case 2 that R is a finite field F with |F| > 2 is used to construct the VOLE
protocols [15-18,27,67,69,76] and the OLE protocols [1,14,18,19].

— Case 3 that R = Zox (e.g., A € {32,64,128}) is used to obtain the VOLE
protocols [8,9,57,69].

When considering more general rings such as R = Z,x for a prime p > 2 and
R = Zprigr, for two primes p,q, the LPN problems over such rings may be
interesting for future protocols. Following prior works (e.g., [17,18]), we define
the (primal-)LPN and dual-LPN assumptions over a general ring R as follows:

Definition 1 (LPN). Let D(R) = {Di,n(R)}i,nen denote a family of distri-
butions over a ring R such that for any t, N € N, Im(D; y(R)) C RYN. Let
C be a probabilistic code generation algorithm such that C(k, N, R) outputs a
matriv A € RVN**. For dimension k = k(k), number of samples N = N(k),
Hamming weight of a noise vector t = t(k), and a ring R, we say that the
decisional (D, C, R)-LPN(N, k,t) problem is (T, €)-hard if for every probabilistic
distinguisher B running in time T, we have

Pr [B(A,b=A-s+e)=1]— Pr [B(A,u)=1]| <e,

A.s.e Au

where A — C(k,N,R), s — RF, e « Dy n(R) and u — RYN. We say that the
computational (D, C,R)-LPN(k, N,t) problem is (T,€)-hard if for every proba-
bilistic algorithm B running in time T, we have

APr [B(A,b=A-s+e)=(s,e)] <e,

where A, s, e are defined as above.

In the above definition, both T" and € are functions of computational security
parameter x. Following the previous work, we consider the following families of
noise distributions:

— Bernoulli. Let Ber(R) = {Ber, n(R)},,~ be the family of Bernoulli distri-
butions. In particular, Ber, ny(R) is a Bernoulli distribution with parameters
u, N over a ring R, such that each component in a noise vector sampled from
Ber, n(R) is a uniform element in R with probability ;1 and 0 otherwise.
Following prior works (e.g., [15,27,37,52]), we adopt such Bernoulli defini-
tion which samples a uniform element in R with probability p. Note that the
definition is equivalent to sampling a uniform non-zero element in R with
probability u(|R| — 1)/|R| for each component. One notational benefit we
enjoy with this definition is that if e follows Ber, x(R) then any bit vector,
formed by taking one bit from each corresponding component in e, follows
Ber,, n(F,) for the same parameter (.

— Exact. Let HW(R) = {HW; n(R)}+ v be the family of exact noise distri-
butions. In particular, for HW; x(R), each component of a noise vector is a
uniform non-zero element in ¢ random positions and zero elsewhere. Infor-
mally, we refer to LPN with exact noise distributions as exact-LPN.
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— Regular. To achieve better efficiency, a series of works, e.g., [7,14-18,24,47,
76,82], adopt the family of regular noise distributions, denoted by RHW(R) =
{RHW; n(R)}¢ n. In addition to fixed Hamming weight, the noise vector is
further divided into ¢ consecutive sub-vectors of size |N/t], where each sub-
vector has a single noisy coordinate. Sometimes, we refer to LPN with regular
noise distributions as regular-LPN.

The existing LPN-based PCG-like protocols adopt the latter two noise distri-
butions, and the standard LPN assumption adopts the Bernoulli distribution.
While the standard LPN assumption uses random linear codes to instantiate
C (i.e., sampling A uniformly at random), multiple LPN-based protocols adopt
other kinds of linear codes to obtain faster computation, including local lin-
ear codes [4], quasi-cyclic codes [60], MDPC codes [63], expand-accumulate
codes [16] etc. We do not analyze the hardness of LPN problems based on quasi-
cyclic codes, which needs to take into account the effect of the DOOM attack [70]
that allows providing v/ N computational speedup. We are not aware that other
kinds of linear codes listed as above lead to significantly better attacks, com-
pared to random linear codes. The reductions given in this work focus on the
case of random linear codes, and we leave that extending them to other linear
codes as a future work. To simplify the notation, we often omit C from the
(D, C,R)-LPN(N, k, t) problem, and only write (D, R)-LPN(N, k, t).

Below, we define the dual-LPN assumption over a general finite ring R with
a family D of noise distributions, where both the decisional version and search
version are described. Dual-LPN is also known as syndrome decoding.

Definition 2 (Dual LPN). Let D(R) and C be as in Definition 1. For two
integers N,n with N > n, we define

C*(N,n,R)={HeR"™N N :H-A=0, AcC(N—n,N,R),rank(H) =n}.

For output length n = n(k), number of samples N = N(k), noise-vector Ham-
ming weight t = t(k), we say that the decisional (D,C~*, R)-dual-LPN(N,n,t)
problem is (T, €)-hard if for every probabilistic distinguisher B running in time

T:
Pr[B(H,H-¢) = 1] - Pr [B(H.u) = 1]| <«

where H «— C+(N,n,R), e < Dy y(R) and u — RY.
We say that the computational (D,C*,R)-dual-LPN(N,n,t) problem is (T,¢)-
hard if for every probabilistic algorithm B running in time T, we have

IEY [BH,H-e)=¢] <e,

where H, e are defined as above.

For any fixed code generation algorithm C and noise distribution D, the dual-
LPN problem defined as above is equivalent to the primal-LPN problem from
Definition 1 with dimension ¥ = N — n and the number of samples N. The
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direction transforming an LPN instance into a dual-LPN instance directly follows
the simple fact that H- (A-s+e)=(H-A)-s+H-e=H"e, as H is the
parity-check matrix of the code generated by A. The reverse direction can be
obtained in a way similar to [62, Lemma 4.9].

3 The Hardness of LPN with Regular Noise Distributions

A series of MPC and ZK protocols (e.g., [7-10,14-18,24,35,36,47,76,78,80,82])
rely on the hardness of LPN problems with regular noise distributions. Multiple
prior works, e.g., [15-18,24,82], believe that regular-LPN problems are not sig-
nificantly easier than exact-LPN problems, or even harder than exact-LPN for a
part of parameter sets. However, no reduction from exact-LPN to regular-LPN
was provided, until the recent work by Feneuil, Joux and Rivain [42]. They intro-
duced a reduction from a (dual)-LPN problem with a regular noise distribution
to that with an exact noise distribution, which is summarized in the following
theorem.*

Theorem 1 (Theorem 1 of [/2], adapted). If an exact-LPN problem
(HW,F)- LPN(N,k,t) is (T, €)-hard, the regular-LPN problem (RHW,F)-

LPN(N, k, t) is t
(T,e~ (JX)/ (f) )-hard.

The statement also holds for dual-LPN.

The above reduction suffers from a significant security loss, i.e., the penalty
factor

n=(0)/ ) =

where the Stirling’s approximation In(¢!) = ¢ - Int — ¢ + ©(Int) is used, and
47" <1—x < e *for 0 <z < 1/2. Here we focus on the case of t = o(IN), which
is satisfied by low-noise LPN problems used in the PCG setting. Meanwhile, it is
not hard to see that for many non-trivial parameter selections, we have € > e~

Let us analyze the following dual-LPN problem

t—1 .
1- i) — =0 t)—O(t*/N) _ t-(1—o(1))
N Y

=1

€1

H, Hz]( >H1'€1+H2'62’y,

€2
where H; € Fj ™", Hy € Frx(N=n) e, € F* and ey € FN~". A polynomial-time
attack simply bets e; = 0 and computes e; = Hfl -y (without loss of generality,

4 In particular, [42] considers a d-split noise, which consists of d blocks of length N/d
and each block has weight t/d. For d = ¢, it corresponds to the (most often used)
case of regular noise.
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assuming that H; is invertible), which succeeds with probability

N—n . N—n
n / N _ H n—t—l.-z - (11— t ze—t(f@") .
t t i n—+1 n+1

If N < 2n, a larger penalty factor p; only implies that the regular-LPN problem
(RHW,F)-LPN(N, k, t) becomes (poly(x), p; - €)-hard, where p; -€ > 1. Thus, this
motivates us to decrease the penalty factor to yield more conservative (yet still
meaningful) results.

Prior work [42] incurs a significant security loss, because it simply uses 1/p; to
account for the probability that an exact noise vector is regular at the same time.
We provide a new reduction with a new parameter « such that [42, Theorem
1] can be seen as a special case of & = 1. More importantly, with large a, we
are able to reduce the security loss dramatically by dividing the exponent by «,
while paying only an additive price at in dimension and number of samples.

At a high level, we give an overview of the proof idea. Given exact-LPN
samples (A,b = A - s + e) with dimension k£ and noise weight ¢, we divide
them into at blocks, i.e., (A;,b; = A; - s+ e;) for i € [1,at], where a is an
additional parameter. Instead of hoping that every e; has exact weight 1 (as
done by Feneuil et al. in [42]), we relax the condition to |e;| < 1, which occurs
with higher probability (and hence less security loss), especially for large «. For
each block, we add an extra random sample (a;,v; = {(a;, s) + €;) such that the
vector (e], ;) has the exact weight 1 (i.e., the resulting noise vector is regular).
This is possible if the dimension of the target regular-LPN problem is k + «t.
That is, the additional at values would help to simulate at values {v;} almost
perfectly.

Theorem 2. Lett, N € N, and a > 2 such that at € N and (at)|N. If the exact-
LPN problem (HW,F)-LPN(N, k, t) is (T,e)-hard, then the reqular-LPN problem
(RHW,F)-LPN(N + at, k + at, at) is (T — poly(N, k), 2% -€)-hard, where F is any
finite field.

Proof. Let N = atm for some m € N. We parse the exact-LPN samples of

(HW,TF)-LPN(V, k,t) as at blocks:

Ale]Fka bli(A1'8+61)€Fm
: b :

A, € Fmxk bat = (Aot - s+ eqr) €F™

def

A= where s « TF*.

)

Let &€ be the event (not explicitly stated hereafter) that for every i € [1, at], the
e;’s weight |e;| < 1. Then, we have that £ occurs with probability

t—1
Z —2
41’:1 at

Q=
|

aty (NNt t-1
Pr 5] — ( t ) (at) (
(€T seenred ) —HWe v (F) (

V
Il
[\]
R+
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where the inequality is due to 1 — 2 > 47% for 0 < x < 1/2, and z = é <

é < 1/2. Our analysis is conditioned on &, and thus incurs a security loss of
factor 2 & . Sample row vectors r],...,r}, «— FF+tat Condition on that they
are linearly independent, which has probability more than 1 — |F|~* (see, e.g.,
[55,83]), pick any full-rank matrix B € FF*(:+a?) such that M defined below
has full rank

MY BT ry ... 1) € Fktanx(tan),

We denote the secret of a regular LPN instance by x « FFt subject to
B -« = s. For each i € [1, at], we also define a random element u; € F\{0} as
follows:

ief [ the non-zero entry of e;, if |e;| =1

def
vi = {sample a fresh u; — F\{0}, if |e;| =

0 (recall |e;| <1 conditioned on &).

def|: A;-B } /def[ b,=A,-B-xz+e;
T 7b'_

Let C. = T 1T (AB)|" 7 T |vi=rl 2z +w—1" b for i € [1, o],

where 17 is the all-ones row vector (i.e., every component is 1). It is easy to

€
u— 17 - e
an exact weight 1.5 Now we argue (C;,b’) can be efficiently simulated. Since
x is uniform over F¥*+2t we have that M - x is uniformly random over FFtet
for any full-rank matrix M. Therefore, (r] - @,...,r!, - @) is uniformly random
over F**| even conditioned on M, B-x and other variables (e.g., all the A;’s, e;’s,
u;’s). Thus, even without knowledge of u; and e;, the reduction can perfectly
simulate the additional sample v; = rZ-T -x +u; — 17 - b; by sampling v; € F
uniformly at random.

However, (C;,b}) doesn’t constitute the é-th block of the regular-LPN
instance, since A; - B (as part of C;) is not uniform over F™*(*+et) (hut sam-
pled from a k-dimensional subspace). We first complete the rest proof for the
special case F = Fy and then proceed to the general case of any finite field F
with |F| > 2.

verify that b, = C; - = + [ ] and the noise vector (e],u; — 17 - e;) has

CASE 1: F = Fo. In this case, we have that w; is always 1 (i.e., the only non-
zero element in Fy). We sample a random matrix P; « F™*°t for each i €
[1,at]. We define the following LPN samples, which have the same weight-1
noise (e],u; — 17 - €;) as (C;, b)).

].T'b1+’U1—1

[A;|P;] - M ] |:bi:|_’_ P;- :
r;,r_lT'(Ai'B) ’ 17 - bot +var — 1

0

5 Strictly speaking, the noise vector is ensured to have Hamming weight 1, but its
coordinates may not take non-zero values with equal probability. The issue can be
easily addressed by shuffling the matrices and samples accordingly.
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which can be verified by comparing their difference, i.e.,

rI-:B 176y +v; -1
rl, - x 17 byt + var — 1

Furthermore, the matrices in (1) are 2/|F|¥-close to uniform ones, which is proved
in the following Lemma 2. Therefore, for each i € [1, at], the LPN samples in (1)
constitute the i-th block of a regular-LPN instance (RHW,F)-LPN(N + ot, k +
at,at). Therefore, we just feed all at blocks as per (1) to the solver against
(RHW, F)-LPN(N+at, k+at, at). If it returns x, then we recover the secret vector
s := B-x of the exact-LPN instance (HW, F)-LPN(N, k, t). Quantitatively, if one
breaks (RHW, F)-LPN(N +at, k+at, at) with probability p, then it can also break
(HW,F)-LPN(N, k, t) with probability at least 25 % - (p—2-|F7%)>p- 2 4.
CASE 2: |F| > 2. In this case, we have that w; is uniform over F\{0}. The
reduction can be oblivious of u; by letting the secret absorb u;. We define @’
such that B-a@’ =B -z and for alli € [l,at], »] -2’ =v] -z +u; — 1, ie,
M-2' =M.+ (hd:ef[o,...,o,(u1 —1),...,(uat—1)]T) ,
——

k

which is always possible by letting ' % z + M~! - h for any invertible M.
Therefore, the reduction in Case 1 still works in Case 2 by considering «’ instead
of ¢, where B 2’ = s and r] -2’ = 17 - b; + v; — 1 just like in Case 1. O

Lemma 2. Let A;, P;, v} fori € [1,at], B and M be as defined in the proof
of Theorem 2. Then,

[A1HP1] -M [Aat”Pat] -M (m41) X (k+at)at X —k
SD(( L«I -17(AB)|" " |rl — 17(AuB) ) (Ue =2

where SD(-,-) denotes the statistical distance between two distributions, and
U™ denotes the uniform distribution over F™*™.

The proof of Lemma 2 is given in the full version of the paper [58]. We also obtain
a similar result for dual-LPN in the following Corollary 1 via the reductions
between LPN and dual-LPN (see Sect. 2.2).

Corollary 1. Lett, N € N and a > 2 such that at € N and (at)|N. If the exact-
dual-LPN problem (HW,F)-dual-LPN(N,n,t) is (T,e)-hard, then the regular-
dual-LPN problem (RHW,F)-dual-LPN(N + at, n, at) is (T — poly(V, n), 2% “€)-
hard.

The reduction underlying Theorem 2 can be generalized to that from stan-
dard LPN (with Bernoulli or exact noise distributions) to LPN with d-split noise
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distributions (refer to Footnote 4). To avoid redundancy, we sketch how to adapt
the proof. Similar to the proof of Theorem 2, for each i-th block (1 < i < ad),
introduce t/d additional random samples in the form of

{(aij,vi; = (a;;,s)+ éi,j)}je[l,t/d}

such that the vector (e],é&;1,- -~ €;¢/4) Possesses an exact weight of ¢/d. This
incurs less security loss than Theorem 2 as it only requires |e]| < t/d (instead
of |e]| < 1) when the dimension of the target ad-split LPN problem is k + at.
Consequently, the additional ot dimensions help to realize the almost-perfect
simulation of at values {v; ;}.

4 The Hardness of LPN over Integer Rings

LPN over an integer ring (e.g., Zy») has been used in VOLE and ZK protocols [8,
9,57,69], where these VOLE protocols could also benefit other works that need
VOLE over integer rings like the MPC protocol SPDZ,x [28,30]. The current
security estimate of LPN over Zyx in prior works is directly adapted from that
for LPN over a field F of size |F| ~ 2* [15]. As we will show in this section
the hardness of LPN over Z,x is more related to that over Fy (rather than that
over the A\-bit field). As depicted in Fig. 2, we provide the following reductions
between the hardness of LPN over Z,» and that over F.

— Decisional LPN over Z,» — Decisional LPN over F,. We show that dis-
tinguishing LPN over Zy» with noise weight ¢ is no harder than distinguishing
LPN over Fy with noise weight % -t & t/2. This reduction directly gives
an attack that reduces the noise weight by half for an LPN instance over Zgx.
— Decisional LPN over F; — Decisional LPN over Z,.». We show that
distinguishing LPN over Fy with noise weight ¢ is no harder than the distin-
guishing attack on LPN over Zy» with 1) non-standard Bernoulli-like integer
noise of weight at most A-t; and 2) standard Bernoulli noise of weight ~ 2* -¢.
— Computational LPN over Z,» — Computational LPN over F,. We
show that a secret recovery attack on LPN over Z,x» with noise weight ¢ is
no harder than that on LPN over Fy with noise weight roughly ¢/2. While
a generic reduction requires k“M-hardness for LPN over Zox, we also give
more efficient reductions for their weakly one-wayness that is more relevant
to practical attacks and security estimates. We also discuss how to optimize
the secret recovery attack on LPN over Zy» based on that over F5 in practice.

We give similar reductions for LPN over a ring Z,x, ;. (for any distinct primes
p,q) in the full version of the paper [58, Appendix A], which can be further gen-
eralized to any ring Zy for an integer N. All these reductions focus on the case of
(primal)-LPN, and are easy to be generalized to the case of dual-LPN. When we
give the reductions between different computational LPN variants, we assume
that LPN over a field in consideration has a unique solution in the average case
(except for a negligible fraction), which will simplify the analysis. Note that this
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is true for most interesting parameter regimes of LPN, which give rise to crypto-
graphic applications (e.g., PCG and public-key encryption), as demonstrated in
the full version of the paper [58, Lemma 3]. For the concrete security of an LPN

instance LPN(N, k,t) over Zy», we can first reduce it to LPN(N, k, %t) over
[y, and then estimate the bit security of the LPN instance over Fo as demon-
strated in Sect.5. Thus, we omit the detailed analysis of concrete LPN over
Zoy». In the subsequent work, Baum et al. [9] gave a countermeasure by sampling
an invertible element in Zy» at random for each noisy coordinate to resist our
attack. Given the countermeasure, we can reduce an LPN problem over a ring
Zyx to that over Fy with the same noise weight, using the same approach shown
in Sect.4.1. In other words, LPN over Zyx is no harder than LPN over Fy under
the same parameters. Therefore, when estimating the bit security of LPN over

Zox , one needs to use the cost attacking LPN over Fsy as an upper bound.

4.1 Reduction from Decisional LPN over Z,;» to LPN over F,

We start with a simple observation that the distinguishing attack on LPN over
Zox can be based on that over Fy with roughly halved noise weight. Specifically,
we have the following theorem.

Theorem 3. If the decisional exact-LPN problem (HW,Zqox)-LPN(N, k,t) is
(T, €)-hard, then the decisional exact-LPN problem (HW,F3)-LPN(NV, k, %t}

is (T — poly(N, k), O(v/t - €))-hard.

The above statement can be generalized to the case of Bernoulli distributions.
If the decisional LPN problem (Ber,Zox)-LPN(N,k, ) is (T,€)-hard, then the
decisional LPN problem (Ber,F3)-LPN(N, k, 1) is (T — poly(N, k), O(¢))-hard.

Proof. Given LPN samples over a ring Zs» (A,b = A - s+ e), we observe that
least significant bits (LSBs) of these samples (A? := A mod 2,b° := b mod 2)
constitute exactly the LPN samples over Fy for noise €’ = e mod 2. In case
that e « HW, n(Zs»), the noise vector €’ follows a Bernoulli-like distribution
over | which is sampled by first picking ¢ out of N coordinates at random

and then filling in these t coordinates with random non-zero elements over Zox
o(A—1)
2x—1 Y

(and the rest with zeros). Thus, overall e? has expected weight t' =

where 2(%11) is the probability that a random non-zero element of Z,» is odd.

2
By Lemma 1, this implies that with probability £2(1/y/%), the noise vector e®
follows the exact noise distribution HW,/ n (F2). On the other hand, the LSBs of
(A, u) with a uniform u € Z,» are uniform as well. Therefore, one can use the
solver of (HW,Fy)-LPN(N, k,t') to distinguish (A°,b°) from uniform samples.
The proof for the second statement is likewise, except when taking the LSBs of
e «— Ber, n(Zy) we immediately get € ~ Ber, n(F2) as desired. O

Despite the preserved noise probability p in the case of Bernoulli distribution,
we note that Ber, n(Zyx) has expected weight (1 — 27*)uN, while Ber, n(F2)
has expected weight pN/2 that is roughly 2x smaller than Ber, n(Zax). We
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can transform regular-LPN samples into exact-LPN samples by randomly shuf-
fling these samples, and thus obtain a reduction from the decisional regular-
LPN problem (RHW,Zyx)-LPN(N, k,t) to the decisional exact-LPN problem
(HW,TF3)-LPN(N, k, %t) The reductions directly give an efficient attack to
reduce the noise weight of an exact-LPN or regular-LPN instance over a ring

Zox by half.

4.2 Reduction from LPN over F; to Decisional LPN over Zox

We first show that the LPN assumption over Fy implies that over Zyx under the
standard Bernoulli noise distribution. However, we achieve the goal by paying a
price in the security loss due to the dependence among different noise vectors.
As a result, we get the very conservative statement that decisional LPN over Fy
with noise weight ¢ is no harder than decisional LPN over Z,» with noise weight
roughly 2*t. We then introduce more useful Bernoulli-like noise distributions to
enable more efficient reductions. In particular, we can reduce to an LPN over
Zox with noise weight At.

Theorem 4. If decisional (Ber,Fo)-LPN(N, k, 11/2*) is (T, €)-hard, then deci-
stonal (Ber, Zox)-LPN(N, k, 1) is (T — poly(N, k), A - €)-hard.

Proof. Let (A, b = A - s+ e) be LPN samples over Zy». Decompose the
matrix and vectors into A ones over Fy as follows: (A% Al ... A1) :=
BitDecomp(A), (s°,s',---,s*"1) := BitDecomp(s), (e’ e!,---,er!) =
BitDecomp(e) and (b°,b',--- ,b*71) := BitDecomp(b). Therefore, for i € [\,
b" depends only on A, (s’,...,s°), (ef,...,e"), and we write it as b' = AC .

si+ei+ fi(A,S(0,i—1),E(0,i—1)) mod 2, where S(0,i—1) &' (si~1,..., %),

and E(0,7 — 1) f (ei71,...,€%, and f; sums up the other terms not depend-
ing on s’ and e’ Define the hybrid distributions Hy, Hy,- -+, Hy, where each
H = (A,b° - by -, uy_1) and u; — FY for j € [\ is sampled

independently at random. Note that all the s%’s are independent and uniformly
random. Therefore, for i € [A], by the decisional (Ber,F3)-LPN assumption,

(A% w;,8(0,i—1),E(0,i—1)) ~. (A°, A% s'+e' mod 2,8(0,i—1),E(0,i—1))

where S(0,7— 1) is independent of any other variables, and the actual noise rate
of LPN is that of e conditioned on E(0,i — 1) (see analysis blow). This implies

(A,b°, - 6" i + fi(A,S(0,i —1),E(0,i — 1)) mod 2) ~ (A, 5%, b")

which in turn implies H; ~. H; 41, where b°,... 6", fi(A,S(0,i—1),E(0,i —
1)) can be efficiently computed from A, S(0,i —1),E(0,i — 1).

Therefore, if all the adjacent H; and H; 1 are computationally indistinguish-
able except with probability €, then Hy and H) are computationally indistin-
guishable by a hybrid argument except with probability A - €. It thus remains to
estimate the noise rate needed by the LPN assumption. Consider a single noise



The Hardness of LPN over Any Integer Ring and Field 165

sample (€°[4],€'[j],...,e*1[j]) < Ber, n(Zs»), where €'[j] is the j-th entry of
e’. Conditioned on any non-zero (e°[j],...,e""'[j]), e'[j] is uniformly random
and thus unconditionally masks the corresponding b'[j]. Otherwise, we have that
Prleili] — 0r; R NN R po 270D > —(i+1)

r[e [J]*l}(e bl,....e [J])*O] = m > -2
is the noise rate needed to keep the computational indistinguishability between
H; and H; 1, which reaches its minimum g - 27X when i = X — 1. O

Based on the above theorem, we easily obtain the following corollary, with its
proof given in the full version of the paper [58].

Corollary 2. If decisional (Ber,F3)-LPN(N, k, 11/2") is hard, then computa-
tional (HW, Zgx)-LPN(N, k,t = (1 — 2=*)uN) is hard.

The dependency among the noise vectors {€‘} incurs a significant loss during
the reduction. This motivates us to introduce two specific noise distributions,
i.e., IndBer, n(Zy») and IndHW,; n(Zsx), where Ind refers that the noise’s bit-
decomposition e, ..., e* ! are independent and identically distributed, and
parameter u (resp., t) is noise rate (resp., weight) of each e'.

— IndBer,, n(Zgx) is bit-wise independent. By e « IndBer, n(Zy»), we mean
that e := Zf‘;ol 20 . €' € Zyn with e’ — Ber, n(F2) for i € [A]. The noise
rate of IndBer, n(Zyx) is the probability that a coordinate of e is non-zero,
ie., 1—(1—pu/2)* < \u/2 by Bernoulli’s inequality. Therefore, the expected
Hamming weight of e < IndBer,, n(Zyx) is At where t = pN/2.

— IndHW,; n(Z3x) decomposes into A independent vectors from HW,; x(F2). By
e — IndHW, y(Zy»), we mean that e := Y0 27 - ¢! with €' — HW, y(Fs)
for ¢ € [A]. Tt is easy to see that the Hamming weight of e is at most At.

Although IndBer,, n(Z3x) and IndHW, n(Z3x) have not been used in existing pro-
tocols, LPN with such noise distributions can be used to design PCG-like VOLE
protocols by running these protocols with maximum weight A\t. The PCG-like
VOLE protocols employing the non-standard noise distributions are approxi-
mately A/2 times less efficient than the state-of-the-art protocol [9] using LPN
with regular noise distributions over Z,x. Despite their lower efficiency, these
PCG-like VOLE protocols enjoy (1) that the underlying LPN problem over Zgx
is tightly equivalent to LPN over Fa; (2) a simpler approach to detect malicious
behaviors. Below, we show that decisional LPN over Fs with noise weight ¢ is
tightly equivalent to decisional LPN over Zyx with noise weight roughly At under
the new noise distributions. The proof of Theorem 5 is detailed in the full version
of the paper [58].

Theorem 5. Let (D1, D2, w) € {(Ber,IndBer, 1), (HW, IndHW, t)} and we have:

— If decisional (Dy,F3)-LPN(N, k,w) is (T,€)-hard, then decisional (Da,Z»)-
LPN(N, k,w) is (T — poly(N, k), A - €)-hard.



166 H. Liu et al.

Algorithm 1: Appy,,, the secret recovery algorithm on LPN over Zjx
(A > 2) with oracle access to Appn, (the solver for LPN over Fy).
Input: (D, Z,x)-LPN(N, k,t) samples (A, b= A -s+e mod 2*)
Output: s € Zsa
1 (A% A ... A*1):= BitDecomp(A);
2 (b°,b',--- ,b* 1) := BitDecomp(b);
3 (s°,e”) — Arpn, (A%, 0°);
4 b =(b-A s"—e%/2 mod 207V,
5 Return s = s° +2- ALPNz(A_l) (A' = Z?;OQ 28 AN € Zgroa, b’).

— If decisional (Da,Z9»)-LPN(N, k,w) is (T, €)-hard, then decisional (Dy,Fs)-
LPN(N, k,w) is (T — poly(N, k), €)-hard.

On the Choice of Matrix A. As we can see from the proofs of Theorem 4,
Theorem 5 and Theorem 6 (shown in Sect.4.3), all the reductions only rely on
that A is uniformly distributed over ]FéVXk while A',... A*~1 can be arbi-
trary (or even zero matrix), where (A% Al ... A*~1) := BitDecomp(A). In
other words, it suffices to use a Boolean matrix A = A®, and the choices of
Al ... A do not introduce any further hardness to the LPN problem over
Zox. Overall, we give a positive result that LPN over a ring Z,» with Boolean
matrices is secure if the corresponding LPN over binary field F is secure.

4.3 Reduction from Computational LPN over Z,» to LPN over F,

In the computational setting, we show that an LPN instance over Z,» can be effi-
ciently translated to A instances of LPN over Fy, which are independent except
that they share the same random matrix A° over Fy and that the noise vectors
of the X instances are somehow correlated. We refer to the proof of Theorem 6
on how to address the correlation issue. Here we give a reduction from compu-
tational LPN over a ring Z,» to that over Fo by extending the corresponding
reduction between their decisional versions shown in Sect. 4.1. Algorithm 1 shows
how computational LPN over Zs»x is reduced to that over Zyx—1. The correctness
of this reduction is analyzed in Lemma 3, and its proof is available in the com-
plete version of the paper [58]. Note that by recursion, Arpn,, degenerates to
secret recovery algorithm for LPN over Fy when A = 1. Without loss of general-
ity, we assume that Appn, returns the noise vector in addition to the recovered
secret.

Lemma 3. Let (A,b=A-s+e mod 2*) be the LPN samples over Zox, then
(A’,b") as defined in Algorithm 1 constitute the LPN samples over Zy—1), where
Al = Zf‘:oz 20. A% mod 20V b = A’-s'+€ mod 20V ¢ = Z;\:ll 2i-1. gt

mod 2~ gnd e’ = Zj‘:—f 2i=1. ¢l mod 2031,
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Below, we show that (e**1)-hard computational LPN over Zjx implies (2¢)-
hard LPN over Fo. Here A = O(1) needs to be small in general for polynomial
hardness, and it can be up to A = kW) for sub-exponential hardness, e.g.,
A=k02 and e = 27" The proofs of Theorem 6 and Theorem 7 are detailed
in the full version of the paper [58].

Theorem 6. If  computational (D1, Zox)-LPN(N, k, w) is (A
T + poly(N, k), e’ 1Y) -hard, then computational (Dg,Fo)-LPN(N, k,w) is (T, 2¢)-
hard, where (D1, D2, w) € {(Ber, Ber, 1), (IndBer, Ber, 1), (IndHW, HW, ¢)}.

Theorem 7. If computational (HW,Zyx)-LPN(N, k,t) is (A - T + poly(N, k),

et -hard, then computational (HW,Fy)-LPN(N,k,t') is (T7W)_
o(A—1)

hard, where t' = Sx—(1+0)t for any constant 6 > 0.

Recall that we can transform regular-LPN samples into exact-LPN samples
by randomly shuffling these samples. Therefore, we are able to obtain a reduc-
tion from the computational regular-LPN problem (RHW, Zyx)-LPN(N, k,t) to

the computational exact-LPN problem (HW,F3)-LPN(N, k, 25— (1 + 6)t). The
above reduction suffers a significant security loss by exponent factor 1/(A + 1)
since computationally intractable problems typically require a small success
probability for efficient adversaries. In the setting of practical key recovery
attacks, however, we often expect the success probability to be (1 — 1/poly(k))
or even overwhelming. In this case, we get more efficient reductions as below.
The proofs of Theorem 8 and Theorem 9 are provided in the full version of the

paper [58].

Theorem 8. If the computational (D1,F3)-LPN(N, k,w) problem can be broken
by Arpn, in time T with success probability at least (1 — €), then the compu-
tational (Dz,Zyx)-LPN(N, k,w) problem can be broken by Arpn,, (see Algo-
rithm 1) in time - T + poly(N, k) with success probability at least 1 — (A +1)4/e,
where (D1, Do, w) € {(Ber,Ber, i), (Ber, IndBer, ), (HW, IndHW, ¢)}.

Theorem 9. If the computational (HW,F3)-LPN(N, k,t') problem can be broken
by Appn, in time T with success probability at least (1 — €/2), then the compu-
tational (HW,Zax)-LPN(N, k,t) problem can be broken by Arpn,, (see Algo-
rithm 1) in time X-T + poly(N, k) with success probability at least 1 — (A +1)+/e,

where t' = gi: (1+ 0)t for any & and € satisfying 6t > 61n(2/¢).

Optimized Attacks on (Ber/HW,Z,x)-LPN. In practice, we optimize the
attacks on (Ber/HW,Z,x)-LPN by exploiting the correlations among the noise
vectors of the \ instances (i.e., €°,...,e*~1). In particular, Algorithm 1 recov-
ers the corresponding secrets s, s1, - -, s*~! sequentially. That means when the
attacker works on the (i + 1)-th LPN instance, it has already seen €°,...,e'"?
from the previous i broken instances. As analyzed in the proof of Theorem 4,
for any single noise sample (e°[5], e![j], ..., e*"1[j]) < Ber, n(Zy»), €[] is uni-
formly random conditioned on any non-zero (e°[j],...,e""*[j]), and thus sam-
ple b'[j] is useless (encrypted by one-time padding) and should be discarded. In
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other words, the effective noise rate of the i-th LPN instance is roughly z-2~(+1)
given the attacker’s knowledge about €°,...,e*~!. Therefore, the success rate
of solving the (Ber,Zyx)-LPN(N, k, 1) instance is roughly the product of the
A instances of (Ber,F2)-LPN with continuously halving noise rates u, u/2, ...,
u/2*~1. For instance, if solving these instances can succeed with probability e,
g1 9—(A=1) . . ..

€ ..., € respectively, then it leads to a success probability of approx-
imately €2 (instead of e**1). The optimization for reducing (HW, Zy»)-LPN to
(HW,TF3)-LPN is likewise.

5 Concrete Analysis of Low-Noise LPN over Finite Fields

Recently, a series of works [14-18,27,67,69,76,82] use the (dual-)LPN problem
with very low noise rate over finite fields to construct concretely efficient PCG-
like protocols, which extend a small number of correlations (e.g., COT, VOLE
and OLE) to a large number of correlations with sublinear communication. These
protocols can be used as building blocks to design a variety of MPC and ZK
protocols. Therefore, the hardness of (dual-)LPN problems is crucial to guarantee
the security of all the protocols.

Before our work, almost all of the known PCG-like protocols based on (dual-
)LPN adopt the formulas by Boyle et al. [15] to select the concrete parameters for
some specified security level. Boyle et al. [15] obtained the formulas by analyzing
three attacks: Pooled Gauss [40], ISD [65] and SD [3]. However, we found some
imprecisions for their analysis, which are outlined as follows:

— When analyzing the hardness of LPN with exact noise distribution HW; x (F),
the formula against Pooled Gauss attack is obtained by viewing HW, y(FF) as
a Bernoulli distribution Ber;/n n(IF), which makes the formula not accurate.

— When analyzing the hardness of LPN against ISD attacks, the formula is
obtained by an upper bound of the complexity of the Prange’s ISD algo-
rithm [65] to solve LPN problems over a large field. This does not cover the
advanced ISD variants [11,38,59,71]. Additionally, their analysis does not
capture the impact of field sizes when calculating the ISD cost.

— When analyzing the hardness of LPN against SD attacks, each parity-check
vector is assumed to be independently in compliance with a Bernoulli distri-
bution, which is inaccurate [33].

We also give more accurate formulas on the hardness of low-noise (dual-)LPN
problems, where the recent SD improvement called SD 2.0 [25] is also included.
Very recently, Meyer-Hilfiger and Tillich [61] shown that the SD 2.0 algorithm
can be modified to obtain the same complexity under a weaker assumption.
For LPN with exact noise distributions, we compare our more accurate costs
of Pooled Gauss, SD and ISD attacks with that by Boyle et al. [15] in the full
version of the paper [58, Tables6 and 7], where all the LPN parameters are
adopted from [15]. Under the same LPN parameters, while Boyle et al. [15]
showed that either Pooled Gauss attack or SD attack has the lowest cost, our
analysis shows that ISD attack has the lowest cost. [58, Tables 6 and 7] also show
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that the ISD attack has lower cost for smaller field size, which is also observed
in prior works such as [42]. This justifies that it is not accurate to use the same
formulas for all field sizes as in [15].

Under the Gilbert-Varshamov (GV) bound®, Carrier et al. [25] shown that SD
2.0 outperforms all ISD algorithms for the case that the code rate k/N < 0.3.
However, we observe that the SD 2.0 algorithm [25] does not behave better
when solving the low-noise LPN problems used in the PCG-like protocols. This
is because the collision technique’ (a subroutine of SD 2.0) takes exponential
time 2°(®) that is much larger than the subexponential time 2°*#) to solve the
low-noise LPN problem with ISD, where u = 1/k€ is the noise rate (i.e., t/N) for
constant 0 < ¢ < 1. Thus, in SD 2.0, we incorporate other collision techniques
that are known to perform better for low-noise LPN (e.g., the one used in low-
weight parity-check attack shown in [15, Sect. 2.3], originated from [85]). In the
full version of the paper [58, Appendix B.2], we prove that the SD 2.0 attack [25]
(that improves the SD attack) adapted to the low-noise setting require more cost
than the ISD attack against (HW,F)-LPN(N, k,¢) with field size |F| > 4¢.

The previous analysis [15] focuses on exact noise distributions, but the recent
PCG-like protocols mainly adopt regular noise distributions to achieve bet-
ter efficiency. To close the gap, our analysis includes two aspects to capture
the regular structure of noises. On the one hand, we transform a regular-LPN
problem (RHW,F5)-LPN(N, k, t) into an exact-LPN problem (HW, Fy)-LPN(N —
t,k — t,t) based on the approach in prior works [22,41]. Then, we solve the
(HW,TF3)-LPN(N — ¢,k — t,t) problem by applying established attacks, indepen-
dent of the regular structure. This transformation from regular-LPN to exact-
LPN works for LPN over Fo, but fails to work for LPN over larger fields (see
more details in Sect.5.1). On the other hand, our analysis includes the recent
algebraic attack by Briaud and @ygarden [22], which exploits the regular struc-
ture of noises. This attack is able to obtain lower cost for regular-LPN problems
with small code rate k/N for some parameter sets. Recently, Carozza, Couteau
and Joux [24] also proposed new attacks tailored to LPN with regular noises, but
focus on the parameter selection satisfies the condition (N/t)t < 2N—F < (15)7
which notably differs from the parameter selection used in the PCG setting.
Thus, we do not cover their attacks.

For regular noise distributions, we give the costs of different attacks against
LPN problems with the parameters given in [15], which is shown in Tables2
and the full version of the paper [58, Table4]. For the case of log|F| = 128
and (N, k,t) = (220,32771,1419) or (N, k,t) = (222,67440,2735), the algebraic
attack achieves the lowest cost among these attacks. When the LPN parameters
listed in Table2 achieve the bit security at most 111, we have two choices to
achieve 128-bit security: (a) increasing the dimension k; (b) increasing the noise
weight t. When only increasing weight ¢, the algebraic attack would have a

5 The GV bound decoding over Fs is to solve LPN instances that achieve the GV
relative distance t/N = H (1 — k/N), where H(p) = p - log(1/u) + (1 — p) -
log(1/(1 — ) is the binary entropy function and H™! is the inverse of H.

" The collision technique refers to the process of finding parity check vectors.
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Table 2. The bit-security of LPN problems over finite fields with number of samples
N, dimension k and Hamming weight of noises ¢ for a regular noise distribution. The
abbreviation “AGB” denotes the recent algebraic attack [22].

Regular ~ LPN | This work (log |F| = 128) This work (log |[F| = 1)
over a field F
N |k t Gauss | SD | SD 2.0 | ISD | AGB | Gauss | SD | SD 2.0 | ISD | AGB

210 | 652 57 111 184 | 184 111 | 111 | 106 183 | 108 90 |101
21211589 |98 100 151 | 151 100 | 107 |96 146 | 130 80 | 103
21413482 | 198 | 101 149 | 149 101 | 110 |97 143 | 136 83 | 106
216 17391 |389 | 103 147 | 147 103 | 111 |99 141|138 87 | 108
218 115336 | 760 | 105 146 | 146 105 | 107 | 101 140 | 138 92 | 104
220 1 32771 | 1419 | 107 145 | 145 107 | 102 | 104 139 | 139 97 |98

222 1 67440 | 2735 | 108 138 | 138 108 | 104 | 103 133|133 99 | 103

Table 3. Comparison of dimensions between exact-LPN problems and regular-LPN
problems over finite fields for 128-bit security level.

#Samples | Weight | Dimension for log |F| = 128 | Dimension for log |F| =1

N t Exact-LPN | Regular-LPN Exact-LPN | Regular-LPN
212 172 1321 1377 (+4.2%) 1549 1657 (+7.0%)
o4 338 2895 2909 (40.5%) 3373 3655 (+8.3%)
216 667 6005 6091 (+1.4%) | 6956 7560 (+8.7%)
218 1312 12160 14796 (+21.7%) | 13898 15996 (+15.1%)
220 2467 25346 30978 (+22.2%) | 28289 33354 (+17.9%)
222 4788 | 50854 75396 (+48.3%) | 55408 80074 (+44.5%)

significantly lower cost than other attacks for some parameter sets (see the full
version of the paper [58, Table8]), which has been observed in [22]. To resist
the algebraic attack and the attack strategy based on the above regular-to-exact
transformation, a better choice is to increase dimension k. For example, as shown
in Table 3, we need to increase the dimension of LPN problems with a regular
noise distribution by 0.5%-48.3% to achieve the same 128-bit security as LPN
problems with an exact noise distribution. The increase of dimension k£ has a
negligible impact on the efficiency of PCG-like protocols, due to the usage of the
Bootstrapping-iteration technique [82]. For dual-LPN problems, we note that
the algebraic attack [22] has significantly more cost than Pooled Gauss and ISD
attacks for all the listed parameters, as the code rate is constant (typically 1/2
or 3/4).

In this section, we aim to give more accurate formulas by adjusting the known
attacks to analyze the cost of low-noise LPN problems in the PCG setting. In
particular, we provide an estimator tool (see Footnote 3), which incorporates
the advanced attacks being applicable to LPN problems in the PCG setting,
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to automatically evaluate the bit security of low-noise LPN problems. This will
help future works to select LPN parameters when designing or applying PCG-
like protocols. While the recent estimator tool by Esser and Bellini [39] focuses
on ISD attacks to analyze the hardness of classical LPN problems over Fy with
an exact noise distribution in the traditional public-key setting, our estimator
tool covers Pooled Gauss, SD, SD 2.0, ISD and algebraic attacks to evaluate
the hardness of low-noise LPN problems over an arbitrary finite field (or integer
ring) with a regular or exact noise distribution in the PCG setting.

In Sect.5.1, we first show that (RHW,F3)-LPN(V, k,t) is not harder than
(HW,F3)-LPN(N —t, k —t,t), and also give an overview of the algebraic attack.
For LPN over larger fields, we do not find such an efficient transformation from
regular-LPN to exact-LPN. Therefore, we are able to analyze the costs of Pooled
Gauss, SD and ISD attacks against LPN problems in a similar way for both
exact and regular noise distributions. Then, in the full version of the paper [58,
Appendix B], we show the imprecisions of the previous analysis [15] and give
more accurate formulas against Pooled Gauss, SD and ISD attacks for the hard-
ness of low-noise LPN problems.

5.1 The Hardness of LPN with Regular Noise Distributions

Transformation from Regular-LPN to Exact-LPN over F,. Building
upon prior works [22,41], we transform a regular-LPN problem (RHW,TF5)-
LPN(N,k,t) into an exact-LPN problem (HW,F3)-LPN(N — ¢,k — ¢,t). The
reduction is useful for the case of 2V7F > (J;f) which is satisfied by the LPN
parameters in the PCG setting. In this case, both regular-LPN and exact-LPN
problems have unique solutions for these parameters, and thus the solution of
(HW,TF3)-LPN(N — ¢,k — t,t) is always that of (RHW,F5)-LPN(N, k, ).

Let m = |N/t]. Given a (RHW,F3)-LPN(N, k,t) instance (A,b) with b =
A - s+ecF) and s € F§, we define

A1 €1 b1:A1'S+61

def | . def | . def
A= S, e= | | and b E

At €4 bt:At'S-i-et

where A; € F7"** e, € FJ* and b; € Fy* for i € [1,t]. Note that the Hamming
weight of each sub-vector e; is exactly 1. We use A;[j] to denote the j-th row
vector of A;, and recall that b;[j] and e;[j] is the j-th component of vectors
b; and e; respectively. Then, for each i € [1,t], we can obtain the following
equation:

m m m

D_bilil =D Aili) s+ el = | DAl |-s+1.

Therefore, we extract t linear relations about the secret and reduce the dimension
of s by t. Specifically, we replace s[0],..., s[t — 1] with a linear function of other
components in s, allowing us to eliminate s[0],. .., s[t — 1] from s.
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We eliminate the correlation by removing one sample within each block,
where correlation indicates that the noise bit of the removed sample is fully
determined by the remaining m — 1 samples in the same block. After removing
the t samples, we show that the remaining samples, permuted randomly, still
constitute an LPN instance. For the remaining samples in each block i € [1,¢], we
denote by w; the Hamming weight of the noise sub-vector. Then we have that w;
follows a Bernoulli distribution, i.e., Prjw; = 1] = 1—1/m and Pr[w; = 0] = 1/m.
By a union bound, we have that the resulting noise vector follows the exact noise
distribution HW; n_¢(F2), with probability at least (1—1/m)* > 1—t/m, which
is close to 1 as m = | N/t| is sufficiently large for the LPN parameters used in
the PCG setting. Thus, the resulting LPN instance is an exact-LPN instance
(HW,F2)-LPN(N —t, k —t, t). Therefore, we can use the bit security of an exact-
LPN instance (HW,Fy)-LPN(N — ¢,k —¢,t), based on all known attacks against
exact-LPN| to estimate that of a regular-LPN instance (RHW,F3)-LPN(N, k, t).
We can convert a dual-LPN problem into an LPN problem using the approach
in [62]. Thus, we are also able to perform the above transformation for dual-LPN
problems over Fs.

For LPN problems over a field F with |F| > 2, the above transformation
fails to work. For each noisy coordinate, a regular-LPN instance now samples a
random element in F\{0} rather than only 1. In this case, for each block i € [1,¢],
we have that 370, b[j] = (3072, Ailf]) - s + 7 where r € F\{0} is random and
unknown. Now, we have to guess the random element r, which succeeds with
probability at most ml%l. For all ¢ blocks, we can succeed in guessing all random
elements in ¢ noisy coordinates with probability at most ﬁ < 2—1,5 Besides,
we are able to perform the above transformation for a part of blocks. However,
it does not allow us to decrease the cost of solving a regular-LPN problem by
guessing the random elements located in noisy coordinates and performing the
above transformation. In conclusion, we choose to use the known attacks of
Pooled Gauss, SD and ISD against exact-LPN to estimate the cost of regular-
LPN against these attacks for the case of larger fields.

The Recent Algebraic Attack Against Regular-LPN. Recently, Briaud
and Qygarden [22] introduced a new algebraic attack that is tailored to LPN
problems with regular noise distributions. Specifically, their attack solves a poly-
nomial system involving the coordinates of a regular noise vector e, leveraging
the quadratic system that captures the regular structure. This algebraic attack,
as described in [22], converts solving a dual-LPN problem over a field F into
solving a polynomial system of degree 2 involving the coordinates of an error
vector. In particular, the polynomial system consists of n parity-check equations
(represented as H - e = y) along with another quadratic system that encodes
the regular structure of a noise vector e = (eq,...,e;) where e; is defined as
above. In more detail, for each sub-vector e; € F™ with m = | N/t], all quadratic
equations of the form e;[j1] - e;[j2] = 0 for j; < jo are involved. For the case
of Fy, a variation of the quadratic system is employed by introducing additional
structural equations of the form (e;[j])? = e;[j] and >y €ilj] = 1, which guar-
antees that every e; is a unit vector. Standard algorithms such as XL/Grobner
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bases [12,26,72,79] are then applied to solve the degree-2 polynomial system.
Furthermore, a hybrid approach is proposed to reduce the computation com-
plexity. This approach involves guessing some error-free positions of the noise
error e, inspired from the regular version of Prange’s algorithm [47]. It is not
easy to give a succinct formula to compute the cost of their algebraic attack.
Instead, we choose to provide an estimator tool (see Footnote 3), which allows
us to automatically estimate the cost of the algebraic attack.

Compared to linear attacks such as Pooled Gauss, SD and ISD attacks, their
algebraic attack achieves lower cost when solving regular-LPN problems with
small code rate for some parameter sets (see Table2 and the full version of the
paper [58, Table8]). The algebraic attack does not outperform ISD attacks for
dual-LPN problems used in PCG-like protocols that have constant code rate (i.e.,
1/2 or 3/4). Given the number of samples (corresponding to the number of PCG
correlations), we are able to increase the dimension &k and keep the noise weight
t unchanged to resist the algebraic attack [22] against LPN problems, while
keeping the efficiency essentially unchanged due to the usage of bootstrapping
iterations [82].
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