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ABSTRACT

Citizens in large cities utilize public transportation as an
alternative to self-driving for several reasons, such as avoiding
traffic congestion and parking costs and utilizing their time for
other things (e.g. reading a book or responding to emails). While
large cities provide public transportation as a service to their
citizens, they need to conmsider optimizing their budget and
ensuring that public transportation is available and reliable.
Using our case study, the public bus transit system in the city of
San Antonio, Texas, in this paper, we used predictive analytics
models to evaluate the performance of public bus
transportation. We used time point stops as the target variable
in order to evaluate their impact on the overall performance of
the system. We also evaluated methods for the detection of
potential bus-time savings and reported several examples of
possible savings.

Keywords: Predictive analytics, GTFS, Transportation Intelligence

I. INTRODUCTION

Public transportation generates a large amount of data that
can be continuously analyzed to better improve public
transportation services. General Transit Feed Specification
(GTFS) provides a standard protocol to effectively transmit real-
time transit information. The data that is described in GTFS
feeds is not sensitive or proprictary as it is information about
public services. As GTFS data is public, this allows many users
and researchers to develop tools and applications to utilize this
data.

One of the most commonly emphasized criteria in public
transportation is travel time reliability. This can be quantified
through several metrics, such as expected waiting time, variance
of travel time, or on-time performance (Danaher et al., 2020).
Nevertheless, when it comes to determining the most optimal
routes in public transportation, simply considering travel
duration is often inadequate. Other factors like the number of
transfers involved and the expenses incurred can be equally
significant.

Transportation networks are usually modelled with graph
structures for their intuitiveness and ability to utilize many
software tools. Additionally, algorithms such as Dijkstra’s
algorithm can work efficiently to solve the single-source
shortest-paths problem. In public transportation, many
publications utilized Python libraries (e.g. Partridge, Peartree
(Butts, 2021) and NetworkX) to convert GTFS feeds into
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directed network graphs. The graph contains two main elements
(Madamori, Max-Onakpoya, Erhardt, & Baker, 2021):

e Nodes that represent bus stops. Each node has several
edges that represent the departure times for all buses
from that stop.

e Edges. Each edge represents a bus path from one stop
to another. The edge weight is the average time it takes
for a bus to get between the two stops on the edge.

Bus transportation networks can be modelled as a graph
where bus stops represent the nodes and connections between
those stops represent the edges. The edge costs are the costs of
shortest paths between the respective nodes in the original
graph. The edge cost is computed as the shortest path cost for
each departure time from a source node to a destination node
(Tesfaye, Augsten, Pawlik, Bohlen, & Jensen, 2022). In the
time-dependent model, all nodes of the graph represent a bus
stop linked together by one or more routes. A mathematical
function containing a time variable defines the weight of every
edge. Each query evaluates the weight according to the time of
the query. In the time-expanded model, all nodes represent an
event (arrival, departure or transfer), and thus, it requires more
nodes and edges (Fortin, Morency, & Trépanier, 2016). In the
next sub-section, we discuss time points in public transportation
as designated stops used in schedule management.

1.1. Time Points

A time point is a public transit stop that a vehicle tries to
reach at a scheduled time. A vehicle is not supposed to pass a
timepoint until the scheduled time has arrived. These stops are
contrasted with all other stops, besides timepoint stops, on a
scheduled route for which the transit agency does not explicitly
schedule an arrival/departure time. Beyond time points, drivers
can have the flexibility to arrive at other stops and accommodate
real-time situations related to delays in traffic or any other
irregular circumstances. Figure 1 shows the variation in the
number of time points in the different trips.
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Fig. 1. Number of timepoints in San Antonio bus trips

II.  RELATED WORK

A. The General Transit Feed Specification (GTFS)

The GTFS defines a common format for public
transportation schedules and associated geographic information.
GTFS is used as a format to allow public transportation
authorities to exchange their data in a common format. A typical
GTFS feed contains a collection of text files that describe static
public transit schedules and related geodata.

Delays or uncertainty in traffic occur due to the complexity
of the system and the real-time or dynamic factors related to
accidents that can impact and cause issues. Lee and Miller's
(2020) paper focused on evaluating or measuring accessibility
to deal with travel time uncertainty. The traffic routing problem
is formulated as a multi-objective optimization problem with
time and reliability of the router as the two main objectives. The
approach is based on a fast, non-dominated sorting algorithm
(FNSA) that is adapted from Non-dominated Sorting Genetic
Algorithm II (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan,
2002).

In 2008/2009, a local transit agency in Albany, NY, provided
passenger data, which was used in the research paper (Zhang,
2014). The authors of the paper analyzed the data based on
different times and weather conditions. In addition, they
conducted extensive research on GTFS data and created a
website that used Google Maps API to retrieve station distance
and topography data. After testing various algorithms, the
authors found that the EM algorithm and K-Means were the
most effective for clustering stations. Although the machine
learning strategy was able to comprehensively evaluate all stops,
it was inadequate for analyzing specific routes. Therefore, the
author used K-Means to create a BRT station selection tool
which could cluster stops on a particular route.

B. Timepoints and Schedule Adherence

Time points are gateways selected to manage scheduling in
transportation systems. Several research papers discussed
different scheduling algorithms to optimize timepoint
scheduling (e.g. (Liu & Miller, 2020; Sun, Samal, White, &

Dubey, 2017) (Glick, 2020; Sun, Dubey, White, & Gokhale,
2019)). In terms of scheduling and time points, drivers are
expected to (Sun et al., 2017):

e Wait at the time point until the scheduled time if it
arrives early.

e Departure as soon as possible if they arrive on time or
late.

C. Travel Time Savings

Arias et al. (2021) looked at creating a bus-only lane in
Atlanta and how it can result in travel time savings. They went
through the map of Atlanta to plan out a specific highway to
have a bus-only lane. Using GTFS, they looked at the bus travel
time that can be improved. They used stop times to calculate the
improved time by looking at best-case scenarios versus worst-
case scenarios.

In (Rothfeld, Fu, Bala¢, & Antoniou, 2021), authors
presented an exploratory study in urban air mobility travel time
saving for several cities, namely, Munich, Paris and San
Francisco. Arias et al. (2021) used GTFS to evaluate methods
for travel time-saving potentials. The study used the 2018
Metropolitan Atlanta Rapid Transit Authority (MARTA) bus
network.

D. Public Transit Routing

The issue of finding optimal routes in public transportation
systems was examined by researchers. To tackle this problem, a
popular method involves representing the network as a graph
and applying a shortest-path algorithm to it (Rothfeld et al.,
2021).

Delling, Pajor, and Werneck (2015) have presented a new
approach called RAPTOR, which stands for Round-Based
Public Transit Optimized Router. This method aims to
determine the best possible journeys between two specified
stops while minimizing both the travel time and the number of
transfers needed. Unlike previous methods that rely on Dijkstra's
algorithm, RAPTOR functions using a ground-based approach.
This involves computing arrival times for each round by
traversing each route, such as a bus line, no more than once. The
algorithm is based on a dynamic program and utilizes
uncomplicated data structures, resulting in efficient memory
usage.

Jeon, Nam, and Jun (2018) have introduced an enhanced
version of the RAPTOR algorithm, which accounts for transfer
resistance and multi-path searching. They have incorporated
transfer resistance during transfers and assigned distinct values
based on the type of transit mode used. By examining the
algorithm's output before and after modification and comparing
it with the routes taken by passengers in reality, the authors of
the study have demonstrated that the proposed algorithm
considers the diverse route selection criteria of passengers.

III.  VIA METROPOLITAN TRANSIT

In this section, we present a summary of the VIA
Metropolitan Transit bus public transit system in the city of San
Antonio, Texas.



A. Network Properties

The following statistics reflect the current status of the San
Antonio VIA bus transportation system based on public
information extracted from GTFS:

e Average riders waiting time in San Antonio VIA is

reported as 10 minutes (Selcraig, 2020)

The overall number of routes is 98.

The overall number of stops is 6127.

The average number of trips per day is 4795.

The number of shapes is 127258. Shapes are associated

with trips and consist of a sequence of points (i.e., the

geographic paths) through which the vehicle passes in

order.

e The number of edges is 38590. Edges are characterized
by the straight-line distance between stops.

e Stop times: 565173: Stop times represent the arrival
and departure times of a trip at a stop.

¢ Timepoint stops: In the dataset, the total number of
stops for all trips per day is 395588. Of those stops,
45448 stops are time points.

Additionally, there are several dynamic attributes of VIA
that are specific to the data that we have collected and used.

e The total number of evaluated trips in our experiments
is 123457.

e  The number of transfers: 7314. This number is very
dynamic and depends on actual trips and whether the
traveller needs to switch from one bus to another.

e  The number of days in the collected dataset is 140 days
in 2022.

The busiest day is 2022-10-28.

The average edge cost, which refers to the business
time between the two stops in the edge, is 53 seconds.
Maximum edge cost is 1231 seconds.

Average stop waiting time, outbound: 20 seconds,
inbound: 20 seconds.

e Maximum stop waiting time, outbound: 71 seconds,
inbound: 74 seconds. Those waiting times are for bus
drivers, not riders.

e  The number of gateways is 34. We used the definition
and algorithm described in (Madamori et al., 2021) to
create gateway stops. Gateways are special stops
selected to act as hubs for other stops to collect and
store network information. In a smart network, such
gateways can be used to make real-time decisions to
optimize network usage and resources.

Figure 2 shows a network graph for San Antonio busses
network based on edges and nodes described earlier.

Fig. 2. San Antonio VIA Buses Network, all routes

We created Figure 2 graph object from GTFS data using
NetworkX graphs. Because the graph object is formatted as an
instantiated NetworkX graph, we can perform all typical
network algorithms that are built into NetworkX. For example,
we generated betweenness centrality.

Figure 3 shows the longitude and latitude distributions of
VIA. While there is a fair distribution of stops across several
latitudes, they are more condensed in a few longitudes that have
higher volumes of trips. The figure shows in particular that more
than 35,000 trips are reported in the longitude (-98.45 to -98.55).

Distsibutions of lalitude: and longitue for 4 BTFS datasel

Fig. 3. Distributions of latitude and longitude for SA GTFS dataset

Betweenness centrality provides a measure for the relative
importance of a node in the bus network on the basis of the
fraction of shortest paths that go through this node. A high
betweenness centrality can be an indication that a node is
essential in connecting different parts of a network.

Betweenness centrality of a node (or a bus stop in our case)
v is the sum of the fraction of all-pairs shortest paths that pass
through v. For around 6000 bus stops in SA, Betweenness
centrality, minimum, maximum and average values are: 0,
0.2294, and 0.01163 respectively. In order for one stop to have
a high betweenness centrality, the node or the bus stop must be
between many of the other nodes. The difference between
minimum and maximum shows the large variation in this value
from one stop to another. Some of the reported betweenness
centrality in literature for other cities are higher than those of




San Antonio. For example, (Akse, 2014) (London Euston
(0.403)), and (Badie Modiri, 2018) (Katz (0.34)). Other major
cities, such as Mexico ,City is reported to have lower
betweenness centrality (Reyna, de la Mota, & Vazquez,
2021)(0.1448) and 0.04896 in Chapel Hill Transit (Madamori et
al., 2021). Table 1 shows the top 10 stops in San Antonio in
terms of betweenness centrality.

TABLE 1. TOP 10 STOPS IN SAN ANTONIO IN BETWEENNESS CENTRALITY

StopID BC Value StopID BC Value
76773 0.2294 99496 0.16999
71839 0.2136 81726 0.1699
55229 0.2056 30049 0.1624
70996 0.2035 71926 0.1606
70997 0.1706 88986 0.1595

B. Timepoint classification analysis

While it's not clear how public transportation selects or
nominate some stops to be time points and whether those time
points are dynamic or flexible to change, our analysis uses them
as target label. We collected, created and aggregated several
features based on GTFS data. Each row represents a stop in a
trip, and the target column is a binary target, the timepoint,
whether this stop is a timepoint (1) or not (0). The following
features are used as input features to the classification model:

* TripID

* DepartureTimeRelative: Each stop will have a departure and
arrival time. In normal scenarios, for time points, those times
are the same. Hence, one can be used. Additionally, in order to
process departure time in machine learning models, we
converted it to a relative real number between 0 and 1. For
example, 08:00:00 am is converted to 0.3, 12:00:00 as 0.5.

* HourDeparture: This is a categorized column of the
departure/arrival time to show only the hour part.

* StopID

» Timepoint: This is the target feature, 1 if the stop is a timepoint
and zero if not.

* StopSequence: This refers to the stop order in its trip.

* PickupType: The pickup type field indicates whether
passengers are picked up at a stop as part of the normal schedule
or whether a pickup at the stop is not available. This field allows
the transit agency to indicate that passengers must call the
agency to arrange a pickup at a particular stop. Out of 565127
stop records in the dataset, only 10392 are 1, not a pick-up stop.
* DropOffType: Indicates whether passengers are dropped off
at a stop as part of the normal schedule or whether a drop off at
the stop is not available. This field also allows the transit agency
to indicate that passengers must call to arrange a drop-off at a
particular stop. The feature is very similar to PickupType and
so can be eliminated.

* Routelnt: Routes are defined in the file routes.txt. They are
made up of one or more trips. A trip occurs at a specific time,
so the route is time-independent.

We evaluate several classical algorithms, namely: Logistic
Regression, KNN, Decision Tree, Random Forest and Gaussian
NB. We reported, in Table 2, several performance metrics.

TABLE II. PERFORMANCE METRICS ON DIFFERENT CLASSIFICATION MODELS

Classifier Accuracy Precision Recall Classifier
& F1
LogRegression 0.90 0.0 0.0 0.0
KNceighbors 0.90 0.0 0.24 0.01
DecisionTree 0.99 0.99 0.99 0.99
RandomForest 0.99 0.99 0.99 0.99
GaussianNB 0.90 0.0 0.0 0.0

Results in Table 2 show two classifiers, Random Forest and
Decision Trees, performed well in all metrics. However, the rest
of the classifiers, LR, KNN, and NB, showed very low values in
precision, recall and F1. This is expected as the dataset is
imbalanced; in the dataset we used, 65,000 stops that are time
points, while the rest (500127) are not. In the second experiment,
we sampled from the dataset equal samples for labels 0 and 1.
As shown in Table 3, the under-sampling improves precision,
recall and F1 for KNN and NB but significantly lowered
accuracy values.

TABLE IIl. PERFORMANCE METRICS ON DIFFERENT CLASSIFICATION MODELS
AFTER UNDERSAMPLING

Classifier Accuracy Precision ?1“3“ & | Classifier
LogRegression 0.55 0.0 0.0 0.0
KNeighbors 0.48 0.31 0.40 0.35
DecisionTree 0.99 0.99 0.99 0.99
RandomForest 0.99 0.99 0.99 0.99
GaussianNB 0.55 0.20 0.49 0.28

Features weights with target columns and timepoints (Figure
4) show that pickup-type, then n_stops are the most important
features. Although the total number of stops that have pickup-
type =1 is small (10392/565127), and also the number of stops
that have timepoint value=1 (65000/565127), the correlation is
shown to be high between both.
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Fig. 4. Top Features and Weights

Figure 5 shows a Decision Tree (DT) based on target class
timepoint. The root feature is stop-sequence. A stop sequence is
a unique sequence of stops visited by a transit trip. It first reads
that all stops that are the first in their trip are timepoint stops. If



there is no first stop and there are no pick-up stops, then they
will not be timepoint stops. Those are the most readable edges
in the DT.
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Fig. 5. Timepoint Decision Tree

C. Time Savings

We used GTFS data to analyze the time savings for each
route. The idea is that if the times change based on traffic,
smaller wait times during less traffic and higher wait times based
on heavy traffic, then if we had a dedicated lane for buses, then
the heavy traffic times would be eliminated and leave the
minimum wait time at each stop. In order to calculate the benefit,
we take the average wait time of all stops and subtract the
minimum time to give us a time savings. By adding all of the
time savings of each route, we can get an idea of the time benefit
of having a dedicated lane for that route. For example, to
calculate the time savings for route 100, we followed the
following process:

e First, we calculate the difference between the arrival
times of each stop and the next one in a trip sequence
of stops wusing the equation waitSeconds =
(firstArrivalTimes - secondArrivalTimes). To do that,
we used the equation firstArrivalTimes =
directionTimes.arrivaltime[1:].values to retrieve all
stops in a trip sequence from the index 1 (inclusive) to
the end of the sequence (i.e., all stops from the second
to the last), for example, (26160, 26940, 27960, 28800,
29760, 30660, 31380, 32340, 33240, 34140,35040,
35940). We  then used the  equation
secondArrivalTime= directiontimes.arrivaltime[:-
1].values to get all stops from the beginning of the trip
sequence up to, but excluding, the last stop, for
example, (25320, 26160, 26940, 27960, 28800, 29760,
30660, 31380, 32340, 33240, 34140, 35040)

e Second, we calculated the average of all differences
using the equation average wait =
np.array(waitseconds).mean()

e  We then computed the "Time savings" by subtracting
the minimum waiting time from the average wait for
that trip using the equation Time savings = average
wait — minimum

Figure 6 shows there were 12 first and second stops in a trip
on route 100. Their waiting times range from 720 to 1020
seconds. The time savings calculated for this trip is 165 seconds.
That means if all waiting times were 720, there would be a 165-
second benefit compared to the original schedule.

Processing on route 18@.
Reduced trips in consideration from 135 to 31.
Route
['1e@' '1ee' '1ee’ °1e@' °1e¢" '16@' '16@' '19@" '1@@' '1€@' 'l18e' '1@0']
|wait seconds
[ 840, 78e. 1020, 84@8. 968, 900. 720. 968. 900, 90@. 980. 900.]
| Wait minimum
728.8
average wait
|885.0
time savings = 885.8 - 720.8
|165.8

Fig. 6. Time savings for a trip on Route 100

We appended each iteration of the route to get the list of all
time savings for each trip. For route 100, there were 107 trips,
as shown in figure 7. We computed the average time savings for
all trips to get 135.72 seconds. This was done with a time
constraint of 700 a.m. to 10 a.m. only.

Processing on route 1@9.
Reduced trips in consideration from 135 to 1@7.
Time Savings
Route
168 135.729887

Fig. 7. Number of trips in route 100

Table 4 shows the statistics of the time saving for all routes.
The table provides statistics for time delay and late arrival for a
set of 78 routes. The statistics are summarized as follows:

e Number of Routes: There arc a total of 78 routes
included in the analysis.

e Mean: The mean (average) time delay across all routes
is approximately 45 minutes and 4.42 seconds.

e  Maximum: The maximum time delay observed among
the routes is 6 hours, 35 minutes, and 22.97 seconds.

e  Minimum: The minimum time delay observed among
the routes is O hours, 0 minutes, and 0 seconds,
indicating that some routes arrive exactly on time.

e Standard Deviation: The standard deviation provides a
measure of the variability or dispersion of the time
delays across the routes. The standard deviation value
is not provided in the given information.

TABLE IV. TIME SAVINGS FOR ALL ROUTES

Num Mean Max Min Std

of

routes

78 0:45:04.42 6:35:22.97 0:00:00 01:37:15

These statistics offer insights into the average, maximum,
and minimum time delays experienced by passengers across the
set of 78 routes. It indicates the range of delays observed and
provides an overview of the distribution of delays.

Table 5 shows the top routes with the highest average time
savings (i.e., average late arrival time to the destination stop
point), along with corresponding trip names. The "Time
savings" column indicates the average delay in arrival time
experienced by passengers for each specific route, which could



be saved by having a dedicated lane for buses to avoid the traffic
that causes the delay. The values are presented in hours, minutes,
and seconds.

Analyzing this data can help identify routes with the highest
average delays, allowing for potential improvements in
scheduling,  operational  efficiency, and  passenger
communication.

TABLE V. TOP ROUTES WITH THE HIGHEST AVERAGE TIME SAVINGS

Route Trips in Route Time savings
42 4432390, 4432363 6:35:22
515 4433667, 4433654 5:25:06
25 4430451, 4430507 5:11:11
2 4429320, 4429319, 4429273 5:09:16
97 4440015, 4440032, 4440018 4:46:49
36 4431980, 4431995, 4431979 4:45:50
9 4439129, 4439074 4:39:52
88 4438827, 4438781,4438828,4438780 4:21:39
28 4430989, 4430940, 4430939 3:38:08
34 4431847,4431804,4431846,4431803 3:33:54
75 4437746, 4437698, 4437747 2:02:45
632 4436607, 4436571, 4436564 1:13:52

IV. CONCLUSION AND FUTURE WORK

Machine learning approaches are proposed to improve
performance and many aspects of public transportation systems.
The evaluation of historical and real-time data public
transportation data can help make better and more informative
planning and decisions. Timepoint stops are used as a
scheduling tool to track performance. Using timepoint stops as
a target column, in this paper, we integrated several input
features from the different GTFS tables. We reported results
from several classifiers, while Random Forest and Decision
Trees showed the overall best results. We also conducted results
to evaluate approaches to save time in the different bus routes.
We showed that significant time can be saved while maintaining
system requirements or constraints. Looking ahead, several
avenues for future research and development in this field can be
identified. First, the integration of real-time data streams into the
predictive models could offer a more dynamic understanding of
system performance and allow for on-the-fly adjustments.
Second, incorporating user-centric factors such as passenger
preferences, peak travel times, and route popularity could
further enhance the accuracy and applicability of the predictive
models.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2131193. Any opinions,
findings, conclusions, or recommendations expressed in this

material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

Akse, F. A. (2014). Aggregate waiting time reduction on public transportation
networks.

Arias, D., Todd, K., Krieger, J., Maddox, S., Haley, P., Watkins, K. E., &
Berrebi, S. (2021). Using gtfs to calculate travel time savings potential of
bus preferential treatments. Transportation Research Record, 2675(9),
1643-1654.

Badic Modiri, A. (2018). Error and attack tolerance of public transportation
networks: a temporal networks approach.

Butts, k. K. (2021). Retrieved from https://github.com/kuanb/peartree

Danaher, A., Wensley, J., Dunham, A., Orosz, T., Avery, R., Cobb, K., . . .
Connor, M. (2020). Minutes Matter: A Bus Transit Service Reliability
Guidebook.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE transactions on
cvolutionary computation, 6(2), 182-197.

Delling, D., Pajor, T., & Werneck, R. F. (2015). Round-based public transit
routing. Transportation Science, 49(3), 591-604.

Fortin, P., Morency, C., & Trépanier, M. (2016). Innovative GTFS data
application for transit network analysis using a graph-oriented method.
Journal of Public Transportation, 19(4), 18-37.

Glick, T. B. (2020). Methodologies to Quantify Transit Performance Metrics at
the System-Level Using High-Resolution GPS, Stop-Level, and GTFS
Archived Transit Data. Portland State University,

Jeon, 1., Nam, H., & Jun, C. (2018). A schedule-based public transit routing
algorithm for finding K-shortest paths considering transfer penalties. The
Journal of The Korea Institute of Intelligent Transport Systems, 17(3), 72-
86.

Lee, J., & Miller, H. J. (2020). Robust accessibility: Measuring accessibility
based on travelers' heterogeneous strategies for managing travel time
uncertainty. Journal of Transport Geography, 86, 102747.

Liu, L., & Miller, H. J. (2020). Does real-time transit information reduce
waiting time? An empirical analysis. Transportation Research Part A:
Policy and Practice, 141, 167-179.

Madamori, O., Max-Onakpoya, E., Erhardt, G. D., & Baker, C. E. (2021).
Enabling opportunistic low-cost smart cities by using tactical edge node
placement. Paper presented at the 2021 16th Annual Conference on
Wireless On-demand Network Systems and Services Conference
(WONS).

Reyna, O. S. S., de la Mota, L. F., & Vazquez, K. R. (2021). Complex networks
analysis: Mexico’s city metro system during the pandemic of COVID-19.
Case Studies on Transport Policy, 9(4), 1459-1466.

Rothfeld, R., Fu, M., Bala¢, M., & Antoniou, C. (2021). Potential urban air
mobility travel time savings: An exploratory analysis of Munich, Paris,
and San Francisco. Sustainability, 13(4), 2217.

Selcraig, B. (2020). Early Success of San Antonio’s VIA Link Prompts
Citywide Expansion Plan. Retrieved from
https://www.expressnews.com/news/local/article/Early-success-of-San-
Antonio-s-VIA-Link-prompts-15075197.php

Sun, F., Dubey, A., White, J., & Gokhale, A. (2019). Transit-hub: A smart public
transportation decision support system with multi-timescale analytical
services. Cluster Computing, 22, 2239-2254.

Sun, F., Samal, C., White, J., & Dubey, A. (2017). Unsupervised mechanisms
for optimizing on-time performance of fixed schedule transit vehicles.
Paper presented at the 2017 IEEE International Conference on Smart
Computing (SMARTCOMP).

Tesfaye, B., Augsten, N., Pawlik, M., Bohlen, M. H., & Jensen, C. S. (2022).
Speeding up reachability queries in public transport networks using graph
partitioning. Information Systems Frontiers, 24(1), 11-29.

Zhang, T. (2014). Bus stop usage evaluation and BRT station selection strategy
by machine learning methods: State University of New York at Albany.



