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A B S T R A C T   

Advances in 5G and 6G communication technologies and their applications are in part limited by the capabilities 
of current electronic packaging materials, as expanded bandwidth is a pressing need for novel dielectric sub
strates capable of co-firing into packages and devices, characterized by low dielectric loss and enhanced thermal 
conductivity. This investigation provides further characterization in the dielectric, electrical and thermal con
ductivity properties over previously reported cold sintered composite of Sodium Molybdate Na2Mo2O7 (NMO) 
with hexagonal Boron Nitride (hBN), such as relative permittivity (εr) and dielectric loss (tan δ) values at high 
frequencies of 75–110 GHz, electrical resistivity (ρ) fitting to percolation theory, Weibull statistical analysis of 
electrical breakdown strength (Eb) and its anisotropic thermal conductivity (κ) influenced by the filler’s crystal 
structure. The cold sintered composites were systematically characterized with respect to filler volume fraction, 
temperature, and frequency. The findings in this analysis position engineered composites as a promising alter
native for microwave substrate materials, with using a densification method that limits interactions and maxi
mizes densification, hence the demonstration with cold sintering.   

1. Introduction 

Rapid advances in communication technologies and the application 
of high-power, high-frequency electronics require the development of 
advanced packaging materials. These materials need to exhibit 
outstanding properties, such as low sensitivity to temperature changes, 
reduced dielectric loss (tan δ), and superior thermal conductivity (κ), to 
support the next generation of technological applications. While 
increasing the operational frequencies fulfills the need for broader 
bandwidth for communication technologies, current commercial sub
strate materials underperform producing significant power dissipation 
and localized heating extending to nearby components. The develop
ment of microwave materials exhibiting excellent thermal conductivity 
and dielectric performance is the desired solution to provide fruitful 
alternatives to packaging materials for power electronics. Reported 
values for common commercial low-temperature cofired ceramics 
describe dielectric properties of relative permittivity (εr) ranging from 4 
to 12, dielectric loss ranging from 0.0007 to 0.006 at 1 MHz, and ther
mal conductivity ranging from 2.0 to 4.5 W m−1 K−1 [1,2]. 

Cold sintering is a viable option for the fabrication of such mentioned 
innovative materials, which viability has been demonstrated for 
numerous materials systems for a wide extent of applications. A chemo- 
mechanical process analogous to the pressure solution creep sintering 
mechanism is characterized by the collective dissolution, mass transport 
and precipitation in the solid/solvent system. The cold sintering pa
rameters usually occur at temperatures below 300 ◦C under applied 
pressures of a few hundred MPa, in the presence of a transient liquid 
phase which enables the process [3–9]. One of the primary appeals of 
the cold sintering process lies in its ability to densify bulk and thick film 
materials for novel composites. The high temperatures used in conven
tional sintering would introduce chemical reactions and the creation of 
unwanted secondary phases that would be deleterious to the material’s 
performance and would limit the design of the composite. Cold sintering 
can circumvent these challenges due to its low temperatures and rapid 
kinetics, enabling densification of novel material systems. In the design 
of ceramic matrix composites, the one phase with the major volume 
fraction (the matrix) would undergo sintering, others (the fillers) can be 
integrated into the body resulting in a grain boundary engineered 
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composite [10–16]. Several studies have demonstrated the successful 
incorporation of unique composites with polymers (thermoplastics and 
thermosets) [17] [–] [22], 2-D materials [23,24], and buckminsterful
lerene [25], into the grain boundaries of a sintered ceramic material. 
Previous examples have been made in the cold sintering of low-loss di
electrics with other fillers [26] [–] [37]. 

Initial results of the microwave properties of Sodium Molybdate- 
hexagonal Boron Nitride cold sintered composites were published and 
demonstrated that the composites can be fabricated to maintain high- 
frequency dielectric properties and high electrical resistivity while 
simultaneously enhancing thermal properties (thermal conductivity-k). 
This grain boundary engineered composite offers a path for phonon 
transport in its designed microstructure of interconnected network 
[38–40]. It has been established that the incorporation of high-κ hex
agonal Boron Nitride (hBN) on grain boundaries of Sodium Molybdate 
(NMO) lead to a higher thermal conductivity, while simultaneously 
optimizing the dielectric properties for minimal loss. Previous efforts to 
leverage boron nitride nanosheets, graphene, and diamond nano
particles have yielded a wide variation in observed effective thermal 
conductivity [41] and often necessitated a substantial volume fraction of 
the high-κ filler (50 % or more). Cold sintering can facilitate enhance
ments by fostering intimate contact between adjacent filler material 
through confinement of the grain boundary network, as well as a 
reduction in the required volume fraction of filler needed to reach the 
percolation threshold where the thermal network can have an observ
able impact. A very important benefit of the cold sintering process is its 
capability to produce multilayers with printed electrodes, all of which 
can be integrated onto metal substrates in a single cold sintering oper
ation. This enhances the viability of cold sintering as a pivotal 
manufacturing technique for high-frequency and high-power applica
tions in the future [42]. 

The general goals to be achieved in this investigation are: the 
fabrication of high density electroceramic composites via cold sintering, 
using a Sodium Molybdate Na2Mo2O7 (NMO) ceramic matrix and hex
agonal Boron Nitride (hBN) as a filler with high thermal conductivity; 
the characterization of physical properties of the composites as a func
tion of filler volume fraction, temperature and frequency; and the fitting 
and modeling of the measured properties according to their previously 
reported microstructural design [38]. 

2. Experimental procedure 

Powder synthesis. Stoichiometric amounts of Na2CO3 (15.1 g of 
99.95 %, Alfa Aesar) and MoO3 (41.1 g of 99.5 %, Alfa Aesar) were 
mixed in a PTFE 1 L container, using 8 mm zirconia milling media and 
300 ml of ethanol in a ball mill for 24 h. The volume of the container was 
distributed to be approximately 1/3 zirconia milling media, 1/3 air and 
1/3 ethanol plus powder. The resulting slurry was dried for 6 h in a 
120 ◦C oven. This powder was subsequently calcined at 500 ◦C for 5 h, 
following the reaction: 

Na2CO3 + 2MoO3 → Na2Mo2O7 + CO2 

The Na2Mo2O7 (NMO) [43,44] powder was then ball milled under 
dry conditions for 30 min to break up any formed agglomerates. The 
final powder displayed an unimodal particle size distribution with a 
mean size of 2.4 ± 0.9 μm. Further details regarding the NMO powder 
characterization have been previously reported [38]. The NMO powder 
was homogeneously mixed with hexagonal Boron Nitride (hBN, 99.8 %, 
70–80 nm, Nanoshel) according to the intended filler volume fractions. 

Cold sintering process. The proper amounts of NMO and hBN 
powder were weighed out to fabricate cold sintered composite pellets. 
These composites contained from 0.5 up to 40.0 vol % hBN. The weighed 
powders were placed in a glass vial and mixed under dry conditions 
using a planetary centrifugal mixer (Thinky, AR-250) for 10 cycles of 1 
min each. Afterwards, 25 wt % of deionized water was added to the 
powder as the transient liquid phase, and the materials were mixed in an 

agate mortar with a pestle until a homogeneous mixture was obtained. 
The moistened powder was placed in a stainless-steel die for cold sin
tering. Pellets fabricated for characterization of their dielectric proper
ties were fabricated using a die to make samples of 25 mm diameter and 
4 mm thickness, while pellets intended for electrical resistivity, elec
trical breakdown strength and anisotropic thermal conductivity analysis 
were fabricated in a die for samples of 13 mm diameter, with thicknesses 
of 2 mm, 1 mm and 13 mm, respectively. The powder was placed under a 
uniaxial pressure of 250 MPa (Carver, model CH4386) at room tem
perature, and then heated at a heating rate of ~15 ◦C/min up to 180 ◦C 
for 2 h using a heating jacket controlled by a Proportio
nal–Integral–Derivative loop feedback mechanism. A thermocouple was 
placed in a slit at the bottom of the die base. After the 2 h had elapsed, 
the pellet was ejected from the die and allowed to cool to room tem
perature. Finally, the pellets were placed in a 200 ◦C drying oven for 12 
h [38]. This curated overall cold sintering procedure yielded relative 
densities >96 % for NMO pellets and NMO-hBN composite samples with 
volume fractions of 0–40 vol%. Details about the relative densities and 
densification process of cold sintered NMO-hBN composites has been 
previously reported by Mena-Garcia et al. [38] Finally, the surfaces and 
edges of all samples were manually polished using a 1200 grit silicon 
carbide sandpaper using ethanol as lubricant. The thickness of pellets 
fabricated for electrical breakdown testing was reduced by manual 
polishing from 1 mm to ~0.4 mm. 

Characterization. The crystal structure of the synthesized powder 
was characterized by X-ray diffraction (XRD) analysis using a PAN
alytical Empyrean system operated at 45 kV and 40 mA with Cu Kα 
radiation. The NMO particle size distribution was obtained by process
ing 10,000 X Scanning Electron Microscopy (SEM) images acquired 
using a Field Emission Thermo Fisher FESEM Verios G4 microscope. 
Relative densities were calculated by dividing the measured geometrical 
density of the pellets by their theoretical density (ρNMO = 3.682 g/cm3, 
ρhBN = 2.1 g/cm3). Details on the characterization of SEM and XRD 
analysis, are previously reported by Mena-Garcia et al. [38]. 

To assess dielectric properties, 25 mm diameter and 4 mm thick 
pellets were prepared, and their top, bottom and edge surfaces manually 
polished with 1200/P4000 Silicon Carbide sandpaper and ethanol. The 
relative permittivity (εr) and dielectric loss (tan δ) were measured at 
75–110 GHz microwave frequencies using a Swiss to 12 MCK WR-10 
dielectric material characterization text fixture connected to a Key
sight P5027A Vector Network Analyzer. 

To assess the electrical resistivity, 13 mm diameter and 2 mm thick 
pellets were prepared and polished. Additionally, 200 nm thick plat
inum electrodes were Sputter Coated (Quorum Q150R) on both flat 
surfaces. The samples were subjected to a voltage of 1 V which was held 
for 4 min to allow for current stabilization using a Hewlett-Packard 
4140 B pA Meter/DC Voltage source. 

To determine electrical breakdown strength, 13 mm diameter pellets 
were polished to reduce their thickness from 2 mm to 0.4 mm. The test 
was conducted applying a DC voltage gradually increasing at a rate of 
500 V/s until the electrical breakdown failure occurred on the sample, in 
reference to the IEEE Std 930™-2004 Guide for the Statistical Analysis of 
Electrical Insulation Breakdown Data. 

For characterization of the anisotropic thermal conductivity of NMO- 
hBN composite, samples with 40 vol% of filler were fabricated to have 
13 mm diameter and 14 mm height. The pellet was cut into two pieces 
using a slow wire cutter to measure the in-plane direction from one piece 
and the out-of-plane direction from the other. The thermal conductivity 
in each anisotropic direction was calculated (κ = αρCp) using the density 
(ρ), heat capacity (Cp) and thermal diffusivity (α) determined for each 
piece of the sample. The thermal diffusivity (α) was measured using a 
laser flash system (LFA-467 HT HyperFlash®, Germany). Specific heat 
(Cp) was measured by differential scanning calorimetry (Netzsch DSC 
214, Germany). The uncertainties in thermal conductivity was deter
mined to be ±2 %. 
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3. Results and discussion 

3.1. Dielectric properties at microwave frequencies (75–110 GHz) 

Dielectric properties of cold sintered samples were analyzed at 
75–110 GHz microwave frequencies. At room temperature, the dielec
tric constant (εr) of composites systematically decreased with increasing 
filler volume from εr = 13.4 in pure NMO, to εr = 8.4 in NMO-hBN 40 vol 
% composite. The corresponding dielectric loss (tan δ = ε’‘/ε′) showed 
low values between 3.9 × 10−3 and 6.8 × 10−3. This behavior illustrated 
in Fig. 1, aligns with previously reported structure-dielectric properties 
relationship in grain boundary engineered NMO-hBN composites [38] 
fitting Lichtenecker’s mixing power law which considers the spatial 
connectivity of composite phases [45,46]. 

φ̃n
=

∑N

i=1
fiφn

i (Eq. 1)  

where φi is the property of the ith phase, fi is the volume fraction of the 
ith phase. This is summed over the N-phases making up the composite. φ̃ 
is the property that is averaged through the composite mixing, and n is 
the exponent that ranges from −1 ≤ n ≤ +1. The n value is indicative of 
the series or parallel mixing that reflects the spatial connectivity of the 
respective phases. 

Laturia et al. have documented the anisotropic dielectric constant of 
hBN, noting values of εhBN‖ = 6.93 in plane, and εhBN┴ = 3.76 out of 
plane [47]. 

In this study, the effective permittivity of hBN εhBN eff = 4. This value 
is consistent with previous reports on cold sintered NMO-hBN compos
ites. It primarily reflects the permittivity in the out-of-plane direction 
(εhBN┴). This outcome is systematically linked to the engineered 
microstructure of grain boundaries, where 2D hBN flakes are preferen
tially aligned perpendicular to the uniaxial pressure applied during cold 
sintering, a conclusion supported by HR-TEM and STEM imaging [38]. 
Calculations for the composites’ relative permittivity, utilizing a loga
rithmic mixing law with a limiting exponent n→0 (Eq. (2)), reinforce the 
suitability of NMO-hBN cold-sintered composites for microwave sub
strate applications. 

log ε̃r = f1 log εr1 + f2 log εr2 (Eq. 2)  

3.2. Resistivity and fit to percolation theory 

The electrical resistivity of NMO-hBN composites varies with filler 
volume fraction, calculated from the electrical current and pellets’ 
physical dimensions using the following equation: 

ρ =
R • πr2

l
(Eq. 3)  

where ρ, R, r and I respectively represent the resistivity, resistance, 
radius, and thickness of the pellet. 

Pure NMO samples exhibited a resistivity around 1011 Ω•cm while 
composite samples with hBN reached resistivity levels up to 1014 Ω•cm. 
A notable increase in resistivity at 2 vol% hBN, as illustrated in Fig. 2, 
introduces an intriguing aspect to the concept of percolation, chal
lenging traditional expectations where a filler enhances percolation in a 
non-conductive matrix. Typically, we consider percolation with a filler 
phase in a non-conducting matrix. Here we have a reasonable micro
wave dielectric material, that we add an even higher resistivity material 
into the grain boundaries. Here the hBN flakes are blocking the con
duction paths and thereby improving the resistivity with increasing 
volume fraction of fillers. This is a most interesting and beneficial 
observation of the cold sintered composites. It is noteworthy that this 
change is different from the pure mixing law variation with dielectric 
and thermal properties. 

The 2D nature of the hBN made such behavior possible given its 
ability to shear upon the applied stress of the press during the cold 
sintering process. As a result, the sheared layers of resistive hBN easily 
enveloped the NMO grains, forcing conduction between the NMO grains 
to first pass through the resistive layer. This dispersion of material 
amongst the grain boundaries allows for a swifter change in resistive 

Fig. 1. (a) Evolution of the effective relative permittivity (εeff) at 75–110 GHz, fitting a logarithmic mixing law with εhBN eff = 4, and (b) corresponding dielectric loss 
as function of filler volume fraction. 

Fig. 2. Resistivity as a function of hBN volume fraction in NMO-hBN com
posites. Light and dark blue lines on the graph represent fits to equations Eq. (4) 
and Eq. (5), for regions below and above the 2 vol% percolation threshold, 
respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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behavior compared to random filler distribution. Shearing the 2D ma
terial yields a greater surface area of contact with the NMO grains per 
volume % of filler as the hBN is wedged between the grain boundaries. 
The resulting percolation trend for measuring the composite’s resistivity 
is composed of two sections. The fitting curve below the percolation 
threshold is described by Eq. (4): 

ρ = ρm

(φc − φf

φc

)−s

(Eq. 4)  

where ρ is the effective resistivity of the composite, ρm is the resistivity of 
the ceramic matrix, ɸf is the volume fraction of the filler, ɸc is the 
percolation threshold, and s is the critical exponent corresponding to the 
percolation theory. For the fitting curve above the percolation threshold, 
the fitting equation (Eq. 5) is 

ρ = ρf
(
φf − φc

)t (Eq. 5)  

where ρ is the effective resistivity of the composite, ρf is the resistivity of 
the filler, ɸf is the volume fraction of the filler, ɸc is the percolation 
threshold, and t is the critical exponent corresponding to the percolation 
theory [48]. 

For fitting the effective electrical resistivity (ρ) of the composites to 
percolation theory (Eqs. (4) and (5)), the parameters were as follows: 
matrix resistivity ρm = 1011 Ω•cm, filler resistivity ρf = 1015 Ω•cm, 
percolation threshold ɸc = 2.0 vol% hBN, and critical exponents s and t 
at 2.0 and 0.8, respectively. These findings are consistent with numerous 
studies on 2D materials as fillers, which often report percolation 
thresholds under 2.0 vol% filler content. This is particularly evident in 
the electrical properties of composites using materials like graphene as 
filler [49–52]. 

3.3. Anisotropic thermal conductivity of NMO-hBN composite 

Previous research has shown that thermal conductivity (κ) of cold 
sintered pure NMO is ~1.7 W m−1 K−1, and for NMO-hBN composites it 
increases with the filler volume, following a logarithmic mixing law 
with an effective κhBN eff = 30 W m−1 K−1 [38,53,54]. As previously 
mentioned, the cold sintering process, involving uniaxial pressure, re
sults in the hBN flakes aligning perpendicularly to the applied force, 
leveraging its anisotropic thermal conductivity. This anisotropy arises 
from the strong covalent bonds in the in-plane direction, enhancing 
thermal management capabilities compared to the out-of-plane direc
tion. For the NMO-40 vol% hBN samples, thermal conductivity was 
assessed in both directions using Eq. (6): 

κ = αρCp (Eq. 6)  

where κ is the thermal conductivity, α is the thermal diffusivity as 
measured by LFA, ρ is the density and Cp is the specific heat capacity as 
measured by DSC. Fig. 3 illustrates the anisotropic thermal conductivity 
of the NMO-40 vol% composite, which remains steady between 25 ◦C 
and 100 ◦C. As anticipated, conductivity is greater in the in-plane di
rection, a result of the hBN flakes aligning preferentially under the 
uniaxial pressure applied during the cold sintering process. 

3.4. Electrical breakdown strength 

From earlier works on cold sintered ceramic matrix composites, it is 
known that grain boundary inclusions can impact the breakdown field 
[43,55–57]. It could be anticipated that the controlling breakdown 
strength in the NMO is a thermal breakdown process. The increase in 
thermal conductivity and the increase in electrical resistivity should be 
of benefit to raising dielectric breakdown strength. This is rationalized 
for the case of thermal breakdown, where there is a balance between the 
thermal properties and the Joule heating as shown by Eq. (7): 

Cv
dT
dt

− div (κ grad T) = σE2 (Eq. 7)  

here Cv is the specific heat per unit volume, κ is the thermal conductivity, 
T is the temperature, t is the time, σ is the electrical conductivity, and E is 
the applied electric field. Equation (6) is a balance between the heat 
absorbed and the heat lost to the surroundings with heat conducted 
away, with the first and second term on the left hand side of the equa
tion, the term on the right hand side is the Joule heating that is 
continuously being generated from the conduction, and or the dielectric 
loss mechanism [58,59]. 

To assess the quality of the solid dielectric strength of the samples, 
the scatter of the electrical breakdown voltage in the experimental re
sults was analyzed according to the Weibull probability distribution (Eq. 
(8)): 

F(V) = 1 − exp

{

−

(
V
α

)β
}

(Eq. 8)  

where V is the breakdown voltage, α is the scale parameter which rep
resents the voltage required for 63.2 % of the tested samples to fail, and β 
is the shape parameter which represents a measure of dispersion of the 
breakdown voltages [60,61]. 

Electrical breakdown (Eb) tests on NMO-hBN composites revealed 
enhanced electrical breakdown strength and β values with hBN addition. 
While the composite samples show a unimodal distribution according to 
Weibull statistics, the distribution for pure NMO exhibits a bimodal 
characteristic, with β values of 5.7 ± 1.2 and 2.7 ± 0.6 as determined 

Fig. 3. (a) In-Plane and Out-of-Plane Thermal Conductivity versus Temperature for cold sintered NMO-40 vol% hBN composite. (b) Photo of the NMO-40 vol% hBN 
composite with measurement directions. 
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through a Weibull mixture model. With the addition of 20 vol% of hBN, 
the Eb = 96.3 kV/mm, approaching the maximum capability limits of the 
high voltage DC source of 30 kV applied. For samples at 30 vol% and 40 
vol% hBN, 30 kV did not induce breakdown, suggesting higher resil
ience. These samples had a 13 mm diameter and thickness ranging from 
0.3 to 0.5 mm. As shown in Fig. 4, Weibull analysis demonstrated 
consistent improvements in Eb and the shape parameter (β) with 
increased hBN content, pointing to a narrower breakdown voltage 
range. 

4. Conclusions 

Cold sintering was employed to fabricate grain boundary-engineered 
composites of Sodium Molybdate and hexagonal Boron Nitride, 
achieving densities over 96 % across filler volume fractions of 0.5–40 vol 
%. Dielectric testing at 75–110 GHz frequencies and room temperature 
showed that relative permittivity aligns with the Lichtenecker general 
mixing law, having an effective hBN permittivity (εhBN eff) of 4 for 10–40 
vol% filler fractions, with dielectric loss (tan δ) ranging from 3.9 × 10−3 

to 6.8 × 10−3. The NMO-hBN composites’ resistivity increased with 
filler addition, consistent with percolation theory predictions. A perco
lation threshold was noted at 2.0 vol% hBN. Then, a significant re
sistivity increase of three orders of magnitude was observed at 10 vol% 
hBN, and four orders at 40 vol% hBN. The electrical breakdown strength 
also improved with increments of hBN in the composite, and not only the 
insulation breakdown increased, but the shape parameter (β) exhibited 
higher values compared to the pure NMO material, indicating a reduc
tion in the range of the breakdown voltage with the increase of filler 
volume fraction. Finally, anisotropic thermal conductivity measure
ments, influenced by the hexagonal boron nitride’s crystal structure, 
confirmed distinct in-plane and out-of-plane conductivities. These 
findings on the dielectric, electrical, and thermal behaviors of cold sin
tered NMO-hBN reinforce its potential as a novel material for high- 
frequency microwave substrate applications, building upon and 
extending previously reported properties. 
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